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Abstract
The association between left ventricular (LV) myocardial deformation and hemodynamic forces is still mostly unexplored. 
The normative values and the effects of demographic and technical factors on hemodynamic forces are not known. The 
authors studied the association between LV myocardial deformation and hemodynamic forces in a large cohort of healthy 
volunteers. One-hundred seventy-six consecutive subjects (age range, 16–82; 51% women), with no cardiovascular risk factors 
or any relevant diseases, were enrolled. All subjects underwent an echo-Doppler examination. Both 2D global myocardial 
and endocardial longitudinal strain (GLS), circumferential strain (GCS), and the hemodynamic forces were measured with 
new software that enabled to calculate all these values and parameters from the three apical views. Higher LV mass index 
and larger LV volumes were found in males compared to females (85 ± 17 vs 74 ± 15 g/m2 and 127 ± 28 vs 85 ± 18 ml, 
p < 0.0001 respectively) while no differences of the mean values of endocardial and myocardial GLS and of myocardial GCS 
were found (p = ns) and higher endocardial GCS in women (− 30.6 ± 4.2 vs − 31.8 ± 3.7; p = 0.05). LV longitudinal force, 
LV systolic longitudinal force and LV impulse were higher in men (16.2 ± 5.3 vs 13.2 ± 3.6; 25.1 ± 7.9 vs 19.4 ± 5.6 and 
20.4 ± 7 vs 16.6 ± 5.2, p < 0.0001, respectively). A weak but statistically significant decline with age (p < 0.0001) was also 
found for these force parameters. This new integrated approach could differentiate normality from pathology by providing 
average deformation values and hemodynamic forces parameters, differentiated by age and gender.
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Introduction

The non-invasive and correct calculation of the left ventricle 
ejection fraction (LVEF) represents an essential challenge in 
modern cardiology. Although LVEF is the most often used 
parameter to evaluate the LV function and is associated with 
adverse cardiovascular outcomes [1], LVEF is not suffi-
ciently sensitive to detect subtle myocardial dysfunction [2]. 
Strain imaging has a higher prognostic value to conventional 
measures for predicting major adverse cardiac events [3]. We 
recently provided a mathematical relationship showing that 
the LVEF can be expressed in terms of global longitudinal 
strain (GLS) and global circumferential strain (GCS); the 
combined use of the LVEF and the strain imaging represents 
a promising tool in the hands of clinicians [4]. Besides, a 
relatively new imaging marker of LV function such as longi-
tudinal (base-apex oriented) hemodynamic forces, or equiv-
alently intraventricular pressure gradients (IVPGs), repre-
sents further progress in myocardial deformation imaging 
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in addition to the traditional parameters of volume [5–7]. 
Echocardiography-based hemodynamic forces assessment 
is still mostly unexplored [8] and requires reference values 
validation in the healthy population, but its use will allow 
a better understanding of the early alterations of cardiac 
mechanics with pathology. We designed this prospective 
study to establish normal reference limits for hemodynamic 
forces in healthy adults; to verify the relationships between 
the LV GLS and GCS with the LVEF and finally to examine 
the influence of age and sex on all these parameters.

Methods

Patient population

We prospectively enrolled 200 consecutive healthy subjects 
in a screening of cardiovascular prevention in the period 
between January and December 2019 and excluded 24 
patients from the original study population, for poor-image 
quality. No subject had cardiovascular symptoms or risk 
factors (i.e., high blood pressure values, smoking, diabetes, 
and dyslipidemia). We applied as exclusion criteria histories 
of coronary artery disease, moderate/severe valvular heart 
diseases, congestive heart failure, congenital heart diseases, 
systemic diseases, pharmacological treatment, resting heart 
rhythm abnormalities, and all the patients under the age of 
16. The study complies with the Declaration of Helsinki, and
the Ethics Committee of the University of Trieste (protocol 
no. 0025052) approved the study. Written informed consent 
of all registered volunteers was obtained.

Standard 2D LV image acquisition and analysis

Standard echocardiography examinations were performed 
with Vivid E95 (GE Healthcare, Horten, Norway) machine 
equipped with a 2.5-MHz phased array transducer using a 
frame rate above 60, by a qualified professional following 
recommended protocols approved by the EACVI [9]. Three 
experienced operators, blinded to the clinical data, per-
formed offline speckle-tracking (ST) and the LV quantitative 
analysis according to the 2015 ASE/EACVI recommenda-
tions [10]. The LV mass calculation was executed with linear 
measurements, using a formula validated by necropsy and 
normalized for body surface area [11, 12]. LV hypertrophy 
was defined as LV mass > 95 g/m2 in women and > 115 g/m2 
in men [10]. Transmitral pulsed Doppler and pulsed tissue 
Doppler of septal mitral annulus were recorded in the apical 
4-chamber view, and we determined the diastolic parameters 
and grades of LV diastolic dysfunction according to the cur-
rent ASE/EACVI recommendations [13].

2D LV speckle tracking image analysis

The LV 2D strain was quantified using commercially 
available software (2DCPA v.1.3; TomTec Imaging Sys-
tems Gmbh, Unterschleissheim, Germany). We performed 
analyses in all three apical views (LV four-chambers, two-
chambers, and three-chambers) and the most suitable cardiac 
cycle [8]. The software required to draw the end-systolic 
endocardial and epicardial borders and track them over the 
entire heartbeat; subsequently, it allowed us to correct the 
end-diastolic borders and to propagate the correction over 
the entire cardiac cycle without affecting the previously 
drawn end-systolic borders. Consequently, it was possible 
to obtain the end-systolic volume (ESV), the end-diastolic 
volume (EDV), and to measure the LVEF from the three-
projections using the method of disks (modified Simpson’s 
rule) according to the guidelines [14]. We calculated the 
longitudinal subendocardial strain by covering the endocar-
dium with the border of the region of interest (ROI) and 
the transmural variation (myocardial strain) in the whole 
myocardium. From the same borders, we evaluated the LV 
diameters from base to apex, and their reduction from ED 
to ES, the average length of the LV, gave the GCS. The api-
cal approach to GCS could have been less accurate because 
the entire circumference was not visible from the apical 
views; this criticality was minimized by using a triplane 
evaluation, thus applying the same approach and the same 
approximation commonly used in the evaluation of LV vol-
umes. This approach to circumferential strain was more 
similar to the one used in 3D echocardiography because the 
border followed the tissue during its longitudinal motion 
and reduced artifacts in deformation such as those result-
ing from through-plane displacements of 3D geometry, that 
sometimes affect the short axis transversal projections [15]. 
From the same endocardial border obtained in the three api-
cal views, we were able to calculate the LVEF. The opera-
tor could visually confirm the integrity of the automatic 
software detection and, if necessary, readjusted it (Fig. 1). 
Longitudinal and circumferential displacements, described 
by GLS and GCS, respectively, jointly contributed to the 
volumetric reduction and LVEF. A complex mathemati-
cal relationship between LVEF and myocardial strain [16] 
involving the diameters and average thicknesses of LV 
has been presented. This approach can be recast in more 
straightforward terms for endocardial strain values proving 
the explicit relationship [17]:

This relationship will be used to analyze the results to dem-
onstrate how the combined longitudinal and circumferential 
strains can lead to an LV volumetric reduction. The same 
ST data are then used to evaluate the hemodynamic forces 

LVEF = 1 − (GLS + 1) (GCS + 1)
2
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associated with blood flow (Fig. 2). We recently demon-
strated how flow forces (“hemodynamic forces,” “flow 
momentum” or “average IVPGs”) could be detected through 
the knowledge of the LV geometry, endocardial velocities, 
obtained by ST, plus the area of the aortic and mitral ori-
fices, carefully calculated by drawing the internal diameter 
of the valves annulus from the parasternal long axis-view 
[18]. The complete mathematical details of the method for 
transforming endocardial dynamics into flow forces are 
reported elsewhere, and the concept is only quickly sum-
marized here [18]. The total hemodynamic force, F(t), 
exchanged between blood and tissues can be computed by 
the balance of momentum inside the LV volume V(t):

where S(t) is the surface bounding the volume, ρ is the fluid 
density, and v is the velocity vector where the subscript n 
indicates the normal outward component. The second term 

F(t) = � ∫
V(t)

�v

�t
dV + �∫

S(t)

vv
n
dS;

in the right-hand side of the previous formula represents 
the flux of momentum across the instantaneous LV volume 
boundary S(t). The first term is blood inertia given by the 
rate of change of the velocity inside the LV volume. It can 
also be rewritten as the rate of velocity change across the 
boundaries so that the force can be computed from the infor-
mation evaluated over the surface bounding the LV volume 
[19].

The longitudinal component of the hemodynamic force is 
obtained from the previous formula by introducing the lon-
gitudinal position for the position vector x in the first term, 
and the longitudinal velocity for the velocity vector v in the 
second term. The surface S(t) bounding the LV volume is 
composed of a closed boundary, made of the endocardial 
surface, the closed part of the base, and an open boundary, 
given by the mitral and aortic valve, during diastole and 

F(t) = �∫
S(t)

x
�v

�t n
dS + �∫

S(t)

vv
n
dS;

Fig. 1   Representative layer-specific speckle tracking analysis of longitudinal and circumferential strain
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systole, respectively. The terms of the formula can thus be 
computed from the tissue velocity at the LV endocardium 
and at the base, which is known from ST, and from the mean 
velocity across the open valve, which is the LV volume rate 
divided by the valve area. The longitudinal hemodynamic 
forces will be used to analyze the results to integrate the vol-
umetric and deformation information with those related to 
cardiac fluid dynamics. The hemodynamic forces represent 
the integral of blood flow momentum over the LV volume. 
We normalized the instantaneous value of the hemodynamic 
force with the corresponding value of LV volume, to facili-
tate comparison between patients with different LV size. It 
was then divided by the fluid density and gravity accelera-
tion to have a dimensionless number corresponding to the 
force expressed as a percentage of gravity acceleration (or 
of the static weight of the same volume of blood). The nor-
malized force represented the average value of the pressure 
gradient in the LV cavity (up to a multiplicative constant that 
depends on the chosen dimensional units). The longitudinal 

hemodynamic force’s time-profile was used to extract a few 
characteristic parameters that characterize the various phases 
of the cardiac cycle. Concerning Fig. 3, that displays the 
different phases on a typical time profile, we calculated the 
following parameters:

–	 LV longitudinal force (LVLF) as the mean amplitude of 
the longitudinal force throughout the cardiac cycle; since 
it includes both positive and negative values, the ampli-
tude was computed as the root mean square of all values;

–	 LV systolic longitudinal force (LVsysLF), calculated as 
the LVLF above but limited to the systolic phase only;

–	 LV impulse (LVim) as the mean longitudinal force during 
the systolic propulsive phase, when the force is positive 
(directed from the LV cavity toward aorta); it is the area 
under the curve of the positive force profile during sys-
tole, normalized by the corresponding time interval;

–	 LV suction (LVs) as the mean longitudinal force during 
the period following propulsion while the force is nega-

Fig. 2   Representative calculation of hemodynamic force parameters obtained by speckle tracking analysis
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Fig. 3   Description of intervals 
used in the calculation of hemo-
dynamic force parameters
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tive; which is computed as the LVim but in the period 
comprising the end of systole (when the force decelerates 
the exiting flow, with Aorta open and mitral valve closed) 
and the initial part of diastole (the effective suction when 
the mitral inflow accelerates, with Aorta closed and 
mitral valve open);

The calculation of the parameters of the hemodynamic 
force was performed with a prototype software (2DCPA 
v.1.4; TomTec Imaging Systems Gmbh, Unterschleissheim, 
Germany) that is identical to the version used for strain and 
volumes with the only difference of the additional capability 
of The calculation of the parameters of the hemodynamic 
force was performed quantification.

Statistical analysis

Continuous variables were expressed as means ± standard 
deviation (SD). We divided the study population into three 
age groups: 16–39 years, 40–59 years, > 60 years. Differ-
ences between groups were analyzed for statistical signifi-
cance using Student’s t-test for continuous variables, the chi-
square test and Fisher’s exact test for categorical variables. 
Through the linear regression analysis, we calculated the 
correlations between continuous variables. Intra-observer 
and inter-observer variability were assessed in 10 randomly 
selected subjects by calculating the intra-class correlation 
coefficient (ICC) and 95% confidence intervals (CIs) of the 
LV strain components and volumes. Statistical tests were 
performed using SPSS version 22 (IBM, Armonk, New 
York) and MatLab (Natick, MA, USA; R2019b). The null 
hypothesis was rejected for P < 0.05.

Results

Clinical and echocardiographic data and gender 
differences

The final study population included 176 subjects (87 
men and 89 women, mean age 47 ± 18 years, age range 
16–82) divided into three age groups. Demographic data 
and echocardiographic parameters are reported in Table 1. 
All the subjects presented standard LV geometry, cardiac 
mass, EF, and the males had a higher LV mass index 
and larger LV volumes (p < 0.0001). LV diastolic func-
tion grade I was found in twelve patients (7%) accord-
ing to the ASE/EACVI criteria, whereas no subjects had 
Grade II or III of diastolic dysfunction. By gender-specific 
analysis, no differences were detected between the mean 

values of longitudinal strain and myocardial GCS, except 
that women showed a slight increased endocardial GCS 
(p = 0.05). The calculation of the parameters of hemody-
namic forces was performed, resulting higher in men than 
in women (p < 0.0001) except for LVs (p = ns).

Age and parameters of cardiac mechanics

Table  2 reports the average value of the volumetric, 
deformation, and hemodynamic force’s parameters for 
the different age groups separated by gender. LV volumes 
decrease significantly in patients over 60 years of age 
in both men and women (p < 0.0001 with both younger 
groups). LVEF slightly rises in the same subgroup of 
patients (p < 0.0001) as well as LV mass indexed to BSA 
(p = 0.002). The continuous variation of these parameters 
with age is shown in Fig. 4. Both EDV and ESV present a 
significant decrease with age (r = 0.37 and r = 0.38, respec-
tively), while LVEF and LV mass indexed to BSA show an 
increase (r = 0.28 for both). The variations of global strain 
are shown in Fig. 5. Myocardial and endocardial GCS val-
ues improve with age (r = 0.33 and r = 0.31, respectively) 
with statistically significant differences among all the 
groups. On the opposite, myocardial and endocardial GLS 
decline with age (r = 0.38 and r = 0.45, respectively), with 
statistically significant differences in the older group. The 
correlation coefficients with age of all these echocardio-
graphic parameters mentioned above are overall low, as 
age alone is not expected to be predictive and only exhibit 
a tendency; nevertheless, results present a statistical signif-
icance. The longitudinal and circumferential deformation 
values measured at the endocardial regions are higher than 
those over the myocardial thickness (p < 0.0001, data not 
shown in table). We also verified the relationship reported 
above between LVEF, endocardial GLS, and GCS; the cor-
relation coefficient of the identity LVEF model = LVEF 
was equal to r = 0.96. The time profile of the longitudinal 
hemodynamic forces averaged over the entire population 
(with shaded variability ± SD) is shown in Fig. 6. All pro-
files presented a consistent shape over the entire average 
l population, characterized by a positive systolic (propul-
sive) peak, followed by a negative value in the transition 
from systole to diastole. All hemodynamic force’s param-
eters decrease with age, except for LVs, Fig. 7. This behav-
ior is more marked for the systolic parameters (LVsysLF, 
r = 0.30; LVim r = 0.36), and it is weaker for the overall 
cycle (LVLF, r = 0.2). For the same parameters, the eldest 
group presents a statistically significant decrease in both 
younger groups.
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Reproducibility

Reproducibility analyses performed on the same set of images 
in 20 subjects are summarized in Table 3. Intra-observer and 
inter-observer analysis showed excellent repeatability and 
reproducibility. Intra-class correlation varies between 0.944 
and 0.991 (p < 0.01) on three intra-observers evaluations for 
both strain components, and it is 0.965 and 0.978 (p < 0.01) 
in inter-observer analysis with a linear correlation coefficient 
equal to 0.96 for each. This analysis also demonstrated that 
LVLF present a reproducibility comparable to that of strain 
and volumetric measurement.

Discussion

We presented a prospective study in which normality 
values are established through an integrated approach to 
cardiac mechanics in a large cohort of healthy volunteers 
and over a wide range of ages. We demonstrated that: (a) 
after aging, the systolic components of hemodynamic 
forces decline uniformly; (b) the LV mass mildly increases 
despite being still in the normal range; (c) the LV vol-
umes decrease; (d) the values of GLS and GCS behave 
oppositely, the former gradually decreases while the latter 
increases and (e) there is a slight improvement in LVEF 

Table 1   Demographic data and 
echocardiographic parameters. 
Data are expressed as 
mean ± SD or percentages

EDV end diastolic volume, ESV end systolic volume, GCS global circumferential strain, GLS global longi-
tudinal strain, LV left ventricle, LVIm left ventricle impulse, LVLF LV longitudinal force, LVs left ventricle 
suction, LVsysLF left ventricle systolic longitudinal force, Peak E’ early diastolic Tissue Doppler velocity 
of mitral annulus, Peak S’ systolic peak Tissue Doppler velocity of mitral annulus, RWT​ relative wall thick-
ness
*P-value differences between gender

Variables Men 87 pts
(mean ± SD)

Women 89 pts
(mean ± SD)

Total population 
176 pts
(mean ± SD)

P*

Age (years) 42 ± 17 47 ± 17 47 ± 18 ns
Body mass index (kg/m2) 24 ± 3 24 ± 5 24 ± 2 ns
Body surface area (m2) 1.95 ± 0.16 1.74 ± 0.19 1.85 ± 0.2  < 0.0001
Heart rate (beats/minute) 68 ± 11 72 ± 10 70 ± 11 0.02
Systolic blood pressure (mmHg) 131 ± 17 126 ± 19 128 ± 18 ns
Diastolic blood pressure (mmHg) 75 ± 11 77 ± 12 76 ± 11 ns
LV EDV (ml) 127 ± 28 85 ± 18 106 ± 31  < 0.0001
LV ESV (ml) 47 ± 12 31 ± 8 39 ± 13  < 0.0001
LV mass index (g/m2) 85 ± 17 74 ± 15 80 ± 17  < 0.0001
LV ejection fraction (%) 62 ± 7 63 ± 4 62 ± 6 ns
RWT​ 0.35 ± 0.06 0.36 ± 0.05 0.36 ± 0.05 ns
Peak S′ (cm/s) 9.4 ± 1.8 8.4 ± 2.0 8.9 ± 2.1 0.002
E wave of transmitral flow (cm/sec) 79.3 ± 19.5 80.9 ± 16.8 80.1 ± 18.2 ns
A wave of transmitral flow (cm/sec) 58.0 ± 18.3 67.5 ± 20.8 62.6 ± 20.1 0.003
E/A 1.4 ± 0.5 1.3 ± 0.5 1.4 ± 0.5 ns
E/E′ 7.1 ± 2.3 8.4 ± 3.2 7.7 ± 2.8 0.004
Myocardial GLS (%) − 21.9 ± 2.2 − 21.3 ± 2.3 − 21.6 ± 2.2 ns
Endocardial GLS (%) − 24.2 ± 2.6 − 23.9 ± 2.8 − 24.0 ± 2.7 ns
Myocardial GCS (%) − 24.1 ± 3.5 − 24.4 ± 2.6 − 24.2 ± 3.1 ns
Endocardial GCS (%) − 30.6 ± 4.2 − 31.8 ± 3.7 − 31.3 ± 4.0 0.05
LVLF (%) 16.2 ± 5.3 13.2 ± 3.6 14.8 ± 4.8  < 0.0001
LVsysLF (%) 25.1 ± 7.9 19.4 ± 5.6 22.4 ± 7.4  < 0.0001
LVIm (%) 20.4 ± 7 16.6 ± 5.2 18.7 ± 6.5  < 0.0001
LVs (%) 8.8 ± 2.4 8.1 ± 2.4 8.5 ± 2.4 ns
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Table 2   Echocardiographic parameters according to age; Data are expressed as mean ± SD or percentages

SD standard deviation, LV left ventricle, LVMi left ventricle mass indexed to body surface area, Myo-GLS myocardial global longitudinal strain, 
Endo-GLS endocardial global longitudinal strain, Myo-GCS myocardial global circumferential strain, Endo-GCS endocardial global longitudinal 
strain, LVIm left ventricle impulse, LVLF left ventricle longitudinal force, LVs left ventricle suction, LVsysLF left ventricle systolic longitudinal 
force
*P-value differences between age groups

Age 16–39 
(Group 1)
(n = 57 pts)

Age 40–59 
(Group 2)
(n = 64 pts)

Age ≥ 60 
(Group 3)
(n = 55 pts)

P*
Patient ‘s groups

Male
mean ± SD

Female
mean ± SD

Male
mean ± SD

Female
mean ± SD

Male
mean ± SD

Female
Mean ± SD

1 vs 2 2 vs 3 1 vs 3

LVEDV (ml) 145 ± 18 85 ± 18 125 ± 25 96 ± 22 109 ± 32 82 ± 16 ns  < 0.0001  < 0.0001
LVESV (ml) 55 ± 8 32 ± 9 47 ± 10 34 ± 11 39 ± 13 29 ± 7 ns  < 0.0001  < 0.0001
LVEF (%) 62 ± 3 63 ± 4 63 ± 4 64 ± 5 64 ± 4 65 ± 3 ns 0.01  < 0.0001
LVMi (g/m2) 82 ± 13 66 ± 12 86 ± 17 74 ± 19 97 ± 16 79 ± 15 ns ns 0.002
Myo-GLS (%) − 22.2 ± 2.1 − 22.2 ± 2.4 − 21.9 ± 2.4 − 21.4 ± 1.9 − 19.3 ± 1.3 − 19.8 ± 1.2 ns  < 0.0001  < 0.0001
Endo-GLS (%) − 24.7 ± 2.1 − 24.7 ± 2.7 − 24.1 ± 2.9 − 24.3 ± 2.5 − 21.5 ± 1.2 − 21.9 ± 1.4 ns  < 0.0001  < 0.0001
Myo-GCS (%) − 22.6 ± 3.3 − 23.3 ± 2.7 − 24.2 ± 3.3 − 24.4 ± 3.0 − 26.5 ± 2.3 − 25.1 ± 2.9 0.01 0.03  < 0.0001
Endo-GCS (%) − 28.9 ± 3.4 − 30.3 ± 3.7 − 30.6 ± 4.0 − 32.1 ± 4.3 − 34.6 ± 3.0 − 32.3 ± 4.4 0.01 0.04  < 0.0001
LVLF (%) 16.6 ± 4.3 13.5 ± 3.6 17.1 ± 6.7 14.6 ± 3.8 14.3 ± 3.8 12 ± 3.2 ns  < 0.0001 0.002
LVsysLF (%) 27.9 ± 6.6 19.3 ± 5.1 25.4 ± 9 21.8 ± 6.1 20.1 ± 5.6 17.7 ± 5 ns  < 0.0001  < 0.0001
LVIm (%) 23.9 ± 5.6 16.5 ± 4.8 20.1 ± 8 18.8 ± 5.9 16.1 ± 4.5 15.2 ± 4.5 ns  < 0.0001  < 0.0001
LVs (%) 8.3 ± 2.1 8.6 ± 2.4 9 ± 2.6 7.7 ± 2.6 9.3 ± 2.3 8.1 ± 2.3 ns ns ns

Fig. 4   Relations of age (horizontal axis) with (vertical axes): a LV 
end-diastolic volume (EDV), b end-systolic volume (ESV), c ejection 
fraction (EF) and d LV mass indexed to BSA. Solid dots represent the 

study population with fitted regression line (continuous line) and 5th–
95th percentile prediction bands (parallel dotted lines). SEE standard 
error estimate
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after these processes. For the calculation of both longitudi-
nal and especially circumferential strain, we used software 
to analyze the images from the three apical views. The 
new system has allowed overcoming the known limits due 
to the deformation artifacts deriving from through-plane 
displacements in the short axis views [17, 20]. Consistent 

with previous studies of cardiac magnetic resonance 
(CMR) and echocardiography [21], overall endocardial 
strain values resulted higher than those of the myocar-
dium due to higher metabolic rates, oxygen extraction, and 
coronary flow of the endocardium [22]. As described in 
2D and 3D echocardiographic studies, the circumferential 

Fig. 5   Relations of age (horizontal axis) with (vertical axes): a myo-
cardial GLS, b endocardial GLS, c myocardial GCS, d endocardial 
GCS. Solid dots represent the study population with fitted regression 

line (continuous line) and 5th–95th percentile prediction bands (par-
allel dotted lines). SEE standard error estimate

Fig. 6   Time profile of the lon-
gitudinal hemodynamic force 
averaged over the entire popula-
tion; the shade indicates ± SD 
interval
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strain increases progressively with aging [20, 23]; con-
versely, data relating to GLS are controversial. Marwick 
et al. showed that GLS did not decrease over time [24] 
while in the NORRE multicenter study, GLS was higher in 
women, and there was no relationship with the age; how-
ever, patients over 60 years were less numerous [25]. More 
recently, Galderisi et al. clearly showed that the decline of 
GLS is significant in the decades 50–60 and over 60 [23], 
and this result was also confirmed by Muraru et al. in a 3D 
echo population [20]. It is widely accepted that age-related 
changes in cardiovascular structure and function occur in 
healthy subjects. In our study population, we observed that 
the decline in longitudinal strain depended on the age and 
was linked to further pathophysiological changes: the com-
pensatory increase in circumferential strain and LV mass 
without reaching LV hypertrophy values, the decrease in 
the LV volumes and finally the compensatory increase in 
LVEF to maintain cardiac output. These data are in line 
with previous studies where dedicated software from dif-
ferent vendors was used [26] or such as the MESA study, 
where CMR was used to examine age-related differences 
in the structure and function of LV [27].

Relationship between deformation imaging 
and LVEF

Longitudinal and circumferential strain actively contrib-
utes to the LV volumetric reduction during the systole 
and so to the ejection fraction. We recently provided a 
mathematical model relating to LVEF and strain [4, 8]. 
Our study population found an excellent correlation coef-
ficient between the LVEF model and the LVEF calculated 
with the Simpson method.. This relationship between the 
"deformation plane" described by GLS (x coordinate), 
GCS (y coordinate), and the curves at constant LVEF is 
graphically described in Fig. 8. This graphical representa-
tion shows that the same LVEF can be obtained with dif-
ferent pairs of GLS and GCS corresponding to different 
points along the corresponding curve [4]. In this graph, the 
present population is distributed within a limited region 
corresponding to normal contraction values. However, it 
shows that aging is associated with a tendency to displace 
along the lower-right direction, which corresponds to a 
decrease of GLS accompanied to a compensatory increase 
of GCS to ensure the preservation or a weak increased 
LVEF. This attempt of integration between LVEF and 
deformation imaging should facilitate the interdependent 
use of these parameters, going beyond the conventional 

Fig. 7   Relations of age (horizontal axis) with (vertical axes): a LV 
longitudinal force (LVLF), b LV systolic longitudinal force (LVs-
ysLF), c LV longitudinal force impulse (LVim), d LV longitudinal 

force suction (LVs). Solid dots represent the study population with 
fitted regression line (continuous line) and 5th–95th percentile pre-
diction bands (parallel dotted lines). SEE standard error estimate
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limit of individual and one-dimensional use of these val-
ues [28, 29]. This approach could quickly identify both a 
subtle and progressive deterioration of the LV mechanical 
function and an improvement of the same, thanks to the 
shifts from the normal region.

Reference values for LV hemodynamic forces

This study is the first to apply an extension of the strain 
software package for echocardiography dedicated to the 
determination of reference values and normal limits of 
hemodynamic force’s parameters for a relatively large cohort 
of healthy subjects. The values are consistent with previ-
ous results obtained in smaller groups of healthy subjects 
with 4D Flow MRI [30] (consider that hemodynamic forces 

expressed in % should be divided by 10 to be transformed 
in N/l) and with cine cardiac MRI [5]. These normality val-
ues provide first landmarks for future studies, including this 
innovative property of LV function in pathological cohorts. 
We identified significant age and gender differences in 
hemodynamic force’s parameters: in men, they were higher 
than in women, probably due to higher LV masses indexed 
with BSA. After the age of 40, HDF follows the fate of GLS 
and progressively decreases. The apparent paradox of mildly 
increased LVEF associated with the falling parameters of the 
longitudinal function and the GLS seems justified by reduc-
ing the ventricular volumes and the progressive improve-
ment of the circumferential function. In this scenario, LVs 
represents the only parameter that is not influenced by age 
or gender.

Limitations

This study presents several limitations. First, this is a single-
center, single-ethnicity study. The relatively small sample 
size of our Caucasian population cannot be generalized to 
the entire population. However, the rigorous methodology in 
selecting healthy subjects and analyzing images represents 
a considerable effort and a reasonable sample in a single 
center. Second, we did not validate the accuracy of strain 
measurements against reference standards such as CMR in 
our subjects. Third, we did not compare the value of GLS 
and GCS between the different ultrasound vendors. Inter-
vendor variability exists even in full-thickness strain due to 
the differences in the analytical algorithm. Forth, the apical 
approach to GCS could be less accurate for either the limited 
lateral resolution of ultrasound images or because the entire 
circumference is not visible from the apical views. The for-
mer was shown not to be critical in a comparative study [17], 
the latter is minimized by using a triplane evaluation, reduc-
ing artifacts in deformation such as those that may result 
from through-plane displacements of 3D geometry. Lastly, 
the current approach should be considered an estimation of 
hemodynamic forces since the analysis is dependent on 2D 
image quality and frame rates.

Conclusion

The GLS and GCS are progressively and firmly entering 
daily clinical practice; moreover, the flow force’s quanti-
fications promise a further level of knowledge of the LV 
fun ction. This integrated approach could help differentiate 
normality from pathology; however, it needs extensive vali-
dation in further clinical studies before being accepted into 
clinical practice.

Table 3   Intra-observer and inter-observer variability between the 
three operators

EDV end diastolic volume, ESV end systolic volume, GCS global cir-
cumferential strain, GLS global longitudinal strain, LVLF Left ventri-
cle longitudinal force

Variables Intra-class 
correlation 
(rho)

95% Confidence
Intervals

P*

Intra-observer variabil-
ity 1

 Endocardial GLS 0.988 0.951–0.997  < 0.01
 Endocardial GCS 0.991 0.962–0.998  < 0.01
 LVLF 0.997 0.994–0.998  < 0.01
 EDV 0.959 0.833–0.990  < 0.01
 ESV 0.981 0.922–0.995  < 0.01

Intra-observer variabil-
ity 2

 Endocardial GLS 0.960 0.868–0.981  < 0.01
 Endocardial GCS 0.944 0.877–0.993  < 0.01
 LVLF 0.915 0.971–0.991  < 0.01
 EDV 0.968 0.927–0.996  < 0.01
 ESV 0.924 0.942–0.989  < 0.01

Intra-observer variabil-
ity 3

 Endocardial GLS 0.945 0.742–0.988  < 0.01
 Endocardial GCS 0.971 0.938–0.977  < 0.01
 LVLF 0.972 0.957–0.988  < 0.01
 EDV 0.993 0.978–0.995  < 0.01
 ESV 0.988 0.933–0.992  < 0.01

Inter-observer variability
 Endocardial GLS 0.965 0.937–0.996  < 0.01
 Endocardial GCS 0.978 0.972–0.992  < 0.01
 LVLF 0.991 0.988–0.993  < 0.01
 EDV 0.957 0.933–0.991  < 0.01
 ESV 0.961 0.923–0.995  < 0.01
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