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Abstract: Autonomous vehicles raise many ethical and moral issues that are not easy to deal with and1

that, if not addressed correctly, might be an obstacle to the advent of such a technological revolution.2

These issues are critical because autonomous vehicles will interact with human road users in new3

ways and current traffic rules might not be suitable for the resulting environment. We consider the4

problem of learning optimal behavior for autonomous vehicles using Reinforcement Learning in a5

simple road graph environment. In particular, we investigate the impact of traffic rules on the learned6

behaviors and consider a scenario where drivers are punished when they are not compliant with7

the rules, i.e., a scenario in which violation of traffic rules cannot be fully prevented. We perform8

an extensive experimental campaign, in a simulated environment, in which drivers are trained with9

and without rules, and assess the learned behaviors in terms of efficiency and safety. The results10

show that drivers trained with rules enforcement are willing to reduce their efficiency in exchange11

for being compliant to the rules, thus leading to more overall safety.12

Keywords: Reinforcement Learning, Self-driving Vehicles, Traffic Rules13

1. Introduction14

In the recent years autonomous vehicles have attracted a lot of interest from both industrial and15

research groups [1,2]. The reasons for this growth are the technological advancement in the automotive16

field, the availability of faster computing units, and the increasing diffusion of the so-called Internet of17

Things. Autonomous vehicles collect a huge amount of data from the vehicle and from the outside18

environment, and are capable of processing these data in real-time to assist decision-making on the19

road. The amount of collected information and the need for real-time computing make the design20

of the driving algorithms a complex task to carry out with traditional techniques. Moreover the21

sources of information may be noisy or may provide ambiguous information that could therefore affect22

negatively the outcome of the driving algorithm. The combination of these factors make it very hard,23

if not unfeasible, to define the driver behavior by developing a set of hand-crafted rules. On the other24

side, the huge amount of data available can be leveraged by suitable machine learning techniques. The25

rise of deep learning in the last decade has proven its power in many fields, including self-driving cars26

development, and enabled the development of machines that take actions based on images collected27

by a front camera as the only source of information [3], or even using a biological inspired event-driven28

camera [4].29

The use of simulations and synthetic data [5] for training have allowed to assess neural networks30

capabilities in many different realistic environments and different degrees of complexity. Many driving31

simulators have been designed, from the low-level ones that allow the drivers to control the hand32

brake of their car [6], to higher-level ones, in which the drivers can control their car acceleration and33
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lane-change [7]. Some simulators model the traffic in an urban road network [8], some others model34

cars intersection access [9–12], or roundabout insertion [13].35

In a near future scenario, the first autonomous vehicles on the roads will have to make decisions in36

a mixed traffic environment. Autonomous vehicles will have to be able to cope with radically different37

road agents, i.e., agents powered by machines capable of processing information way more faster than38

human drivers and human drivers that could occasionally take unexpected actions. There will hardly39

be a single authority to control each car in a centralized fashion and thus every autonomous vehicle40

will have to take decisions on its own, treating all the other road agents as part of the environment. It41

may very well be the case that current traffic rules do not fit a scenario with self-driving cars.42

In this work, we investigate to which extent the traffic rules affect the drivers optimization process.43

The problem of finding the optimal driving behavior subjected to some traffic rules is highly relevant44

because it provides a way to define allowed behaviors for autonomous drivers, possibly without the45

need to manually craft those behaviors. A first approach for solving this problem consists of defining46

hard constraints on driver behavior and replacing forbidden actions with fallback ones [14]. Such47

an approach leads to drivers which are not explicitly aware of the rules. If those hard constraints48

were removed, driver behavior could change in unpredictable ways. Another approach consists in49

punishing behaviors that are not compliant with the rules, thus discouraging drivers from taking those50

behaviors again. In this work we investigate this second approach based on punishing undesired51

behaviors. In this scenario drivers have to learn the optimal behavior that balances a trade-off between52

being compliant with the rules and driving fast while avoiding collisions. A scenario in which drivers53

have the chance of breaking the rules is particularly relevant because it could address the complex54

ethics issues regarding self-driving cars in a more flexible way (those issues are fully orthogonal to our55

work, though).56

We perform the optimization of the self-driving controllers using Reinforcement Learning (RL),57

which is a powerful framework used to find the optimal policy for a given task according to a58

trial-and-error paradigm. In this framework, we consider the possibility of enforcing traffic rules59

directly into the optimization process, as part of the reward function. Experimental results show that it60

is therefore possible to reduce unwanted behaviors with such approach.61

2. Related works62

The rise of Reinforcement Learning (RL) [15] as an optimization framework for learning artificial63

agents, and the outstanding results of its combination with neural networks [16], have recently reached64

many new grounds becoming a promising technique for the automation of driving tasks. Deep65

learning advances have proved that a neural network is highly effective in automatically extracting66

relevant features from raw data [17], as well as allowing an autonomous vehicle to take decisions67

based on information provided by a camera [3,4]. These approaches may not capture the complexity68

of planning decisions or predicting other drivers’ behavior though, and their underlying supervised69

learning approach could be unable to cope with multiple complex sub-problems at once, including70

sub-problems not relevant to the driving task itself [18]. There are thus many reasons to consider a RL71

self-driving framework, which can tackle driving problems by interacting with an environment and72

learning from experience [18].73

An example of an autonomous driving task implementation, based on Inverse Reinforcement74

Learning (IRL), has been proposed by [5]. The authors of the cited paper claim that, in such a large75

state space task like driving, IRL can be effective in extracting the reward signal, using driving data76

from experts demonstrations. End-to-end low-level control through a RL driver has been done by [6],77

in a simulated environment, based on the racing game TORCS, in which the driver has to learn full78

control of its car, that is steering, brake, gas, and even hand brake to enforce drifting. Autonomous79

driving is a challenging task for RL because it needs to ensure functional safety and every driver80

has to deal with the potentially unpredictable behavior of others [14]. One of the most interesting81

aspects of autonomous driving is learning how to efficiently cross an intersection, which requires to82
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provide suitable information on the intersection to the RL drivers [9], as well as correctly negotiating83

the access with other non-learning drivers and observing their trajectory [10,11]. Safely accessing to an84

intersection is a challenging task for RL drivers, due to the nature of the intersection itself, which may85

be occluded, and possible obstacles might not be clearly visible [12]. Another interesting aspect for86

RL drivers is learning to overtake other cars, which can be a particularly challenging task, depending87

on the shape of the road section in which the cars are placed [19], but also depending on the vehicles88

size, as in [20], where a RL driver learns to control a truck-trailer vehicle in an highway with other89

regular cars. The authors of [21,22] have provided extensive classifications of the AI state-of-the-art90

techniques employed in autonomous driving, together with the degrees of automation that are possible91

for self-driving cars.92

Despite the engineering advancements in designing self-driving cars, a lack of legal framework93

for these vehicles might slow down their coming [23]. There are also important ethics and social94

considerations. It has been proposed to address the corresponding issues as an engineering problem,95

by translating them into algorithms to be handled by the embedded software of a self-driving car [24].96

This way the solution of a moral dilemma should be calculated based on a given set of rules or97

other mechanisms—although the exact practical details and, most importantly, their corresponding98

implications, are unclear. The problem of autonomous vehicles regulation is particularly relevant in99

mixed-traffic scenarios, as stated by [25,26], where human drivers may behave in unpredictable ways100

to the machines. This problem could be mitigated by providing human drivers with more technological101

devices to help them drive more like robotic drivers, but mixed traffic ethics certainly introduce much102

deeper and more difficult problems [25].103

A formalization of traffic rules for autonomous vehicles is provided by [27], according to which104

a vehicle is not responsible for a collision if satisfying all the rules while colliding. Another driving105

automation approach based on mixed traffic rules is proposed in [28], where the rules are inspired by106

current traffic regulation. Traffic rules synthesis could even be automated, as proposed by [29], where107

a set of rules is evolved to ensure traffic efficiency and safety. The cited paper consider rules expressed108

by means of a language generated from a Backus-Naur Form grammar [30], but other ways to express109

spatio-temporal properties have been proposed [31,32]. Given the rules, the task of automatically110

finding the control strategy for robotics systems with safety rules is considered in [33], where the111

agents have to solve the task while minimizing the number of violated rules. AI safety can be inspired112

by humans, who intervene on agents in order to prevent unsafe situations, and then by training an113

algorithm to imitate the human intervention [34], thus reducing the amount of human labour required.114

A different strategy is followed by [35], where the authors define a custom set of traffic rules based115

on the environment, the driver, and the road graph. With these rules, a RL driver learns to safely116

make lane-changing decisions, where the driver’s decision making is combined with the formal safety117

verification of the rules, to ensure that only safe actions are taken by the driver A similar approach is118

considered in [7], where the authors replace the formal safety verification with a learnable safety belief119

module, as part of the driver’s policy.120

3. Model121

We consider a simple road traffic scenario in the form of a directed graph where the road sections122

are edges, and the intersections are vertexes. Each road element is defined by continuous linear space123

in the direction of its length, and an integer number of lanes. In this scenario a fixed number of cars124

move on the road graph according to their driver decisions for a given number of discrete time steps.125

3.1. Road graph126

A road graph is a directed graph G = (S, I) in which edges E represent road sections, and vertices127

I represent road intersections. Each road element p ∈ G is connected to the next elements n(p) ⊂ G,128

with n(p) 6= ∅. Edges are straight one-way roads with one or more lanes. For each edge p it holds129

that n(p) ⊂ I. Vertices can be either turns or crossroads, they have exactly one lane, and are used to130
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connect road sections. For each vertex p it holds that n(p) ⊂ S, and |n(p)| = 1. Every road element131

p ∈ G is defined by its length l(p) ∈ R+, and its number of lanes w(p) ∈ N, w > 0. We do not take132

into accounts traffic light nor roundabout in this scenario.133

3.2. Cars134

A car simulates a real vehicle that moves on the road graph G: its position can be determined135

at any time of the simulation in terms of the currently occupied road element, current lane. The car136

movement is determined in terms of two speeds—i.e., the linear speed along the road element, and the137

lane-changing speed along the lanes of the same element. At each time step, the car state is defined by the138

tuple (p, x, y, vx, vy, s), where p ∈ {S, I} is the current road element, x ∈ [0, l(p)] is the position on the139

road element, y ∈ {1, . . . , w(p)} is the current lane, vx ∈ [0, vmax] is the linear speed, vy ∈ {−1, 0, 1} is140

the lane-changing speed, and s ∈ {alive, dead} is the status (time reference is omitted for brevity). All141

the cars have the same length lcar and the same maximum speed vmax.142

At the beginning of a simulation, all cars are placed uniformly among the road sections, on all143

the lanes, ensuring that a minimum distance exists between cars i, j on the same road element pi = pj,144

i.e., such that: |xi − xj| > xgap. The initial speeds for all the cars are vx = vy = 0, and the status is145

s = alive.146

At the next time steps, if the status of a car is s = dead, the position is not updated. Otherwise,
if the status is s = alive, the position of a car is updated as follows. Let

(
a(t)x , a(t)y

)
∈ {−1, 0, 1} ×

{−1, 0, 1} be the driver action composed respectively of a(t)x accelerating action, and a(t)y lane-changing
action (see details below). The linear speed and the lane-changing speed at time t + 1 are updated
accordingly with the driver action

(
a(t)x , a(t)y

)
at time t as:

v(t+1)
x = min

(
vmax, max

(
v(t)x + a(t)x amax∆t, 0

))
(1)

v(t+1)
y = a(t)y (2)

where amax is the intensity of the instant acceleration, and ∆t is the discrete time step duration. The car
linear position on the road graph at time t + 1 is updated as:

x(t+1) =

{
x(t) + v(t+1)

x ∆t if v(t+1)
x ∆t ≤ x(t)stop

v(t+1)
x ∆t− x(t)stop otherwise

(3)

where xstop is the distance ahead to the next road element, and is computed as:

x(t+1)
stop = l

(
p(t+1)

)
− x(t+1) (4)

The car lane position at time t + 1 is updated as:

y(t+1) = min
(

w(p(t+1)), max
(

y(t) + v(t+1)
y , 1

))
(5)

The road element at time t + 1 is computed as:

p(t+1) =

p(t) if v(t)x ∆t ≤ x(t)stop

∼ U
(

n
(

p(t)
))

otherwise
(6)

where U is the uniform distribution over the next road elements coming from p In other words, when147

exiting from an intersection, a car enters an intersection chosen randomly from n
(

p(t)
)

.148



Version April 1, 2020 submitted to Appl. Sci. 5 of 14

x′ − x

xstop

x′

xstop

Figure 1. Distance between cars in different cases.

Two cars collide, if the distance between them is smaller than the cars length lcar. In particular, for
any cars (p, x, y, vx, vy, s), (p′, x′, y′, v′x, v′y, s′), the status at time t + 1 is updated as (we omit the time
superscript for readability):

s =

{
dead if

(
p = p′ ∧ |x− x′| < lcar

)
∨
(

p′ ∈ n(p) ∧ xstop + x′ < lcar
)

alive otherwise
(7)

When a collision occurs, we simulate an impact by giving the leading car a positive acceleration of149

intensity acoll, while giving the following car a negative acceleration of intensity −acoll, for the next150

tcoll time steps. Collided cars are kept in the simulation for the next tdead > tcoll time steps of the151

simulation, thus acting as obstacles for the alive ones.152

3.3. Drivers153

A driver is an algorithm that is associated to a car. Each driver is able to sense part of its car154

variables and information from the road environment, and takes driving actions that affect its car state.155

Every driver ability to see obstacles on the road graph is limited to the distance of view dview.156

3.3.1. Observation157

For the driver of a car (p, x, y, vx, vy, s), the set of visible cars in the j-th relative lane, with
j ∈ {−1, 0, 1}, is the union of the set Vsame,j of cars that are in the same segment and the same or
adjacent lane and the set Vnext of cars that are in one of the next segments p′ ∈ n(p), in both cases with
a distance shorter than dview:

Vsame,j =
{
(p′, x′, y′, v′x, v′y, s′) : p′ = p ∧ 0 < x′ − x ≤ dview ∧ y′ = y + j

}
(8)

Vnext =
{
(p′, x′, y′, v′x, v′y, s′) : p′ ∈ n(p) ∧ xstop + x′ ≤ dview

}
(9)

We remark that the set of cars Vj = Vsame,j ∪ Vnext includes also the cars in the next segments: the158

current car is hence able to perceive cars in a intersection, when in a segment, or in the connected159

sections, when in an intersection, provided that they are closer than dview.160

The driver’s observation is based on the concept of j-th lane closest car cclosest
j , based on the set Vj

defined above. For each driver, cclosest
j is the closest one in Vj:

cclosest
j =


arg min

(p′ ,x′ ,y′ ,v′x ,v′y ,s′)∈Vj

1(p′ = p)(x′ − x) + 1(p′ 6= p)(xstop + x′) if Vj 6= ∅

∅ otherwise
(10)

where Vj = Vsame,j ∪Vnext and 1 : {false, true} → {0, 1} is the indicator function. Figure 1 illustrates161

two different examples of j-th lane closest car, with j = 0. We can see that the cclosest
j might not exist for162

some j, either if there is no car closer than dview or if there is no such j-th lane.163
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Figure 2. Cars approaching intersections.

We define the closeness variables δx,j ∈ [0, dview], with j ∈ {−1, 0, 1}, as the distances to the j-th164

lane closest cars cclosest
j , if any, or dview, otherwise. Similarly, we define the relative speed variables165

δv,j ∈ [−vmax, vmax], with j ∈ {−1, 0, 1}, as the speed difference of the current car w.r.t. the j-th lane166

closest cars cclosest
j , if any, or vmax, otherwise.167

At each time step of the simulation, each driver observes the distance from its car to the168

next road element, indicated by xstop, the current lane y, the current linear speed vx, the status169

of its vehicle s, the road element type e = 1(p ∈ S) its car is currently on, the closeness170

variables δx,j and the relative speed variable δv,j. We define each driver observation as: o =171 (
xstop, y, vx, s, e, δx,−1, δx,0, δx,1, δv,−1, δv,0, δv,1

)
, therefore o ∈ O = [0, lmax] × {1, wmax} × [0, vmax] ×172

{alive, dead} × {0, 1} × [0, dview]
3 × [−vmax, vmax]3.173

3.3.2. Action174

Each agent action is a =
(
ax, xy

)
∈ A = {−1, 0, 1} × {−1, 0, 1}. Intuitively ax is responsible175

for updating the linear speed in the following way: ax = 1 corresponds to accelerating, ax = −1176

corresponds to breaking, and ax = 0 keeps the linear speed unchanged. On the other hand ay is177

responsible for updating the lane-position in the following way: ay = 1 corresponds to moving to the178

left lane, ay = −1 corresponds to moving to the right lane, and ay = 0 to keeping the lane-position179

unchanged.180

3.4. Rules181

A traffic rule is a tuple (b, w) where b : O → { f alse, true} is the rule predicate, defined on the182

drivers observation space O, and w ∈ R is the rule weighting factor. The i-th driver breaks a rule at a183

given time step t if the statement b that defines the rule is b(o(t)i ) = 1. We define a set of three rules184

((b1, w1), (b2, w2), (b3, w3)), described in the next sections, that we use to simulate the real-world traffic185

rules for the drivers. All the drivers are subjected to the rules.186

3.4.1. Intersection rule187

In this road scenario we do not enforce any junction access negotiation protocol, nor we consider188

traffic lights, and cars access interactions as in Figure 2. That is, there is no explicit reason for drivers to189

slow down when approaching a junction, other than the chances of collisions with other cars crossing190

the intersection at the same time. Motivated by this lack of safety at intersections, we define a traffic191

rule that punishes drivers approaching or crossing an intersection at high linear speed.192
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In particular, the driver in road element p such that p ∈ I is an intersection, or equivalently p ∈ S
and its car is in the proximity of an intersection, denoted by xstop < 2lcar, breaks the intersection rule
indicated by (b1, w1) if traveling at linear speed vx > 10:

b1(o) =

{
1 if

(
p ∈ I ∨ xstop < 2lcar

)
∧ vx > 10

0 otherwise
(11)

3.4.2. Distance rule193

Collisions may occur when traveling with insufficient distance from the car ahead, since it is194

difficult to predict the leading car behavior in advance. For this reason we introduce a rule that195

punishes drivers that travel too close to the car ahead.196

In particular, the driver observing cclosest
0 closest car on the same lane, breaks the distance rule

indicated by (b2, w2) if traveling at linear speed vx such that the distance traveled before arresting the
vehicle is greater than δx,0 − lcar, or, in other words:

b2(o) =

{
1 if δx,0 − lcar < 2amaxv2

x

0 otherwise
(12)

3.4.3. Right lane rule197

In this scenario cars might occupy any lane on a road segment, without any specific constraint.198

This freedom might cause the drivers to unpredictably change lanes while traveling, thus endangering199

other drivers, who might not have the chance to avoid the oncoming collision. Motivated by this200

potentially dangerous behaviors, we define a rule that allows drivers to overtake when close to the car201

ahead, but punishes the ones leaving the right-most free lane on a road section.202

In particular, the driver occupying road section p ∈ S, on non-rightmost lane y > 1, breaks the
right lane rule indicated by (b3, w3) if the closest car on the right lane cclosest

−1 is traveling at a distance
δx,−1 = dview:

b3(o) =

{
1 if p ∈ S ∧ y > 1∧ δx,−1 = dview

0 otherwise
(13)

3.5. Reward203

Drivers are rewarded according to their linear speed, thus promoting efficiency. All the cars
involved in a collision, denoted by state s = dead, are then arrested after the impact, thus resulting in
zero reward for the next tdead − tcoll time steps, thus implicitly promoting safety. Each driver reward
at time t is:

r(t) =
v(t)x

vmax
−

3

∑
i=1

wibi(o(t)) (14)

where w are the weights of the rules.204

3.6. Policy learning205

Each driver’s goal is to maximize the return over a simulation, indicated by ∑T
t=0 γtr(t+1), where206

γ ∈ [0, 1] is the discount factor, and T > 0 is the number of time steps of the simulation. The driver207

policy is the function πθ : O → A that maps observations to actions. We parameterize the drivers’208

policy in the form of a feed-forward neural network, where θ is the set of parameters of the neural209

network. Learning the optimal policy corresponds to the problem of finding the values of θ that210

maximize the return over an entire simulation. We perform policy learning by means of RL.211
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4. Experiments212

Our goal is to experimentally assess the impact of the traffic rules on the optimized policies, in213

terms of overall efficiency and safety. To this aim we defined 3 tuples, that are respectively the reward214

tuple R, the efficiency tuple E, and the collision tuple C.215

The reward tuple R ∈ Rncar is the tuple of individual rewards collected by the drivers during an
episode, from t = 0 to t = T, and is defined as:

R =

(
T

∑
t=0

r(t)1 , . . . ,
T

∑
t=0

r(t)ncars

)
(15)

The efficiency tuple E ∈ Rncar is the tuple of sums of individual instant linear speed vx for each
driver during an episode, from t = 0 to t = T, and is defined as:

E =

(
T

∑
t=0

v(t)x1 , . . . ,
T

∑
t=0

v(t)xncars

)
(16)

The collision tuple C ∈ Nncar is the tuple of individual collisions for each driver during an episode,
from t = 0 to t = T, and is defined as:

C =

(
T

∑
t=0

1{s(t−1)
1 = alive∧ s(t)1 = dead}, . . . ,

T

∑
t=0

1{s(t−1)
ncars = alive∧ s(t)ncars = dead}

)
(17)

Each i-th element ci of this tuple is defined as the number of times in which the i-th driver change its216

car status si from si = alive to si = dead between 2 consecutive time steps t− 1 and t.217

We considered 2 different driving scenarios in which we aim at finding optimal policy parameters,218

respectively “no-rules” in which traffic rules weighting factors are w1 = w1 = w3 = 0, such that219

drivers are not punished for breaking the rules, and “rules” in which traffic rules weighting factors are220

w1 = w2 = w3 = 1, such that drivers are punished for breaking the rules, and all the rules have the221

same relevance.222

Moreover, we considered 2 different collision scenarios:223

(a) cars are kept with status s = dead in the road graph for tdead time steps, then they are removed;224

(b) cars are kept with status s = dead in the road graph for tdead time steps, then their status is225

changed back into s = alive.226

The rationale for considering the second option is that the condition in which we remove collided cars227

after tdead time steps may not be good enough for finding the optimal policy. This assumption could228

ease the task of driving for the non-collided cars, when the number of collided cars grows, and, on the229

other side it might provide too few collisions to learn from.230

We simulated ncars cars sharing the same driver policy parameters and moving in the simple road231

graph in Figure 3 for T time steps. This road graph has 1 main intersection at the center, and 4 three-way232

intersections. All the road segments p ∈ S have the same length l(p) and same number of lanes w(p).233

We used the model parameters shown in Table 1 and performed the simulations using Flow [36],234

a microscopic discrete-time continuous-space road traffic simulator that allows implementing our235

scenarios.236

We repeated ntrials experiments in which we performed ntrain training iterations in order to237

optimize the initial random policy parameters θno-rules and θrules. We collected the values, across the238

ntrials repetitions, of R, E, and C during the training.239

We employed Proximal Policy Optimization (PPO) [37] as the RL policy optimization240

algorithm: PPO is a state-of-the-art actor-critic algorithm that is highly effective, while being almost241
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Figure 3. The road graph used in the experiments.

Table 1. Model and simulation parameters.

Param. Meaning Value

lcar Car length 7
tcoll Impact duration 10
tdead Collision duration 20
dview Driver’s view distance 50
vmax Driver’s maximum speed 50
amax Driver’s acceleration (deceleration) 2
∆t Time step duration 0.2
|S| Number of road sections 12
|I| Number of road intersections 9
w(p), p ∈ G Number of lanes ∈ {1, 2}
l(p), p ∈ S Section length 100
ncar Cars in the simulation 40
T Simulation time steps 500



Version April 1, 2020 submitted to Appl. Sci. 10 of 14

Table 2. Policy learning algorithm parameters.

Param. Meaning Value

ntrial Number of trials 20
ntrain Training iterations 500
ncar Cars in the simulation 40
γ Discount factor 0.999

0 2,000 4,000
−200

−100

0

100

Episode

Reward (R)

0 2,000 4,000

0

2,000

4,000

6,000

8,000

Episode

Efficiency (E)

0 2,000 4,000

0

0.5

1

Episode

Collisions (C)

No-rules Rules

Figure 4. Training results with cars removed after tdead time steps. Here we draw the training values
of R, E, and C, at a certain training episode, averaged on ntrial experiments. We indicate with solid
lines the mean of R,E, and C among the ncar vehicles, and with shaded areas their standard deviation
among the ncar vehicles.

parameters-free. We used the PPO default configuration1 with the parameters shown in Table 2. The242

drivers policy is in the form of an actor-critic neural networks model, where each of the 2 neural243

networks is made of 2 hidden layers, each one with 256 neurons and hyperbolic tangent as activation244

function. The hidden layer parameters are shared between the actor and the critic networks: this is245

a common practice introduced by [38] that helps to improve the overall performances of the model.246

The parameters of the actor network as well as the ones of the critic network are initially distributed247

according to the Xavier initializer [39].248

5. Results249

Figures 4 and 5 show the training results in terms of the tuples R, E, and C for the 2 policies250

θno-rules and θrules in the 2 collision scenarios considered.251

In all the experimental scenarios the policy learned with rules shows driving behaviors that are252

less efficient than the ones achieved by the one without rules. On the other hand, the policy learned253

without rules is not even as efficient as it could theoretically be, due to the high number of collisions254

that make it difficult to avoid collided cars. Moreover the values of E for the drivers employing the255

rules are distributed closer to the mean efficiency value, and thus we can assume this is due to the fact256

that the rules limit the space of possible behaviors to a smaller space w.r.t. the case without rules. In257

other words, rules seems to favor equity among drivers.258

On the other hand the policy learned with rules shows driving behaviors that are safer than the259

ones achieved by the one without rules. This may be due to the fact that training every single driver to260

avoid collisions based only on the efficiency reward is a difficult learning task, also because agents are261

1 https://ray.readthedocs.io/en/latest/rllib-algorithms.html

https://ray.readthedocs.io/en/latest/rllib-algorithms.html
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Figure 5. Training results with cars restored after tdead time steps. Here we draw the training values
of R, E, and C, at a certain training episode, averaged on ntrial experiments. We indicate with solid
lines the mean of R,E, and C among the ncar vehicles, and with shaded areas their standard deviation
among the ncar vehicles.

not capable of predicting the other agents’ trajectories. On the other hand, we can see that the simple262

traffic rules that we have designed are effective at improving the overall safety.263

In other words these results show that, as expected, policies learned with rules are safer, but less264

efficient than the ones without rules. Interestingly to us, the rules act also as a proxy for equality, as we265

can see from Figures 4 and 5, in particular for the efficiency values E, where the blue shaded area is266

way thinner than the red one, meaning that all the ncar vehicles have similar efficiency.267

5.1. Robustness to traffic level268

With the aim of investigating the impact of the traffic level on the behavior observed with the269

learned policies (in the second learning scenario), we performed several other simulations by varying270

the number of cars in the road graph. Upon each simulation, we measured the overall distance traveled271

∑ncar
i=1 Ei∆t and overall collisions ∑ncar

i=1 Ci. We considered the overall sums, instead of the average, of272

these indexes in order to investigate the impact of the variable number of cars in the graph: in principle,273

the larger this number, the longer the overall distance that can be potentially traveled, and, likely, the274

larger the number of collisions.275

We show the results of this experiment in Figure 6, where each point corresponds to indexes276

observed in a simulation with a given traffic level ncar: we considered values in 10, 20, . . . , 80. We277

repeated the same procedure for both the drivers trained with and without the rules, using the same278

road graph in which the drivers have been trained. For each level of traffic injected, we simulated T279

time steps and we measured the overall distance and overall number of collisions occurred.280

As we can see from Figure 6, the two policies (corresponding to learning with and without rules)281

exhibit very different outcomes as the injected traffic increases. In particular, the policy optimized282

without rules results in an overall number of collisions that increases, apparently without any bound283

in these experiment, as the traffic level increases. Conversely, the policy learned with the rules keeps284

the overall number of collisions much lower also with heavy traffic. Interestingly, the limited increase285

in collisions is obtained by the policy with the rules at the expense of overall traveled distance, i.e., of286

traveling capacity of the traffic system.287

From another point of view, Figure 6 shows that a traffic system where drivers learned to comply288

with the rules is subjected to congestion: when the traffic level exceeds a given threshold, introducing289

more cars in the system does not allow to obtained a longer traveled distance. Congestion is instead290

not visible (at least not in the range of traffic level that we experimented with) with policies learned291
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Figure 6. Overall number of collisions in the simulation against the overall traveled distance in the
simulation, averaged across simulations with the same ncar. Each dot is drawn from the sum of the
values computed on the ncar vehicles.

without rules; the resulting system, however, is unsafe. All to all, congestion acts here as a mechanism,292

induced by rules applied during the learning, for improving the safety of the traffic system.293

6. Conclusions294

We investigated the impact of imposing traffic rules while learning the policy for AI-powered295

drivers in a simulated road traffic system. To this aim, we designed a road traffic model that allows to296

analyze system-wide properties, as efficiency and safety, and, at the same time, permits learning using297

a state-of-the-art RL algorithm.298

We considered a set of rules inspired by real traffic rules and performed the learning with a299

positive reward for traveled distance and a negative reward that punishes driving behaviors that are300

not compliant with the rules. We performed a number of experiments and compared them with the301

case where rules compliance does not impact on the reward function.302

The experimental results show that imposing the rules during learning results in learned policies303

that gives safer traffic. The increase in safety is obtained at the expense of efficiency, i.e., drivers travel,304

on average, slower. Interestingly, the safer is improved also after the learning— i.e., when no reward305

exists, either positive or negative—and despite the fact that, while training, rules are not enforced. The306

flexible way in which rules are taken into account is relevant because it allows the drivers to learn307

whether to evade a certain rule or not, depending on the current situation, and no action is prohibited308

by design: rules stand hence as guidelines, rather then obligation, for the drivers. For instance, a driver309

might have to overtake another vehicle in a situation in which overtaking is punished by the rules, if310

this decision is the only one that allows to avoid a forthcoming collision.311

Our work can be extended in many ways. One theme of investigation is the robustness of policies312

learned with rules to the presence of other drivers, either AI-driven or human, who are not subjected313

to rules or perform risky actions. It would be interesting to assess how the driving policies learned314

with the approach presented in this study operate in such situations.315

From a broader point of view, our findings may be useful in the situations where there is a trade-off316

between compliance with the rules and a greater good. With the ever increasing pervasiveness of317
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AI-driven automation in many domains (e.g., robotics, content generation), relevance and quantity of318

these kind of situations will increase.319
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