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A B S T R A C T

Floristic inventories are an essential part of basic and applied research in botany. Despite their long history,
floristic research is still carried out following non-objective (preferential) sampling approaches. Accordingly,
final outputs (i) are extremely variable in the quality and quantity of collected data and hardly repeatable, (ii)
rely on the researcher ability, and (iii) miss the basic assumptions to allow inferential statistical analyses. The
aim of this work is to explore the drafting of a floristic inventory by means of geostatistical approaches to locate
sampling units (plots) in the study area. We planned, carried out and then compared two different sampling
strategies: (i) ‘basic strategy’, a stratified random sampling design based solely on a spatial optimization criterion
(no prior information is available), and (ii) ‘advanced strategy’, a sampling design based on the maximisation of
the spectral heterogeneity among sampling units, quantified in terms of Normalized Difference Vegetation Index
values (NDVI). The strategy that maximises collected floristic information was assessed based on a combination
of descriptive and quantitative statistics, such as (i) the completeness of the floristic inventory, (ii) the steepness
of the rarefaction curves, (iii) the sampling time effort, and (iv) the plot contribution to the total β diversity. The
'advanced strategy' detects more species than the 'basic strategy' in all the sampling sites. The 'advanced strategy'
accumulates species more quickly than the 'basic strategy'. The 'advanced strategy' selects sampling units more
homogeneously contributing to total β diversity; in addition, they are better spatially arranged across the study
area to capture environmental peculiarities of sampling sites. The 'advanced strategy' needs a little more effort in
the design of the sampling strategy, but it is more effective than the 'basic strategy' in drafting a species in-
ventory. We provide here the R routine to perform the 'advanced strategy', which can be profitably and freely
used in any other geographic location and vegetation context.

1. Introduction

Documenting plant diversity distribution through appropriate and
efficient sampling strategies is a crucial step to acquire a reliable
knowledge of natural resources and to promote its efficient conserva-
tion (Gaston, 2000; Newmaster et al., 2005). On the other hand, mea-
suring plant diversity is an incredibly complex task, considering spatial
and temporal variability (Rocchini et al., 2018) and the large number of
existing measurement metrics (Chiarucci et al., 2011; Scheiner, 2019).
Among these metrics, the species richness (α diversity) and the varia-
tion in community composition among sites in a region of interest (β
diversity; Whittaker, 1972) are commonly used.

The traditional approach to document vascular plant diversity of a
given area consists in the preparation of floristic lists, commonly known

as ‘floras’ (Palmer et al., 2002; D’Antraccoli et al., 2019). Floras can be
defined as species inventories for a given territory in a given time,
aimed to link taxonomic, geographic, and temporal information
(Palmer et al., 1995; Chiarucci and Bonini, 2005; Bedini et al., 2016).
From a sampling perspective, floristic inventories are usually compiled
by subjectively searching for and collecting plants, trying to obtain an
exhaustive list of species over a large area, even though this task is often
very challenging (Chiarucci and Palmer, 2005; Vondrák et al., 2016;
Chiarucci et al., 2018). With this approach, generally referred to as
‘preferential’ or as ‘opportunistic’, surveyors select specific sites or ha-
bitats based on their subjective expectations (Chiarucci et al., 2018).
Palmer et al. (2002) defined the highly subjective combination of
ability, experience, expertise and intuition that guide the botanist in the
field as the “botanic internal algorithm”. Wishing to increase the overall
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number of species per survey, botanists tend to move to another area
when the time required to find a new species becomes too long (ter
Steege et al., 2011). Furthermore, the ratio of common to rare species is
likely to vary with many factors, such as time availability, familiarity of
the botanist with the local flora, botanist weariness, understory cover,
proportion of rare or elusive species (Scott and Hallam, 2002; Archaux
et al., 2006), as well as habitat and population features (Morrison,
2016).

On the other hand, in a probabilistic sampling approach species are
identified and listed only if occurring in a priori selected sampling units,
generally corresponding to plots (Chiarucci et al., 2018). In this ap-
proach, independent sampling units can be selected, thus satisfying the
condition that each site has the same probability of being sampled. The
most commonly used probabilistic sampling strategies are the ‘simple
random’ design, the ‘systematic sampling’ and the ‘stratified random
sampling’. While the first two sampling approaches require minimal a
priori information and are easy to use in terms of design complexity
(Elzinga et al., 1998; Daniel, 2012), the stratified random sampling can
be applied only when environmental information about the study area
is available. Considering current limited resources allocated to field
surveys, the selection of sampling design parameters is crucial to op-
timise the amount of information collected within the time and budget
constraints set for field work. Several parameters may affect this trade-
off, such as the number, size, shape, and spatial configuration of sam-
pling units (Chiarucci et al., 2001; Bacaro et al., 2015; Güler et al.,
2016; Hoffmann et al., 2019). However, an ‘ideal sampling’ does not
exist. Hoffmann et al. (2019) recommended an operational approach, in
which the sampling scale is chosen based on clear and repeatable cri-
teria rather than vegetation characteristics. Accordingly, sampling op-
timisation issues are of both theoretical and practical concern.

Although a great deal of research is being conducted on conceiving
efficient sampling methods in ecology (Stohlgren, 2007; Gonzalez-Oreja
et al., 2013; Hoffmann et al., 2019), this issue is almost unexplored in
floristic research. Palmer et al. (2002) highlighted that preferential
sampling is expected to be more efficient than probabilistic sampling,
since botanists “generally have a strong intuition or ‘educated guess’
about where to direct one’s effort”. Again, the total area sampled by
probabilistic methods is severely lower than that covered by pre-
ferential methods, as quantified by Golodets et al. (2013). Accordingly,
the same authors inferred that using just over one-tenth of the work-
force and resources required by a probabilistic method, a preferential
strategy detected twice the number of species. On the other hand, the
use of probabilistic approaches to draft a floristic inventory is en-
couraged (Palmer et al., 2002; Chiarucci and Bonini, 2005; Wiser et al.,
2011), in order to allow rigorous statistical analyses (Chiarucci et al.,
2018). Indeed, only probabilistic approaches meet the conditions of
randomness, known probability and independence of statistical sam-
pling (Chiarucci, 2007), thus (i) allowing comparisons among different
regions and times or among unequal sampling efforts (Colwell and
Coddington, 1994; Gotelli and Colwell, 2001; Koellner et al., 2004;
Kalkhan et al., 2007), (ii) avoiding the onset of artefacts on the analyses
(Palmer et al., 2008), and (iii) facilitating the reproducibility of
methods. Maximising species obtained per unit of sampling effort re-
duces the cost of the inventorying activities in terms of personnel time,
supplies, and environmental impact (Yoccoz et al., 2001; Baffetta et al.,
2007).

One of the major issues in collecting field data is the autocorrelated
structure of communities and ecosystem processes, which can lead to
spurious results during data analysis (Legendre, 1993). Indeed, ac-
cording to ‘distance decay of similarity’ law (Tobler, 1970; Nekola and
White, 1999) which states that “everything is related to everything else, but
near things are more related than distant things”, we can assume that
species replacement along ecological gradients (Legendre, 2014) tends
to increase by increasing the distance among sampling units, because
habitats and environmental conditions are expected to be less similar
(Kunin, 1997; Stohlgren, 2007; Chiarucci et al., 2009; Dengler, 2009).

Spatial autocorrelation may strongly influence analyses (Kühn, 2007)
and affect cost efficiency (Bacaro, 2008) also in a sampling perspective.
Accordingly, spatially-explicit methods should be preferred in order to
decrease the number of samples (i.e., reduce sampling effort), to im-
prove sampling accuracy (Haining, 2003; Wang et al., 2012), and to
provide robust estimates of biodiversity at different hierarchical levels,
from individuals to communities (Rocchini et al., 2018 and literature
therein). In the perspective of the above-cited spatially-explicit
methods, remote sensing approaches allow “the acquisition of informa-
tion about Earth’s surface without being in physical contact with it”
(Wegmann and Leutner, 2016) thus representing a promising tool in
biodiversity studies (Rocchini et al., 2018) and providing important
ecological data that are explicit in the spatial domain. Remote sensing
samples reflect and emit electromagnetic radiation from the Earth’s
ecosystems. Spectral data can be easily acquired from a plethora of
online portals, and then processed by the user in several ways, de-
pending on the study purposes. The most frequently used vegetational
index is the Normalised Difference Vegetation Index (NDVI), first pro-
posed by Rouse et al., 1974, and based on the use of near-infrared and
red wavebands. NDVI quantifies vegetation greenness, and is useful for
understanding vegetation cover types. It has been shown that remote
sensing is both efficient and appropriate to plan an objective sampling
design (see Rocchini et al., 2010 for a review). Palmer et al. (2002)
formulated the so-called ‘Spectral Variation Hypothesis’ (hereafter
SVH), which states that spectral variation in remotely sensed images is
expected to be related to environmental heterogeneity and therefore
could serve as a proxy of species diversity. Numerous strategies have
been tested to quantify the spectral variation of a satellite imagery to
provide a link with species diversity (e.g., Podolsky, 1994; Gould, 2000;
Foody and Cutler, 2003; Rocchini, 2007; Rocchini et al., 2009;
Oldeland et al., 2010). The validity of these approaches is highly de-
pendent on several factors, such as the type of vegetation investigated,
and the metrics derived from remotely sensed information to estimate
spectral heterogeneity (Rocchini et al., 2010, 2018).

Our study aims at comparing the efficiency of two floristic sampling
strategies (hereafter named as ‘basic’ and ‘advanced’ strategies), based
on probabilistic approaches, which show an increasing design com-
plexity. In the ‘basic strategy’, the study area is divided into sampling
sites coarsely homogeneous on vegetational grounds, then sampled
using a purely spatial optimisation algorithm. On the contrary, the
‘advanced strategy’ is based on the SVH, and explores the integration
within the sampling design of additional, more detailed, ecological
information from remote sensing data. To offer the widest chances of
application of the method, we designed sampling strategies assuming
no availability of previous vegetation or habitat cartography.

As an indicator of sampling efficiency, we compared three different
criteria between the selected strategies: (i) the trend of plot-based
rarefaction curves, (ii) the time-effort, and (iii) the analysis of the
spatial structure of β diversity among sampling units. The resulting
'optimal' sampling strategy should allow the sampling of communities
as diverse as possible from the compositional point of view. The latter
point is crucial in sampling optimisation, since a redundant sampling
increases the risk of obtaining similar floristic inventories, determining
a waste of time and financial resources, which could be allocated to
other sampling localities.

2. Material and methods

2.1. Study area

The study area is the central and northern portions of the
Migliarino-San Rossore-Massaciuccoli Regional Park (MSRM Park;
Fig. 1), an area well documented in floristic literature. Within this area,
we chose three sampling sites coarsely homogeneous on vegetational
grounds, as a proxy for the general habitat variation found in the whole
area. Specifically, the selected sites were: Site A (sand dune vegetation,
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1.28 Km2), Site B (thermophilous forests and maquis, 2.39 Km2), and
Site C (patches of thermophilous forests, hygrophilous forests, and open
spaces, 2.07 Km2). Previous information on floristic inventories in the
sampling sites were extracted from the online geodatabase Wiki-
plantbase #Toscana (Peruzzi and Bedini, 2015), in which all the flor-
istic records available for the MSRM have been stored (see Supple-
mental Material S1 for the species lists).

2.2. Sampling strategies

Two different probabilistic sampling strategies characterised by an
increasing design complexity were adopted: in the ‘basic strategy’, we
applied a spatially optimised sampling design by minimising spatial
autocorrelation among sampling units (hereafter, plots), by just as-
suming a gross a priori selection of the three environmentally diverse
sampling sites. In the ‘advanced strategy’, we added information about
environmental heterogeneity applying the principles of the SVH.
Further details on both strategies are described below.

For each strategy, we selected 15 square plots of 100 m2 per site, for
a total of 45 plots. The number of plots and plot size were chosen to
guarantee a good trade-off between statistical robustness and sampling
effort (Stohlgren et al., 1997; Maccherini et al., 2020). We selected 10
× 10 m plots considering this size as able to capture diversity in dif-
ferent habitat types (from sand dunes to forests) and to ensure plots
inventories as complete as possible. The plot orientation was randomly

selected from the four cardinal directions (North, South, East, West). All
plots were located in the field with a GPS Garmin Oregon 600 (accuracy
4 m); sampling frequency was bimestrial, from March to November (5
temporal replicates in total), in order to fully cover the phenological
season and to avoid temporal sampling bias. The ‘basic strategy’ was
carried out in 2017, and the ‘advanced strategy’ in 2018. Following our
sampling design, a total of 450 sampling replicates were recorded.

For each plot, we drafted a species list, along with the time needed
to reach the plot, to lay the quadrat and to collect species occurrences.
Sampling time was recorded as the time needed to draft the floristic
inventory of a plot in the field, whereas the time to reach a plot was
measured by recording the travelling time spent from a plot to the next
one (for the first sampling unit in a given sampling day, we used the
access to the sites as fixed point).

Whenever possible, species were identified directly in the field;
when direct identification was uncertain or not possible, we collected
specimens outside the sampling area. Identification in the laboratory
was performed through analytical keys available in floras (e.g., Pignatti,
1982; Tison and de Foucault, 2014) and in monographs of given
taxonomic groups. Collected specimens were deposited at PI herbarium
(acronym follows Theirs, 2019 onwards). Nomenclature and taxonomic
circumscription follow the Italian Checklists of vascular flora
(Bartolucci et al., 2018; Galasso et al., 2018).

Fig. 1. (a) Location of the study area with respect to Mediterranean basin. (b) Tuscany region, in red the macro-area where sampling sites were selected. (c)
Particular of the study area showing the three sampling sites. To draft the satellite map, we used the spectral images (red, green, and blue bands) from Landsat 8 as
provided by U.S. Geological Survey (U.S. Geological Survey (USGS), 2018) (for interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

M. D’Antraccoli, et al.

3



2.3. Basic sampling strategy

The ‘basic strategy’ was applied using the algorithm provided by the
R package ‘spcosa’ (Walvoort et al., 2010), which computes stratified
random samplings. Specifically, the algorithm partitions a spatial object
into compact strata of equal area using k-means clustering, with the
objective function to minimise the mean squared shortest distance
(MSSD) among strata centroid (for further analytical details, see
Walvoort et al., 2010). This approach ensures a spatially optimised
sampling design, since it drafts sampling strata showing optimal cov-
erage and disposition across the sampling site, hence reducing spatial
autocorrelation among sampling units. Furthermore, using this algo-
rithm, strata are determined on an equally-sized partition of the whole
sampling area, thus avoiding any undesirable edge effect. The number
of strata was set up as n = 15 for each site, and one plot per stratum
was randomly selected to match the total sampling effort planned per
site.

2.4. Advanced sampling strategy

To perform the ‘advanced strategy’, we firstly acquired satellite
images of the study area in the form of raster layers, with a spatial
resolution of 30 m from Landsat 8, as provided by U.S. Geological
Survey (U.S. Geological Survey (USGS), 2018). Red and infrared bands
(see details at Supplemental S2.1) were used to obtain the NDVI maps
of the three sampling sites, in the form of raster layers through the
following formula.

=
−

+
NDVI

NIR RED
NIR REDx y

x y x y

x y x y
[ , ]

[ , ] [ , ]

[ , ] [ , ]

RED and NIR are the values of red and near infrared bands at spatial
location [x, y], respectively. NDVI can vary between -1.0 and 1.0: ne-
gative values correspond to water, values close to zero (∼ -0.1–0.1)
correspond to barren rocky, sandy, or snowy areas; sparse vegetation
such as shrubs and grasslands may result in moderate NDVI values (∼
0.2–0.5), whereas high NDVI values (∼ 0.6–0.9) correspond to dense
vegetation such as forests (Neigh et al., 2008; Wegmann and Leutner,
2016).

Then, we wrote an R routine (R Core Team, 2019; code available in
Supplemental S2.2) to iteratively displace random points on sampling
sites and then to select the best spatial configuration following two
given conditions: (i) maximising NDVI variance among plots and ii)
maximising their dispersion within the sampling area. These two con-
ditions should ensure that the higher NDVI variance cope with spatial
dispersion of sampling units, in order to reduce as much as possible
habitat similarities among plots, resulting thus in a more complete final
floristic inventory for the study sites selected. This function works in 4
fundamental steps, as follows (names follow the R code): once defined
the number of iterations ‘perm’, the number of plots to sample ‘samp’,
and an arbitrarily chosen quantile ‘quant’, the algorithm (i) explores
perm random configurations of samp plots within the NDVI map (here,
perm = 105 and samp = 15); (ii) for each configuration, it measures
both the NDVI variance and the distance of each plot from the plots’
centroid; (iii) it filters all the solutions with NDVI variance above the
quant value (here, quant = 0.99); (iv) it selects the solution showing the
maximum spatial median value of plots distances, according to the al-
gorithm published by Vardi and Zhang (1999). The spatial configura-
tion of sampling points for both strategies is shown in Fig. 2.

2.5. Data analysis

Floristic inventory completeness was estimated for each strategy
and site by comparing the number of species detected in our work
against that reported in Wikiplantbase #Toscana.

In order to assess differences in floristic compositions returned by

‘basic strategy’ and ‘advanced strategy’ at each spatial scale (whole
study area, sampling sites), we used multivariate permutational ana-
lysis of variance (PERMANOVA, Anderson, 2001) with Jaccard dis-
similarity and 4999 permutations of the residuals under the reduced
model and Type III sums of squares. We tested the following factors:
‘Site’ (fixed, three levels), ‘Strategy’ (fixed, two levels), along with the
interaction term ‘Strategy × Site’. In case of significant terms, these
were investigated using a posteriori pairwise comparisons with t statistic
and 4999 permutations. The relationship among plots in terms of
floristic composition and adopted strategy was visualised through a
Non-metric MultiDimensional Scaling (NMDS; Kruskal and Wish,
1978). Moreover, the correlation between mean plot sampling time and
plot species richness was assessed through the Spearman’s correlation
test, whereas differences of sampling times were tested through the
analysis of variance (ANOVA).

The rate of accumulation of species against sampling effort was
assessed through Spatially Explicit Rarefactions (SERs, Bacaro et al.,
2016), which unlike standard plot-based rarefaction curves take into
account the spatial structure of the data (Bacaro et al., 2012). However,
to improve the accounting for the spatial configuration of sampling
units, we chose to apply a new algorithm, namely the here-defined
function centroid_pattern(), written in R programming language (see
Supplemental S2.3 for the code and further details).

To estimate the quota of additional plots to sample for inventory
completeness (A), we used this formula:

=
−

∑ −

−
=
−

+

A
N ntot samp

nspecies nspecies
n( 1)

i
n

i i1
1

1

where n = number of sampled plots, Ntot
= number of species occurring

in the site, nsamp = number of detected species, nspeciesi = mean
number of detected species in i plots according to the rarefaction curve.
Accordingly, the estimated number of additional plots to reach the in-
ventory completeness (A) is determined by the number of species still
undetected over the mean number of additional species found when a
new plot is added. The assumption that the accumulation rate of species
remains constant during the addition of new plots is a severe over-
estimation, thus determining an extremely conservative estimate.
Accordingly, in our intentions the estimate does not play a predictive
role, but instead it is just useful to compare the two sampling strategies.

In order to allow a visual comparison of α and β diversity spatial
patterns between strategies, we performed a stochastic kriging proce-
dure based on a Gaussian Spatial Simulation algorithm (Goovaerts,
1999), using the ‘gstat’ R package (Gräler et al., 2016). This method was
selected because of its ability to grasp heterogeneity area while pre-
serving its variance with respect to classical kriging methods (Zhao
et al., 2018 and references therein), and allowing also the realisation of
Uncertainty Maps. Semivariogram parameters selected to draft the
maps are available in Supplemental S2.4. Concerning α diversity, spe-
cies richness was selected as response variable, whereas the contribu-
tion of each plot to the total β diversity detected by each strategy was
quantified using Local Contributions to Beta Diversity (hereafter LCBD,
Legendre and De Cáceres, 2013). Let Y be a presence-absence dataset
structured as plots × species, having p species and n sampling units, the
LCBD of plots is then defined as follows:

=
∑ −

∑ ∑ −

=

= =

y y

y y
LCBDs

( )

( )
j
p

ij i

i
n

j
p

ij i

1
2
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In this formula, i represents the ith sampling unit, j the jth species,
yij individual values in the dataframe Y. LCBD represents the degree of
uniqueness of a plot in terms of floristic composition, and larger values
of LCBDs indicate sites whose species composition strongly differs from
that of a mean site. This statistic was computed through the R package
‘adespatial’ (Dray et al., 2019). In our expectations, the best strategy
should be able (i) to increase LCDB absolute values (increase plot

M. D’Antraccoli, et al. Perspectives in Plant Ecology, Evolution and Systematics 45 (2020) 125547

4



compositional distances from the plots' centroid) and (ii) to minimise
differences among LCDB values (compositional distances from the
centroid are similar): such a pattern would denote a tendency to select
sampling units contributing more homogeneously to total β diversity.

All the above-mentioned analyses were performed in R 3.6.0 (R
Core Team, 2019), except for PERMANOVA and NMDS analyses,
computed with the software PRIMER 6 (Clarke and Warwick, 2005)
with the add-on package PERMANOVA + (Anderson et al., 2008).

3. Results

3.1. Floristic composition of the inventories

Considering the whole study area, plot species richness ranged from
3 to 35 for the ‘basic strategy’, with a mean value of 18.5. Concerning
the ‘advanced strategy’, species richness ranged from 6 to 46, with a
mean value of 26.8. In Site A, mean species richness was 20.6 (range:
9–29) for the ‘basic strategy’, and 27.1 (range: 14–46) for the ‘advanced
strategy’. In Site B, mean species richness was 20.9 (range: 11–35) for
the ‘basic strategy’, and 30.1 (range: 22–43) for the ‘advanced strategy’.
In Site C, mean species richness in plots were 13.9 (range: 3–26) for the
‘basic strategy’, and 23.1 (range: 6–38) for the ‘advanced strategy’. As
showed in Table 1, the ‘advanced strategy’ consistently allowed the
detection of a higher number of species.

PERMANOVA outputs showed a significant interaction between the
terms ‘Site’ and ‘Strategy’ (pseudo-F = 1.48, p<0.01, see Table 2);
floristic composition of plots among sites and strategies is graphically
shown by NMDS (Fig. 3). Post-hoc tests highlighted that sites differ in
both strategies (p<0.001), whereas floristic composition yielded by
the two strategies did not differ in Site A (t = 1.05, p>0.05). On the

contrary, in Site B (t = 1.28, p<0.05) and Site C (t = 1.47, p< 0.01)
significant differences were highlighted (see Supplemental S2.5 for a
posteriori pairwise comparisons).

3.2. Rarefaction curves

SERs at largest spatial scale show an increasing pattern in all sites
for both strategies (Fig. 4). At every sampling effort level, the rarefac-
tion curve obtained with the ‘advanced strategy’ lies above that ob-
tained with the ‘basic strategy’. All curves showed no asymptotic pat-
tern.

Concerning additional plots needed to reach a putative 'inventory
completeness' at study area scale, the estimation was 222 for the ‘basic
strategy’ and 138 for the ‘advanced strategy’. In site A 63 (‘basic’) and
29 (‘advanced’) plots, in site B 23 (‘basic’) and 15 (‘advanced’), whereas
in Site C 85 (‘basic’) and 41 (‘advanced’).

Fig. 2. Spatial pattern of sampling units in the three sites (A), (B), and (C). In each box: on the left the ‘basic strategy’, on the right the ‘advanced strategy’.

Table 1
Summary statistics of inventories returned by the two sampling strategies (‘basic’, ‘advanced’) at the scales of the whole study-area and single sampling sites. ‘%
complet.’ indicates the % proportion of inventory completeness with respect to available floristic knowledge for the sites.

Study-area Site A Site B Site C

Basic Advanced Basic Advanced Basic Advanced Basic Advanced

n° plot 45 45 15 15 15 15 15 15
Taxa detected 195 285 86 142 100 128 70 121
% complet. 17.00 24.85 22.69 37.47 43.29 55.41 17.11 29.58

Table 2
PERMANOVA outcome based on Jaccard dissimilarities between plots along
with the proportion of variance explained by each factor (***p< 0.001;
**p< 0.01; *p<0.05).

Source df SS MS Pseudo-F Var (%)

Site 2 81344.00 40672.00 12.55*** 26.77
Strategy 1 6265.20 6265.2.00 1.93*** 1.44
Site × Strategy 2 4811.10 4811.10 1.48** 2.24
Residual 84 272340.00 3242.10 – 69.55
Total 89 369570.00 – – –
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3.3. Time effort

There was a positive correlation (Spearman’s ρ = 0.70, p<0.001)
between the mean time to sample a plot and its richness in species.
Nevertheless, no significant difference was observed across sampling
sites between the two strategies (F = 2.00, p>0.05; Supplemental

S2.6). This allowed to calculate a mean total time to sample a plot
(mean time to sample a plot × n° of sampling sessions) irrespective of
strategy and site, which is 85± 34 min. The mean total travelling time
to reach a plot was 76.9± 24.7 min and 50.7±30.2 min for the ‘basic’
and ‘advanced strategy’, respectively, showing significant differences
within all the sites (Site A: p<0.001; Site B: p< 0.05; Site C:

Fig. 3. Non-metric MultiDimensional Scaling ordination of floristic composition of plots based on Jaccard dissimilarity (stress = 0.15). Colours corresponds to factor
‘site’ (three levels: ‘A’, ‘B’, and ‘C), whereas symbols represent different sampling strategies (two levels: ‘basic’ and ‘advanced’).

Fig. 4. Spatially Explicit Rarefaction curves for the study area (graph above) and samplings sites (graphs below, from left to right: Site A, Site B, and Site C). Dashed
and continuous lines represent the ‘basic’ and ‘advanced’ strategy, respectively.
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p<0.001) (Fig. 5). On the contrary, for a given sampling strategy, no
difference in travelling time to reach plots within each site was de-
tected.

3.4. Patterns of spatial configuration of α and β diversity

Species richness (α diversity) values across the study sites showed a
wider variation range in the ‘advanced strategy’ and no consistent
pattern emerged between the two strategies (maps are available in
Supplemental Material S2.7). In all the sites, the ‘advanced strategy’
scores higher LCBD median values and smaller variation range with
respect to the ‘basic strategy’ (see Supplemental S2.8 for the complete
table). Fig. 6 showed the spatial pattern of LCBD values across the study
sites (Uncertainty Maps are available in Supplemental Material S2.9).

4. Discussion

4.1. Balancing sampling effort and inventory completeness: which strategy
to follow?

The ‘advanced strategy’ is more effective in detecting additional
species than the ‘basic’ one, irrespective of the spatial scale (study area,
sites) or the vegetational context considered. Accordingly, our results
concerning sampling efficiency are not scale-dependent. In addition,
considering (i) the good floristic knowledge of the sampling sites before
the start of our field surveys, and (ii) the multiple sampling sessions per
plot along the entire phenological season, we can exclude that having
performed the two sampling strategies in different years could have
introduced some bias, i.e. 'favouring' in some way the ‘advanced
strategy’ (performed in the second year).

The sampling design in the ‘advanced strategy’ is just a little more
complex, since it requires spectral data gathering (two spectral bands in

Fig. 5. Boxplots showing the total mean time to reach a plot (mean time to reach a plot × n° of sampling sessions) in all the sampling sites.

Fig. 6. Kriging maps of LCBD values for the three sampling sites: (A), (B), and (C), respectively. For each site, left panel refers to the ‘basic strategy’ whereas the right
panel to the ‘advanced strategy’. Graphs on each plot margin show the mean value of LCBD at a given value of longitude (x-axis) or latitude (y-axis).

M. D’Antraccoli, et al. Perspectives in Plant Ecology, Evolution and Systematics 45 (2020) 125547

7



the form of raster layers, easily available for any other part of the
world) and geoprocessing (performed by the R code we are providing).
Anyway, the net gain in the number of sampled species in function of
sampling effort completely justifies the addition of this level of com-
plexity. As resulted from several perspectives, the ‘advanced strategy’
performs better than its ‘basic’ counterpart, being able to inventory a
greater number of species for every sampling effort threshold. However,
pairwise comparisons (see PERMANOVA outputs in Supplemental
Material) of floristic lists returned by both strategies of the same sam-
pling site did not detect differences between inventories. Both sam-
plings strategies missed rare species known to occur within the study
sites, such as for instance Hypericum elodes L., whose unique Italian
population falls in Site C, or Utricularia australis R.Br., whose unique
population in MSRM Park falls in SITE A.

The rarefaction curves obtained with ‘basic’ and ‘advanced’ strate-
gies, respectively, differed greatly and consistently across study areas.
As hypothesised, the ‘basic strategy’, based solely on a coarse en-
vironmental classification followed by a spatial optimisation, collects
less species than the ‘advanced strategy’. Moreover, at least in Site A
and Site C, the rarefaction curves showed a severe reduction in the
slopes of their final part, with respect to the initial part. This denotes
that even if the sampling is clearly incomplete, this sampling strategy
struggles to select sampling units hosting a relevant quota of additional
species.

Sampling time is a crucial parameter when dealing with sampling
optimisation (Stohlgren et al., 1997). In our work, we quantified and
analysed sampling time by considering two different variables: a) the
‘time spent for collecting species’ in the plot (sampling time) and b) the
‘time to reach the sampling unit’ (travelling time). As already described
in literature (e.g., Gray and Azuma, 2005; Zhang et al., 2014), a positive
relationship between the number of species occurring in a plot and the
sampling time was observed in our study, with no substantial variation
between sampling strategies or sites. On the other hand, the travelling
time, a parameter that is rarely taken into account in sampling proto-
cols, exhibited differences between the sampling strategies we tested.
Travelling time is indeed recognised as the main factor causing a severe
increase of sampling costs (Stohlgren, 2007). The higher travelling time
we observed in the ‘basic strategy’ is probably related to the higher
distance among selected plots, related to the adopted algorithm pro-
moting a uniform distribution of sampling units on the whole surface.
Conversely, in the ‘advanced strategy’, we observed a tendency to form
clusters, a factor that, on average, reduces travelling time. Another non
negligible reason influencing travelling time is the year of data collec-
tion: the ‘advanced strategy’ was carried out in the second year with
respect to the ‘basic strategy’, so that also an increased geographical
knowledge of the sites possibly contributed to lower travelling times.
Consequently, more efforts should be spent to code formal sampling
design aimed to optimise this trade-off, which is crucial in determining
the sampling efficiency.

Finally, an interesting pattern of beta diversity characterised the
two sampling approaches: in the ‘advanced strategy’, specifically, the
range of variation of LCBD values is smaller. This means that the
average contribution of complementary species at the plot level to the
total β diversity of the whole sampled area is more uniform. In other
words, the spatial pattern of beta diversity reflects a better distribution
of plots across different habitats. Conversely. the ‘basic strategy’ tends
to collect more sampling units in common habitats (with a higher
proportion of species in common, and, consequently, a lower con-
tribution of LCBD to the total beta diversity), while only a small fraction
of plots captures rare habitats (causing high LCBD differences) (see
Supplemental S2.10).

4.2. Probabilistic vs. Preferential sampling in floristics: the way out of the
sampling dilemma

To draft a species inventory, probabilistic and preferential

samplings represent two opposite approaches to reach the same final
goal, i.e. an inventory as complete as possible. Probabilistic methods
have the great potential – yet mostly unexplored in floristics – to per-
form objective and flexible sampling methods, then making possible
quantitative and inferential analyses. On the other hand, probabilistic
sampling does not constitute, alone, the final answer to the sampling
dilemma for floristic research. The above-mentioned ‘botanic internal
algorithm’ represents a valuable source which should not be overlooked.
As already documented in literature (Palmer et al., 2002; Hédl, 2007;
Golodets et al., 2013), and confirmed by our study, rare species are
likely missed by probabilistic strategies.

More theoretical and practical efforts should be spent in ‘joining the
incompatible’ (quoting Chiarucci et al., 2018), i.e. merging into a stan-
dardised and efficient way probabilistic and preferential approaches,
preserving their peculiarities and exploiting complementarity to over-
come limitations.

In zoological sampling literature, the integration of different sam-
pling methods is a recognised tool to increase the pool of sampled
species. This practice is generally known as ‘structured inventory’
(Gotelli and Ellison, 2013). By transposing and remodulating this con-
cept to floristic inventories, we propose to plan floristic inventories
with an integral probabilistic design and then to complement with
species (i) detected outside from the sampling units, for instance along
trajectories joining sampling units, and (ii) detected from ad hoc pre-
ferential surveys. The first step of this sampling protocol will allow to
obtain a reproducible sample of the investigated area (Golodets et al.,
2013), providing primary data to perform statistical inferences. Then,
the addition of new species can be boosted through preferential surveys
based on subjective choices. In terms of cost-efficiency trade-off, the
additional cost required to obtain new information is negligible, being
based on a combination of the ‘botanic internal algorithm’ and the
knowledge of the territory and its flora, acquired/improved during the
probabilistic sampling in the first step of the workflow.

5. Conclusions and future prospects

Although floras are generally recognised to have limitations and
biases (Palmer et al., 1995; Bennett, 1997; Diggs and Lipscomb, 2002;
Palmer, 2005), they represent a fundamental raw material in the con-
servation practice and to study biodiversity patterns (D’Antraccoli
et al., 2019). As argued by Palmer (2005), floras are still underutilised
for quantitative analyses. However, an increasing awareness of the key
role represented by primary floristic data is spreading at global level in
recent years (Kier et al., 2005; Whittaker et al., 2005; D’Antraccoli
et al., 2019; Weigelt et al., 2020). Our study aims to explore the ap-
plication of probabilistic approaches to integrate traditional pre-
ferential floristic workflow. We designed, and tested in the field, a
sampling method based on the maximisation of the spectral hetero-
geneity of sampling units, which could be routinely integrated in flor-
istic studies.

Our study performed for the first time a spatial analysis of sampling
strategies combining the use of beta diversity captured by each sam-
pling unit with kriging interpolation approaches. The idea behind this
approach is to map beta diversity, which is intrinsically multivariate,
transforming it in univariate synthetic response data, such as those
expressed by LCBD values.

Our approach can be profitably applied to any other geographic
location. Compared to existing probabilistic sampling methods, it has
the advantage to ensure representativeness of sampling units from
different habitats at a fine spatial-scale. This avoids the loss of in-
formation intrinsic in traditional probabilistic sampling methods, in-
cluding those based on the stratification of environmental features.
Anyway, standardised probabilistic samplings show some limitations,
which are very difficult to overcome when the main goal is to obtain an
inventory as complete as possible. Accordingly, codifying a standar-
dised and reproducible protocol able to integrate the former approach
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with preferential surveys constitutes a very challenging task for the
future of floristic research.
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