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ABSTRACT
The glycemia regulation is a significant challenge in the
Artificial Pancreas (AP) scenario. Several control systems have
been developed in the last years, many of them requiring
meal announcements. Therefore, if the patients skip the meal
announcement or make a mistake in the estimation of the
amount of carbohydrates, the control performance will be
negatively affected. In this extended version of our previous
work, we present a Model Predictive Controller (MPC) for the
AP in which the meal is treated as a disturbance to be esti-
mated by an Unknown Input Observer (UIO). The MPC con-
straints are expressed in terms of Signal Temporal Logic (STL)
specifications. Indeed, in the AP some requirements result in
hard constraints (in particular, absolutely avoid hypoglycemia
and absolutely avoid severe hyperglycemia) and some other
in soft constraints (avoid a prolonged hyperglycemia) and STL
is suitable for expressing such requirements. The achieved
results are obtained using the BluSTL toolbox, which allows to
synthesize model predictive controllers with STL constraints.
We report simulations showing that the proposed approach,
avoiding unnecessary restrictions, provides safe trajectories in
correspondence of higher unknown disturbance.

KEYWORDS
Artificial pancreas; model
predictive control; Signal
Temporal Logic; unknown
input; observer

Introduction

Glucose is a simple sugar that, circulating in plasma, provides energy to
cells. The glucose concentration in blood is important for human health
care; in particular, a persistent high glucose-level in blood, also known as
hyperglycemia condition, leads to glucose toxicity and therefore to cell dys-
function. On the other hand, a low glucose-level in blood, also referred to
as hypoglycemia, may cause potentially fatal conditions. Typically, blood
sugar concentration increases after food intake and the body regulates
blood glucose levels as a part of metabolic homeostasis, thereby restoring a
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normal value of sugar concentration in blood (around 4:4� 6:1 mmol=L).
This mechanism is characterized by a hormone regulation: the catabolic
hormones increase the blood glucose; the anabolic hormones, such as the
insulin, decrease it. The pancreas wisely balances these hormones delivery
by using the a and the b cells, respectively. Type 1 Diabetes Mellitus
(T1DM) is a metabolic disease induced by the pancreas inability in insulin
production. Patients affected by this particular pathology must inject insu-
lin to prevent the increase of glucose level in blood.
The Artificial Pancreas is a wearable device developed to simplify the ther-

apy management for T1DM patients. The main elements of an AP are a
Continuous Glucose Monitoring (CGM) system, which provides a real-time
measure of glucose level in blood, and a pump, which allows a subcutaneous
delivery of insulin. Ideally, a controller has to automatically compute the
required amount of insulin starting from the knowledge of blood glucose
concentration. Unfortunately, the subcutaneous administration of insulin
leads to a delay in its absorption (American Diabetes Association 2013). The
resulting effect is a rapid growth of glucose after meal that increases the risk
of the hyperglycemia condition (Gingras et al. 2018). The current closed loop
devices solve the aforementioned problem by requiring an accurate informa-
tion about meal carbohydrate-content and meal announcement. These
requests are not easy to satisfy, especially for adolescents, and the resulting
mistakes can lead to undesirable and dangerous outcomes.
The ongoing research direction is to remove meal announcement by

automating meal detection and insulin dose computation. Several
approaches in literature have already been proposed. Certain solutions use
the glucose level in blood for meal detection and estimation. For example,
in Dassau et al. (2008) authors process glucose measurements in parallel by
using a glucose rate of change (ROC) and a Kalman Filter. Furthermore,
they define a meal detection algorithm in which a voting system selects one
among 4 meal detection methods. Lee et al. (2009) employs the first and
second glucose derivatives with some threshold criterion to assess the meal
bolus. However, some other solutions employ an estimation of the meal
absorption dynamic, for example using Kalman Filter (Xie and Wang 2017)
or unscented Kalman Filter (Turksoy and Cinar 2015; Ramkissoon et al.
2018). In Sala, D�ıez, and Bondia (2018) authors consider the viability of
generalized extended state observer (GESO) to estimate the rate of meal
glucose appearance. Sliding mode observers (SMO) are employed to recon-
struct disturbances by means of the equivalent output injection term (Sun
et al. 2017). Sala-Mira et al. (2019) proposes an estimation of the meal glu-
cose appearance rate obtained via a first order sliding mode observer
(FOSMO) and a meal detector algorithm based on a super-twisting obser-
ver (ST).
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In a previous work (Cairoli et al. 2019), we have presented a Model
Predictive Controller (MPC) for the AP. We have addressed the problem
of imposing temporal constraints between events by using the Signal
Temporal Logic (STL). Such a solution has allowed us to express both hard
(avoid absolutely severe hyperglycemia and avoid absolutely hypoglycemia)
and soft constraints (avoid prolonged hyperglycemia), thus increasing the
maximum amount of tolerated carbohydrates with respect to some previous
works. However, Cairoli et al. (2019) requires information about the meal
occurrence and its carbohydrate-content.
In the present work we overcome such limitation by employing an

Unknown Input Observer (UIO) (Radke and Gao 2006) to estimate the
carbohydrate intake, treated as a (unknown) disturbance. This additional
step provides a new complete system that can be useful for large clinical
research studies.
The remainder of the paper is organized as follows. In Section Model of

glucose metabolism, the employed model of the glucoregulatory system is
described. Section Signal Temporal Logic introduces the general behavior of
the STL as a quantitative semantic. In Section Control problem the Model
Predictive Control Problem including the STL constraints is formulated.
Section Unknown Input Observer shows the general UIO design. In Section
BluSTL tool the employed Matlab toolbox is introduced. Section
Implementation and simulation results describes the implementation proce-
dures and the obtained results in all the considered scenarios. Finally, some
conclusions are reported in the last section.

Model of Glucose Metabolism

In order to define the plant model for the implementation of MPC, we
choose the Hovorka compartment ODE model (Hovorka et al. 2004). It

Figure 1. Hovorka compartment model outline.
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represents the glucoregulatory system and includes submodels representing
absorption of subcutaneously administered short-acting insulin and gut
absorption. The model outline is depicted in Figure 1. Parameter values are
listed in Table 1, while the full set of differential equations is the following:

_Q1 tð Þ ¼ �F01 � x1Q1 þ k12Q2 � FR þ EGP0 1� x3ð Þ þ UG tð Þ (1.a)
_Q2 tð Þ ¼ x1Q1 � k12 þ x2ð ÞQ2 (1.b)

_S1 tð Þ ¼ u tð Þ þ ub � S1
tmaxI

(1.c)

_S2 tð Þ ¼ S1�S2
tmaxI

(1.d)

_I tð Þ ¼ S2
tmaxIVI

� keI (1.e)

_xi tð Þ ¼ �kaixi þ kbiI i ¼ 1, 2, 3ð Þ (1.f)

y tð Þ ¼ G tð Þ ¼ Q1 tð Þ
VG

(1.g)

where

UG tð Þ ¼ DGAG

0:18t2maxG
t e

�t
tmaxGð Þ: (2)

It is possible to identify three subsystems:

� The Glucose Subsystem (1.a, 1.b) that allows to track the amount of
glucose (in mmol) in the accessible and non-accessible compartments
(Q1 tð Þ and Q2ðtÞ respectively). GðtÞ (mmol=L) (1.g) represents the glu-
cose concentration in plasma with a given distribution volume VG (L),
EGP0 (mmol=min) the endogenous glucose production rate and UG tð Þ
(mmol=min) (2) the glucose absorption rate after consuming the main
external disturbance DG (grams of carbohydrates).

� The Insulin Subsystem (1.c, 1.d, 1.e), defined by two-compartment
chain, S1 tð Þ and S2 tð Þ measured in U (units of insulin), representing the
absorption of subcutaneously administered insulin. The administration
of insulin computed by the controller is uðtÞ (U=min), whereas ub

Table 1. Hovorka parameters’ values.
Parameter Value Parameter Value

w 100 ke 0:138
k12 0:066 VI 0:12w
ka1 0:006 AG 0:8
kb1 0:0034 tmaxG 40
ka2 0:06 EGP0 0:0161w
kb2 0:056 F01 0:0097w
ka3 0:03 tmaxI 55
kb3 0:024 FR 0
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(U=min) and IðtÞ (U=L) are respectively the basal insulin infusion rate
and the insulin concentration in plasma.

� The Insulin Action Subsystem (1.f) that models the action of insulin on
glucose distribution/transport x1 tð Þ, glucose disposal x2 tð Þ, and
endogenous glucose production x3 tð Þ (unit-less).

In a unified fashion, it can be represented as a non-linear system R of the form:

_xðtÞ ¼ FðxðtÞ, uðtÞ, dðtÞÞ
¼ f ðxðtÞÞ þ Bu � uðtÞ þ Bd � dðtÞ

yNLðtÞ ¼ cxðtÞ
,

8><
>: (3)

where Fðx, u, dÞ and f ðxÞ are non-linear functions, x tð Þ 2 X � Rn is the state,
u tð Þ 2 U � R is the control input, d tð Þ 2 D � R is the environment input
(also referred to as disturbance, in particular the glucose production rate
UG tð ÞÞ and yNL tð Þ 2 Y � R is the output. For the MPC control system part,
the model is linearized around an equilibrium and discretized using a time
step Dt (it will be deepened later). The resulting system RL is of the form:�

xkþ1 ¼ Axk þ Buuk þ Bddk
yLINk ¼ Cxk:

(4)

Signal Temporal Logic

For the examined task the specifications should be independent from the
chosen Dt; this is a good reason to prefer STL over Linear Temporal Logic
(LTL) (Pnueli 1977).
An atomic predicate pl is a function of the form X � Y � U �D !

f0, 1g, where 0 and 1 are the Boolean representations of false and true,
respectively. The truth value of such atomic predicate depends on the sign
of the function l : X � Y � U �D ! R: Any formula can be defined as a
recursive combination of atomic predicates with the operators present in
the grammar of the considered logic.
The STL grammar is u� ¼ pl j :w j u1 �u2 j alw w j u1until a, b½ �u2,

where � indicates the “and” operator, while alw a, b½ � and until a, b½ � are two
temporal operator, explained later on.
Given an initial state x0 2 X and two sequences u ¼ u0u1���uN�1 and d ¼

d0d1���dN�1 of N elements, a run n x0, u, dð Þ 2 XN is defined as the 4-uple
of sequences x, y, u, d

� �
obtained by applying the two sequences, u and d,

to a system such as RL, starting from x0: n�u denotes that a run
n x0, u, dð Þ satisfies an STL formula u:
The temporal operators can be explained, informally, as the “always”

operator (n� alw a, b½ �w if w holds at all times between a and b) and the
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“until” operator (n�u1until a, b½ �u2 if u1 holds at every time step before u2

holds). An additional temporal operator, known as “eventually” operator,
could be derived from the ones present in the STL grammar
(n� ev a, b½ �u ¼ true until a, b½ �u means that u holds at some time step
between a and b). The formal definition of the operators presented in the
grammar can be found in Raman et al. (2014).
STL admits quantitative semantics which, in addition to Boolean answers

to the satisfaction questions, provides a robustness index qu that expresses
the quality of the satisfaction or violation. It is a real-valued function of n
and t such that qu n, tð Þ > 0 if n, tð Þ� u and qu n, tð Þ < 0 if n, tð Þ=� u
(Raman et al. 2014) and it should be interpreted as how “far” n is from
violating u: In other words, it can be viewed as the signed distance of n
from the set of trajectories satisfying or violating u, in the space of projec-
tions with respect to the function l that defines the predicates of u: The
recursive definition of function qu, with some practical computation exam-
ples, is presented in Raman et al. (2014). The STL specifications are decom-
posed into a set of inequalities over each time horizon, such that
synthesizing a controller fulfilling the formula at each horizon results in
satisfaction of the global specification. In Raman et al. (2014), two automat-
ically-generated mixed integer linear programing (MILP) encodings for
STL specifications are presented. These encodings are employed to find
open-loop control actions that meet the STL properties and that result in
the maximization of the robustness score.

Control Problem

Given an STL formula u, a cost function J, an initial state x0, a time
frame1 of length N and a reference disturbance signal d, the STL model
predictive control synthesis problem can be stated as follows (Raman et al.
2014), in a deterministic setting:
Given a horizon 0 < H < N, for all 0 � k � N � H, compute u	k ¼ uH	

k ,
the first element of the sequence uH	

k ¼ uH	
k uH	

kþ1 � � � uH	
kþH�1 satisfying

u H	
k ¼ argminu H

k 2UH Jðxk, uH
k , dk,uÞ

s:t: nGðxk, uH
k , dkÞ�u: (5)

An adversarial formulation exists (see also Cairoli et al. (2019), Raman
et al. (2014)), which is not used in the present paper.

1the time frame is basically the interval where the STL specifications are evaluated and is different from the
horizon H of the MPC.
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Note that the state of the plant must be accessible and the environment
is assumed to be known in advance in the time frame ½0,N�: As shown in
Raman et al. (2014), it is possible to express both the STL requirements
and the constraints due to the system dynamics in terms of a MILP prob-
lem which can be efficiently solved.
Remark. In the present work stability of the overall control system is not

of concern. Indeed, obtaining trajectories satisfying the STL specifications
is the actual goal (Raman et al. 2014). On the contrary, recursive feasibility
is necessary, to guarantee that the sequence of optimization problems
admits a feasible solutions. In principle, such a problem could be faced by
means of set theoretic tools (Blanchini and Miani 2015), in order to charac-
terize the set of initial conditions and disturbances that guarantees the
existence of feasible solutions. This is left as a matter of further work.

Unknown Input Observer

The glucose absorption rate (2), defined by Hovorka et al. (2004), can be
regarded as an external disturbance/input. In our previous work (Cairoli
et al. 2019), we have assumed that the amount of carbohydrates DG was
known and, therefore, also the resulting UG tð Þ: Instead, we would like this
disturbance to be unknown and therefore estimated. The UIO is a state
representation of a Disturbance Observer (DO), which differs from state
observer for its ability to provide an estimation of both system states and
disturbances (Radke and Gao 2006).
Given a nonlinear system R as in (3) and considering its linearized

description C, around an equilibrium:

C :

_xðtÞ ¼ AxðtÞ þ BuuðtÞ þ BddðtÞ
yðtÞ ¼ CxðtÞ

_zðtÞ ¼ Af zðtÞ
dðtÞ ¼ Cf zðtÞ

�
: X,

8>><
>>:

(6)

where the last two equations represent the model X of the disturbance d,
the resulting UIO system Ĉ takes the form:

Ĉ :

�
_̂x
_̂z

�
¼

�
A BdCf

0 Af

��
x̂
ẑ

�
þ
�
Bu

0

�
uþ Lðy� ŷÞ

d̂ ¼ Cf ẑ
ŷ ¼ Cx̂

,

8>><
>>:

(7)

where the matrix gain L has to be properly chosen. A possible approach
for designing L is described in Rajamani and Cho (1995). There, under
Lipschitz assumptions on the system’s nonlinearity, L is found along with a
Lyapunov function proving the asymptotic stability, by solving a suitable
linear matrix inequality.
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In the Artificial Pancreas the state of the system is not accessible (the plasma
insulin cannot be measured in real time, and there are non-accessible glucose
compartments) but UG tð Þ, given by (2), takes the form of the natural response
of a second order linear system. In this scenario the UIO seems to be an
adequate solution to provide both state and disturbance estimations. It can also
be seen as an observer of the augmented linearized Hovorka model, in which
the meal absorption dynamic model (X : Af , 0,Cf , 0ð Þ) is included. Therefore,
we have employed its discretized version to estimate the full state of the system
C by using the knowledge of the control input (insulin) and of the (non-linear)
Hovorka output (glucose concentration). Hence, the resulting estimate x̂ is dir-
ectly employed for the MPC, while the ẑ is exploited for computing future val-
ues of UG tð Þ (needed for solving the optimization problem). Given zki , the
estimation of the X system state in ki < N, 8k 2 ki � k � N the disturbance d
is computed, according to X, and then used by the MPC.

BluSTL Tool

BluSTL (Donz�e et al. 2015) is a MATLAB-based tool to automatically gener-
ate controllers from specifications written in Signal Temporal Logic (STL)
(Donz�e et al. 2015). It takes as input a linear system and a set of constraints
expressed as STL properties and provides a closed-loop controller that enfor-
ces these constraints on the system while minimizing some cost function. The
user can tune the robustness of satisfaction of the STL specifications as
defined before. The toolbox also supports robust controller synthesis in more
classical sense, i.e., robust to variations of some external disturbance input
(Problem 2). The approach is based on encoding the system dynamics, the
STL constraints and the cost function together in a Mixed-Integer Linear
Programing problem. The controller then consists in a precompiled MILP
which can be solved efficiently by modern MILP solvers, such as Gurobi
(Gurobi Inc. 2015). Given an STL formula u and a cost function of the form
J x0, u, d,uð Þ 2 R, BluSTL can solve control synthesis problems of the form of
(5). In all problems, an initial state x0 2 X , a horizon H and an estimation of
some disturbance signal d 2 DN are given.

Implementation and Simulation Results

Our aim is to apply the MPC-STL approach to the artificial pancreas scen-
ario introduced in Section Model of glucose metabolism. The controller
receives glucose measurements every Dt minutes and calculates the insulin
infusion rate also every Dt minutes although, in principle, non-constant
time steps are possible without changes to the controller design. The com-
puted insulin infusion rate is administered as a constant insulin infusion
over the Dt minutes window.
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The BluSTL requires the plant to be linear. In the following we employ a
discrete-time representation of the Hovorka model linearized around a
proper equilibrium point. The computed control actions are however
applied to the original nonlinear model and the satisfaction of constraints
is checked on the trajectory of the nonlinear model. Given a sampling time
Dt > 0, we assume that the system RL admits a discrete-time description
RLd : xkþ1 ¼ Axk þ Buuk þ Bddk, where 8k > 0, xk is shorthand for x kDtð Þ:
In the following we use a zero-order hold discretization method, meaning
that the control inputs are assumed to be piecewise constant over the sam-
ple time Dt: A run of RLd is a sequence nG ¼ x0u0d0ð Þ x1u1d1ð Þ � � � , while a
cost function J nG x0, u, dð Þð Þ maps runs to R: The complete system block
diagram is shown in Figure 2: the

P
block represents the nonlinear

Hovorka model affected by a disturbance d (unknown to the controller);
the Unknown Input Observer Block is Ĉ, while X is an LTI system, model-
ing the dynamics of the disturbance. At each Dt, a disturbance (UG) and
the control input provided by the controller (u	Þ are applied to R. The sys-
tem R evolves following its dynamics and returns yNL (the glucose level) as
output. Therefore, yNL and u	 are the inputs of UIO (Ĉ), whose output is
the estimation of the states of the linear Hovorka model (x̂) and the states
of the disturbance model X (ẑ). Hence, ẑ is used in X to compute an esti-
mation d̂ of the future disturbance d ¼ UG, used by the MPC. Therefore,
the controller knows only an estimation of the original disturbance UG:

Lastly, the resulting sequence d̂ and x̂ are used as inputs for the MPC &
STL block in order to compute the optimal control input u	:

Observer Design

The Unknown Input Observer requires to define the X system introduced
in Section Unknown Input Observer. This is easily achieved by observing
that (2) is the natural response from initial state z0 ¼ 0 DG

� 	T
of a linear

Figure 2. Block scheme describing the closed loop system. The dashed-grey square block
includes all the elements of the controller.
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system. Indeed, it is well-known (Antsaklis and Michel 2006) that the nat-
ural response of a linear system of the form

_v tð Þ ¼ Mv tð Þ
p tð Þ ¼ Nv tð Þ

�
(8)

from vð0Þ ¼ v0 is p tð Þ ¼ N exp Mtð Þv0:
By taking:

M ¼
� 1
tmaxG

1

0 � 1
tmaxG

2
664

3
775, N ¼ AG

0:18 t2maxG
0

� �
(9)

and v0 ¼ 0 DG½ �> and by observing that M is in Jordan form, it is immedi-

ate to obtain that pðtÞ ¼ DGAG
0:18t2maxG

t e
�t

tmaxGð Þ ¼ UG tð Þ ¼ d tð Þ:
Therefore, we are able to design the disturbance system model X by con-

sidering Af ¼ M and Cf ¼ N:
In all the simulations reported below, in order to estimate the states of (6),

we have employed the unknown input observer described in Section
Unknown Input Observer resulting in the following closed-loop eigenvalues:
k ¼ �0:133½ þ0:222i, � 0:133� 0:222i, � 0:263, � 0:138, � 0:097, � 0:60,
�0:60, � 0:30, �0:018, � 0:018�:
The observer gain values are: L ¼ ½7:541, 0:285, �1.898�10�8, �5.105

�10�8, �4.281�10�7, �2.251�10�5, �1.129�10�6, �2.153�10�7,
670:273, 85:488�:
For simplicity, in the reported simulations, the observer gain L has been

designed based on the linearized model, by assigning the eigenvalues k to
the closed loop system (7). The observer is then applied to the nonlinear
model. However, the convergence of the estimates can be proven by follow-
ing Rajamani and Cho (1995), showing the existence of a positive definite
matrix P, solution of a proper Linear Matrix Inequality (LMI) involving L,
the C matrices and assuming c ¼ 5:35 � 10�7 as the Lipschitz constant
of the nonlinear function F in (3).

Initial Conditions and Basal Insulin

A blood glucose concentration of 110 mg=dL (equivalent to 6:11 mmol=L)
is chosen as set point (sp) value, as in Shmarov et al. (2017). Taking into
account that the total insulin administered is the sum of the amount com-
puted by the controller u tð Þ and the basal insulin ub (u tð Þ þ ub), the latter
has been determined to ensure a stationary blood glucose value y tð Þ ¼ sp:
The corresponding stationary state has been used as initial state of the sys-
tem. Since we easily compute Q1 from the sp value (Q1 ¼ 97:76 mmol), a
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nonlinear equation solver is sufficient to find the initial condition x 0ð Þ ¼ x
and the basal insulin level ub such that _x 0ð Þ ¼ F x, ubð Þ ¼ 0, assuming no meal
occurred, i.e., d ¼ 0: The obtained equilibrium values are: x ¼ 97:7600,½
19:0833, 3:0520, 3:0520, 0:0335, 0:0190, 0:0313, 0:0268� and ub ¼ 0:0555:

Cost Function

BluSTL implements cost functions J xk, uH
k , dk,u


 � ¼ uH
k

�� ���� ��
1 � wr � qj jj j1,

where wr is a weight and q is the robust satisfaction. By doing so, control
sequences with a higher q are preferred, since the relative cost function is
smaller. Minimizing the 1-norm of the sequence uH

k , instead, aims to
minimize the maximum intensity of actions to be performed. All the simu-
lations reported below have been obtained with wr ¼ 0:

Maximum Disturbance Problem

Given a controller developed in a deterministic setting (5), we aim at find-
ing what maximum disturbance is able to tolerate the obtained control sys-
tem. We define it as maximum disturbance problem. This problem is
introduced and addressed using a PID controller in Shmarov et al. (2017),
where authors define a dangerous state of glucose when its values are not
included in the range 4, 16½ � mmol=L: Translating it as STL property:
yNL 
 4 mmol=L� yNL � 16 mmol=L: This restriction must be constantly
respected for 12 hours after a meal.
Since both studies use the same Hovorka model to simulate a patient

physiologic behavior, we are able to compare the performances of both our
MPCs (known and unknown disturbance) with those of the cited
PID controller.

C1 Controller
The C1 controller imposes the properties introduced in Shmarov et al.
(2017), i.e., yNL 2 4, 16½ � mmol=L, using the STL. The upper bound of the
safe range is 11:11 mmol=L yet some hyperglycemia is tolerated without
imposing any temporal requirement. The use of an MPC controller overtake
the results of the PID. In fact, the PID controller is able to guarantee at
maximum for a meal of 88 g: We are able to safely reach the performances
guaranteed by the PID controller and to overcome them. The maximum
disturbance reached by our MPC controller is Dmax

G,C1
¼ 93:6 g (Figure 3(a)).

In this scenario the disturbance is known in advance in order to work in
the same framework as Shmarov et al. (2017).
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C2 Controller
The MPC-STL approach we have implemented in Cairoli et al. (2019)
allows temporal constraints to be imposed on postprandial hyperglycemia.
The safety range for glucose concentration G is yNL 2 4, 20½ � mmol=L, thus
G should never reach values higher than 20 mmol=L: However, the allowed
hyperglycemia (G > 11:11 mmol=L) should not last for more than three
consecutive hours. These requirements may be summarized as:

� avoid hypoglycemia: alw 0, N½ � yNL tð Þ > 4

 �

, meaning that during the
whole time frame (½0, N�) it must be always true that the glucose con-
centration in plasma is greater than 4 mmol=L:

� avoid severe hyperglycemia: alw 0, N½ � yNL tð Þ < 20

 �

, with the same pre-
vious formalism, it is imposed the upper bound for the glucose concen-
tration in plasma (20 mmol=L).

� avoid prolonged hyperglycemia (Cameron et al. 2015): :ev 0,N½ �alw 0, 180½ �
yNL tð Þ > 11:11

 �

, meaning that a glucose concentration in plasma greater
than 11:11 mmol=L for 3 consecutive hours (always in 0, 180½ � min) must
never occur (not eventually) during the whole time frame (½0,N�).

Recall that the control is computed based on the linearized system,
whose variables represent the displacement from the equilibrium point,
which is y ¼ 97:76

VG
¼ 6:11 mmol=L: Therefore, the STL constraints should

be translated as well, the resulting requirements are:

� lower and upper bounds: alw 0,N½ � yLIN tð Þ > 2:11

 �

� yLIN tð Þ < 13:89

 �� 	

� prolonged hyperglycemia: :ev 0,N½ �alw 0, 180½ � yLIN tð Þ > 5

 �

:

Figure 3. Trajectories of blood glucose (regulated output yNL), insulin (controlled input u	) and
meal (disturbance d) over time under controller C1: (a) Maximum disturbance Dmax

G, C1 ¼ 93:6 g :
H ¼ 40 min, Dt ¼ 5 min: (b) In case of three subsequent meals with different carbohy-
drates intake, D1

G ¼ 50 g, D2
G ¼ 70 g, D3

G ¼ 90 g, occurring at time T1 ¼ 0 min, T2 ¼
300 min and T3 ¼ 600 min : H ¼ 40 min, Dt ¼ 5 min: Hard constraints are represented
by the red dashed lines.
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C2 is the controller with these STL constraints. Even in this case the dis-
turbance is known in advance. Its maximum disturbance is higher than
before Dmax

G,C2
¼ 100:8 g (Figure 4(a)), which represents a meal very abun-

dant in carbohydrates and furthermore the blood glucose trajectories now
comply with more meaningful and problem-specific requirements.

C3 Controller
The C3 controller imposes the same properties introduced in C2 (Cairoli
et al. 2019) but considering an unknown disturbance: for the sake of clar-
ity, we have assumed that the dynamic of the disturbance is known,
whereas, the amount of carbohydrates DG and the time-instant in which it
occurs are unknown.
The maximum disturbance tolerated by C3 overcomes all the previous

performances: Dmax
G,C3

¼ 107:3 g (Figure 5(a)). Nevertheless, the greatest con-
tribution of this last solution is its ability to properly control the AP even
when the controller doesn’t know exactly the amount of carbohydrates
ingested. Introducing a controller increases the maximum disturbance with
respect to the basal case and the control, in addition, decreases the blood
glucose level sufficiently enough to allow the consumption of a meal of
similar size without incurring in severe hyperglycemia. This behavior can
be seen in Figures 3(b), 4(b), and 5(b), where the C1, C2 and C3 controllers
respectively show three different control approaches leading to successfully
safe scenarios during 24 hours.
We conclude this section by reporting the time required for performing

the simulations (Table 3, “elapsed time”). The technical specifications of
the hardware/software platform employed are reported in Table 2.

Figure 4. Trajectories of blood glucose (regulated output yNL), insulin (controlled input u	) and
meal (disturbance d) over time under controller C2: (a) Maximum disturbance Dmax

G, C2 ¼ 100:8 g :
H ¼ 40 min, Dt ¼ 5 min: (b) In case of three subsequent meals with different carbohy-
drates intake, D1

G ¼ 50 g, D2
G ¼ 70 g, D3

G ¼ 90 g, occurring at time T1 ¼ 0 min, T2 ¼
300 min and T3 ¼ 600 min : H ¼ 20 min, Dt ¼ 10 min: Hard constraints are represented
by the red dashed lines, while soft constraint is the orange dashed line.
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Conclusions

In the present extended version of Cairoli et al. (2019), we started from a
control framework in which the patient is involved by announcing meal,
and then we address the problem of meal estimation by means of an
unknown-disturbance observer. The employed control technique is MPC
with STL constraints that turned out to be particularly suitable for AP. The
resulting controller is able to provide safe trajectories without any informa-
tion about meal amount (DG) and its occurrence. Furthermore, it is able to
cope with soft constraints, thanks to STL. The performed simulations

Figure 5. Trajectories of blood glucose (regulated output yNL), insulin (controlled input u	) and
meal (disturbance d) over time allowed under controller C3 : (a) Maximum disturbance Dmax

G, C3 ¼
107:3 g : H ¼ 20 min, Dt ¼ 10 min: (b) In case of three subsequent meals with different
carbohydrates intake, D1

G ¼ 50 g, D2
G ¼ 70 g, D3

G ¼ 90 g, occurring at time T1 ¼ 0 min, T2 ¼
300 min and T3 ¼ 600 min : H ¼ 20 min, Dt ¼ 10 min: Hard constraints are represented
by red dashed lines, while soft constraint is the orange dashed line. Green line is the disturb-
ance estimation of the UIO (d̂).

Table 2. Hardware and software specifications.

Hardware:

Intel Core i7� 4770 @3:4 GHz
RAM 16 Gb

Software: MATLAB R2018b
YALMIP!MILP parser
Gurobi!MILP solver
Windows 8:1 Pro

Table 3. Computational effort required by the developed controllers.
Problem H (min) Dt (min) N (h) Elapsed time (sec)

C1 1 meal 40 5 12 147:68
C1 3 meals 40 5 24 169:58
C2 1 meal 40 5 12 55:04
C2 3 meals 20 10 24 96:34
C3 1 meal 20 10 12 55:04
C3 3 meal 20 10 24 96:34
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provide encouraging results. However, different aspects still need to be
investigated. In particular, a study on the robustness to model uncertainty
should be conducted in order to take into account different gluco-regula-
tory system behaviors. Moreover, the applicability of the proposed method
to other more sophisticated models, for example the UVA/Padova (Messori
et al. 2019), will be subject of future research.
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