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ABSTRACT

We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data
from the Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES and PS1 provide multi-
band photometry in optical/near-infrared wavelengths over ∼ 80% of the sky. Our search for satellite
galaxies targets ∼ 25,000 deg2 of the high-Galactic-latitude sky reaching a 10σ point-source depth of
& 22.5 mag in the g and r bands. While satellite galaxy searches have been performed independently
on DES and PS1 before, this is the first time that a self-consistent search is performed across both
data sets. We do not detect any new high-significance satellite galaxy candidates, while recovering
the majority of satellites previously detected in surveys of comparable depth. We characterize the
sensitivity of our search using a large set of simulated satellites injected into the survey data. We
use these simulations to derive both analytic and machine-learning models that accurately predict the
detectability of Milky Way satellites as a function of their distance, size, luminosity, and location on
the sky. To demonstrate the utility of this observational selection function, we calculate the luminosity
function of Milky Way satellite galaxies, assuming that the known population of satellite galaxies is
representative of the underlying distribution. We provide access to our observational selection function
to facilitate comparisons with cosmological models of galaxy formation and evolution.

Keywords: galaxies: dwarf — Local Group — dark matter

1. INTRODUCTION

Faint dwarf galaxies dominate the universe by num-
ber, yet a precise census of these objects remains chal-
lenging, due to the limited sensitivity of observational
surveys. Dwarf galaxies with stellar mass . 106 M�
have only been identified within the Local Volume (dis-
tances of a few Mpc), either in isolation or as satellites
of larger galaxies (e.g., Martin et al. 2013; Müller et al.
2015; Carlin et al. 2016; Smercina et al. 2018; Crnojević
et al. 2019). At even lower masses, the census of ultra-
faint satellites is incomplete, even within the Milky Way
halo. Despite significant observational challenges, the
demographics of ultra-faint dwarf galaxies offer a unique
window into feedback processes in galaxy formation (e.g.
Mashchenko et al. 2008; Wheeler et al. 2015, 2019; Mun-
shi et al. 2019; Agertz et al. 2020), reionization and
the first stars (e.g., Bullock et al. 2000; Shapiro et al.
2004; Weisz et al. 2014a,b; Boylan-Kolchin et al. 2015;
Ishiyama et al. 2016; Weisz & Boylan-Kolchin 2017;
Tollerud & Peek 2018; Graus et al. 2019; Katz et al.
2019), and the nature of dark matter (e.g., Bergström
et al. 1998; Spekkens et al. 2013; Malyshev et al. 2014;
Ackermann et al. 2015; Geringer-Sameth et al. 2015;
Bullock & Boylan-Kolchin 2017; Clesse & Garćıa-Bellido
2018; Nadler et al. 2019a).

The lowest-luminosity satellite galaxies are detected
in optical imaging surveys as arcminute-scale statisti-

∗ NHFP Einstein Fellow

cal overdensities of individually resolved stars. Begin-
ning with the Sloan Digital Sky Survey (SDSS), digi-
tized wide-area multi-band optical imaging surveys—
combined with automated search algorithms—have
greatly increased the known population of Milky Way
satellites (Willman et al. 2005a,b; Zucker et al. 2006a,b;
Belokurov et al. 2006, 2007, 2008, 2009, 2010; Grillmair
2006, 2009; Sakamoto & Hasegawa 2006; Irwin et al.
2007; Walsh et al. 2007; Kim et al. 2015a). More re-
cently, searches using data from the Dark Energy Survey
(DES; Bechtol et al. 2015; Koposov et al. 2015; Kim &
Jerjen 2015b; Drlica-Wagner et al. 2015; Luque et al.
2016), other DECam surveys (e.g., SMASH, MagLiteS,
and DELVE; Martin et al. 2015; Drlica-Wagner et al.
2016; Torrealba et al. 2018; Koposov et al. 2018; Mau
et al. 2020), ATLAS (Torrealba et al. 2016a,b), Pan-
STARRS1 (PS1; Laevens et al. 2015a,b), and Gaia
(Torrealba et al. 2019b) have further increased the sam-
ple of confirmed and candidate satellites to more than
50 (Figure 1).

Both observational and theoretical arguments suggest
that the current census of Milky Way satellite galaxies is
incomplete. From an observational standpoint, this in-
completeness is demonstrated by the continued discov-
ery of fainter, more distant, and lower surface brightness
systems. For example, the first ∼ 700 deg2 of deep imag-
ing with the Hyper Suprime-Cam Strategic Survey Pro-
gram (HSC SSP) has revealed three new satellites at
sufficiently low luminosities and large heliocentric dis-
tances that they escaped detection by earlier overlap-
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Figure 1. Equal-area Mollweide projection of the density of stars (log scale) observed with r < 22 mag over the DES Y3A2

and PS1 DR1 footprints (red and cyan borders, respectively). Filled markers indicate kinematically confirmed Milky Way

satellite galaxies, and unfilled markers indicate satellite galaxy candidates that have not yet been kinematically confirmed. We

mark classical Milky Way satellites (black circles), and satellites discovered by SDSS (blue squares), PS1 (cyan diamonds),

DES (red upright triangles), other DECam surveys (purple inverted triangles), HSC SSP (green pluses), VLT ATLAS (magenta

pentagons), and Gaia (brown crosses).

ping surveys (Homma et al. 2016, 2018, 2019). More-
over, several recently discovered Milky Way companions
(e.g., Crater II, Virgo I, Aquarius II, Cetus III, Antlia II,
and Boötes IV) are lower surface brightness than most
ultra-faint dwarfs discovered in the SDSS era, implying
that the current generation of surveys and search tech-
niques are sensitive to systems that were previously un-
detectable. Searches using compact spatial kernels and a
wider variety of stellar population ages and metallicities
have revealed diverse Milky Way substructures (Torre-
alba et al. 2019a), and precise proper motion informa-
tion for billions of nearby stars provided by Gaia has
enlarged the sample of extremely low-surface-brightness
satellites (Torrealba et al. 2019b).

Theoretical predictions for the smallest galaxies have
advanced hand in hand with observations. Since galaxy
formation is a nonlinear process, numerical simulations
have long been used to predict the population statis-
tics of these objects. Early simulations that resolved
dark matter substructure within Milky Way-mass halos
predicted far more surviving dark matter subhalos than
the number of observed satellites (Klypin et al. 1999;
Moore et al. 1999). This mismatch, dubbed the “missing
satellites problem,” simply reflects the fact that map-
ping subhalos in dark-matter-only simulations to ob-
served satellites is nontrivial. In particular, reionization
and stellar feedback drastically suppress dwarf galaxy

formation in low-mass halos (e.g., Bullock et al. 2000;
Somerville 2002; Brown et al. 2014), and tidal inter-
actions with the Galactic disk are expected to disrupt
a significant number of systems (e.g., Garrison-Kimmel
et al. 2017; Kelley et al. 2019; Nadler et al. 2018). Semi-
empirical models that account for these effects—along
with realistic satellite detection criteria—find that the
observed satellite population is consistent with cold, col-
lisionless dark matter (e.g., Kim et al. 2018; Jethwa et al.
2018; Newton et al. 2018; Nadler et al. 2019b,a; Bose
et al. 2019). Likewise, hydrodynamic simulations that
self-consistently model galaxy formation in a cosmologi-
cal context produce luminosity functions and radial dis-
tributions of satellites that are broadly consistent with
observations of the Milky Way system (e.g., Wetzel et al.
2016; Garrison-Kimmel et al. 2019; Samuel et al. 2020).
In concert, extremely high-resolution simulations of iso-
lated ultra-faint systems suggest that low-mass dwarfs
may be abundant (Wheeler et al. 2019).

Historically, the primary means of comparing Milky
Way satellite observations to simulations has been
through the total satellite luminosity function (i.e., the
total number of satellites within the virial radius of the
Milky Way halo as a function of satellite luminosity).
Typically, an observational selection function is built to
predict the detectability of a satellite as a function of
heliocentric distance, size, and luminosity. This type
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of analysis was pioneered by Koposov et al. (2008) and
Walsh et al. (2009), who used simulations to character-
ize the satellite detection efficiency in SDSS, analyzing
∼ 8,000 deg2 from SDSS DR5 and ∼ 9,500 deg2 from
SDSS DR6, respectively. The total luminosity function
was derived by correcting the observed satellite popu-
lation for observational selection effects, and the result
was compared to cosmological predictions. Recently,
several studies have begun to utilize more advanced
model inference techniques that require a simple yet
comprehensive mechanism to predict the detectability
of a satellite (Jethwa et al. 2018; Newton et al. 2018;
Nadler et al. 2019b). However, these studies have been
limited by the lack of rigorous estimates for the selection
functions of modern surveys.

In this paper, we present a systematic search for Milky
Way satellites and a detailed quantitative measurement
of the observational selection function for modern sur-
veys. In particular, we performed an updated search
for Milky Way satellites by applying two independent
search algorithms to ∼ 5,000 deg2 of data from DES
DES Collaboration et al. (2018) and ∼ 30,000 deg2 of
data from PS1 (Chambers et al. 2016). After quality
cuts, our analysis covers approximately three times the
sky area analyzed by Koposov et al. (2008) and Walsh
et al. (2009). The DES data were collected during the
first three years of survey operations and cover much of
the southern Galactic cap (DES Y3A2; DES Collabo-
ration et al. 2018; Shipp et al. 2018). When compared
to previous DES satellite searches (i.e., Drlica-Wagner
et al. 2015), DES Y3A2 has ∼ 50% more exposure time,
more homogeneous coverage, more accurate photometric
calibration, and more efficient star–galaxy classification
(e.g., Burke et al. 2018; DES Collaboration et al. 2018).
To extend the coverage of our analysis to the north-
ern hemisphere, we also apply our search algorithms to
publicly available data from the first data release of PS1
(PS1 DR1; Chambers et al. 2016). Note that in most
regions of the sky at high Galactic latitude, the num-
ber density of background galaxies exceeds that of fore-
ground Milky Way stars at magnitudes r & 22. Ac-
cordingly, this analysis represents a systematic search
over ∼ 75% of the high-Galactic-latitude sky reaching
depths at which the stellar sample is limited primarily
by star–galaxy confusion, rather than object detection
(e.g., Fadely et al. 2012).

We quantify the observational selection function of our
search to facilitate direct comparisons between the ob-
served luminosity function and predictions from simu-
lations. We simulate the resolved stellar populations of
105 (106) satellites and inject simulated stars into the
DES Y3A2 (PS1 DR1) data at the catalog level. These
simulations span a range of absolute magnitudes, he-
liocentric distances, physical sizes, ellipticities, position
angles, ages, and metallicities. We run our search al-
gorithms on each simulated satellite and find that the
detectability of a satellite can be well described by its

absolute magnitude, heliocentric distance, physical size,
and local stellar density. We derive both analytic and
machine-learning models that predict the detectability
of a satellite as a function of these parameters.

The observational selection function derived in this
paper can be used to test models that predict the abun-
dance and properties of Milky Way satellites. As an
illustrative example, we use our observational selection
function to derive the total luminosity function of Milky
Way satellites solely based on the properties of the ob-
served population. In a companion paper (Nadler et al.
2019c, hereafter Paper II), we use high-resolution nu-
merical simulations (including a model for the effects
of baryons) to build a more rigorous model of the ob-
served satellite population and to constrain models of
galaxy formation. In deriving the observational selec-
tion function, we have intentionally set a high threshold
for detection in order to provide a clean interpretation
of the resulting satellite populations. The investigation
of lower significance candidates is left to future work.

This paper is structured as follows. In Section 2, we
provide a high-level overview of our simulation and anal-
ysis pipeline. The subsequent sections provide more de-
tail on the survey data sets (Section 3), our catalog-
level simulations (Section 4), and the satellite search
algorithms (Section 5). In Section 6, we present the
results of our search on the DES and PS1 data. The
resulting observational selection functions derived from
simulations are presented in Section 7, and our simple
luminosity function inference is presented in Section 8.
We conclude in Section 9. Our models for the observa-
tional selection functions of DES and PS1 are publicly
available online.1

2. ANALYSIS OVERVIEW

In this section, we summarize the key components of
the simulation and data analysis pipeline used to de-
rive the observational selection function for Milky Way
satellites. We applied two distinct algorithms to search
for satellite galaxies in photometric catalog data from
DES and PS1. To evaluate the sensitivity of our search,
we embedded simulated satellite galaxies into these data
and attempted to recover them with the same search al-
gorithms. By self-consistently analyzing the data and
simulations, we accurately characterized both the popu-
lation of observed satellites and the population of satel-
lites that remain undetected due to the limited sensitiv-
ity of our observations.

To generate realistic satellite galaxy simulations, we
empirically modeled the survey coverage and photomet-
ric response of DES Y3A2 and PS1 DR1. We charac-
terized the coverage, depth, completeness, and photo-
metric measurement uncertainties as a function of sky
location for each survey. We then simulated stellar cata-

1 https://github.com/des-science/mw-sats

https://github.com/des-science/mw-sats
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logs for satellites covering a large range of physical prop-
erties, including sky location, luminosity, heliocentric
distance, physical size, ellipticity, age, and metallicity.
For each satellite, we generated a Poisson realization of
the observable stellar distribution, simulating the po-
sition, flux, and photometric uncertainty of each star.
These simulated satellites were injected one-by-one into
the survey data sets, and two search algorithms were
run at the location of each injected system. The anal-
ysis of these simulations produces a multi-dimensional
vector containing the detection significance of each sim-
ulated satellite as a function of its intrinsic properties
(e.g., luminosity, distance, and physical size) and global
survey properties (e.g., survey depth, coverage, and lo-
cal foreground stellar density). We refer to the mapping
between satellite properties and satellite detectability as
the observational selection function.

In parallel, we performed an untargeted search of DES
Y3A2 and PS1 DR1 without any embedded simulations.
This search produced a set of stellar overdensity “seeds”
of varying significance. The most significant seeds are
associated with physical systems reported in the liter-
ature, while less significant seeds can be attributed to
statistical fluctuations, artificial variations in the stel-
lar density due to survey systematics, and sub-threshold
physical systems. We characterized the distribution of
detection significances for the collection of seeds and de-
fined a conservative detection threshold that recovers a
large fraction of systems that were discovered in surveys
of comparable depth. This a posteriori definition of a
detection threshold was required to deal with systematic
artifacts that contaminated the population of seeds and
made it impossible to choose a statistical threshold a
priori. However, by self-consistently applying the same
detection threshold to the population of simulated satel-
lites, we can determine the selection efficiency for any
detection threshold and satellite properties. In this pa-
per, we are primarily concerned with the demographics
of the satellite galaxy population rather than detecting
new, low-significance candidates, and therefore we set
our significance threshold to yield a pure sample of “de-
tected” satellites.

The detected population of satellites and the observa-
tional selection function can be combined to derive the
Milky Way satellite galaxy luminosity function. Analyz-
ing the results of the simulations directly can be cumber-
some and computationally intensive, while representing
the observational selection function with a simple an-
alytic relationships discards some information. There-
fore, to simplify the application of the selection func-
tion while retaining detailed information, we trained a
gradient-boosted decision tree classifier that takes as in-
put characteristics of a satellite (e.g., size, luminosity,
distance, and local stellar density) and outputs a prob-
ability that the satellite would be detected. When ap-
plying this classifier, we combine the satellite properties

with the global geometric characteristics of each survey
in the form of HEALPix maps of survey coverage.

3. DATA SET

Data from DES Y3A2 and PS1 DR1 cover∼ 5,000 deg2

and ∼ 30,000 deg2 of the celestial sphere, respectively
(Figure 2). The deep, multi-band, optical/near-infrared
imaging of these surveys provides the photometric, as-
trometric, and morphological measurements necessary
to separate stellar overdensities in the Milky Way halo
from Milky Way field stars and unresolved background
galaxies. In this section, we describe the selection of
high-quality stellar samples for each of these surveys,
the characterization of the survey geometry, and deter-
mination of survey response as a function of location on
the sky. Additional technical details on our selections
are provided in Appendix A.

3.1. DES Y3A2

DES is a broadband optical/near-infrared imaging
survey of the southern Galactic cap using the Dark En-
ergy Camera (DECam; Flaugher et al. 2015) mounted
at the prime focus of the 4-m Blanco telescope at the
Cerro Tololo Inter-American Observatory (CTIO). Here,
we analyze data from the first three years of DES op-
erations (Diehl et al. 2016). The DES Y3A2 imaging
data serves as the basis for the first DES public data
release (DES DR1; DES Collaboration et al. 2018) and
consists of ∼ 45,000 wide-area survey exposures. Details
of the DES image reduction and catalog generation can
be found in Morganson et al. (2018), while more de-
tails on the internal DES Y3A2 data set can be found
in Sevilla-Noarbe et al. (in prep.).

Photometry —The internal DES Y3A2 object catalogs
augment DES DR1 with additional multi-band, multi-
epoch, forced photometry, which provides significantly
improved photometric and morphological measurements
of faint objects. These catalogs were generated in
two steps. First, individual sources were detected in
riz coadded images using SourceExtractor (Bertin &
Arnouts 1996), with a detection threshold of S/N ∼ 10
(Morganson et al. 2018). This coadd object catalog
was then used as input to the ngmix multi-band, multi-
epoch fitting routine, which performs a simultaneous fit
of source parameters across the set of individual griz
images for each object (Sheldon 2014; Drlica-Wagner
et al. 2018). ngmix is run in two configurations: (1) fits
are performed on single objects while masking nearby
neighbors, referred to as the “single object fit” (SOF),
and (2) fits are performed iteratively on groups of ob-
jects, referred to as the “multi-object fit” (MOF). The
treatment of the PSF on an image-by-image basis sub-
stantially improves point-source photometry and star–
galaxy separation (Sevilla-Noarbe et al. 2018). The rela-
tive top-of-the-atmosphere photometric accuracy across
the DES footprint is estimated to be < 7 mmag from a
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Figure 2. McBryde-Thomas flat polar quartic projection of the geometric masks applied to the DES and PS1 satellite searches.

Colored regions are masked from our analysis either because they lie outside the DES or PS1 survey footprint (dark blue), have

interstellar extinction E(B−V ) > 0.2 mag in the Schlegel et al. (1998) dust map (blue), or are associated with previously known

stellar overdensities, galaxy clusters, or bright stars (green). The total unmasked area is 4,844 deg2 for DES, 21,123 deg2 for

PS1, and 24,343 deg2 for the combined search.

comparison to Gaia (Burke et al. 2018). Furthermore,
DES Y3A2 includes SED-dependent chromatic correc-
tions for each object based on an initial evaluation of
the stellar spectral type (Li et al. 2016; Sevilla-Noarbe
et al. in prep.).

Coverage —The observational coverage of DES Y3A2
was assembled in a vectorized format using mangle
(Hamilton & Tegmark 2004; Swanson et al. 2008). The
mangle representation accounts for missing coverage
at the boundary of the survey footprint, as well as
gaps associated with saturated stars, bleed trails, and
other instrument signatures. These vectorized maps
were then converted into a subsampled nside = 4096
HEALPix map with a resolution of ∼ 0.74 arcmin2 per
pixel (Drlica-Wagner et al. 2018). We restrict the survey
footprint to HEALPix pixels where the griz sky coverage

fraction is greater than 0.5, resulting in a total effective
solid angle before masking of 4,945 deg2.

Depth —The depth of DES Y3A2 was estimated for each
band in each nside = 4096 HEALPix pixel. This in-
volved combining the mangle maps with additional sur-
vey characteristics following the procedure developed
in Rykoff et al. (2015), as described in Section 7.1 of
Drlica-Wagner et al. (2018). In brief, we trained a ran-
dom forest classifier that combined survey characteris-
tics, such as coverage, seeing, and sky brightness, to
estimate the 10σ limiting magnitude in each pixel. The
10σ SOF CM MAG depth for DES Y3A2 data in regions
with E(B − V ) < 0.2 is g = 23.9 and r = 23.7. When
simulating and analyzing satellites in DES Y3A2, we
incorporated the (small) variations in depth over the
footprint.
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Reddening —We followed the procedure described in Sec-
tion 4.2 of DES Collaboration et al. (2018) to correct for
interstellar extinction. We applied an additive correc-
tion to each measured magnitude of Ab = Rb×E(B−V ),
where E(B−V ) comes from Schlegel et al. (1998, SFD).
We use the Rb coefficients from DES Collaboration et al.
(2018)—specifically Rg = 3.186 and Rr = 2.140. These
fiducial coefficients are derived using the Fitzpatrick
(1999) reddening law with RV = 3.1 and incorporate the
renormalization of the SFD reddening map (N = 0.78)
suggested by Schlafly et al. (2010). Hereafter, all DES
Y3A2 magnitudes are extinction corrected.

Star–Galaxy Separation —The star–galaxy separation ef-
ficiency of previous DES data sets was estimated to be
> 95% complete for stars at i < 22 (Drlica-Wagner
et al. 2018). Sevilla-Noarbe et al. (2018) showed that
the efficiency of star–galaxy separation could be con-
siderably improved by using multi-epoch morphological
measurements. We assessed the efficiency of star–galaxy
classification in DES Y3A2 by comparing to overlap-
ping deep data from the HSC SSP (Aihara et al. 2018).
Accounting for both object detection and classification,
we found that the DES Y3A2 SOF classifier2 achieves
> 90% completeness for stars down to a magnitude limit
of r ∼ 23.5 mag. The stellar completeness of ground-
based surveys such as DES and PS1 is largely dominated
by the efficiency of star–galaxy classification rather than
the point-source detection limit.

3.2. PS1 DR1

Our PS1 data set consists of data from the first pub-
lic data release of the PS1 3π Survey (Chambers et al.
2016). PS1 DR1 is assembled from images taken by the
PS1 Gigapixel Camera #1 (Tonry et al. 2008) mounted
on the 1.8-m PS1 telescope at Haleakala Observatories
on the island of Maui, Hawai‘i. PS1 DR1 covers the
northern and equatorial sky with δ2000 > −30 deg in five
optical bands, gP1, rP1, iP1, zP1, yP1 (Tonry et al. 2012).
The DES and PS1 g, r, and i bands are similar enough
that we drop the “P1” subscript, though we analyzed
each survey in its respective filter system.

Photometry —We selected PS1 DR1 objects from
ForcedMeanObjectView with qualityFlag & 16 > 0,
nDetections > 0 and nStackDetections > 1. We
removed duplicate objects from the catalogs by se-
lecting only objects that are the primary detection,
detectPrimary = 1. We made several additional qual-
ity cuts based on the InfoFlag and InfoFlag2 variables
to remove objects where the photometric fit failed, ob-
jects that were likely to be defects, objects with too few

2 We use 0 ≤ EXTENDED CLASS MASH SOF ≤ 2 to define the stellar
sample, balancing stellar completeness and galaxy contamination.
Details on the performance of star–galaxy classification for DES
Y3A2 will be presented in Sevilla-Noarbe et al. (in prep.).

points measured to derive an elliptical contour, and ob-
jects where all model fits failed. The full set of selection
criteria can be found in Appendix A. These criteria were
validated by comparing against catalogs derived from
the HSC SXDS ultra-deep field. We found that our cuts
retain the majority of PS1-HSC matched objects while
significantly reducing the incidence of spurious objects
in the PS1 data. We converted the measured fluxes
from PS1 DR1 into magnitudes by applying a stack
zero-point of 8.9 (i.e., mag = −2.5 log10(flux) + 8.9).
When PS1 DR1 reports negative flux values, we set the
corresponding magnitude and magnitude uncertainty to
a sentinel value of -999. Since we are using (g−r) colors
for our search, we selected only objects with measured
PSF magnitudes in both the g and r bands.

Coverage —We approximated the coverage of PS1 em-
pirically using the full PS1 DR1 catalog prior to any
star–galaxy separation or photometric cuts. We de-
fine the PS1 footprint as the set of nside = 2048
(∼ 2.95 arcmin2) HEALPix pixels that contain any PS1
object.3 This coverage map is not strictly accurate,
since some HEALPix pixels that contain objects are not
fully covered by the survey while other HEALPix pixels
are covered by the survey yet contain no objects. How-
ever, at the level of accuracy necessary for our search
algorithms, this coverage map is sufficient to avoid sig-
nificantly biasing estimates of the local stellar density.
We converted from nside = 2048 to nside = 4096 (i.e.,
setting the value of each nested subpixel to the value of
its parent) for use by the analysis algorithms. The total
area of the PS1 DR1 footprint that we consider before
masking is 29,343 deg2.

Depth —We estimated the photometric depth of PS1
DR1 by interpolating the median magnitude uncertainty
as a function of magnitude for a set of low-reddening,
high-Galactic-latitude regions. We determined the mag-
nitude at which the median magnitude uncertainty is
0.1085, corresponding to the 10σ detection limit. We
found typical 10σ magnitude limits for PS1 DR1 of
g = 22.5 and r = 22.4. These depth estimates agree
with those of Chambers et al. (2016), who estimate
that the PS1 DR1 catalog retains 98% completeness
at g, r, i ∼ 22.5 with a spatial variation of ±0.25 mag
(see figure 17 of Chambers et al. 2016). We assumed a
constant magnitude limit for PS1 DR1; however, vari-
able interstellar extinction introduces a spatially depen-
dent intrinsic magnitude limit for stars (i.e., we are less
sensitive in regions of high extinction). We have found
that stars fainter than the 10σ magnitude limit can con-
tribute significantly to the detectability of faint satel-

3 The choice of nside = 2048 was determined empirically, as
the highest resolution that did not contain a significant number
of pixels that lacked objects, but were clearly covered by PS1 (as
determined by visual inspection of the coadd images).
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lites. For this reason, we used a magnitude limit of
g, r = 23 when performing the likelihood-based search
(Section 5.2). In the spatial matched-filter analysis
(Section 5.1), which uses a binary selection in color–
magnitude space rather than a likelihood-based weight-
ing of photometric uncertainties, we applied a signal-
to-noise threshold that limits the completeness of faint
stars but better controls the number of spurious seeds
returned by the algorithm.

Reddening —We corrected the PS1 DR1 measured mag-
nitudes for interstellar extinction following the proce-
dure described in Schlafly & Finkbeiner (2011). E(B −
V ) values were calculated from each object by perform-
ing a bilinear interpolation to the maps of Schlegel et al.
(1998). We then applied Rb coefficients from table 6
of Schlafly & Finkbeiner (2011), assuming the redden-
ing law of Fitzpatrick (1999) with RV = 3.1. For PS1
DR1, this corresponds to Rg = 3.172 and Rr = 2.271
for the g and r bands, respectively. We note that these
Rb values include a renormalization factor, as suggested
by Schlafly et al. (2010). Hereafter, all PS1 DR1 mag-
nitudes are extinction corrected unless explicitly stated
otherwise.

Star–Galaxy Separation —We performed star–galaxy
separation by comparing the measured i-band PSF
and adaptive aperture magnitudes, iFPSFMag and
iFKronMag, respectively. The choice of i-band was moti-
vated by the superior PSF and depth in this band. Our
primary cut required that the measured PSF and aper-
ture magnitudes agree, iFPSFMag − iFKronMag < 0.05.
However, we found that the PS1 PSF fit often fails in
dense stellar regions. To retain sensitivity in these re-
gions, we also included objects where iFPSFMag = −999
or iFPSFMag − iFKronMag > 4. By comparing to HSC
SSP (Aihara et al. 2018), we find that our PS1 DR1
stellar sample is > 90% complete down to a magnitude
of r ∼ 21.7.

4. SATELLITE SIMULATIONS

We simulated Milky Way satellite galaxies with a wide
range of properties to accurately quantify the detection
efficiency of our algorithms. We randomly sampled val-
ues of stellar luminosity, heliocentric distance, physical
size, ellipticity, and position angle from the ranges de-
scribed in Table 1. Stellar photometry was simulated
based on stellar isochrones from Bressan et al. (2012),
selected from a range of ages and metallicities character-
istic of observed satellites (Table 1). Photometric error
models were derived for each survey and were used to
assign a photometric uncertainty to each star and ran-
domize the measured photometry relative to the deter-
ministic photometry provided from the isochrone. The
simulated satellites were randomly assigned spatial lo-
cations in a region that slightly overcovered each of the
survey footprints. The population of simulated satel-
lites was not intended to mimic any realistic satellite

population; rather, it was intended to cover the range of
parameter space where variations in detection efficiency
occur.

Satellites were simulated at the catalog level as collec-
tions of individually resolved stars. To generate realistic
catalogs, we began with a probabilistic model for the
spatial and flux distributions of stars in each satellite.
We sampled the spatial distribution of stars according
to a Plummer profile (Plummer 1911), which has been
found to be a good description of known Milky Way
satellite galaxies (e.g., Simon 2019).4 We use ah to in-
dicate the elliptical semi-major axis containing half the
light (arcmin) and rh = ah

√
1− e to represent the az-

imuthally averaged half-light radius (arcmin), where e
is the ellipticity. a1/2 and r1/2 represent the equivalent
quantities as projected physical lengths (pc) at the he-
liocentric distance, D.

The initial masses of satellite member stars were
drawn from a Chabrier (2001) initial mass function
(IMF), which has been found to be a reasonable descrip-
tion of known satellite galaxies (Simon 2019). Initial
stellar masses were used to assign current absolute mag-
nitudes from a Bressan et al. (2012) isochrone. When
sampling from the IMF, the lower mass bound was set
to the hydrogen-burning limit of 0.08 M� and the upper
bound was set by the star with the largest initial mass
in the evolved isochrone (white dwarfs are ignored). Us-
ing the Bressan et al. (2012) isochrones, we transformed
from initial stellar mass to current absolute magnitude
in the g and r bands for each survey, and then to ap-
parent magnitudes using the distance modulus of the
simulated satellite. We applied interstellar extinction to
the apparent magnitudes of each simulated star using
the same reddening coefficients described in Section 3.

We estimated the photometric uncertainty on the sim-
ulated stellar magnitudes based on the depth of the sur-
vey at the location of each star according to the formula

σm = 0.01 + 10f(∆m). (1)

The function, f(∆m), maps the difference between the
apparent magnitude of a star and the 10σ survey mag-
nitude limit at the location of the star, ∆m = mlim−m,
to the median magnitude uncertainty. We derive f(∆m)
for each survey by calculating the median magnitude
uncertainty as a function of magnitude and magnitude
limit. In the middle panel of Figure 3, we plot our photo-
metric uncertainty model as a function of r-band magni-
tude, given the characteristic depth of DES (rlim = 23.7)
and PS1 (rlim = 22.4).

To assess the sensitivity of our search algorithms, we
inserted simulated stellar catalogs for each satellite into
the real data and ran our satellite search algorithms at

4 Assuming a different spatial profile (e.g., an exponential pro-
file) has little impact on detectability; however, see Moskowitz &
Walker (2019) for a detailed analysis of alternative spatial kernels.
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Figure 3. (Left) Stellar completeness models for the DES Y3A2 and PS1 DR1 data sets. The effects of both object detection

and star–galaxy classification are included. The dotted and solid curves for PS1 indicate stellar completeness with and without

the S/N selection criteria, respectively. (Center) Photometric uncertainty models for both data sets. Dashed lines correspond

to statistical uncertainty alone, while the solid lines impose a minimum photometric uncertainty of 0.01 mag. (Right) Color–

magnitude distribution of stars in a simulated satellite with heliocentric distance D = 28.8 kpc and stellar mass M? = 880 M�
as realized in the DES (red) and PS1 (blue) surveys. Open circles for PS1 indicate stars excluded by the S/N selection criteria.

DES field stars in a region of 0.1 deg radius are shown for comparison (gray).

the location of each injected satellite. We simulated stel-
lar catalogs for 105 (106) satellites in the DES (PS1)
footprint.5 To make economical use of compute time
and simulated data volume, satellites with high surface
brightness µ < 23.5 mag arcsec−2 and > 103 detected
stars brighter than g = 22 were not fully simulated and
were instead assumed to be detected if they reside within
the geometric survey coverage masks (see Appendix B
for details). We record the detection significance of each
simulated satellite, along with metadata about the sur-
vey characteristics at the injected location.

When analyzing the simulated satellites, we use the
same configuration that was used to search the real data.
However, to save on computational time, we fixed the
spatial location and distance modulus of our analysis to
the value of the search grid that best matched the loca-
tion and distance of the simulated satellite. This yields a
conservative estimate of the detection significance, since
we are ignoring the possibility that background fluctua-
tions could slightly enhance the detection significance at
other locations or distances. To assess the impact of this
choice, we freed the distance modulus for a small set of
simulated satellites and found that the detection prob-
ability increased by, at most, a few percent for satellites
close to the detection threshold.

5 On average, the DES simulations generate many more mem-
ber stars per satellite due to the deeper DES imaging (Figure 3).
This makes it computationally challenging to simulate more DES
satellites.

Our catalog-level insertion procedure does not account
for effects of blending in regions of high object den-
sity that might affect the detection and/or photomet-
ric measurements of member stars. However, the con-
straints that we placed on the number of bright member
stars and surface brightness typically limit our simulated
satellite population to surface densities below a few stars
per square arcminute (Appendix B). Based on studies
of the performance of the DESDM pipeline in crowded
regions, blending will not substantially decrease the de-
tectability of satellite galaxies with these surface densi-
ties (Wang et al. 2019). In addition, diffuse light from
unresolved stars is a subdominant component of the flux
for resolved systems at these distances. These assump-
tion are violated for bright nearby globular clusters and
classical dwarf galaxies, but we assert that searches are
complete for such systems in our survey area.

5. SEARCH ALGORITHMS

Milky Way satellites are detected as arcminute-scale
over-densities of old, metal poor stars located in the
outer halo of the Milky Way. The brightest satel-
lites were predominantly discovered in visual searches
of photographic plates (Shapley 1938a,b; Harrington &
Wilson 1950; Wilson 1955; Cannon et al. 1977; Irwin
et al. 1990; Ibata et al. 1994). The advent of large
digital sky surveys enabled the discovery of fainter sys-
tems using statistical matched-filter techniques (Will-
man et al. 2005a,b; Zucker et al. 2006a,b; Belokurov
et al. 2006, 2007, 2008, 2009, 2010; Grillmair 2006, 2009;
Sakamoto & Hasegawa 2006; Irwin et al. 2007; Walsh
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Table 1. Parameter ranges of simulated satellites

Parameter Range Unit Sampling

Stellar Mass [10, 106] M� log

Heliocentric Distance [5, 103] kpc log

2D Half-light Radius [1, 2× 103] pc log

Ellipticity [0.1, 0.8] . . . linear

Position Angle [0, 180] deg linear

Age {10, 12, 13.5} Gyr choice

Metallicity {0.0001, 0.0002} . . . choice

Note—Simulated satellite properties are drawn from uniform
distributions in log space with the parameter ranges listed
above. Isochrones were generated using the models of Bressan
et al. (2012) with an IMF from Chabrier (2001).

et al. 2007). Matched-filter searches have been broadly
applied to the current generation of large surveys to de-
tect larger, fainter, and more distant systems (Koposov
et al. 2015, 2018; Kim et al. 2015a,b; Kim & Jerjen
2015b; Martin et al. 2015; Laevens et al. 2015a,b; Tor-
realba et al. 2016a,b, 2018, 2019b; Homma et al. 2016,
2018, 2019; Luque et al. 2017; Mau et al. 2020). In ad-
dition, maximum-likelihood-based algorithms have been
developed to simultaneously combine morphological and
photometric information to increase sensitivity (Bechtol
et al. 2015; Drlica-Wagner et al. 2015, 2016).

Our search employed two automated algorithms to
detect low-surface-brightness, arcminute-scale stellar
overdensities. The first algorithm uses a conventional
matched-filter approach, while the second uses a more
complex maximum-likelihood framework. Both search
algorithms were optimized to detect old, metal-poor
stellar populations using their distinct locus in color–
magnitude space. Our search focused on conventional
ultra-faint galaxies and has slightly reduced efficiency for
very large stellar systems (e.g., Torrealba et al. 2016a;
Pieres et al. 2017; Torrealba et al. 2019b), or especially
young and/or metal rich systems (e.g., Torrealba et al.
2019a). Our search was also optimized for high Galactic
latitude, where the foreground stellar density does not
vary significantly over degree scales. Importantly, the
our two search methods employ different strategies to
evaluate the local stellar density and to filter candidate
member stars of Milky Way satellites according to their
spatial and color measurements.

5.1. Spatial Matched-filter Search

The first search algorithm, simple, is inspired by the
matched-filter methods of Koposov et al. (2008) and
Walsh et al. (2009), and uses a simple isochrone filter to
enhance the contrast of halo substructures at a given dis-
tance relative to the foreground field of Milky Way stars.
The specific implementation builds upon the technique
described by Bechtol et al. (2015) and Drlica-Wagner

et al. (2015).6 When analyzing DES Y3A2, we required
that objects be detected in both g and r bands and
be brighter than g = 24.5 mag. When analyzing PS1
DR1, we adopted a signal-to-noise threshold S/N > 10
in the r band. A matched-filter search for spatial over-
densities of old, metal-poor stars was performed, scan-
ning in distance modulus from 16 ≤ m −M ≤ 24 mag
(16 ≤ m − M ≤ 22 mag) for DES Y3A2 (PS1 DR1)
in steps of 0.5 mag. These searches correspond to
heliocentric distances of 16 kpc ≤ D ≤ 620 kpc and
16 kpc ≤ D ≤ 251 kpc, respectively.7 At each dis-
tance modulus, we selected stars with g- and r-band
magnitudes consistent with the synthetic isochrone of
Bressan et al. (2012) with metallicity Z = 0.0001 and
age τ = 12 Gyr. We required that the color differ-
ence between each star and the template isochrone be

∆(g − r) <
√

0.12 + σ2
g + σ2

r , where σg and σr are the

statistical uncertainties on the g- and r-band magni-
tudes, respectively.

The survey footprint was partitioned into HEALPix
pixels of nside = 32 (∼ 3.4 deg2) for individual analysis.
For each nside = 32 pixel and distance modulus step,
we applied the isochrone filter described previously and
created a map of the filtered stellar density field, includ-
ing the central pixel of interest along with the eight sur-
rounding HEALPix pixels. The eight surrounding pixels
were used to more accurately estimate the average stel-
lar density in the central pixel of interest. The filtered
stellar density field in the central pixel was smoothed by
a Gaussian kernel (σ = 2′), and we identified local den-
sity peaks by iteratively raising a density threshold until
there are fewer than 10 disconnected regions above the
threshold value. In practice, only the most prominent of
these stellar overdensities passed our minimal statistical
significance thresholds.

At the central location of each density peak, we deter-
mined the angular size of a surrounding aperture that
maximizes the significance of the density peak with re-
spect to the distribution of field stars. Specifically, we
iterate through circular apertures with radii from 1′ to
18′, and for each radius, we compute the Poisson signifi-
cance for the observed stellar counts within the aperture
given the local field density. The local field density is es-
timated from an annulus between 18′ and 30′ surround-
ing the peak. When calculating the stellar density, we
account for the coverage of the survey, which is mapped
at square arcminute scales, as described in Sections 3.1
and 3.2. After consolidating spatially coincident peaks
at different distance moduli, all peaks with Poisson sig-
nificance SIG > 5.5σ are considered seeds for subse-
quent analysis. simple has a high significance ceiling

6 https://github.com/DarkEnergySurvey/simple
7 Our search is less sensitive to systems at larger distances where

the apparent magnitude of horizontal branch stars is fainter than
the detection limit of the surveys.

https://github.com/DarkEnergySurvey/simple
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at SIG = 37.5σ, corresponding to the numerical limit of
the inverse survival function of the normal distribution
implemented in scipy.

5.2. Likelihood-based Search

The second search algorithm employs a likelihood-
based approach implemented with the ugali framework
(Bechtol et al. 2015; Drlica-Wagner et al. 2015).8 A like-
lihood function is constructed from the product of Pois-
son probabilities to detect individual stars based upon
their spatial positions, measured fluxes, photometric un-
certainties, and the local imaging depth, given a model
that includes a putative dwarf galaxy and empirical es-
timation of the local stellar field population (see Ap-
pendix C for more details). When calculating the like-
lihood, we account for both missing survey area and lo-
cal depth variations mapped on square-arcminute scales
(Sections 3.1 and 3.2). We assumed a radially sym-
metric Plummer profile, scanning over half-light radii,

rh = {1.′2, 4.′2, 9.′0}, and a spectral model composed of
four Bressan et al. (2012) isochrones of τ = {10 Gyr,
12 Gyr} and Z = {0.0001, 0.0002}, each weighted by a
Chabrier (2001) IMF. This spatial-spectral template was
rastered over a spatial grid of HEALPix pixels (nside =
4096; spatial resolution of ∼ 0.′7) and range of distance
moduli from 16 < m −M < 23 (heliocentric distances
of 16 kpc < D < 400 kpc) in steps of 0.5 mag. At each
coordinate, we evaluated the likelihood ratio between
models with and without a candidate satellite galaxy
to generate a three-dimensional map of detection signif-
icance. We define a test statistic, TS = −2∆ log(L),
as our criterion for detection. In the asymptotic limit,
the TS will follow a χ2-distribution with n degrees of
freedom (Wilks 1938; Chernoff 1954). In our case, the
grid scan maximizes over a grid of satellite sky location,
distance, richness, and size, yielding n ∼ 5, and our
threshold of

√
TS > 6 corresponds to a statistical sig-

nificance of ∼ 4.9σ. Isolated peaks in the TS map were
extracted as seeds for further characterization.

Table 2. Confirmed and candidate Milky Way satellites

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Name Survey Classification RA Dec m−M ah ε Distance r1/2 MV Ref.

(deg) (deg) (′) (kpc) (pc) (mag)

Antlia II 4 143.8868 -36.7673 20.6 76.2 0.38 132 2301 -9.03 1

Aquarius II PS1 4 338.4813 -9.3274 20.2 5.1 0.39 108 125 -4.4 2

Boötes I PS1 4 210.0200 14.5135 19.1 9.97 0.30 66 160 -6.02 3

Boötes II PS1 4 209.5141 12.8553 18.1 3.17 0.25 42 33 -2.94 3

Boötes IIIa PS1 4 209.3 26.8 18.4 30.0 0.5 47 289 -5.75 4

Boötes IV PS1 3 233.689 43.726 21.6 7.6 0.64 209 277 -4.53 5

Canes Venatici I PS1 4 202.0091 33.5521 21.7 7.12 0.44 218 338 -8.80 3

Canes Venatici II PS1 4 194.2927 34.3226 21.0 1.52 0.40 160 55 -5.17 3

Carina 4 100.4065 -50.9593 20.1 10.1 0.36 105 248 -9.43 3

Carina II 4 114.1066 -57.9991 17.8 8.69 0.34 36 77 -4.5 6

Carina III 4 114.6298 -57.8997 17.2 3.75 0.55 28 20 -2.4 6

Centaurus I 3 189.585 -40.902 20.3 2.9 0.4 116 76 -5.55 7

Cetus II PS1, DES 3 19.47 -17.42 17.4 1.9 < 0.4 30 17 0.0 8

Cetus III PS1, DES 3 31.331 -4.270 22.0 1.23 0.76 251 44 -2.5 9

Columba I PS1, DES 3 82.86 -28.01 21.3 2.2 0.3 183 98 -4.2 10

Coma Berenices PS1 4 186.7454 23.9069 18.2 5.64 0.37 44 57 -4.38 3

Crater II PS1 4 177.310 -18.413 20.4 31.2 < 0.1 117 1066 -8.2 11

DES J0225+0304 DES 1 36.4267 3.0695 16.9 2.68 0.61 24 12 -1.1 12

Draco PS1 4 260.0684 57.9185 19.4 9.67 0.29 76 180 -8.71 3

Draco II PS1 3 238.174 64.579 16.7 3.0 0.23 22 17 -0.8 13

Eridanus II DES 4 56.0925 -43.5329 22.9 1.77 0.35 380 158 -7.21 3

Fornax DES 4 39.9583 -34.4997 20.8 19.6 0.29 147 707 -13.46 3, 14

Grus I DES 3 344.1797 -50.18 20.4 0.81 0.45 120 21 -3.47 3

Grus II DES 3 331.02 -46.44 18.6 6.0 < 0.2 53 92 -3.9 8

Hercules PS1 4 247.7722 12.7852 20.6 5.63 0.69 132 120 -5.83 3

Table 2 continued

8 https://github.com/DarkEnergySurvey/ugali

https://github.com/DarkEnergySurvey/ugali
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Table 2 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Name Survey Classification RA Dec m−M ah ε Distance r1/2 MV Ref.

(deg) (deg) (′) (kpc) (pc) (mag)

Horologium I DES 4 43.8813 -54.116 19.5 1.59 0.27 79 31 -3.55 3

Horologium II DES 3 49.1077 -50.0486 19.5 2.09 0.52 78 33 -2.6 15

Hydra II 3 185.4251 -31.9860 20.9 1.52 0.24 151 58 -4.60 3

Hydrus I 4 37.389 -79.3089 17.2 7.42 0.21 28 53 -4.71 16

Indus II DES 1 309.72 -46.16 21.7 2.9 < 0.4 214 180 -4.3 8

Kim 2 DES 2 317.2020 -51.1671 20.0 0.48 0.32 100 12 -3.32 3

Laevens 1 PS1 2 174.0668 -10.8772 20.8 0.51 0.17 145 20 -4.80 3

LMC 4 80.8938 -69.7561 18.5 323.0 0.15 50 4735 -18.12 17, 18

Leo I PS1 4 152.1146 12.3059 22.0 3.65 0.3 254 226 -11.78 3

Leo II PS1 4 168.3627 22.1529 21.8 2.52 0.07 233 165 -9.74 3

Leo IV PS1 4 173.2405 -0.5453 20.9 2.54 0.17 154 104 -4.99 3

Leo V PS1 4 172.7857 2.2194 21.3 1.00 0.43 178 39 -4.40 3

Pegasus III PS1 4 336.102 5.405 21.7 0.85 0.38 215 42 -3.4 19

Phoenix II DES 4 354.996 -54.4115 19.6 1.49 0.67 83 21 -3.30 3

Pictor I DES 3 70.949 -50.2854 20.3 0.88 0.63 114 18 -3.45 3

Pictor II 3 101.180 -59.897 18.3 3.8 0.13 46 47 -3.2 20

Pisces II PS1 4 344.6345 5.9526 21.3 1.12 0.34 182 48 -4.22 3

Reticulum II DES 4 53.9203 -54.0513 17.4 5.52 0.58 30 31 -3.88 3

Reticulum III DES 3 56.36 -60.45 19.8 2.4 < 0.4 92 64 -3.3 8

Sagittarius 4 283.8313 -30.5453 17.1 342.0 0.64 26 1565 -13.5 21

Sagittarius II PS1 4 298.1647 -22.0651 19.2 1.6 < 0.1 69 32 -5.2 22

Sculptor DES 4 15.0183 -33.7186 19.6 11.17 0.33 84 223 -10.82 3, 23

Segue 1 PS1 4 151.7504 16.0756 16.8 3.62 0.33 23 20 -1.30 3

Segue 2 PS1 3 34.8226 20.1624 17.7 3.76 0.22 35 34 -1.86 3

Sextans PS1 4 153.2628 -1.6133 19.7 16.5 0.30 86 345 -8.72 3

SMC 4 13.1867 -72.8286 19.0 151.0 0.40 62 2728 -17.18 17, 24

Triangulum II PS1 3 33.3252 36.1702 17.4 1.99 0.46 30 13 -1.60 3

Tucana II DES 4 342.9796 -58.5689 18.8 12.59 0.39 58 165 -3.8 25

Tucana III DES 3 359.15 -59.60 17.0 6.0 0.0 25 44 -2.4 8

Tucana IV DES 4 0.73 -60.85 18.4 11.8 0.4 48 128 -3.5 8

Tucana V DES 3 354.35 -63.27 18.7 1.8 0.7 55 16 -1.6 8

Ursa Major I PS1 4 158.7706 51.9479 19.9 8.31 0.59 97 151 -5.12 3

Ursa Major II PS1 4 132.8726 63.1335 17.5 13.8 0.56 32 85 -4.25 3

Ursa Minor PS1 4 227.2420 67.2221 19.4 18.3 0.55 76 272 -9.03 3

Virgo I PS1 3 180.038 -0.681 19.8 1.76 0.59 91 30 -0.33 9

Willman 1 PS1 4 162.3436 51.0501 17.9 2.51 0.47 38 20 -2.53 3

Note— Column descriptions: (1) satellite name, (2) survey(s) in which the system resides, (3) system classification (see below), (4, 5) published
right ascension and declination, (6, 7, 8) published distance modulus, observed semi-major axis of an ellipse containing half of the light, and
ellipticity, (9, 10) derived heliocentric distance and azimuthally averaged physical half-light radius, (11) published absolute V -band magnitude,
(12) literature reference. When two references are listed, the second was used for the distance measurement. Classifications are: (1) unconfirmed
systems, (2) probable star clusters, (3) probable dwarfs, (4) kinematically confirmed dwarfs. Literature references are: (1) Torrealba et al. (2019b),
(2) Torrealba et al. (2016b), (3) Muñoz et al. (2018), (4) Grillmair (2009), (5) Homma et al. (2019), (6) Torrealba et al. (2018), (7) Mau et al.
(2020), (8) Drlica-Wagner et al. (2015), (9) Homma et al. (2018), (10) Carlin et al. (2017), (11) Torrealba et al. (2016a), (12) Luque et al. (2017),
(13) Longeard et al. (2018), (14) Pietrzyński et al. (2009), (15) Kim & Jerjen (2015b), (16) Koposov et al. (2018), (17) Makarov et al. (2014),
(18) Pietrzyński et al. (2013), (19) Kim et al. (2016), (20) Drlica-Wagner et al. (2016), (21) McConnachie (2012), (22) Mutlu-Pakdil et al. (2018),
(23) Mart́ınez-Vázquez et al. (2015), (24) Graczyk et al. (2014), (25) Koposov et al. (2015).

aApproximate half-light radius and ellipticity estimated from Grillmair (2009).

6. SEARCH RESULTS

The DES and PS1 searches each returned several thou-
sand “seeds” (i.e., locations where the local significance
exceeds a minimum threshold). The observed distribu-
tion of detection significance falls steeply for each algo-

rithm (Figure 4), with the majority of high-significance
seeds coinciding with real resolved stellar systems, re-
gions of spatially varying Galactic extinction or stellar
density, or survey artifacts caused by bright stars and
incomplete coverage. To robustly infer the population
of Milky Way satellites, we define additional criteria to
produce a high-purity sample of “detected” satellite can-
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didates. These criteria were self-consistently applied to
both survey data and simulations.

6.1. Detection Criteria

We developed a set of detection criteria intended to
refine the set of raw seeds to a list of high-quality satel-
lite galaxy candidates. These criteria were partially mo-
tivated by the observed distribution of seeds and the
recovery of previously known satellites. We sought to
design a set of selection criteria for which our recovery of
known satellites was relatively complete, but restrictive
enough that only a small number of additional objects
would pass our criteria and could be visually inspected.

Our detection criteria can be broadly categorized into
four different types: (i) a set of geometric criteria in-
tended to mask known stellar systems and problematic
regions of the survey (Figure 2); (ii) a detection signifi-
cance threshold; (iii) a spatial match between seeds from
the simple and ugali searches; and (iv) a visual inspec-
tion and masking of residual survey artifacts. These cri-
teria mimic the criteria applied for satellite discovery in
previous studies (i.e., Bechtol et al. 2015; Drlica-Wagner
et al. 2015) and are described in more detail below.

(i) Geometric Criteria —We applied a set of geomet-
ric masks to exclude regions of the survey footprint
where systematic features result in the detection of spu-
rious seeds. We began by restricting the seeds from
both surveys to regions of low interstellar extinction,
E(B − V ) < 0.2 (Schlegel et al. 1998). While our al-
gorithms incorporate the effects of reddening, regions
of high reddening generally trace regions of high Milky
Way stellar density. In these regions, the reddening and
the stellar field density can vary over relatively small
spatial scales, and we find the incidence of false-positive
seeds is disproportionately high. This mask removes
∼ 7400 deg2 from the PS1 footprint and is negligible for
DES (Figure 2).

Our empirical model of the PS1 DR1 footprint is in-
accurate near the survey boundaries, resulting in the
detection of spurious seeds due to mis-estimation of the
stellar density. To remove these spurious seeds, we ap-
plied a declination selection of δ > −25 deg. We also
removed regions of the PS1 footprint where very high
stellar density led to memory overflow issues during ap-
plication of the likelihood search algorithm. These re-
gions largely overlap with the reddening mask and only
remove ∼ 20 deg2 of additional area.

We also masked regions around astronomical objects
that are known to produce spurious seeds. These
masks can generally be separated into regions around
bright stars (Hoffleit & Jaschek 1991), Milky Way glob-
ular clusters (Harris 1996, 2010 edition), open clusters
(WEBDA)9, and nearby galaxies that are resolved into

9 https://webda.physics.muni.cz

individual stars (Corwin 2004; Nilson 1973; Webbink
1985; Kharchenko et al. 2013; Bica et al. 2008). We also
mask regions around overdensities in two narrow stel-
lar streams, ATLAS (Koposov et al. 2014; Shipp et al.
2018) and Phoenix (Balbinot et al. 2016). For extended
objects, we masked regions consistent with the half-light
radii of these objects, with a minimum masked radius of
0.05 deg. For bright stars and objects where size infor-
mation is unavailable, we masked a circular region with
a 0.1 deg radius.

(ii) Significance Threshold —We require a fiducial signif-
icance threshold of SIG > 6 for the simple search al-
gorithm and

√
TS > 6 for the ugali search algorithm.

These significance thresholds were chosen such that the
observed number of unassociated seeds increases rapidly
if the threshold is reduced (Figure 4). In addition, most
of the seeds above these thresholds can be readily clas-
sified as either genuine stellar systems or obvious sur-
vey artifacts (Appendix D), whereas seeds below these
thresholds are more often ambiguous.

(iii) Detection by Both Algorithms —We required that
seeds be detected above the stated significance thresh-
olds by both the simple and ugali search algorithms.
To apply this criteria, we matched seeds between the two
searches. We defined two seeds to be matched if their
centroids were within 12.′0 (0.2 deg). We reiterate that
our objective is to derive a statistically rigorous obser-
vational selection function that yields a high-purity list
of candidates. Requiring detection by both algorithms
greatly increases the purity of our candidate list at a
moderate cost to detection efficiency (Figure 4). We
find that achieving similar purity with a single algorithm
would require a higher detection threshold and would re-
sult in lower overall efficiency. Requiring detection by
both algorithms does result in the rejection of several
known satellites in the PS1 footprint that were only de-
tected by ugali (i.e., Aquarius II, Columba I, Leo IV,
Leo V, Pisces II, Ursa Major I) or simple (Boötes II).
We discuss these specific cases in Section 6.2.

(iv) Residual Survey Artifacts —We identified several
seeds in the PS1 DR1 footprint that passed the previ-
ous selection criteria but were clearly associated with
imaging or processing artifacts (e.g., stray and scat-
tered light around bright stars, abrupt changes in sur-
vey depth, inaccurate survey coverage map, PSF fitting
failures). These regions were visually identified and
masked with a circular mask of radius of ∼ 0.3–0.5 deg.
An additional 12 seeds in the PS1 DR1 passed our
fiducial selection criteria and were visually inspected.
These seeds showed a poorly defined stellar sequence
in color–magnitude space and/or poorly defined spatial
morphology. These regions likely result from a combina-
tion of less obvious survey artifacts (i.e., mis-estimation
of the sky background, excess sensor noise, or low level
scattered light) and contamination from background

https://webda.physics.muni.cz
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Figure 4. Distribution of detection significance for seeds returned by the simple and ugali search algorithms in our DES and

PS1 satellite searches. Histograms show seeds that survive successive application of selection criteria, including the geometric

masks shown in Figure 2. The solid vertical line denotes our fiducial detection significance threshold for each survey. Note that

the simple algorithm returns a maximum significance of 37.5.

galaxy clusters. We mask regions of ∼ 0.3 deg around
each of these seeds. More details on the identification
of these regions can be found in Appendix D.

The total search area after masking is 4,844 deg2 in
DES, 21,123 deg2 in PS1, and 24,343 deg2 together (DES
and PS1 overlap in a region of ∼ 1,600 deg2). Figure 4
shows the effect of the successive selections and demon-
strates that our two independent search algorithms yield
reasonably consistent results, particularly for objects
that pass the selection criteria described above. The
consistency in the number of high-significance objects
returned by both search algorithms lends confidence to
our final list of satellite systems.

6.2. Recovery of Real Satellites

We compare the results of our search to the popu-
lation of confirmed and candidate dwarf galaxies (Ta-
ble 2). To assemble our catalog of satellites, we aug-
mented McConnachie (2012) with other recently discov-

ered ultra-faint satellites collected in Simon (2019). Our
structural parameters are taken primarily from Muñoz
et al. (2018), incorporating improved measurements
from deeper data when available (as noted in the table).
The kinematic classification of ultra-faint satellite sys-
tems is notoriously difficult, due to their faintness and
small intrinsic velocity dispersions. We thus assemble
our catalog from larger satellite systems (r1/2 > 100 pc)
or smaller satellites with low average surface brightness
(10 pc ≤ r1/2 ≤ 100 pc and µ > 25 mag arcsec−2). Clas-
sification for systems with 10 pc < r1/2 < 20 pc is par-
ticularly challenging since velocity dispersions are rarely
resolved and classification arguments are often based
on non-uniform chemical and structural measurements.
We divide systems in this table into kinematically clas-
sified dwarf galaxies (class 4); probable dwarf galaxies
based on structural or metallicity measurements (class
3); probable star clusters based on structural, age, or
metallicity arguments (class 2); and unconfirmed sys-
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Table 3. Recovery of confirmed and candidate Milky Way satellite galaxies

in DES Y3A2.

(1) (2) (3) (4) (5) (6) (7) (8)

Name
√

TS SIG Pdet Distance r1/2 MV ρ?

(kpc) (pc) (mag) (arcmin−2)

Fornax 480.07 37.5 1.00 147 707 -13.46 16.52

Sculptor 415.08 37.5 1.00 84 223 -10.82 5.87

Reticulum II 54.56 37.5 1.00 30 31 -3.88 1.17

*Eridanus II 36.17 27.41 1.00 380 158 -7.21 1.10

Tucana II 23.85 12.88 0.91 58 165 -3.8 1.87

Grus II 21.82 13.29 0.97 53 92 -3.9 2.03

Horologium I 21.78 20.68 0.99 79 31 -3.55 1.24

Tucana III 18.60 12.72 0.91 25 44 -2.4 1.62

Tucana IV 16.03 10.88 0.91 48 128 -3.5 1.60

Phoenix II 13.36 12.18 0.98 83 21 -3.30 1.35

Horologium II 11.62 11.21 0.87 78 33 -2.6 1.07

Tucana V 11.27 9.97 0.89 55 16 -1.6 1.78

Pictor I 10.91 8.55 0.97 114 18 -3.45 1.50

Columba I 10.67 9.45 0.33 183 98 -4.2 2.09

Cetus II 10.47 7.18 0.62 30 17 0.0 0.79

Grus I 9.78 8.80 0.97 120 21 -3.47 1.57

*Kim 2 8.17 9.31 0.93 100 12 -3.32 3.13

Reticulum III 8.12 7.46 0.92 92 64 -3.3 1.46

*Cetus III 3.96 3.68 0.01 251 44 -2.5 0.89

*Indus II 3.86 3.65 0.01 214 180 -4.3 4.02

*DES J0225+0304 . . . . . . 0.94 24 12 -1.1 0.98

Note— Column descriptions: (1) satellite name; (2) square-root of the test statistic from
ugali search; (3) statistical significance value from simple search (maximum of 37.5);
(4) detection probability from survey selection function; (5, 6) heliocentric distance and
azimuthally averaged physical half-light radius, calculated from observed parameters
listed in Table 2; (7) published absolute V -band magnitude; (8) local stellar density.
Satellites denoted with asterisks are not included in the statistical sample used to derive
the luminosity function.

tems that were discovered in shallower DES data but
were not detected in our search (class 1). Class 2 no-
tably includes Crater I/Laevens 1 (Belokurov et al. 2014;
Laevens et al. 2014) and Kim 2 (Kim et al. 2015b), which
have been proposed to be star clusters due to structural,
age, and metallicity arguments (Kirby et al. 2015; Weisz
et al. 2016), but pass our selection on size and surface
brightness. Our primary sample of probable and kine-
matically classified satellite galaxies are systems with
class ≥ 3. Our search recovers the majority of previ-
ously discovered Milky Way satellite galaxies in the PS1
DR1 and DES Y3A2 footprints (Tables 3 and 4).

We recovered 18 out of 21 confirmed and candidate
satellite galaxies in the DES footprint above our nominal
threshold of

√
TS > 6 and SIG > 6. Two of the ultra-

faint galaxy candidates initially detected in DES Y2Q1
data were marked as “lower-confidence” candidates due
to their locations in regions of non-uniform survey cov-
erage during the first two years of DES observations
(Drlica-Wagner et al. 2015). With the deeper and more
homogeneous imaging of the Y3A2 data set, Cetus II
(DES J0117−1725) is detected with

√
TS = 10.5 and

SIG = 7.2. This statistical significance is comparable
to other confirmed candidates (e.g., Columba I and Pic-

tor I). Meanwhile, the second low-confidence candidate,
Indus II (DES J2038−4609), drops below our detection
threshold.10 We recovered the Eridanus III system re-
ported in Bechtol et al. (2015) and Koposov et al. (2015)

with high significance (
√

TS = 9.5 and SIG = 9.0); how-
ever, due to its small physical size (r1/2 = 5 pc, Conn
et al. 2018), we do not include it in our list of confirmed
and candidate dwarf galaxies. Neither of the two ob-
jects reported in Luque et al. (2017) was detected as a
significant seed in our automated search, and visual in-
spection of the DES Y3A2 data coincident with these
candidates did not reveal any significant excesses. Ce-
tus III, an ultra-faint galaxy candidate identified in early
data from HSC SSP (Homma et al. 2018), is located
within the DES footprint but falls below our detection
threshold. This is expected, given the large distance
(251 kpc) and low azimuthally averaged surface bright-
ness (∼ 29.3 mag arcsec−2) of this candidate.

10 Deep follow-up imaging with Magellan/Megacam supports
the hypothesis that Indus II (DES J2038−4609) is a chance align-
ment of stars (Cantu et al. in prep.).
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Table 4. Recovery of confirmed and candidate Milky Way satellite galaxies

in PS1 DR1.

(1) (2) (3) (4) (5) (6) (7) (8)

Name
√

TS SIG Pdet Distance r1/2 MV ρ?

(kpc) (pc) (mag) (arcmin−2)

Leo I 157.63 37.5 1.00 254 226 -11.78 1.18

Leo II 104.05 37.5 1.00 233 165 -9.74 3.09

Draco 96.94 37.5 1.00 76 180 -8.71 3.02

Ursa Minor 83.14 37.5 1.00 76 272 -9.03 3.19

Sextans 58.62 24.63 1.00 86 345 -8.72 3.00

Canes Venatici I 36.00 25.33 1.00 218 338 -8.80 1.01

Boötes I 25.29 11.63 0.95 66 160 -6.02 1.29

Ursa Major II 18.66 8.86 0.94 32 85 -4.25 1.76

Coma Berenices 15.29 9.75 0.93 44 57 -4.38 1.07

Sagittarius II 15.19 11.66 0.55 69 32 -5.2 12.60

Willman 1 15.03 12.54 0.54 38 20 -2.53 0.95

Canes Venatici II 11.70 8.78 0.93 160 55 -5.17 0.98

Segue 1 10.79 8.55 0.48 23 20 -1.30 1.22

Segue 2 10.75 7.25 0.05 35 34 -1.86 1.55

Crater II 10.42 6.08 0.06 117 1066 -8.2 2.44

*Ursa Major I 10.18 5.99 0.24 97 151 -5.12 0.99

*Laevens 1 9.89 9.52 0.96 145 20 -4.8 1.67

Draco II 9.76 7.90 0.24 22 17 -0.8 1.63

Triangulum II 9.46 6.76 0.23 30 13 -1.60 3.04

Hercules 9.11 6.44 0.44 132 120 -5.83 3.91

*Leo IV 8.25 4.94 0.18 154 104 -4.99 1.48

Cetus II 7.42 6.14 0.02 30 17 0.0 1.08

*Aquarius II 7.27 5.07 0.01 108 125 -4.4 1.67

*Leo V 6.95 4.14 0.14 178 39 -4.4 1.31

*Pisces II 6.25 4.39 0.03 182 48 -4.22 1.58

*Columba Ia 6.15 5.34 0.00 183 98 -4.2 2.46

*Boötes II 5.95 6.46 0.42 42 33 -2.94 1.27

*Boötes IV 5.41 4.69 0.00 209 277 -4.53 1.56

*Pegasus III 4.80 3.68 0.00 215 42 -3.4 2.09

*Virgo I 4.06 4.08 0.00 91 30 -0.33 1.58

*Boötes IIIb 4.00 4.34 0.24 47 289 -5.75 1.16

*Cetus III . . . 4.55 0.00 251 44 -2.5 1.00

Note— Column descriptions are the same as Table 3. Satellites denoted with asterisks
are not included in the statistical sample used to derive the luminosity function.

aLocated in a masked region of the PS1 footprint (δ < −25 deg).

b Approximate half-light radius and ellipticity estimated from Grillmair (2009).

In comparison, we recovered 20 of the 32 confirmed
and candidate satellite galaxies known to reside in the
PS1 DR1 footprint. The lower recovery rate in PS1 is
expected since many of the satellites in the PS1 foot-
print were discovered with significantly deeper data. Of
the twelve satellites that fall below our detection thresh-
old, five were discovered in deeper surveys and are not
expected to be detected by PS1: Boötes IV, Cetus III,
and Virgo I were discovered in HSC SSP; Columba I
was discovered in DES; and Aquarius II was discovered
in VST ATLAS. The seven remaining satellites were dis-
covered using data from SDSS, but several of these ob-
jects were confirmed with deeper follow-up observations
before publication. Leo V had deep follow-up imaging
from the Isaac Newton Telescope and spectroscopy from

the Hectochelle fiber spectrograph at the Multiple Mir-
ror Telescope (Belokurov et al. 2008), while Pisces II had
follow-up imaging from the MOSAIC camera at the 4-m
Mayall Telescope (Belokurov et al. 2010). Pegasus III
was announced after deep follow-up observations with
DECam (Kim & Jerjen 2015a). Leo IV was discovered
in data from SDSS without additional follow-up (Be-
lokurov et al. 2007) and is detected significantly above

threshold by ugali (
√

TS = 8.2). However, the simple
significance (SIG = 4.9) falls below our threshold. Simi-
larly, Ursa Major I is detected significantly with ugali,
but falls just below the threshold for simple. Boötes
II falls just below our threshold for detection and has a
comparably low detection probability reported by Ko-
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posov et al. (2008). Boötes III is a diffuse object (ex-
tending ∼ 1.5 deg) with a complex morphology that was
identified visually in filtered stellar density maps from
SDSS DR5 (Grillmair 2009). The large size and com-
plex morphology of Boötes III have made it challenging
to detect with automated search algorithms (Koposov
et al. 2008; Walsh et al. 2009).11

We found one candidate in the PS1 DR1 search that
passed all selection criteria and is unassociated with our
catalogs of known satellites (see Appendix D for more
details). This candidate, located at (α2000, δ2000) =
(247.725,−0.971), is a compact, r1/2 = 3.7 pc, low-
luminosity, MV = 0.6, system residing at a heliocentric
distance of D = 15.6 kpc. While the physical nature of
such a faint system is ambiguous without internal kine-
matics measurements, the small physical size of this can-
didate is consistent with other low-luminosity outer-halo
star clusters that have been discovered in recent surveys
(e.g., Torrealba et al. 2019a; Mau et al. 2019). Due to
the small physical size of this candidate, we classify it
as a likely star cluster and do not include it in the sam-
ple of confirmed and candidates satellite galaxies used
for deriving the Milky Way satellite galaxy luminosity
function.

The non-detection of several known satellites is not
unexpected, given that we prioritize purity over com-
pleteness in our selection criteria. Discovery-driven
searches often set a lower significance threshold, relying
on visual inspection and targeted follow-up observations
to reject false positives. This subjective selection func-
tion is difficult to characterize with an automated anal-
ysis relying on simulations. By setting more restrictive
detection criteria, we can be confident that every satel-
lite that passes our automated selection criteria would
pass subjective selection. Such a requirement is critical
to self-consistently interpret the recovery of simulated
satellites and the derived observational selection func-
tion.

6.3. Recovery of Simulated Satellites

We illustrate the recovery of simulated satellites in the
physically motivated parameter space of satellite abso-
lute magnitude, MV , heliocentric distance, D, and az-
imuthally averaged physical half-light radius, r1/2. Fig-
ures 5 and 6 show the detectability of simulated satellites
as a function of MV and r1/2 in six slices of distance.
The coloring of each bin corresponds to the fraction of
satellites in that bin that pass the detection criteria pre-
sented in Section 6.1 (i.e.,

√
TS > 6 and SIG > 6). The

DES simulations generally contain ∼ 30 simulated satel-
lites per bin, while the PS1 simulations contain ∼ 250
simulated satellites per bin. We overplot the physical

11 We also examined the regions around five SDSS candidates
proposed by Liu et al. (2008), but we do not find any significant
excesses at these locations.

properties of the known Milky Way satellites residing
within the DES and PS1 footprints from Tables 3 and
4. In general, the physical parameters of the known
satellites recovered by our search (Section 6.2) are con-
sistent with the sensitivity envelope derived from simu-
lated satellites (Figure 6).

We indicate the approximate surface brightness and
absolute magnitude limits of SDSS as derived by Ko-
posov et al. (2008) with a dashed red line. We find that
our search on DES Y3A2 is significantly more sensitive
than SDSS, while the sensitivity of our PS1 DR1 search
is roughly comparable to the SDSS search in many re-
gions of parameter space. When directly comparing PS1
and SDSS catalogs in overlapping fields, and applying
quality and star–galaxy separation criteria to both sur-
veys, the stellar efficiency curves of SDSS and PS1 are
similar.12 The sensitivity of our PS1 search is largely
driven by the conservative detection thresholds we set
and the requirement that candidates be detected by
both search algorithms. If these restrictions are relaxed,
we find that our search becomes significantly more sensi-
tive, but with a corresponding increase in the number of
false-positive seeds that need to be rejected using visual
inspection. It may be possible to increase the sensitivity
of the PS1 search if the incidence of spurious seeds can
be reduced by subsequent PS1 data releases (i.e., PS1
DR2) or through a more precise estimate of the PS1
survey coverage. We self-consistently applied the same
detection criteria to both the simulated satellites and
the real systems when deriving our luminosity function.

7. OBSERVATIONAL SELECTION FUNCTION

The observational selection function defines the de-
tectability of a satellite as a function of its physical prop-
erties and location on the sky. Following the convention
of Koposov et al. (2008) and Walsh et al. (2009), we
present our observational selection function in terms of
the physical parameters of heliocentric distance (D), ab-
solute magnitude (MV ), and azimuthally averaged pro-
jected physical half-light radius (r1/2). The detectabil-
ity of a satellite with a given set of parameters can
be predicted directly from our simulations through a
nearest-neighbors search (e.g., Knuth 1973). However,
nearest-neighbor searches can be unwieldy, and we offer
two alternative parameterizations of satellite detectabil-
ity based on an analytic approximation and a machine-
learning classifier. When training the machine-learning
classifier, we include the local stellar density as an ad-
ditional feature for predicting satellite detectability.

12 Care must be taken in comparing the quoted depths of PS1
and SDSS. SDSS conventionally quotes a 95% completeness limit
for point sources of g, r = 22.2 before star–galaxy separation. This
is not directly comparable to the 10σ magnitude limit of g, r ∼
22.5 calculated for PS1 DR1 in Section 3. The completeness depth
of each data set is dependent on the exact selection criteria applied
to the catalogs.
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Figure 5. Detection efficiency of searches for Milky Way satellites in DES Y3A2. Detection efficiency ranges from 0% (blue)

to 100% (white) and is shown as a function of azimuthally averaged physical half-light radius and absolute V -band magnitude in

different bins of heliocentric distance (logarithmically spaced from 8 kpc to 512 kpc). The physical parameters of known satellites

located within the DES and/or PS1 footprints are indicated in black. The black dashed line shows an analytic approximation

to the 50% detectability contour, while the red dashed line shows the 50% detection efficiency contour for SDSS DR5 from

Koposov et al. (2008). The DES search is significantly more sensitive than the SDSS DR5 search of Koposov et al. (2008).

Table 5. Parameterization of 50% Detectability Contour

DES PS1

Distance A0 MV,0 log10(r1/2,0) A0 MV,0 log10(r1/2,0)

(kpc) (mag) (log10( pc)) (mag) (log10( pc))

11.3 21.5 7.8 3.8 22.8 7.1 4.0

22.6 24.1 8.3 4.2 19.0 5.0 4.1

45.2 17.2 5.2 4.3 14.1 1.8 4.2

90.5 8.6 1.2 4.1 11.0 -0.3 4.3

181 6.6 -1.1 4.1 7.5 -2.2 4.2

362 6.3 -2.3 4.3 6.8 -4.0 4.4

7.1. Analytic Approximation

We first present a simple analytic approximation for
the contour defining the parameters of satellites with
50% detection probability, Pdet(D,MV , r1/2) = 0.5. We
find that at fixed distance, this Pdet,50 contour can be
well described by

log10(r1/2) =
A0(D)

(MV −MV,0(D))
+ log10(r1/2,0(D)), (2)

where r1/2 is in units of pc, MV is in units of mag,
and D is in units of kpc. This equation contains three
distance-dependent constants (A0, MV,0, r1/2,0), which
were fit to the Pdet,50 contour in each of our six slices of
distance (Table 5). In particular, MV,0 and log10(r1/2,0)
represent asymptotic limits in absolute magnitude and
physical half-light radius as a function of satellite dis-
tance. The scale parameter, A0(D), describes the “ra-
dius of curvature” of the Pdet,50 contour at a given dis-
tance. These fits to Pdet,50 are overplotted as dashed
black lines on Figures 5 and 6. The parameters describ-
ing Pdet,50 vary smoothly as a function of distance, and
interpolating between them can provide a reasonable ap-
proximation for Pdet,50 for any distance within the range
studied.

Koposov et al. (2008) provided a similar description of
satellite detectability in SDSS DR5, in terms of limiting
surface brightness, µlim, and limiting absolute magni-
tude, MV,lim (red dashed lines in Figures 5 and 6). Ko-
posov et al. show that this simple model is sufficient to
describe the sensitivity of their search, as derived from a
small sample of 8,000 simulated galaxies. However, the
functional form of this model is insufficient to fully cap-
ture the shape of the detectability contours of our search,
which was derived from a much larger set of simulated
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Figure 6. Similar to Figure 5, but for the PS1 DR1 search. The 50% detectability of the PS1 DR1 search (dashed black line)

is significantly less sensitive than DES and is somewhat less sensitive than the 50% detection efficiency of the SDSS DR5 search

reported by Koposov et al. (2008) (red dashed line).

galaxies. Fitting the model of Koposov et al. to our
simulations systematically underestimates our sensitiv-
ity to faint, compact satellites. The difference between
our model and that of Koposov et al. is not unexpected,
since the exact shape of the detectability contour de-
pends on the data set and search algorithm.

7.2. Machine-learning Model

Walsh et al. (2009) emphasized that Pdet,50 serves as
a useful approximation for detectability, but that it does
not fully capture the intermediate region between 100%
detectability and 0% detectability. Most of the known
satellites lie in the region of parameter space of inter-
mediate detection probability, and accordingly, accurate
treatment of the detection efficiency gradient in this re-
gion is an important component of the interpretation.
It is expected that many of the Milky Way satellites lie
just beyond the current detection threshold (e.g., Hargis
et al. 2014; Newton et al. 2018; Jethwa et al. 2018), and
thus any sensitivity beyond the Pdet,50 envelope provides
valuable information on this population of faint, distant,
and low-surface-brightness satellites.

To more fully encapsulate the results of our simula-
tions, we trained a gradient-boosted decision tree classi-
fier to predict the detectability of a satellite based on its
physical properties. This represents a binary classifica-
tion problem, where we seek to predict the relationship

between a set of input features, ~X, and a set of labels,

~Y . We treated each simulated satellite as a training

instance, i, with a feature vector, ~Xi, composed of the
physical properties of the satellites. We labeled satellites
as “detected” (Yi = 1) if they satisfied the detection cri-
teria described in Section 6.1 and “undetected” (Yi = 0)
otherwise. The output of the machine-learning classifier
is the probability that a satellite will be detected.13 For
each survey, we classified satellites as detected/unde-
tected, depending on whether they pass the detection
criteria defined in Section 6.1.

We trained a gradient-boosted decision tree clas-
sifier using XGBoost (Chen & Guestrin 2016) and
scikit-learn (Pedregosa et al. 2011) as follows:

1. Randomly split the simulated satellites into training
and test sets that contain 90% and 10% of the simulated
satellites, respectively.

2. Randomly split the training set from the previous
step into k hold-out cross-validation subsets. We chose
k = 3 for this analysis by performing a manual grid
search over different numbers of cross-validation folds.

3. Train a XGBClassifier using GridSearchCV to se-
lect hyperparameters that yield the best test-set clas-

13 We could similarly define a regression task, which would pre-
dict the detection significance directly, but we find that the output
of a classification task is more easily interpreted when deriving
population statistics.
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sification score. Hyperparameters include the learning
rate, number of trees, and maximum tree depth (see
Appendix E).

Our feature vector consisted of the absolute magnitude,
the heliocentric distance, the azimuthally averaged pro-
jected half-light radius, and the stellar density at the
location of each simulated satellite in the training set.

We evaluate the performance of our trained classifier
using several metrics. To assess the robustness and ac-
curacy of the model, we evaluate the fraction of detected
and undetected objects in the test set that are classified
correctly. We find that the DES classifier is 97% ac-
curate for both classes, while the PS1 classifier is 94%
accurate for detected objects and 97% accurate for un-
detected objects. The fact that our test-set classifica-
tion is accurate indicates that the training and test sets
(unsurprisingly) represent the same underlying distribu-
tion. Moreover, because both detected and undetected
objects are classified accurately, we conclude that the al-
gorithm is not systematically biased toward either class.
Figure 7 illustrates the true fraction of detected objects
in the test set versus the detection probability predicted
by the classifier. Even though the majority of objects are
either always detected or never detected for both DES
and PS1, our algorithm accurately predicts the detec-
tion probability of satellites in the intermediate regime.
The region of intermediate detection probability can be
attributed to stochasticity in the distribution of stellar
fluxes and spatial positions in statistical realizations of
a given satellite, as well as local variations in the field
population and survey characteristics.

We also trained random forest (RF) classifiers on the
same sample of simulated satellites, since RFs provide
easily interpretable estimates of feature importance. We
trained one RF using a minimal feature vector (absolute
magnitude, heliocentric distance, and physical size) and
another using a larger set of simulated satellite proper-
ties (absolute magnitude, heliocentric distance, physical
size, surface brightness, N(g < 22), ellipticity, sky po-
sition, and local stellar density). We found that the
RF model trained on the full feature vector was slightly
more accurate compared to the three-feature RF, al-
though both were biased for high- and low-detection
probability objects with respect to our nominal algo-
rithm. The relatively small improvement from using the
full feature vector gives us confidence that our nominal
feature vector adequately captures much of the neces-
sary information to predict detectability. We note that
retraining our selection-function classifier using addi-
tional features is straightforward.

We publicly distribute the trained classifiers to encap-
sulate the sensitivity of DES and PS1.14 These classi-
fiers can be used to predict the probability that a satel-

14 https://github.com/des-science/mw-sats

lite would be detected as a function of its physical pa-
rameters and location on the sky. These detection prob-
abilities can be used to predict the number of observed
galaxies from a model of the full underlying Milky Way
satellite galaxy population (e.g., Paper II).

8. SATELLITE LUMINOSITY FUNCTION

The observational selection functions derived for DES
and PS1 allow us to predict the detectability of a satel-
lite, given its physical properties. As a simple demon-
stration, we apply these selection functions to estimate
the luminosity function of Milky Way satellite galaxies
assuming that satellites are distributed isotropically and
that the physical properties of the observed satellites are
representative of the total population. The results of
this analysis may be compared to similar analyses based
on data from SDSS (e.g., Koposov et al. 2008; Tollerud
et al. 2008; Walsh et al. 2009); however, recent obser-
vations suggest that a more complex modeling frame-
work is necessary (e.g. Jethwa et al. 2018; Newton et al.
2018; Nadler et al. 2019b). In Paper II, we perform a
more rigorous analysis of the Milky Way satellite popu-
lation based on cosmological simulations, which includes
the effects of satellite disruption, galaxy formation effi-
ciency, and the presence of the LMC.

Following a procedure similar to that of Koposov et al.
(2008), we used the trained machine-learning classifier
to derive the probability that each satellite will be de-
tected as a function of Galactocentric position. For each
confirmed and candidate dwarf galaxy (indexed by i) in
the DES and PS1 footprints (class ≥ 3 in Table 2), we
calculated the probability that a galaxy with the same
parameters would be found within the survey volume,

CV,i =

∫ ∫ Rmax

Rmin

Pdet(D(~r), ρ?(~r),MV,i, r1/2,i)n(r) r2dr dΩ∫ ∫ Rmax

Rmin

n(r) r2dr dΩ

,

(3)
where Pdet is the probability that a satellite with abso-
lute magnitude MV,i and physical half-light radius r1/2,i

will be detected at a heliocentric distance D and lo-
cal stellar density ρ?, which are functions of the Galac-
tocentric location of the satellite, ~r.15 Following Ko-
posov et al. (2008), we assumed that the Galactocen-
tric radial distribution of satellites follows a cored NFW
profile, n(r) ∝ r−2(r + rc)

−1, where a core radius of
rc = 20 kpc was adopted to prevent divergence in the
inner regions. Moreover, we adopted an inner cutoff of
Rmin = 20 kpc in our radial integration to crudely esti-
mate the tidal effects of the Galactic disk, which gener-
ally disrupts subhalos that pass within this radius (e.g.,
Garrison-Kimmel et al. 2017). We integrate the satel-

15 We assume the Galactocentric distance of the Sun is 8.3 kpc
(Gillessen et al. 2009).

https://github.com/des-science/mw-sats


Milky Way Satellite Census – I. 21

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Detection Probability

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
D

et
ec

te
d

DES

Ntrain = 70822
Ntest = 7870

500

1000

1500

2000

2500

3000

3500

4000

C
ou

nt
s

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Detection Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

D
et

ec
te

d

PS1

Ntrain = 506369
Ntest = 56264

5000

10000

15000

20000

25000

30000

35000

C
ou

nt
s

Figure 7. Fraction of simulated satellites in the test set that pass our detection criteria for DES (left) and PS1 (right) versus

the detection probability predicted by our ML classifier. The dashed black one-to-one line indicates perfect performance, and

the colorbar indicates the number of simulated satellites in each bin of predicted detection probability. The number of simulated

satellites in the training and test sets for each survey is indicated above each plot.

lite population out to Rmax = 300 kpc, which is consis-
tent with similar analyses in the literature (e.g., Har-
gis et al. 2014; Jethwa et al. 2018; Newton et al. 2018;
Nadler et al. 2019b) and is roughly comparable to the
virial radius of the Milky Way (e.g., Garrison-Kimmel
et al. 2014). The angular distribution of satellites is
assumed to be isotropic in Galactocentric coordinates
and is transformed into celestial equatorial coordinates
to estimate the local stellar density.

To incorporate information from both surveys, we de-
fined a weight for each satellite,

wi =
1

CV,i,DES + CV,i,PS1
, (4)

which combines the volumetric correction factors for the
two surveys. To avoid double counting, we removed the
area from PS1 that overlapped with DES.

The resulting volume-weighted Milky Way satellite lu-
minosity function is shown in Figure 8. The left panel of
Figure 8 shows the differential volume-weighted number
of satellites in bins of absolute magnitude, dN/dMV .
Both PS1 and DES are largely complete out to the
virial radius for satellites with MV . −7.5 and r1/2 .
200 pc. Thus, for brighter satellites, the volume correc-
tion amounts to an area correction due to incomplete
sky coverage. Uncertainties on the weighted number of
satellites in each bin are calculated as

√∑
i w

2
i , which

is equivalent to a weighted Poisson uncertainty.
For comparison, we also plot the differential lumi-

nosity function measured by Koposov et al. (2008) us-
ing data from SDSS DR5 (gray points with uncertain-
ties). When compared to previous analyses of SDSS
(Koposov et al. 2008; Walsh et al. 2009), our analysis
covers ∼ 3 times the sky area and includes ∼ 3 times as
many satellite galaxies. This allows us to extend the

direct calculation of the differential Milky Way satel-
lite luminosity function to both brighter and fainter sys-
tems. To guide the eye, we include the power-law model,
dN/dMV = 10 × 100.1(MV +5), described by Koposov
et al. (2008).

The right panel of Figure 8 shows the cumulative num-
ber of satellites brighter than a given absolute magni-
tude. We show both the total number of known satel-
lites (gray dashed line) and the number of satellites de-
tected in our search of DES and PS1 (black dashed line).
We correct the detected satellite curve by the volumet-
ric weights described previously to yield the volume-
corrected cumulative satellite luminosity function (black
solid line). This estimate of the satellite luminosity
function assumes that satellites are distributed isotrop-
ically, that the radial distribution of satellites goes as
r−3 at large radii, and that the physical sizes of the
known satellites are representative of the population as
a whole. This analysis predicts that the Milky Way
contains ∼ 270 satellite galaxies within 300 kpc with
MV . 0. The resulting cumulative number of satellites
is slightly higher than predictions from some cosmolog-
ical simulations (e.g., Newton et al. 2018; Nadler et al.
2019b), but lower than others (e.g., Kelley et al. 2019).
The sharp upturn in N(< MV ) around MV ∼ −4 comes
from recent discoveries in the Southern Hemisphere com-
bined with increasing volumetric weights at these faint
magnitudes. This upturn at faint magnitudes has been
attributed to the existence of a population of faint satel-
lites associated with the LMC (Jethwa et al. 2018; New-
ton et al. 2018) and/or reionization physics (Bose et al.
2018). We discuss the importance of modeling the LMC
satellite system in more detail in Paper II.

The analysis described here has few explicit modeling
choices (i.e., the functional form of n(r)); however, it
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Figure 8. Luminosity functions of Milky Way satellite galaxies within Rvir = 300 kpc inferred from our analysis under the

assumptions of an isotropic satellite distribution and a cored NFW radial distribution. (Left): Differential number of satellites

within bins of absolute V-band magnitude. This calculation uses satellites detected with our selection threshold of
√

TS > 6

and SIG > 6. The observed satellites have been volume corrected using the observational selection functions for DES and PS1

derived here. Uncertainties are estimated from the Poisson error on the number of satellites in each bin. The power law function

dN/dMV = 10× 100.1(MV +5) from Koposov et al. (2008) is shown as a dashed gray line. (Right): Cumulative number of Milky

Way satellites. All known satellites are shown by the dashed gray line, while the satellites detected in our search of DES Y3A2

and PS1 DR1 are shown by the black dashed line. The solid black line shows detected satellites in DES and PS1 weighted by

the observable volume correction for each satellite. Also shown are results from Newton et al. (2018) and Nadler et al. (2019b)

that combine the observed satellite population with numerical simulations of dark matter and galaxy formation.

contains several implicit assumptions about the satel-
lite population. First, we have assumed that the phys-
ical properties of the undetected satellite population
are consistent with the population of detected satellites.
Such an assumption breaks down if a large population
of extremely low-surface-brightness systems exists (e.g.,
satellites like Crater II and Antlia II). A population of
large, luminous, and distant Milky Way satellites has
been suggested to resolve the observed radial distribu-
tion discrepancy between the satellite populations of the
Milky Way and Andromeda (e.g., Yniguez et al. 2014;
Samuel et al. 2020). In addition, we assumed that the in-
trinsic properties of satellites (e.g., luminosity and half-
light radius) are independent of heliocentric distance.
Again, this assumption may break down due to the
larger influence of baryonic physics on the properties
of satellites close to the Milky Way (e.g., Nadler et al.
2018). Finally, we made the simplifying assumption that
the satellite population is isotropic, while observations
suggest that this is very unlikely to be true for the Milky
Way (e.g., Pawlowski et al. 2012; Koposov et al. 2015;
Bechtol et al. 2015; Drlica-Wagner et al. 2015) and An-
dromeda (e.g., Ibata et al. 2013). These assumptions
strongly motivate the more rigorous analysis in Paper
II, which simultaneously includes the effects of satellite
disruption (enhanced by the presence of the Galactic
disk), uncertainties in the efficiency of galaxy formation
in low-mass halos, and the influence of the LMC.

9. CONCLUSIONS

We have conducted a search for low-luminosity Milky
Way satellite galaxies over ∼ 24, 000 deg2 (∼ 75% of the
high-Galactic-latitude sky) using data from DES Y3A2
and PS1 DR1. We recover most of the satellites previ-
ously discovered in the DES and PS1 footprints, though
a number of low-luminosity satellites are beyond the sen-
sitivity limit of our search. We set a detection thresh-
old intended to minimize the number of false-positive
candidates, and no new, high-confidence satellite galaxy
candidates were discovered. The only significant new
candidate is a compact, low-luminosity outer-halo star
cluster (Appendix D).

We determined the sensitivity of our search by sim-
ulating the resolved stellar populations of Milky Way
satellite galaxies, injecting them into the DES and PS1
catalogs, and running the same satellite detection algo-
rithms that were applied to the real data. We quanti-
fied the observational sensitivity of our search in terms
of satellite properties (i.e., absolute magnitude, physi-
cal size, distance, and local stellar density) and provide
both analytic and machine-learning models of the ob-
servational selection function. Finally, we demonstrated
the application of our observational selection function
to derive a data-driven luminosity function from the ob-
served Milky Way satellite galaxy population. By encap-
sulating the observational selection function in a flexi-
ble and accurate machine-learning model, we facilitate
more rigorous statistical-inference-based approaches to
extract the properties of galaxy formation and dark mat-
ter physics.
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Deep, multi-band optical imaging over the entire sky
at depths fainter than g ∼ 23 is now within reach.
DES covers only one-sixth of the sky accessible to
DECam, and the past several years have seen an ac-
tive community campaign to complete contiguous DE-
Cam coverage of the entire southern sky. Programs
like MagLiteS (Drlica-Wagner et al. 2016; Torrealba
et al. 2018), BLISS (Mau et al. 2019), DECaLS (Dey
et al. 2019), and DELVE (Mau et al. 2020)16 are ac-
tively collecting, processing, and mining these data for
fainter and more distant satellites. Meanwhile, HSC
SSP on the 8.2-m Subaru telescope will achieve r ∼ 26
over ∼ 1, 400 deg2, thereby extending the search for the
faintest galaxies to unprecedented distances (Homma
et al. 2016, 2018, 2019). In the early 2020s, the Legacy
Survey of Space and Time (LSST) conducted from the
Vera C. Rubin Observatory will expand this depth of
coverage to the entire southern sky. The power of these
upcoming surveys, combined with advanced modeling
techniques, promise to shed new light on the darkest
galaxies.
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MNRAS, 481, 5451

Sevilla-Noarbe, I., et al. in prep.

Shapiro, P. R., Iliev, I. T., & Raga, A. C. 2004, Monthly

Notices of the Royal Astronomical Society, 348, 753

Shapley, H. 1938a, Harvard College Observatory Bulletin,

908, 1

—. 1938b, Nature, 142, 715

Sheldon, E. S. 2014, MNRAS, 444, L25

Shipp, N., Drlica-Wagner, A., Balbinot, E., et al. 2018,

ApJ, 862, 114

Simon, J. D. 2019, ARA&A, 57, 375

Smercina, A., Bell, E. F., Price, P. A., et al. 2018, ApJ,

863, 152

Somerville, R. S. 2002, ApJL, 572, L23

Spekkens, K., Mason, B. S., Aguirre, J. E., & Nhan, B.

2013, ApJ, 773, 61

Swanson, M. E. C., Tegmark, M., Hamilton, A. J. S., &

Hill, J. C. 2008, MNRAS, 387, 1391

Tollerud, E. J., Bullock, J. S., Strigari, L. E., & Willman,

B. 2008, ApJ, 688, 277

Tollerud, E. J., & Peek, J. E. G. 2018, The Astrophysical

Journal, 857, 45

Tonry, J. L., Burke, B. E., Isani, S., Onaka, P. M., &

Cooper, M. J. 2008, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series,

Vol. 7021, High Energy, Optical, and Infrared Detectors

for Astronomy III, 702105

Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ,

750, 99

Torrealba, G., Belokurov, V., & Koposov, S. E. 2019a,

MNRAS, 484, 2181

Torrealba, G., Koposov, S. E., Belokurov, V., & Irwin, M.

2016a, MNRAS, 459, 2370

Torrealba, G., Koposov, S. E., Belokurov, V., et al. 2016b,

MNRAS, 463, 712

Torrealba, G., Belokurov, V., Koposov, S. E., et al. 2018,

MNRAS, 475, 5085

—. 2019b, MNRAS, 488, 2743

Walsh, S. M., Jerjen, H., & Willman, B. 2007, ApJL, 662,

L83

Walsh, S. M., Willman, B., & Jerjen, H. 2009, AJ, 137, 450

Wang, M. Y., de Boer, T., Pieres, A., et al. 2019, ApJ, 881,

118

Webbink, R. F. 1985, in IAU Symposium, Vol. 113,

Dynamics of Star Clusters, ed. J. Goodman & P. Hut,

541–577

Weisz, D. R., & Boylan-Kolchin, M. 2017, MNRAS, 469,

L83



Milky Way Satellite Census – I. 27

Weisz, D. R., Dolphin, A. E., Skillman, E. D., et al. 2014a,

ApJ, 789, 147

—. 2014b, ApJ, 789, 148

Weisz, D. R., Koposov, S. E., Dolphin, A. E., et al. 2016,

ApJ, 822, 32

Wetzel, A. R., Hopkins, P. F., Kim, J.-h., et al. 2016, ApJ,

827, L23

Wheeler, C., Oñorbe, J., Bullock, J. S., et al. 2015,

MNRAS, 453, 1305

Wheeler, C., Hopkins, P. F., Pace, A. B., et al. 2019,

MNRAS, 490, 4447

Wilks, S. S. 1938, Ann.Math.Statist., 9, 60

Willman, B., Blanton, M. R., West, A. A., et al. 2005a, AJ,

129, 2692

Willman, B., Dalcanton, J. J., Martinez-Delgado, D., et al.

2005b, ApJL, 626, L85

Wilson, A. G. 1955, PASP, 67, 27

Yniguez, B., Garrison-Kimmel, S., Boylan-Kolchin, M., &

Bullock, J. S. 2014, MNRAS, 439, 73

Zucker, D. B., Belokurov, V., Evans, N. W., et al. 2006a,

ApJL, 650, L41

—. 2006b, ApJL, 643, L103



28 Drlica-Wagner & Bechtol et al.

APPENDIX

A. DATA SELECTION

A.1. DES Y3A2

The DES data were selected from the Y3A2 internal release of the GOLD catalog (v2.0) accessed via a bulk download
from the easyaccess SQL command line interpreter (Carrasco Kind et al. 2018). We removed objects with FLAGS GOLD
& 0b111100, which identifies SOF fit failures, objects with SExtractor FLAGS > 3, objects with bad pixels in their
isophotes IMAFLAGS ISO != 0, objects characterized as bright blue color outliers (Section 6.2 of Drlica-Wagner et al.
2018), and other extreme color outliers (Section 6.2 of Drlica-Wagner et al. 2018). Magnitudes were corrected for a
CCD-dependent magnitude adjustment to the zero-points (DELTA MAG V3), an SED-dependent chromatic correction
(DELTA MAG CHROM), and extinction using the extinction maps from Schlegel et al. (1998) (A SED SFD98). Star–galaxy
classification used the EXTENDED CLASS MASH SOF variable, with stars selected with 0 ≤ EXTENDED CLASS MASH SOF ≤ 2.
The construction of the extended classification variable is described in Section 2 of (Shipp et al. 2018). Briefly, this
classifier uses the SOF size parameter CM T (and associated error) to classify most objects. When the SOF parameters
are unavailable (due to a small fraction of objects where the SOF fit fails), the weighted average of the single-epoch
measurements WAVG SPREAD MODEL (and associated error) are used for classification. For faint objects where both SOF
and WAVG values are unavailable, classification is performed with the SPREAD MODEL (and associated uncertainty)
parameters derived from the coadded images.

A.2. PS1 DR1

The PS1 DR1 data were downloaded from the MAST CasJobs server using queries similar to the following example.
Note that the query selects objects in an interval in objid. The full bulk download is ∼ 10,000 slices in objid designed
to have approximately equal numbers of objects per slice. Each slice is effectively a narrow interval in declination. In
a post-processing step, the objects were partitioned into a HEALPix grid for rapid access during the search phase.

SELECT
f.raMean, f.decMean,
f.objID, f.uniquePspsOBid,
f.objInfoFlag, f.qualityFlag,
f.nStackDetections, f.nDetections, f.ng, f.nr, f.ni,
f.gFPSFFlux, f.rFPSFFlux, f.iFPSFFlux,
f.gFPSFFluxErr, f.rFPSFFluxErr, f.iFPSFFluxErr,
f.gFKronFlux, f.rFKronFlux, f.iFKronFlux,
f.gFKronFluxErr, f.rFKronFluxErr, f.iFKronFluxErr,
f.gFlags, f.rFlags, f.iFlags,
s.gInfoFlag, s.rInfoFlag, s.iInfoFlag,
s.gInfoFlag2, s.rInfoFlag2, s.iInfoFlag2,
s.gInfoFlag3, s.rInfoFlag3, s.iInfoFlag3,
s.primaryDetection, s.bestDetection

INTO MyDB.ps1_dr1_objid_bin_09991_10000_v02
FROM ForcedMeanObjectView f
JOIN StackObjectThin s on f.objid = s.objid
WHERE f.objid BETWEEN 212390000000001521 AND 212590000000007936
AND f.qualityFlag & 16 > 0;

We remove duplicate objects by requiring

sel = (data["primaryDetection"] == 1)

and apply additional selection criteria to filter the high-quality catalog objects.

sel &= (data["nStackDetections"] > 1)
sel &= (data["nDetections"] > 0)
sel &= (data["gInfoFlag"] >= 0)
sel &= (data["rInfoFlag"] >= 0)
sel &= (data["iInfoFlag"] >= 0)
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sel &= ((data["gInfoFlag"] & (8 + 2048)) == 0)
sel &= ((data["rInfoFlag"] & (8 + 2048)) == 0)
sel &= ((data["iInfoFlag"] & (8 + 2048)) == 0)
sel &= ((data["gInfoFlag2"] & (8192 + 4194304)) == 0)
sel &= ((data["rInfoFlag2"] & (8192 + 4194304)) == 0)
sel &= ((data["iInfoFlag2"] & (8192 + 4194304)) == 0)

These criteria were determined by comparing object detections in PS1 to detections in deeper imaging data from DES
and HSC, to identify the quantities that correlate with higher rates of unmatched PS1 objects.

Our star–galaxy selection was performed using the measured aperture and PSF magnitudes in i-band:

sel = ((data["iFPSFMag"] - data["IFKronMag"]) < 0.05)
sel |= (data["iFPSFMag"] == -999.)
sel |= ((data["iFPSFMag"] - data["IFKronMag"]) > 4.0)

The i-band was chosen due to its superior PSF and depth.
For the simple analysis, we also require moderate signal-to-noise object detections (S/N > 10) to ensure a sample

of high-confidence stars:

sel |= ((data["rFPSFMagErr"] < 0.1)

While this S/N selection limited the number of faint stars used in the search (Figure 3), it significantly reduced the
number of spurious candidates returned by the simple algorithm. The S/N selection was not applied to the ugali
search on PS1.

B. VALIDATION OF THE PARAMETER SPACE FOR SIMULATED SATELLITES

The ability to detect satellites depends largely on the surface brightness and number of resolved member stars
recovered by a survey (e.g., Walsh et al. 2009). These observed properties depend both on the physical characteristics
of the satellite (e.g., luminosity, size, distance) and the characteristics of the survey (e.g., completeness, coverage). For
DES and PS1, we parameterize these two attributes using the average surface brightness within the half-light radius,
µ, and the number of satellite member stars brighter than g = 22, N(g < 22). The N(g < 22) parameter is challenging
to compare directly to models of galaxy formation due to its dependence on the survey completeness, but is readily
obtained from the numerical simulations of satellites, and is an effective means to gauge whether a given satellite could
be detected.

To assess the sensitivity of our two search algorithms (simple and ugali) applied to our two data sets (DES Y3A2
and PS1 DR1), we show the recovered significance of satellites as a function of their surface brightness, µ, and the
number of bright resolved member stars, N(g < 22), in Figure 9. The detectability of satellites is easily character-
ized in this parameter space; in particular, for DES Y3A2 (PS1 DR1), satellites brighter than µ ∼ 30 mag arcsec−2

(µ ∼ 28 mag arcsec−2) with more than N(g < 22) & 102 resolved member stars are reliably detected, while lower
surface brightness systems or those with fewer resolved stars are detected less efficiently. The cross-hatching in-
dicates regions where satellites start to become large enough that sky projection effects come into consideration
(ah > 5 deg; DIFFICULTY = 1) or have so many stars that direct simulation becomes too computationally intensive
(N(g < 22) > 103 and µ < 23.5 mag arcsec−2; DIFFICULTY = 2). We only used simulations with DIFFICULTY =
0 when training the machine-learning model, though the classifier accurately predicts the detectability of simulated
satellites in regions of parameter space with DIFFICULTY != 0.

C. MAXIMUM-LIKELIHOOD FORMALISM

The extended maximum-likelihood formalism (e.g., Orear 1958; Barlow 1990) is widely used in physics and astronomy
as a means to perform statistical searches for overdensities in a Poisson random field with unknown signal normalization
(e.g., galaxy cluster searches as described in Kepner et al. 1999 or Rykoff et al. 2012). In this appendix, we describe the
application of this formalism to the search for stellar overdensities, as implemented in the ugali software package.17

We assume that the angular and magnitude distribution of stars in a survey can be described by a Poisson realization
of the underlying stellar density field. Dividing the survey into bins, we can write the binned Poisson likelihood, L, as

L =

bins∏
i

Pi =

bins∏
i

ni
kie−ni

ki!
(C1)

17 https://github.com/DarkEnergySurvey/ugali

https://github.com/DarkEnergySurvey/ugali
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Figure 9. Detection significance of simulated satellites as a function of surface brightness, µ, and the number of member stars

brighter than g = 22, N(g < 22). The top (bottom) row shows results for DES Y3A2 (PS1 DR1) with each point corresponding

to a simulated satellite. The colorbar indicates the detection significance corresponding to the simple SIG value (left column)

or the ugali
√

TS (right column). Satellites with ah > 5 deg are flagged with DIFFICULTY = 1 and are not used in our training.

Satellites in the region labeled DIFFICULTY = 2 have both high surface brightness and many resolved stars. We assume satellites

in this region are always detected and are therefore not simulated for computational efficiency.

where in bin i, Pi is the Poisson probability to observe ki stars, given a model expectation of ni stars. This likelihood is
valid for binning over any domain, but for our specific application to satellite galaxy searches, we commonly utilize two
spatial dimensions (e.g., right ascension and declination) and two magnitude dimensions (e.g., g and r). For numerical
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simplicity, we generally work with the logarithm of the likelihood

logL =

bins∑
i

{
− ni + ki log(ni)− log (ki!)

}
. (C2)

The last term in this equation, log (ki!), does not depend on any of the model parameters and can be safely discarded
as an additive constant.

The number of model-predicted stars in a bin is the integral of the probability density function (PDF) of the model
over that bin, ni =

∫
i
m(λ,θ) dV. In this equation, the integral is over the observable “volume” of the bin, while λ

and θ are parameters of our model. We explicitly formulate our model for the stellar counts in terms of a contribution
from the satellite and a contribution from Milky Way field stars,

m(λ,θ) = λs(θ) + b(θ). (C3)

In the preceding equations, we have been explicit about the dependence of m on the signal normalization parameter,
λ, which we call the “richness”.18

In the limit of infinitesimally small bins, each bin contains either zero or one star (ki ∈ {0, 1}), and the log-likelihood
can be expressed as

logL = −
empty∑
i

ni −
filled∑
i

ni +
filled∑
i

log (ni) (C4)

By definition, the sum over empty and filled bins is equivalent to the sum over all bins. Thus, the first two terms can
be written as the integral of the model over all observable space,

bins∑
i

ni =

∫
V
m(λ,θ) dV (C5)

= λNs +Nb. (C6)

In the last line, we have used Ns and Nb to represent the total number of expected satellite stars and Milky Way field
stars, respectively. The only filled bins will be located on the observed stars. Thus, the last term in Equation (C4)
can be rewritten as a sum over stars, where we replace the model-predicted counts with the model PDF evaluated at
the location of each star,

filled∑
i

log (ni) =

stars∑
j

log(λsj + bj). (C7)

where j indexes over stars, and we use sj , bj as a shorthand for the components of the model PDF evaluated at the
location of each star. Substituting back into Equation (C4) yields

logL = −λNs −Nb +

stars∑
j

log(λsj + bj), (C8)

which is conventionally referred to as the unbinned Poisson log-likelihood function.
When searching for stellar overdensities, we are interested in maximizing the likelihood with respect to the richness

parameter, λ. Differentiating Equation (C8) with respect to λ gives

dlogL
dλ

= −Ns +

stars∑
j

sj
λsj + bj

. (C9)

The maximum-likelihood estimator for the richness, λ = λ̂, will occur when the derivative of the likelihood is zero;
thus,

λ̂Ns =

stars∑
j

λ̂sj

λ̂sj + bj
. (C10)

18 The term “richness” is inherited from the analysis of galaxy clusters (e.g., Abell 1958).
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The left-hand side of this equation represents the number of observable stars predicted by the signal model, while the
right-hand side represents the sum of the probabilities that each star belongs to the signal distribution,

pj ≡
λsj

λsj + bj
. (C11)

If we care only about the dependence of the likelihood on λ, we can rewrite Equation (C8) in terms of the observable
fraction and the membership probabilities,19

logL = −λNs −
stars∑
j

log(1− pj). (C12)

This formulation makes explicit the dependence of the likelihood on the membership probabilities, but discards terms
that depend on the background model alone.

From Equation (C3) it is clear that there is a degeneracy between the normalization of the signal PDF, s, and the
richness, λ. Some authors (e.g., Martin et al. 2008) choose to normalize the signal PDF to unity over the observed
space, thus requiring an observational correction to predict the number of model stars below the detection threshold
of a survey. In contrast, the ugali framework normalizes the signal PDF to unity over the entire observable domain,∫

all
s(θ) dV = 1 and defines the observable fraction of the signal, f , at a given location in a survey. Thus, the number

of observable stars is

λNs = λ

∫
all

fs(θ) dV = λf. (C13)

This definition allows us to interpret λ as the total number of stars in the satellite, rather than the number of observed
stars.

D. REMAINING CANDIDATES

After applying the first three selection criteria described in Section 6.1, we are left with a list of 28 candidates in the
PS1 DR1 footprint. We visually inspected each of these candidates to determine whether they were viable new satellite
galaxies. We find that most of the remaining candidates could be clearly identified as artifacts in the PS1 DR1 catalogs.
The most obvious artifact manifested as rectangular regions of increased or decreased object density (often affecting
the density of both stars and galaxies) with characteristic sizes of ∼ 0.4×0.4 deg (Figure 10). These regions correspond
to the skycells over which the PS1 DR1 stack images were created (Flewelling et al. 2016). We visually inspected
these skycells and found that they contained bright stars that were causing issues in the automated image processing
and catalog creation. The corresponding under/overdensities in catalog objects bias estimates of the field density and
lead to spurious candidate detection. We masked regions of radius 0.5 deg around each of the seven skycells identified
in this manner. In addition, we find eight cases where reflected and scattered light from bright stars leads to spurious
overdensities of blue objects. These artifacts are less extreme than the skycell failures described previously, and
we mask a circular region with a radius matched to the diagonal dimension of a skycell (∼ 0.3 deg). We visually
inspected the remaining 13 candidates and found that all but one of them lacked a well-defined stellar sequence in
color–magnitude space and/or a well-defined spatial morphology. These regions likely result from a combination of less
obvious survey artifacts (i.e., mis-estimation of the sky background, excess sensor noise, or low level scattered light)
and contamination from background galaxy clusters. We mask regions of ∼ 0.3 deg around each of these seeds. These
masks were applied to our candidate list and were included in the geometric masking cuts described in Section 6.1.

As discussed in Section 6, one candidate passed all of our detection criteria (Figure 11). Visual inspection of this
candidate did not identify any obvious survey artifacts that would significantly alter the stellar density in this region.
Similarly, we found no evidence of a correlated overdensity in the galaxy sample. This candidate appeared similar
to other recently discovered compact outer-halo star clusters (e.g., Torrealba et al. 2019b; Mau et al. 2019), and we
followed the procedure of Bechtol et al. (2015) and Drlica-Wagner et al. (2015) to derive the physical parameters of
this candidate using the maximum-likelihood fitting formalism of ugali. We simultaneously fit the richness, centroid
position, angular extension, ellipticity, position angle, and distance modulus of this system using an affine invariant
Markov Chain Monte Carlo (MCMC) ensemble sampler (Foreman-Mackey et al. 2013). Best-fit parameters and
uncertainties were derived from the marginalized posterior distribution (sampled with 2.5×105 steps) and are reported
in Table 6. During this sampling, the age and metallicity were fixed at τ = 10 Gyr and Z = 0.0001, respectively. We

19 We note a typo in Bechtol et al. (2015) that omitted the “log” from the right-hand side of Equation (C12).
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Figure 10. Artifact resulting from the bright star (BD+18 240) biasing the processing and catalog creation for a stack image

in a single PS1 DR1 skycell. Artifacts like this were identified visually in the PS1 DR1 candidate list, and regions around

the affected skycells were masked. Similar figure to Figure 11, but with the stellar and galactic densities convolved with a

Gaussian kernel of 0.′88.
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Figure 11. DELVE 1 is a candidate faint outer-halo star cluster discovered in our search of PS1 DR1 data and independently

in DELVE (Mau et al. 2020). The small physical size (r1/2 = 3.7 pc) and low luminosity (MV = 0.6) make this system similar

to other outer-halo star systems that have been discovered in recent surveys (e.g., Torrealba et al. 2019b; Mau et al. 2019).

(Left) Stellar density convolved with a Gaussian kernel of 0.′67. (Center) Galaxy density convolved with a Gaussian kernel of

0.′67. (Right) Hess diagram corresponding to foreground stars within 3rh of the centroid and background stars in a concentric

annulus from 5rh to 5.8rh. The best-fit isochrone is shown in black.

conclude that this candidate is likely a compact (r1/2 = 3.7 pc), low-luminosity (MV = 0.6) star cluster residing at a
heliocentric distance of D = 15.6 kpc. We note that this system was independently discovered in deeper data from the
DECam Local Volume Exploration survey (DELVE), where it was investigated in more detail and named DELVE 1
(Mau et al. 2020). We use the same name here to avoid confusion.

E. MACHINE-LEARNING CLASSIFIER PARAMETERS

We modeled the observational selection function with a gradient-boosted decision tree classifier, XGBClassifier, as
implemented in Python in the xgboost package version 0.82 (Chen & Guestrin 2016).20 We trained separate classifiers
on the DES and PS1 simulations. Hyperparameters were selected using GridSearchCV from scikit-learn version
0.19.1 (Pedregosa et al. 2011). The hyperparameters scanned are learning rate = {0.01, 0.05, 0.1}, max depth =
{6, 7, 8}, and n estimators = {100, 250, 500}, with fixed max delta step = 1. The optimal training hyperparameters
for the DES simulations were learning rate = 0.01, max depth = 8, and n estimators = 500. The optimal training
hyperparameters for the PS1 simulations were learning rate = 0.05, max depth = 7, and n estimators = 250. The
trained classifiers are available at https://github.com/des-science/mw-sats.

20 https://xgboost.readthedocs.io

https://github.com/des-science/mw-sats
https://xgboost.readthedocs.io
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Table 6. Observed and derived properties

of DELVE 1.

Parameter Value Unit

α2000 247.725+0.004
−0.004 degree

δ2000 −0.971+0.005
−0.004 degree

ah 0.8+0.5
−0.3 arcmin

rh 0.8+0.4
−0.3 arcmin

r1/2 3.7+2
−1 pc

ε 0.04 . . .

P.A. 25+71
−62 degree

m−Ma 16.0+0.4
−0.2 ± 0.1 . . .

D� 15.6+3.5
−1.1 kpc∑

pi 29+5
−5 . . .

TS 69 . . .

MV
b 0.6+0.7

−1.9 mag

M? 86+40
−31 M�

µ 26.4 mag arcsec−2

Note—Uncertainties were derived from the
highest density interval containing the peak
and 68% of the marginalized posterior distri-
bution.

aWe assume a systematic uncertainty of ±0.1
associated with isochrone modeling.

b The uncertainty in MV was calculated follow-
ing Martin et al. (2008) and does not include
uncertainty in the distance.


