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Abstract

We consider a multi-agent system in which the individual
goal is to collect resources, but where the amount of col-
lected resources depends also on others decision. Agents
can communicate and can take advantage of being commu-
nicated other agents’ plan: therefore they may develop more
profitable strategies. We wonder if some kind of collective
behaviour, with respect to communication, emerges in this
system without being explicitly promoted. To investigate this
aspect, we design three different scenarios, respectively a co-
operative, a competitive, and a mixed one, in which agents’
behaviors are individually learned by means of reinforce-
ment learning. We consider different strategies concerning
communication and learning, including no-communication,
always-communication, and optional-communication. Ex-
perimental results show that always-communication leads to
a collective behaviour with the best results in terms of both
overall earned resources and equality between agents. On the
other hand optional-communication strategy leads to similar
collective strategies in some of these scenarios, but in other
scenarios some agents develop individual behaviours that op-
pose to the collective welfare and thus result in high inequal-
ity.

Introduction
The role of autonomous machines in our society is becoming
more and more important. Robotic and software agents will
be performing tasks of increasing complexity with a con-
crete impact on our life as, e.g., autonomously delivering
goods Arbanas et al. (2016) or providing feedback to learn-
ers Johnson et al. (2017).

In complex scenarios, agents interact among themselves,
constituting a multi-agent system Schatten et al. (2016); Cal-
varesi et al. (2016), and it is often the case that they may
communicate to each other to better perform their task Cao
et al. (2012). When agents learn, instead of being statically
endowed with, their behavior, they also have to learn com-
munication skills, resulting in the emergence of communi-
cation in the system Mordatch and Abbeel (2018). On the
other hand, individual agents do not always pursue a com-
mon goal. In facts multi-agent systems may be roughly clas-
sified as cooperative, when the common goal is also the
goal of individual agents, competitive, when goals cannot

be achieved by all agents together, along with intermediate
blends. An interesting question is hence whether and how
the nature of the system in terms of existence of a common
goal affects the emergence of communication: do agents
learn to communicate when it is useful for all of them? what
if they are not directly rewarded for communicating?

In order to investigate this matter, in this paper we pro-
pose and experiment with a multi-agent system that is simple
enough to allow for a detailed analysis, but tunable in terms
of competition/cooperation trade-off, profitability of com-
munication, and learnability of communication. Our system
models a scenario where an agent is rewarded for accessing
a resource, but the reward depends also on whether other
agents are accessing the same resource, i.e., on resource oc-
cupancy. Agents may broadcast their willingness to access a
resource, which we call communication, and tunable partial
observability of resource occupancy makes this communica-
tion more or less important to others.

We perform several experiments on the many variants
of the proposed multi-agent system, and analyze the out-
come in terms of overall reward of the agents and inequal-
ity among agent’s rewards. Experimental results show that
agents forced to communicate obtain the best results in terms
of both overall reward and inequality in all the scenarios.
When they cannot communicate, agents individually per-
form almost in the same way, but, in most cases, they ex-
hibit higher inequality. Surprisingly, agents that may or may
not communicate perform like those forced to communicate
only in the cooperative scenario; in competitive scenarios,
the overall reward of these agents is lower and the inequal-
ity is higher, despite the fact that, sometimes, some of them
individually outperform the ones employing others strate-
gies in terms of reward. These results show that collec-
tive behaviour is influenced by the scenario and the com-
munication strategy. From our experiments we find that col-
lective behaviour emerges in two cases: (i) in a coopera-
tive scenario, even in presence of optional-communication
strategy, and (ii) in a competitive scenario with the always-
communication strategy. On the other hand, in a competitive
scenario in which agents can decide whether to communi-
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cate or not, selfish behaviours appear to be more convenient,
despite introducing an higher inequality.

Related works
Collective behaviour has been studied for a long time and
from many points of view. However, we are not aware of
any study concerned specifically on how emergence of com-
munication is affected by the type of collective framework
(cooperative vs. competitive), which is the research question
we attempt to address in this paper.

Plenty of collective behaviour algorithms have been pro-
posed in the literature Rossi et al. (2018), and have been ex-
tensively used in applications that require coordination algo-
rithms. Many recent works have considered computational
models for studying the emergence of collective behaviour,
since they can give solutions to current real world complex
problems Zhang et al. (2019), but can also be used to study
future scenarios involving by intelligent machines Rahwan
et al. (2019). As in Seredyński and Gąsior (2019), in our
work the agents are individually rewarded, but we investi-
gate the collective behaviour and the overall rewards.

In this work, the way we define communication is inspired
by consensus algorithms Ren et al. (2007): each agent shares
its state with all the others and the next action is influenced
by all the previous states. One relevant aspect in multi-agent
systems dealing with communication is the learning of a
communication protocol, like Foerster et al. (2016); Mor-
datch and Abbeel (2018); Talamini et al. (2019).

Multi-agent systems can be broadly divided into two
groups: cooperative and competitive ones. More in detail,
how agents group together in order to to improve their per-
formance and creating coalition structure as been largely de-
scribed in Rahwan et al. (2015). Differently from the works
cited in Rahwan et al. (2015), in this paper we focus on the
analysis of behaviours, instead of on the algorithms for effi-
ciently creating collective structure. On the impact of com-
munication in coordinating agents, Jaques et al. (2019) sim-
ulates alternate actions a single agent could have taken, and
compute their effect on the behaviour of others; the more
an action influences others in terms of changes in their be-
haviour, the more that action is rewarded. More on the im-
portance of communication, Naghizadeh et al. (2019) fo-
cuses on the benefits of sharing information when agents
have to coordinate, and their observations are heteroge-
neous. Concerning the problem of minimizing the amount of
communication required for coordinating agents, in Zhang
and Lesser (2013) for instance, agents are allowed to learn
to dynamically identify whom to coordinate with. This con-
straint is not explicitly presented to the agents in our work,
but the amount of communication is directly influenced by
the individual objective.

A different type of multi-agent systems are those defined
as competitive, in which agents rival against each other. Au-
thors of a recent study Singh et al. (2018) claim that multi-

agent systems other than cooperative ones, namely com-
petitive or mixed, have not been extensively studied. As
for the cooperative ones, a key aspect in competitive sys-
tem is the communication between agents, in particular the
trust model, which define how and when to trust the in-
formation obtained from another agent Yu et al. (2013).
Again on emergence of communication in competitive sce-
narios, Lehman et al. (2018) robots were evolved to find
food sources while avoiding poison. In some cases, when
robots adapted to understand blue as a signal of food, com-
peting robots evolved to signal blue at poison instead. In
other experiments robots literally hide the information from
others. In Bansal et al. (2017) the authors prove that emer-
gence of complex behaviour does not require a complex en-
vironment, but can be induced by having learning agents
competing in the same scenario.

Reinforcement Learning (RL) has recently attracted a lot
of interest, due to the outstanding results of Mnih et al.
(2015); Silver et al. (2016) and the recent advances of Deep
Learning. RL has been extensively applied for finding op-
timal policies in multi-agent systems, from Littman (1994);
Tan (1993) to more recently Leibo et al. (2017); Shoham
et al. (2007), and also when communication is involved Ta-
lamini et al. (2019).

When employing independent learners, due to the contin-
ually changing policies of agents during training Papoudakis
et al. (2019), most of the RL algorithms incur into non-
stationarity issues, that make the training more difficult.
This problems have been tackled in Lowe et al. (2017) by in-
troducing a centralized entity, that helps stabilizing the train-
ing.

For what concerns inequality, many works have been
proposed to study how to mitigate this phenomenon, and
to promote altruistic behaviour. In Hughes et al. (2018)
and Mazzolini and Celani (2020) the authors consider multi-
agent systems, in which agents learn optimal behaviour, sub-
jected to a trade-off between the short-term individual re-
ward and long-term collective interest. The emergence of
inequality-averse behaviour depends on the environment-
related aspects, like the abundance of resources, as high-
lighted in Mazzolini and Celani (2020). For contrasting
inequality, Hughes et al. (2018) introduces the possibility
for an agent to punish another one. Results show that
most of the agents end up developing inequality-aversion
behaviours, and the pro-social agents punish the defectors.
With respect to previous articles, in this work we identify
mandatory communication for all the agents as a valuable
countermeasure for contrasting inequality.

Model
System state
We consider a discrete time dynamic multi-agent system
with na agents and nr resources.
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We denote by R(t) =
(
R

(t)
1 , . . . , R

(t)
nr

)
the distribution

of agents on resources at time t, where R(t)
i ⊆ {1, . . . , na}

is the set of agents accessing i-th resource. It holds that
∀i, j, t : R

(t)
i ∩ R

(t)
j = ∅, i.e., each agent can access at

most one resource at the same time. We say that an agent
is inactive when it is not accessing any resource: i.e., if
∀i : R

(t)
i 63 j, then the j-th agent is inactive at time

t. Consequently, we say that the j-th agent is active if
∃i : R

(t)
i 3 j. We call the filling of the i-th resource the

number ρ(t)i =
∣∣∣R(t)

i

∣∣∣ of agents accessing that resource at a
given time.

We denote byU (t) =
(
U

(t)
1 , . . . , U

(t)
na

)
the agent’s states,

where U (t)
i =

(
u
′(t)
i , u

′′(t)
i

)
is the i-th agent’s state at time

t. The i-th agent’s state is a pair composed by u
′(t)
i ∈

{1, . . . , nr} ∪ {⊥}, that defines the resource the i-th agent
is active at time t, and u′′(t)i ∈ {1, . . . , nr} ∪ {⊥}, that de-
fines the i-th agent’s preference between resources at time t.
Intuitively, u′(t)i is where the agent is and u′′(t)i is where the
agent wants to go.

Communication consists in a tupleW (t)
i = (w

′(t)
i , w

′′(t)
i ),

which we call word, emitted by each agent at each time
step and heard by all the other agents, and this is the only
way of communicating that we consider. We denote by
W (t) =

(
W

(t)
1 , . . . ,W

(t)
na

)
the words emitted at time t.

The communication W (t)
i emitted by i-th agent at time t is

composed by w′(t)i ∈ {1, . . . , nr} ∪ {⊥} and by w′′(t)i ) ∈
{1, . . . , nr} ∪ {⊥}: the semantics of W (t) is the same one
of U (t).

Given these definitions, the system state at time t is de-
scribed by s(t) =

(
R(t),U (t),W (t)

)
. At the initial time

t = 0, the system state is s(0) =
(
R(0),U (0),W (0)

)
,

with R(0) = {∅, . . . , ∅}, U (0) = {{⊥,⊥}, . . . , {⊥,⊥}}
and W (0) = {{⊥,⊥}, . . . , {⊥,⊥}}. That is, all the agents
are inactive, they have all default initial state, and no words
have been spoken so far.

System dynamics
Observation The agents do not have full knowledge of the
system state. Instead, i-th agent observes—i.e., knows—
the filling of the resources ρ(t), its own state U (t)

i , and an
aggregate V (t) of the words W (t) spoken at previous time
step. In particular, the i-th agent at time t observes V (t) =(
v
(t)
1 , . . . , v

(t)
nr

)
, where:

v
(t)
j =

na∑

i=1

(na + 1)I
(
w
′(t)
i = w

′′(t)
i = j

)

+ I
(
w
′(t)
i 6= w

′′(t)
i ∧ w′′(t)i = j

)
(1)

where I : {true, false} → {0, 1} is an indicator function.
Intuitively v(t)j is a weighted sum of the number of agents
accessing, and willing to access, the j-th resource and the
number of agents not currently accessing but willing to ac-
cess the same j-th resource. In other words, v(t)j acts as a

predictor for ρ(t+1)
i .

Formally, the information available to the i-th agent at
time t is a triplet o(t)i =

(
ρ(t), U

(t)
i ,V (t)

)
, therefore

oi ∈ O = {1, . . . , na}nr × ({1, . . . , nr} ∪ {⊥})2 ×
{1, . . . , na(na + 1)}nr .

Action Every i-th agent at time t, can take an action
a
(t)
i =

(
a
′(t)
i , a

′′(t)
i

)
, where a′(t)i ∈ {0, . . . , nr}, controls

which resource to set the preference to, and a′′(t)i ∈ {0, 1}
controls whether to communicate or not, therefore a(t)i ∈
A = {1, . . . , nr} × {0, 1}.

Actions change the state of the system as follows. The
i-th agent’s state U (t+1)

i at time t+ 1, is updated as:

u
′(t+1)
i =

{
a
′(t)
i if a′(t)i = u

′′(t)
i

u′(t) otherwise
(2)

u
′′(t+1)
i = a

′(t)
i (3)

That is, the agent changes the resource it is accessing only
if it confirms its previous preference; the preference itself is
always updated. The i-th agent’s word W (t+1)

i emitted at
time t, is updated as:

W
(t+1)
i =

{
U

(t+1)
i if a′′(t)i = 1

⊥ otherwise
(4)

Policy Agents take actions according to their policy func-
tion. The i-th agent’s policy at time t can be any function
that outputs an action a(t)i ∈ A, given the current agent’s
observation o(t)i ∈ O.

Reward We define a reward function for the i-th agent,
and the system in state s(t) at time t, as ri(s(t)) : [0, na] →
[0, 1]. We differentiate the actual form of ri(s(t)) depend-
ing on the kind of scenario, i.e., cooperative, competitive, or
mixed, as follows:

ri,coop

(
s(t)
)
=

ρ
(t)
j

nanr
(5)

ri,comp

(
s(t)
)
= max

(
0,

na

nr
+ 1− ρ(t)j
na

nr

)
(6)

ri,mixed

(
s(t)
)
=





ρ
(t)
j

nanr
if ρ(t)j ≤ na

nr

max
(
0, na

nr
− ρ(t)j + 1

)
otherwise

(7)
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where j = u
′(t)
i is the index of the resource being accessed

by the i-th agent. The reward based on the resource filling
is: the most crowded, the better, for the cooperative sce-
nario; the least crowded, the better, for the competitive sce-
nario; and the closer to the optimal capacity, the better, for
the mixed scenario.

The goal of the game is to find for every i-th agent, the
policies that maximize its individual reward starting from
time t0, for a number Tepisode of time steps, defined as:

J
(t0)
i =

t=t0+Tepisode∑

t=t0

ri(s
(t)) (8)

The overall reward J , and the inequity I for a group of na
agents is respectively the mean, and the standard deviation
of the individual rewards Ji, . . . , Jna .

Policy learning
We consider agents as independent learners and, since both
the observation space O and the action space A are discrete,
we do not use function approximates. Each agent is given
a sparse tabular policy characterized by state-action value
function Qi : O ×A 7→ R.

At time t the i-th agent picks action a(t)i using an ε-greedy
policy, given p ∼ U ([0, 1]), and exploration probability εk

after k training iterations, defined as:

a
(t)
i =

{
argmaxa∈AQ

k
i

(
o
(t)
i , a

)
if p < εk

a ∼ U (A) otherwise
(9)

where U(A) is the uniform distribution overA. At the initial
training iteration k0, ∀i ∈ {1, . . . , na}, ∀t ∈ t0, . . . , Tepisode,

∀o(t)i ∈ O, ∀a ∈ A, Qk0i
(
o
(t)
i , a

)
= 0.

We perform policy learning of the values stored in
Q1, . . . , Qna

by means of Q-learning Watkins and Dayan
(1992). For every k-th training iteration, the i-th agent’s
state-action value function Qi is updated with learning rate
α and discount factor γ ∈ [0, 1].

For every k-th training iteration, exploration rate for every
agent is exponentially decreased from εi to εf with decay δε.

Experiments
We investigated if and how the emergence of communica-
tion is impacted by the type of collective framework. To this
end, we explored 3 different strategies concerning the com-
munication part of the action. Two of them do not allow
the agent to choose: no-communication, i.e., a′′(t)i = 0, and
always-communication, i.e., a′′(t)i = 1. One, that we call
the optional-communication strategy, allows to choose and
the actual way of choosing is learned. Finally, as a baseline
we considered a fourth case in which the entire policy of the
agent is random, instead of being learned, i.e., a(t)i ∼ U(A).

Table 1: Experiments parameters.

Parameter Value

Si
m

.

Trials ntrials 20
Training episodes ntrain 20 000
Validation episodes nval 100
Episode time steps Tepisode 100
Number of agents na 10
Number of resources nr 2

A
ge

nt

Initial exploration rate εi 1.0
Final exploration rate εf 0.01
Exploration decay δε 0.9995
Learning rate α 0.1
Discount factor γ 0.9
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Figure 1: Overall reward J over ntrain training episodes.

We consider also the non-observable filling variation for
each scenario, that is, a scenario in which the filling is not
available to the agents, i.e., o(t)i =

(
U

(t)
i , V (t)

)
. Intuitively,

this variant is important because communicating is the only
way, for the agents, to know where it is convenient to go.

For each combination of collective framework (coopera-
tive, competitive, mixed), each strategy (always, optional,
no-comm, random), and each variant (with filling in o, with-
out), we performed ntrials training lasting ntrain episodes. Ta-
ble 1 shows the training parameters used in the experimental
campaign.

Strategies effectiveness
Figures 1 and 2 show the training results. From these figures
it can be seen that agents employing always-communication
strategy achieve the best overall reward J , and the lowest
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Figure 2: Inequality I over ntrain training episodes.

inequality I among agents. This result confirms that indeed
communication is needed for reaching the best overall re-
sults.

The importance of communication is more evident in sce-
narios with non-observable filling, where agents can only
rely on what they listen, in order to gain information on the
system state. In these scenarios, the gap between always-
communication and no-communication strategy in terms of
overall reward and inequality is more noticeable. Consid-
ering observable filling cases, there is still an advantage of
always-communication strategy in terms of overall reward J
and inequality I with respect to the no-communication strat-
egy.

Optional-communication strategy results lay in between
the always-communication and no-communication ones, de-
pending on the scenario considered. This strategy achieves
best overall reward in the cooperative scenarios, even with
non-observable filling, where the emergence of communi-
cation is needed. In this scenario optional-communication
are equally good as always-communication in terms of both
overall reward and inequality. On the other hand this strat-
egy performs poorly in the competitive and mixed scenarios
with non-observable filling, in terms of both overall reward
and inequality.

Finally, it is important to note that the random strategy is
always worst than all the other ones, both in terms of overall
reward J and inequality I: the learning helps agents to make
better decision than choosing at random, even if in presence
of a no-communication strategy.

Strategies efficiency
In order to measure how far is the current resources fill-
ing from the uniform distribution of agents, we introduce
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Figure 3: Resources displacement d during the first 10 steps
of validation.

a distance we call displacement. For na agents and nr re-
sources, we define the displacement d(t) at time t, averaged
on nval validation episodes, as:

d(t) =
1

nval

nval∑

e=1

nr∑

j=1

∣∣∣∣ρ
(t)
j −

na
nr

∣∣∣∣ (10)

In Figure 3 we show the displacement d(t), with t =
1, . . . , 10, and nval = 100 episodes, where each line rep-
resents a different strategy employed; we compute the dis-
placement for all the scenarios.

In competitive and mixed scenarios, with na agents and
nr resources, the overall optimal displacement at time t is
d(t) = 0, that is the agents are uniformly active on the re-
sources. Differently in the cooperative scenario, with na
agents and nr resources, the overall optimal displacement
at time t is d(t) = na, that is the agents are all active on 1
resource.

From Figure 3 we can see that also in validation episodes
the always-communication strategy is not only the most ef-
fective, but also the most efficient collective strategy for
reaching the overall optimal displacement value in all the
scenarios. Also from this figure we can see that agents’ dis-
placement converges to the final value within the first 10
steps of an episode, regardless of the strategy considered.
Motivated by this finding, in Figure 4 and tables 3 and 4 we
consider only the first 10 steps of validation episodes.

Optional-communication results

Collective considerations Given na agents, nval valida-
tion episodes, we denote the average communication c(t) at
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Figure 4: Average communication c and average reward
r for optional-communication strategy in nval validation
episodes.

time t as:

c(t) =
1

nanval

nval∑

e=1

na∑

i=1

a
′′(t)
i (11)

Given na agents, nval validation episodes, we denote the av-
erage reward r(t) at time t as:

r(t) =
1

nanval

nval∑

e=1

na∑

i=1

ri(s
(t)) (12)

In Figure 4 we show the average communication c(t) and
the average reward r(t), for t = 1, . . . , 10 steps of nval
validation episodes. From the same figure, it can be seen
that in the cooperative scenarios, the average communica-
tion c is higher in the first couple of steps, and the amount
of communication provided in these steps is sufficient to
achieve nearly maximum average reward r in few steps.
This means that optional-communication agents can achieve
always-communication level results in cooperative scenar-
ios, in particular with non-observable filling, in terms of both
overall reward (Figure 1) and inequality (Figure 2) during
the training phase, and from the validation (Figure 4) we
can see that a smaller amount of communication is needed
to perform like always-communication agents.

Individual considerations In Figure 5 we show the dis-
tribution of individual validation reward for respectively the
always-communication, optional-communication, and no-
communication strategy. Table 2 reports the maximum
reward value reached for each scenario in the validation.
From Figure 5 appears that the competitive observable fill-
ing scenario is the most interesting to us: in some valida-
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Figure 5: Individual reward distribution in validation
episodes.

Table 2: Max validation return.
Agent Non-obs. filling Obs. filling

C
oo

p. Always 99.0 99.0
No-comm 79.3 99.0
Optional 98.8 99.0

M
ix

ed Always 99.0 99.0
No-comm 89.0 99.0
Optional 93.6 95.0

C
om

p. Always 25.4 21.6
No-comm 69.4 21.4
Optional 49.8 59.4

tion episodes, it occurs that few agents employing optional-
communication strategy achieve higher individual reward
with respect to the majority of the agents. Moreover,
these agents in this scenario outperform agents employing
any other strategy in terms of individual reward. In other
words, if considering overall reward (Figure 1) optional-
communication performs poorly in this scenario, but from
an individual point of view, the individual agents achieve
highly unbalanced rewards.

Tables 3 and 4 show the sequence of actions of 10
optional-communication agents during the first 10 steps of
a validation episode, respectively in the cooperative non-
observable filling (Table 3), and the competitive observable
filling scenario (Table 4). Here we aim to capture relevant
information on the system state and agents’ policy by intro-
ducing a simpler notation: we consider the i-th agent’s state
U

(t)
i at time t, we say that the i-th agent changes its prefer-

ence if: u′(t)i 6= u
′(t−1)
i . In the same way we say that the i-th

agent communicates at time t if: a′′(t)i = 1. In this table,

575



Table 3: Optional-communication policies in a cooperative
non-observable filling scenario. Symbols and colors: © is
confirm, no-comm.;© confirm, comm.;

`
change to 1, no-

comm.;
`

change to 1, comm.;
a

change to 2, no-comm.;
and

a
change to 2, comm.

Agent Actions

1
a©`©©© a©© `

2
a©`©© a©©©©

3
`©©©© a ` a©©

4
a©©©©© `©©©

5
a©`©©©© a©©

6
`©©©© a ` a©©

7
a©`©©©© a©©

8
`©©©© a©©©©

9
a©©©© ` a `©©

10
`©©©© a©©©©

i-th agent confirming its preference for resources at time t is
indicated by the© symbol in i-th line of the table, at the t-
th position of the sequence of actions, regardless of its color.
The i-th agent changing its state, by setting its preference
to resource 1 (or similarly over resource 2) at time t is in-
dicated by the

`
symbol (or similarly the

a
symbol) in the

i-th line of the table, at the t-th position of the sequence of
actions, regardless of its color. The i-th agent is active on
resource 1 (or similarly on resource 2) at time t, when on
the i-th line of the table, the symbol

`
(or similarly

a
) is at

the t−1-th position of the sequence of actions, immediately
followed by the symbol© at the t-th position, regardless of
their color. The i-th agent is communicating its state at time
t, when on the i-th line of the table, the symbol at the t-th
position of the sequence of actions is green, otherwise it is
CBFriendlyOrange.

From Table 3 we can see that agents seem to have learned
that communicating while confirming their preference, de-
noted by ©, is more helpful for the listeners, rather than
communicating while changing their preference, denoted bya

or
`

. This finding is supported by the high number of©
symbol, in contrast with the low number of

a
and

`
.

In Table 4 we show actions taken by optional-
communication agents in observable filling competitive sce-
nario during the first 10 steps of a validation episode. In this
case agents seem to learn that communicating while chang-
ing their preference, for instance from resource 1 to resource
2, denoted by

a
, gives ambiguous information for the listen-

ers, and therefore it can be used to trick the others. On the
other side,© is less frequently used, since it would give use-
ful information to the competitors. Also agents communi-
cate less frequently, and change preference more often than
in the cooperative case. This finding is supported by the high
number of

a
and

`
symbols.

Table 4: Optional-communication policies in a competitive
observable filling scenario.

Agent Actions

1
a©©©©©` a©©

2
`©©©© a `©a `

3
`©©©©©© a©©

4
`©a `©© a `© a

5
a©` a©©© ` a `

6
`©a `©a `©©©

7
a©` a ` a©` a `

8
a©© ` a©©© ` a

9
`©©©© a ` a ` a

10
`©©©© a©©© `

Concluding remarks
We considered a multi-agent system in which communica-
tion among agents is required for learning the system-wise
best policies. We investigated the role of communication in
the emergence of collective behaviour in such system, by
designing 3 scenarios in which different strategies are em-
ployed by agents, and where agents’ policies are learned by
means of reinforcement learning. The experimental results
show that communication is, in general, a way for reduc-
ing inequality. Moreover, agents with optional communica-
tion capabilities develop a collective behaviour in coopera-
tive scenarios, whereas in competitive scenarios they exhibit
a selfish behaviour that leverages on communication to pro-
mote their individual goal and thus resulting in high inequal-
ity.
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