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Abstract

Adaptation of agents in artificial life scenarios is especially
effective when agents may evolve, i.e., inherit traits from
their parents, and learn by interacting with the environment.
The learning process may be boosted with forms of social
learning, i.e., by allowing an agent to learn by combining
its experiences with knowledge transferred among agents. In
this work, we tackle two specific questions regarding social
learning and evolution: (a) from whom learners should learn?
(b) how should knowledge be transferred? We address these
questions by experimentally investigating two scenarios: a
simple one in which the mechanism for evolution and learn-
ing is easily interpretable; a more complex and realistic arti-
ficial life scenario in which agents compete for survival. Ex-
perimental results show that social learning is more profitable
when (a) the learners learn from a small set of good teach-
ers and (b) the knowledge to be transferred is determined by
teachers experience, rather than learner experience.

Introduction
Artificial agents adapt to the environment according to dif-
ferent mechanisms and along different time scales: evolution
is a long-term process in which agents inherit traits from
their parents, whereas learning is a short-term process in
which agents adapt by interacting with the environment au-
tonomously or through knowledge transfer among agents,
i.e., through social learning. Combinations of individual
and social learning with evolution have been shown to be
successful for adaptation (Le et al., 2020).

In this work, we tackle two specific questions regard-
ing social learning in evolved artificial life: (a) from whom
learners should learn? (b) how should knowledge be trans-
ferred? We address these questions by investigating two
artificial life scenarios: one in which agents have a fixed
life-span and do not compete among themselves; another in
which agents compete for survival by moving and collecting
food in a toroidal environment. In the first, simpler scenario,
social learning occurs by directly copying traits from the
teachers to each learner. In the more complex scenario, a
learner attempts instead to match the behavior of its teach-
ers on a set of situations, i.e., perceptions of the environment
provided by sensors.

We analyzed a number of different configurations in terms
of size and composition of the set of teachers and of the way
knowledge is transferred from teachers to learners. Our ex-
periments indicate that social learning effectiveness depends
on teachers size and knowledge transfer. Concerning the for-
mer factor, social learning is more effective when the learner
learns from a set of good teachers, rather than from just the
best teacher: moreover, with more than one teacher, learn-
ing is more robust to imperfect trait transfer. Concerning the
latter factor, social learning results in more successful learn-
ers when they attempt to reproduce teachers behaviors on
teachers, rather than learners, experience.

Related works
Learning and evolution interplay Lifetime learning in
evolution is a long-standing topic that has been treated,
among the firsts, by Baldwin (1896): in his seminal paper,
the author claims that learning is not only allowed by evo-
lutionary conditions, but that it also influences the overall
adaptation of a species over the time. In other words, Bald-
win (1896) claims that, while evolution takes place at the
genotype level and learning takes place at phenotype level,
there is an interplay between them. A recent overview on
the literature on the so called “Baldwin effect”, and a pos-
sible dfferent interpertation of the phenonmenon, has been
proposed by Le (2019b).

In an early application of the lifetime learning paradigm
combined with evolution, Hinton and Nowlan (1987) con-
sidered a simple artificial life scenario where the individual
employs an ANN containing many potential connections.
The reproductive fitness of each organism is the number of
correct connections, meaning that pure evolutionary search
can only discover the optimal configuration by randomly ex-
ploring the space of possible configurations. The authors
show that specifying some individual traits as inherited and
others as learned, the search may be more efficient.

The effectiveness of learning combined with evolution in
the survival of the species has been showed in a more com-
plex artificial life scenario by Ackley and Littman (1991),
where each agent is embodied by an ANN, and lifetime
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adaptation occurs through Reinforcement Learning (RL).

Neuroevolution Evolutionary optimization has been
shown to be an effective mechanism of adaptation when the
agent consists (also) of an ANN. In (Yao, 1999; Floreano
et al., 2008), both the architecture of the network and its
weights can be subjected to the optimization. Le (2019a)
proposes a strategy based on evolving self-taught ANN for
a multi-agent scenario. In (Keesing and Stork, 1991; Nolfi
et al., 1994) evolution and lifetime learning are employed
on an ANN, and here the learning strategy adopts backprop-
agation to update the network parameters. Soltoggio et al.
(2018) propose an Evolved Plastic ANNs framework that
introduces plasticity in ANNs, hence allowing evolution to
optimize more than just the weights of the ANN.

Social learning Animals do not learn only by themselves,
i.e., without involving social interactions, but they learn also
from the other members of the same species using different
strategies (Laland, 2004), which are referred as social learn-
ing strategies (Heyes, 1994).

Van Schaik and Burkart (2011) observe that, not only so-
cial learning is possible in animal species, but it is even pre-
ferred to individual learning, as it allows to transfer knowl-
edge in a more efficient way. It seems also that the species
that practice social learning have a more advanced set of
cultural skills, and tend to be more responsive to the evo-
lutionary selection (van der Post et al., 2016). This belief is
supported by the results obtained in the mathematical model
designed by Wakano et al. (2004).

Some studies investigate, also comparatively, both indi-
vidual and social learning (Mesoudi et al., 2016). Hein-
erman et al. (2018) consider learning occurring in a group
of physical robots, and two different scenarios, where each
robot is controlled by an ANN. They show that social learn-
ing is an efficient strategy to reduce the time required for
finding the optimal solution. Le et al. (2018) takes into ac-
count a simulated scenario, and finds that also social learn-
ing gives the “Baldwin effect”, i.e., that it improves the over-
all evolutionary process of a population of individuals. A
comparison between individual learning and social learn-
ing, as alternative forms of adaptation, is given by Feldman
et al. (1996) and Bullinaria (2017), where the authors pro-
vide empirical results on the power of social learning in a
rather simple artificial life scenario. Borenstein et al. (2008)
observe that social and individual learning can evolve in-
dependently of each other as alternative adaptation mecha-
nisms. Annunziato and Pierucci (2003), and more recently
Le et al. (2020), have investigated the relationship between
social learning and individual learning, and the combination
of the two learning strategies in relative complex artificial
life scenarios, where agents are controlled by ANNs.

The experiments performed by Marriott and Chebib
(2014) in an artificial life scenario of resource gathering

show that there seems to be an evolutionary pressure to pro-
mote individuals with the ability to learn, rather than pre-
ferring individuals with a higher fitness. Moreover social
learning seems to support an adaptation trend that is decou-
pled from the one of evolution (Marriott and Chebib, 2014;
Chebib and Marriott, 2016), a finding that is similar to the
results achieved by Borenstein et al. (2008). Jolley et al.
(2016) propose different criteria for choosing the agent to
teach the other agents in social learning, being either a par-
ent, the fittest individual, the oldest individual, a random in-
dividual or another young agent, however they do not con-
sider learning from multiple teachers, which is a research
question that we address in this work. Relevant social learn-
ing aspects, such as the choice of whom to learn from in a
population, and what aspects of culture are transmitted, have
not been completely understood yet, and are open to future
research (Marriott et al., 2018). In the present study, we at-
tempt to answer a few of these questions in the context of
artificial life.

Simple scenario
We consider a simple scenario inspired by the results ob-
tained by Le et al. (2018) and the Hinton and Nowlan model
(Hinton and Nowlan, 1987). In this model, a population
of agents evolves on the long-term evolutionary time scale,
whereas the short-term life-time time scale is instantaneous.

An agent is defined by a genotype g and a phenotype p.
The genotype is a fixed-length sequence g = (g1, . . . , gl) ∈
{0,1,?}l of l genes that can assume values, called alleles,
in {0,1,?}. The phenotype is a fixed-length sequence p =
(p1, . . . , pl) ∈ {0,1}l of l traits.

The phenotype is determined from the genotype ac-
cording to a genotype-phenotype mapping function m :
{0,1,?}l → {0,1}l that we use, in this model, to represent
learning (explained below). The mapping function is ap-
plied as soon as the individual is generated. Similarly, the fit-
ness of an individual is calculated as soon as the genotype is
mapped to the phenotype. The fitness is the ratio of 1s in the
phenotype, i.e., f(p) = 1

l |p|1 = 1
l |{1 ≤ i ≤ l : pi = 1}|.

It follows that the optimal phenotype popt, i.e., the one with
the maximum fitness f(popt) = 1, is unique in {0, 1}l.

The population of agents changes in the evolutionary time
scale according to an evolutionary algorithm (EA) in which
fitter agents have more chances to reproduce and survive.
Algorithm 1 shows the EA that drives the evolution of the
population. It is a standard EA that evolves a fixed-size pop-
ulation of npop individuals, initially set randomly, for ngen
generations, with a non-overlapping generational model—
i.e., the population of the i-th generation does not contain
individuals of the (i − 1)-th generation. Individuals are se-
lected for reproduction with a tournament selection of size
ntour: once the genotypes g1, g2 of two individuals (parents)
are selected, the genotype of the new individual is obtained
by first applying the uniform crossover to g1, g2 and then
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the gene-wise mutation to the resulting genotype. The gene-
wise mutation consists in changing, with a probability pmut,
each gene to a random allele. We remark that genetic opera-
tors operate on g, rather than p: the evolution does not hence
explicitly propagate learned traits, that is, it is a Darwinian,
rather than Lamarckian, evolution.

1 P ← initialize(npop)
2 foreach i ∈ {1, . . . , ngen} do
3 P ′ ← ∅
4 foreach j ∈ {1, . . . , npop} do
5 g1 ← selectTournament(P, ntour)
6 g2 ← selectTournament(P, ntour)
7 g′ ← mutate(crossover(g1, g2))
8 P ′ ← P ′ ∪ {g′}
9 end

10 P ← P ′

11 end
Algorithm 1: The EA of the simple scenario.

We consider 3 different variants for the genotype-
phenotype mapping function m that represent the cases
of no-learning (EVO), individual learning (IL), and social
learning (SL). In the variants representing the cases with
learning, the ? allele in the genotype represents learnability,
i.e., if gi = ?, then that i-th trait can be learned, otherwise it
is determined statically from the corresponding i-th gene.

No learning (EVO) In this variant, no learning occurs and
learnable genes are mapped to 0:

p = mEVO(g) = (m′EVO(g1), . . . ,m
′
EVO(gl)), (1)

where:

m′EVO(gi) =

{
1 if gi = 1

0 otherwise.
(2)

Individual learning (IL) This variant represents a two-
steps process in which (i) the agent performs a number niter
of agent-environment interactions by randomly varying its
learnable traits and (ii) the phenotype is set to the one corre-
sponding to best interaction in terms of fitness. Formally, a
set {p1, . . . ,pniter

} of realizations of the agent phenotype is
first randomly generated, with:

pj = (m′IL(g1), . . . ,m
′
IL(gl)), (3)

and:

m′IL(gi) =

{
U({0,1}) if gi = ?

gi otherwise,
(4)

where U(S) is a random element in the set S. Then, the
agent phenotype is set to the best realization in the set:

p = mIL(g) = argmax
pj∈{p1,...,pniter

}
f(pj). (5)

Social learning (SL) In this variant the agent learns trait-
wise by imitating the most common value for each trait
among a given collection T of teachers. Formally, given
the collection T = {p′1,p′2, . . . } of the phenotypes of the
teachers, p is obtained as:

p = mSL(g, T ) = (m′SL(g1, T ), . . . ,m
′
SL(gl, T )), (6)

with:

m′SL(gi, T ) =

{
gi if gi 6= ?

p̂i otherwise,
(7)

where p̂i is the most common value among the multiset of
i-th traits of the teacher phenotypes in T , or p̂i = 0 if T = ∅.

We explored a few alternatives for selecting the collec-
tion T of teachers from a population P , with the aim of an-
swering the first of the two main research questions of this
paper, i.e., from whom learners should learn? In each alter-
native, since learning involves teachers phenotypes, we used
the population of the previous generation for composing T :
at the first generation no learning occurs, hence the mapping
is that of Equations (1) and (2). In one alternative, T is com-
posed of the phenotype of an individual chosen randomly in
P : we denote this SL variant with SL-Random. In the other
alternatives, T is composed of the phenotypes of the n fittest
individuals in P : we denote these SL variants with SL- n

|P |%
and experimented with a few values for n. Significant cases
of SL- n

|P |% are the one with n = 1, where the learner learns
only from the best individual, and the one with n = |P |,
where the learner learns from all the individuals: we denote
these two variants with SL-Best and SL-All, respectively.

Experiments and discussion
We performed several experiments by varying the main pa-
rameters of the model presented in the previous section:
in particular, we experimented with 3 values for the geno-
type/phenotype length l, 3 for the population size, and 6 for
the number n of teachers in social learning. Table 1 shows
the values for all the parameters. In the random initialization
of the population, each gene was set to a random allele with
probability 0.25, 0.25, and 0.5 respectively for 0, 1, and ?:
we set a larger probability for ? to let the learning have a
large impact on adaptation.

For each combination of l, npop, we experimented with
each one of the 8 variants (EVO, IL, and 6 SL) for the
genotype-phenotype mapping function; for each of the re-
sulting 3 ·3 ·8 = 72 treatments, we executed 10 evolutionary
runs of the EA.

Table 2 presents the results of the experiments in terms of
two indexes. In the rightmost half, the table shows the value
f?final of the fittest individual in the last generation. In the
leftmost half, it shows the generation i?0.9 at which, during
the evolution, the fitness of the best individual first exceeded
the value 0.9f?final, i.e., 90% of the fitness of the best indi-
vidual at the last generation of the same run. Intuitively, the

192



Table 1: Parameters of the simple scenario.

Parameter Value

Geno./pheno. length l 100, 500, 1000
Generations ngen 400
Pop. size npop 100, 500, 1000
Tour. sel. size ntour 5
Mut. prob. pmut 0.01
IL iterations niter 50
SL n. of teachers n 1, npop

10 , npop

4 , npop

3 , npop

2 , |npop|

former index captures the effectiveness of the adaptation and
the latter captures the efficiency, i.e., how fast a given adap-
tation degree is achieved. For both indexes, the table shows
the mean value across the 10 repetitions.

The foremost finding, although not a straightforward an-
swer to the research questions of this study, that arises from
the figures in Table 1 is that SL leads to a more efficient
and more effective adaptation than both IL and no learning.
This result is substantially in agreement with previous ex-
perimental studies on social learning in similar settings, as,
e.g., Marriott et al. (2018), where, as here, SL outperforms
IL and IL outperforms no learning.

Concerning, more specifically, the first research question
of this paper, Table 2 shows that there are some differences,
yet not sharp, among different variants of social learning.
SL-Random is in general moderately less effective and ef-
ficient than the other SL variants. SL-Best appears slightly
less efficient than the other SL-p%, with the exception of
the case with large population; moreover, it also obtains a
final best fitness that is always lower than the other SL-p%.
SL-All looks slightly less efficient than the other remaining
SL-p%, but no differences are visible in terms of effective-
ness. Summarizing, Table 2 suggests that the adaptation is
favored when SL occurs with the learner that learns from
more than one individuals.

To better understand the results of these experiments, we
show in Figure 1 how the fitness f? of the best individual and
the number |g?|? of ?s in its genotype vary during the evo-
lution for the case with npop = 100 and l = 500—the plots
for the other combinations of npop, l are qualitatively similar.
The second index measures, intuitively, the genetic prone-
ness of an individual to learn, in brief, individual learnabil-
ity. Since in these experiments the evolution is, in general,
fast, Figure 1 shows generation with a logarithmic scale for
better highlighting differences in efficiency among variants.

Two observations can be made based on Figure 1. First,
the plot of f? during the evolution confirms the differences
in efficiency among the considered variants.

Second and foremost, there is a neat difference in the fi-
nal number |g?final|? of ?s among the variants. For EVO and
IL, |g?final|? is very low, approximately 0 for the former and

0.4

0.6

0.8

1

f
?

100 101 102
0

100

200

Generation

|g
?
| ?

EVO IL SL-Best
SL-10% SL-25% SL-33%
SL-50% SL-All SL-Random

Figure 1: Fitness f? (top) and number |g?|? of ?s in the
genotype (bottom) of the best individual during the evolu-
tion, for npop = 100 and l = 500 and in the simple scenario.

10 for the latter. For all the SL variants with the excep-
tion of SL-Random, |g?final|? ≈ 250, that is, much larger
than EVO and IL. Finally, for SL-Random |g?|? tends to
slowly decrease during the evolution, reaching a final value
of |g?final|? ≈ 175. Since |g?|? represents the individual
learnability, this finding means that in this simple scenario
evolution favors learnability at the expense of genetic qual-
ity, when learning can compensate lack of genetic quality. In
other words, there is no evolutionary reason for having a per-
fect genotype if good traits can be obtained by learning from
other individuals. Moreover, the lower value of |g?final|? for
SL-Random suggests that the better the teachers, the more
this compensation actually applies.

We assessed the statistical significance of the results pre-
sented above on i?0.9 and f?final by means of the Wilcoxon
signed-rank test with correction. The analysis outcome con-
cerning i?0.9 suggest that EVO, IL, and SL-Random are re-
spectively significantly different (p < 0.005) from all the
adaptation strategies. Interestingly also SL-Best is signifi-
cantly different (p < 0.007) from all the other strategies. On
the other side there is no significant difference among SL-
10%, SL-25%, and SL-33%, and between SL-50% and
SL-All. The outcome concerning f?final confirms the effi-
ciency test results: EVO, IL, and SL-Random are signifi-
cantly different (p < 0.008) from all the adaptation strate-
gies. There is no significant difference among the other SL
strategies.

Imperfect social learning In order to better investigate
the effect of social learning on evolved learnability, we con-

193



Table 2: Experimental results with the simple scenario.

Adaptation efficiency i?0.9 Adaptation effectiveness f?final

npop 100 500 1000 100 500 1000

Variant l 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

EVO 14 41 100 14 40 59 14 40 59 1.00 0.98 0.89 1.00 0.98 0.93 1.00 0.98 0.93
IL 14 45 75 13 44 64 9 34 52 1.00 0.98 0.91 1.00 0.98 0.94 1.00 0.99 0.95
SL-Random 8 22 50 7 21 32 7 21 33 1.00 0.99 0.91 1.00 0.99 0.97 1.00 0.99 0.97
SL-Best 5 19 47 5 18 29 5 18 29 1.00 1.00 0.93 1.00 1.00 0.98 1.00 1.00 0.98
SL-10% 5 16 50 4 14 22 7 19 29 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.99
SL-25% 6 16 54 4 15 23 7 20 30 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.99
SL-33% 5 16 57 4 15 23 7 20 31 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.99
SL-50% 6 17 59 4 15 24 7 20 31 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.99
SL-All 6 17 64 6 17 26 8 21 32 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.99

ducted a further set of experiments with a modified SL vari-
ant that represents an imperfect transfer of knowledge from
the teachers to the learner. In this variant, the genotype-
phenotype mapping function is the same of Equations (6)
and (7), but, the most common i-th trait p̂i among the
teachers is determined on a subset of the teachers traits
{p′1, . . . , p′|T |} obtained by removing each p′j with a prob-
ability 0.5. In other words, in this SL variant, only half
of the teachers knowledge concerning this trait is actually
transferred. This constitutes a form of imperfect transmis-
sion of knowledge, rather than of genetic material Borg et al.
(2011).

Figure 2 shows (only for modified SL variants) how f?

and |g?|? vary during the evolution for the case with npop =
100 and l = 500, similarly to Figure 1.

According to Figure 2, two consequences of the imperfect
transfer of knowledge can be seen. First, there is a larger
diversity in efficiency among SL variants, whereas effec-
tiveness remains the same. Second, and more interesting,
|g?final|? is no more approximately the same for all the SL
variants. In particular, for all the variants where the set T of
teachers is composed by more than one individuals, |g?final|?
is ≈ 250, whereas it is ≈ 10 for single-teacher variants SL-
Best and SL-Random. In other words, social learning can-
not compensate low genetic quality if one can learn only
from one teacher with imperfect transfer knowledge: inter-
estingly, this holds regardless the single teacher being the
best one or a random individual.

Artificial life scenario
The simple scenario presented in the previous section allows
to compare different forms of social learning and to easily
interpret the outcome, in terms of interaction of learning and
evolution. However, due to its simplicity it is not represen-
tative of any concrete realization of a multi-agent scenario.
With respect to the aim of the present study, the limitations
of the simple scenario are two-fold. First, concerning the
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Figure 2: Fitness f? (top) and number |g?|? of ?s in the
genotype (bottom) of the best individual during the evolu-
tion, for npop = 100 and l = 500 in the simple scenario,
only SL variants with the imperfect knowledge transfer.

world model: (a) agents do not interact, nor compete, among
themselves and (b) their life-span is instantaneous. Second,
concerning the learning mechanism: (c) knowledge can be
transferred by directly copying the traits.

In order to extend the generality of our findings, we stud-
ied a more complex artificial life scenario. Inspired by Le
et al. (2020), we define a 2D-world, discrete in time and
space, where agents move in a toroidal environment and
strive for survival by collecting food, i.e., non-moving items
located in the environment.
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s+2
s+1
s0
s−1
s−2

dview

(0, 0)

x = (3, 5)

ω = E

s
(0)
agent = (3, 8, 8, 8, 2)

s
(0)
food = (8, 3, 8, 8, 5)

Figure 3: Schematic representation of how the agent (blue
square) perceives the environment, i.e., distances to other
agents (red squares) and food items (green squares) that are
in its view range (thick rectangle). Corresponding values are
shown on the right, assuming here dview = 7 and ns = 2.

Agent An agent is defined by its state, genotype, and phe-
notype: the state may change over the time, the genotype
never changes during the agent life, the phenotype may
change only once during the agent life. The agent state
(x, ω, a, e) consists of its position x ∈ {0, . . . , w}2, where
w is the world width, its orientation ω ∈ {N,E,S,W}, its age
a ∈ N, and its energy e ∈ N.

At each time step the agent takes an action in A = {�
,	, ↑,∅}, i.e., rotate clockwise, rotate counter-clockwise,
move ahead, do nothing. The agent determines the ac-
tion according to a policy (detailed below) that takes
as input the agent sensing of the environment s =[
s
(0)
agent s

(0)
food s

(−1)
agent s

(−1)
food

]
, with each s(k)* ∈ [0, dview]

2ns+1.

Each sensor reading si ∈ s(k)* , i ∈ {−ns, . . . ,+ns} cor-
responds to a sensor perceiving the row of world positions
starting on the i-th position on the agent left-side (i < 0),
front (i = 0), or right-side (i > 0) and going in the direction
of agent orientation: the reading is si ≤ dview if the clos-
est agent (for s(k)agent) or food item (for s(k)food) is closer than
dview positions to the row first position, or si = dview + 1

otherwise. Readings in s(0)* correspond to distances at the
current time step; readings s(−1)* correspond to the previ-
ous time step. Figure 3 graphically represents how the agent
perceives the environment.

The policy of the agent is an artificial neural network
(ANN) with 4(2ns + 1) inputs, 4 outputs, no hidden layer,
and the Rectifier Linear Unit (ReLU) as activation function.
Once the input layer is set to s, the agent takes the action
of A corresponding to the largest network output. The ANN
parameters θ = p ∈ [−1, 1]l, with l = 4(4(2ns + 1) + 1),
constitute the phenotype of the agent.

The agent genotype is a vector g = [gw gt], with gw ∈
[−1, 1]l and gt ∈ {0, 1}l: element of gt resemble the func-
tion of question marks in the simple scenario. The genotype
determines the phenotype, possibly as the result of a learn-

ing procedure, as detailed below.

World evolution At the beginning of a simulation, ninit
agent

agents and ninit
food food items are randomly placed in the en-

vironment, i.e., a w × w grid. Each agents initial age and
energy are set to 0 and einit, respectively; genotype g is set
randomly in the proper domain and phenotype is initially set
to p = gw.

On the short-term life-time time scale, the world evolves
because agents move and consume food. At each time step
each agent takes an action based on its policy and sensing.
The agent results in a change of the agent state at the next
time step: besides the trivial change in position x and ori-
entation ω, if at the updated position there is a food item,
the agent energy e is incremented by 10 and the food item is
removed from the world. Moreover, regardless of the action,
age a is incremented by 1 and energy e is decremented by 1.

In order to conserve the overall energy in the world, a new
food item is added if:

10n
(k)
food +

j=n
(k)
agent∑

j=1

e
(k)
j < 10ninit

food +

j=ninit
agent∑

j=1

einit, (8)

where n(k)food and n(k)agent are the current number of food items

and agents and e(k)j is the energy of the j-th agent.
On the long-term evolutionary time scale, the world

evolves because agents die and are born, as follows. If an
agent energy becomes negative, the agent dies and is re-
moved from the world. If an agent energy exceeds a thresh-
old erepr, the agent (parent) generates a new agent (child),
i.e., it asexually reproduces (as in Annunziato and Pierucci
(2003)). Upon reproduction, the parent energy is decreased
by 1

2e
repr. The child position is set to a random position ad-

jacent to the parent position, its age is set to 0, and its energy
to 1

2e
repr. The child genotype g′ = [g′w g

′
t] is a mutated copy

of the parent genotype: g′w is obtained by applying Gaussian
mutation to gw, with a parameter σmut, and g′t by applying
bit-flip mutation to gt, with a probability of pmut. The child
phenotype is initially set to p′ = g′w.

As in the simple scenario, we consider a few variants of
the model here described that differ in the social learning
mechanism, i.e., in how and when the agent phenotype is
updated during its life. Since we are interested mainly in
social learning, in this second scenario we do not consider a
variant corresponding to individual learning.

No learning (EVO) In this variant, no learning occurs.
The agent phenotype is never updated and remains the one
set at the agent birth, i.e., p = gw.

Social learning by direct transfer (SLD) This variant re-
sembles the SL that we defined in the simple scenario. Given
a collection T of teachers, the phenotype p of the learning
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agent is set to:

p = mSLD(g, T )

= (m′SLD(gw,1, gt,1, T )), . . . ,m
′
SLD(gw,l, gt,l, T ))), (9)

with:

m′SLD(gw,i, gt,i, T ) =

{
gw,i if gt,i = 0

pi otherwise,
(10)

where pi is the mean value of the i-th elements of teacher
phenotypes in T . We remark that all agents have the same
ANN architecture.

Based on the experimental findings of the simple scenario,
we considered here only one way for constructing T from
the current population. We set T to the subset of the 25%
agents with the largest ratio f between the number of col-
lected food items 1

10 (e− a), since birth, and age a. In other
words, f is the fitness of the agent and the teachers are the
current fittest agents.

We make this form of learning occur just upon the agent
birth.

Social learning by experience sharing (SLE) In this
variant there is no direct transfer of ANN parameters. In-
stead the learner updates its parameters to match the behav-
ior of the teachers on a set of cases. To this end, each agent
state includes also a set Sexp of up to nexp sensor readings
s, with s ∈ [0, dview]

4(2ns+1), that represents the experience
of the agent in terms of sensor readings. At each time step,
the current s is added to Sexp with probability 0.5: then, if
|Sexp| > nexp one random item is removed from Sexp.

Given a collection T of teachers and a sequence S of sen-
sor readings, the learning works as follows. First, for each
input si ∈ S, (i) the action zi,j of each j-th teacher is de-
termined by applying the corresponding ANN on si, hence
obtaining a sequence Zi, then (ii) the most common out-
put ẑi ∈ Zi is obtained and associated to si. This step re-
sults in a sequence E of pairs (s, ẑ). Second, the learning
agent modifies its p, i.e., its ANN parameters, by perform-
ing a backpropagation onE, where the target ANN output is
set by one-hot encoding each ẑ. We perform backpropaga-
tion with learning rate 0.0001, 100 iterations, and with mean
square error on the network output as cost function.

We explored two variants of the SLE procedure here de-
scribed by varying the way the collection S is built: (a) from
the learner experience Sexp, by selecting a random subset
of nlearn items, or (b) form the overall teachers experience⋃

T Sexp by selecting a random subset of nlearn items. In both
cases, T is constructed as in SLD. We denote the two cases
as SLE-L and SLE-T, respectively.

Since the learning agent needs to collect some experience
before being able to apply SLE-L, in this variant the agent
performs learning as soon as its experience Sexp reaches the
size nexp (i.e., on average at 2nexp age). Differently, SLE-L
occurs upon birth, as for SLD.

Table 3: Parameters of the artificial life scenario.

Parameter Value

Word width w 500
Time steps nsteps 105

N. of runs nruns 10
Dist. of view dview 10
N. of sensors ns 7

Parameter Value

Repr. energy erepr 10
Energy th. ethr 10 000
Pop. size ninit

agents 1000
N. of teachers |T | nagent

4
Learning exp. nexp 1000
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Figure 4: Fitness f? of the best individual (top) and popula-
tion size (bottom) during the simulation of different adapta-
tion strategies in the artificial life scenario.

Experiments and discussion
We performed nruns simulations of nsteps time steps for each
one of the four variants (EVO, SLD, SLE-L, and SLE-T)
with the parameters of Table 3. Figure 4 shows the results of
the experiments for all the variants, averaged on nruns simu-
lations. We plot the best individual fitness f? (above) and
the population size n(k)agents where the 2 plots refers to re-
spectively to the best individual fitness, and the number of
agents, over the simulations time steps.

From the best individual fitness plot in Figure 4 it can be
seen that SLE-T results in a larger best fitness f?. Among
the remaining variants, SLE-L is slightly more efficient than
EVO and SLD, but equally effective, since all these variants
converge to the best individual fitness f? = 0.5. On the
other hand, EVO, SLE-L, and SLD result in larger popula-
tions, whose size reaches ≈ 2000 individuals after 30 000
time steps. For these three variants there is an initial spike
in the population size, that we motivate as follows: (a) the
initial energy of the agents is almost high enough to allow
them to reproduce (b) the initial abundance of food allows
the agent to collect food by just performing small move-
ments in the surrounding environment (c) most of the first
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generations agents have a policy that is not suitable for sur-
vival, thus reducing competition for the few active ones.

Differently the number of agents in the population of
SLE-T increases after 7000 time steps, which corresponds
to the peak of the spike in the other variants population plot,
converging to populations of 1700 agents for the remain-
ing time steps. The convergence observed in all the vari-
ants means that agents are adapting to survive, and than the
children agents are good enough to compete with their par-
ents, thus increasing the competition for the food. In par-
ticular, it seems that the agents adapting through SLE-T, are
the best performing ones in terms of best individual fitness,
with maximum value f? = 2.71, but also in terms of effi-
ciency, since in all the runs the highest individual fitness is
reached at the beginning of the simulation.

This experimental findings provide an intuitive answer to
our research question: it is more profitable to choose the
learning samples from the teachers experience, rather than
from the learners one.

Concluding remarks and future work
In this work, we investigated two relevant aspects of social
learning in artificial life: from which teachers to learn and
which is the best way to transfer knowledge from teachers
to learners. To answer these questions, we assessed the ef-
fectiveness of social learning, when it is interacting with
evolution, in two different scenarios: a simple one and a
more complex one. In the former, we varied the composi-
tion of teachers set, whereas in the latter we experimented
with different knowledge transfer mechanisms. Experimen-
tal results in the first scenario show a higher benefit when
teaching is performed by a set of good teachers rather than
by a single excellent one. As a possible explanation, learn-
ing from multiple sources rather than just one favors gen-
erality of learned traits. Concerning the second scenario,
results highlight how learning improves when what to teach
is decided by the teachers rather than by learner.

We believe that our results are promising and that our
findings can help to better understand the potential and im-
plications of social learning. As future work, we plan to in-
vestigate the case where knowledge transfer can occur only
among individuals that are physically close and, hence, how
mobility of agents shapes social learning, possibly favoring
mobility-related skills more than other skills.
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