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Non-Markovian master equations describe general open quantum systems when no approximation is made.
We provide the exact closed master equation for the class of Gaussian, completely positive, trace preserving,
non-Markovian dynamics. This very general result allows us to investigate a vast variety of physical systems.
We show that the master equation for non-Markovian quantum Brownian motion is a particular case of
our general result. Furthermore, we derive the master equation unraveled by a non-Markovian, dissipative
stochasticSchrödinger equation, paving theway for the analysis of dissipative non-Markoviancollapsemodels.
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Introduction.—The theory of open quantum systems
strongly developed in the last decades, pushed by techno-
logical demand. The basic tools to analyze open quantum
systems are master equations (MEs), which allow for insight
into physical systems by computing average physical quan-
tities. Markovian MEs provide an efficient description of a
vast amount of physical processes. These MEs are very well
known, their features deeply studied, and they obey a precise
structure [1]. However, in recent years the interest in under-
standing quantum dynamics beyond the Markov approxi-
mation has grown, due to the discovery of many physical
systems for which the Markovian description fails [2].
Indeed, the time scales of ultrafast processes are of the same
order as the time scale of the bath they interactwith, leading to
failure of the Markov approximation. Because of the diffi-
culty in treating non-Markovian dynamics, only few exact
MEs are known in the literature, most of which are formal, or
concerning peculiar systems or stochastic processes [3,4].
Since every ME allows for an infinite number of

stochastic unravellings, stochastic Schrödinger equations
(SSEs) are an equally powerful tool as MEs. SSEs play an
important role in many fields like, e.g., continuous quan-
tum measurement [5,6], quantum optics [7], light harvest-
ing systems [8], and foundations of quantum mechanics.
In this field, collapse models provide a solution of the
measurement problem by describing the evolution of
quantum systems by means of SSEs [9]. These models
are experiencing renewed interest because they might
provide a test of the quantum-to-classical transition in a
not so far future [10]. It is, in general, extremely difficult to
obtain the ME associated to a Gaussian non-Markovian
SSE, mainly because the nonlocal terms displayed by the
SSE make it difficult to derive a closed equation.
An important step towards a general understanding of non-

Markovian dynamics has recently been taken in Ref. [11],
where the authors obtained both the most general super-
operator and SSE for Gaussian, non-Markovian dynamics.
This result is very important because it gives a general
characterization of awide class of non-Markovian dynamics,
that can be heuristically obtained from the Lindblad

structure. However, the result is rather formal, and it cannot
be exploited to compute physical quantities, preventing the
explicit analysis of physical systems. The aim of this Letter is
to fill this gap by deriving a closed ME for a general trace-
preserving, completely positive (CP), Gaussian open system
dynamics. Moreover, we provide the ME associated to a
general Gaussian SSE, both in the dissipative and non-
dissipative cases. We stress that the results obtained are
analytical and exact, no approximation has been made.
Derivation of the ME.—Consider a system bilinearly

interacting with a bosonic bath:

ÂjðtÞϕ̂jðtÞ; ð1Þ

where ÂjðtÞ ¼ eiĤStÂje−iĤSt are Hermitian system opera-
tors, ϕ̂jðtÞ ¼ eiĤBtϕ̂je−iĤBt are bosonic fields of the bath,
and HS, HB are, respectively, system and bath
Hamiltonians. The Einstein’s sum rule is understood.
The generalization to non-Hermitian Â can be easily
obtained by expressing them as linear combinations of
Hermitian operators. We assume the commutation relations
among the systems operators to be

½ÂjðtÞ; ÂkðsÞ� ¼ fjkðt; sÞ; ð2Þ
with fjkðt; sÞ an antisymmetric complex function. We
assume the initial state of the system to be factorized
and that the bath has an initial Gaussian state, fully
characterized by the correlation function

TrB½ϕ̂jðτÞϕ̂kðsÞρ̂B� ¼ Djkðτ; sÞ: ð3Þ
We introduce the left-right (LR) formalism [11,12],
denoting by a subscript L (R) the operators acting on
ρ̂ from the left (right), e.g., Âk

LÂ
j
Rρ̂ ¼ Âkρ̂Âj. We also

define the following operators: Âj
Δ ¼ Âj

L − Âj
R and Âj

c ¼
ðÂj

L þ Âj
RÞ=2 [11,12]. Note that these operators represent,

respectively, a commutator and (half) an anticommutator. It
has been recently proved that the system reduced density
matrix evolves according to the following equation:
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ρ̂t ¼ Mtρ̂0; ð4Þ
where the most general CP, trace preserving, Gaussian
superoperator Mt reads [11]

Mt ¼ T exp
�
−
Z

t

0

dτÂj
ΔðτÞ

Z
τ

0

dsB̂jðτ; sÞ
�
: ð5Þ

Here, T denotes the time ordering operator, and

B̂jðτ; sÞ ¼ DRe
jk ðτ; sÞÂk

ΔðsÞ þ 2iDIm
jk ðτ; sÞÂk

cðsÞ; ð6Þ
where DRe and DIm are, respectively, real symmetric and
imaginary antisymmetric parts of D. Furthermore, in
Ref. [11] the authors proved that the most general SSE
with linear coupling ÂjðtÞϕjðtÞ that unravels Eq. (5) reads

dψ t

dt
¼−iÂjðtÞ

�
ϕjðtÞþ

Z
t

0

ds½Djkðt;sÞ−Sjkðt;sÞ�
δ

δϕkðsÞ
�
ψ t;

ð7Þ

where

E½ϕ�
jðτÞϕkðsÞ� ¼ Djkðτ; sÞ; ð8Þ

E½ϕjðτÞϕkðsÞ� ¼ Sjkðτ; sÞ ð9Þ
are the correlation functions of the complex, Gaussian,
colored noises ϕjðtÞ. By settingDjkðτ; sÞ ¼ DjkðτÞδðτ − sÞ
in Eq. (5), one obtains the Markovian superoperator

Mt ¼ T exp

�Z
t

0

dτDjkðτÞ

·

�
Âk
LðτÞÂj

RðτÞ −
1

2
Âj
LðτÞÂk

LðτÞ −
1

2
Âj
RðτÞÂk

RðτÞ
��

:

ð10Þ
The presence of the T operator in the map (5) makes it a
formal result which cannot be exploited to compute explic-
itly the evolution of physical quantities. In order to do so one
needs to obtain a closed ME. The double integral inside the
time ordering operator makes this goal hard to achieve: one
needs to find a way to treat the time ordering of nonlocal
arguments. We expand the map Mt (5) in Dyson series:

Mt ¼
X∞
n¼0

ð−1Þn
n!

Mn
t ; ð11Þ

where

Mn
t ¼ T

�Yn
i¼1

Z
t

0

dti

Z
ti

0

dsiÂ
ji
ΔðtiÞB̂jiðti; siÞ

�
: ð12Þ

EachMn
t has two important features that will be used later:

they contain the time-ordered product (T product) of 2n
operators, and they are invariant under permutation over i of
ðti; siÞ. In order to derive the ME, one needs to differentiate
Eq. (12), obtaining

_Mn
t ¼ nÂj1

Δ ðtÞ
Z

t

0

ds1T

�
B̂j1ðt; s1Þ

×
Yn
i¼2

Z
t

0

dti

Z
ti

0

dsiÂ
ji
ΔðtiÞB̂jiðti; siÞ

�
; ð13Þ

where the factor n comes from the aforementioned sym-
metry over i ofMn

t . We stress that whileMn
t contains the T

product of 2n operators, _Mn
t displays 2n − 1 time ordered

operators. Since our goal is to express _Mt in terms of Mt,
we adopt the following strategy: we write the T product of
an odd number of operators in terms of even T products.
We do so by exploiting Wick’s theorem [13], according to
which one can write any T product as a sum of all the
possible contractions of its elements. We denote a Wick
contraction with an overbracket, and we arrange the T
product of Eq. (13) as follows:

T
�
B̂j1ðt; s1Þ

Yn
i¼2

Z
t

0

dti

Z
ti

0

dsiÂ
ji
ΔðtiÞB̂jiðti; siÞ

�

¼ B̂j1ðt; s1ÞT
�Yn
i¼2

Z
t

0

dti

Z
ti

0

dsiÂ
ji
ΔðtiÞB̂jiðti; siÞ

�

þ
Xn
m¼2

Z
t

0

dtm

Z
tm

0

dsm B̂j1ðt; s1ÞÂjm
Δ ðtmÞ

×T

�
B̂jmðtm; smÞ

Yn
i¼2 i≠m

Z
t

0

dti

Z
ti

0

dsiÂ
ji
tiΔB̂jiðti; siÞ

�

þ
Xn
m¼2

Z
t

0

dtm

Z
tm

0

dsmB̂j1ðt; s1ÞB̂jmðtm; smÞ

×T

�
Âjm
Δ ðtmÞ

Yn
i¼2 i≠m

Z
t

0

dti

Z
ti

0

dsiÂ
ji
ΔðtiÞB̂jiðti; siÞ

�
:

ð14Þ

This equation is nothing but a convenient arrangement of
the terms predicted by the Wick’s theorem: the first term
of the right-hand side accounts for all the contributions not
involving contractions of B̂ðt; s1Þ, while the second and third
elements collect the terms involving such contractions. For
our problem a contraction is given by

B̂j1ðt; s1ÞÂjm
Δ ðtmÞ ¼ ½Âjm

Δ ðtmÞ; B̂j1ðt; s1Þ�θðtm − s1Þ; ð15Þ
where the unit-step function θ is needed because we are not
using normal ordered products.
Note that the first term of Eq. (14) is a even T product,

while the second and third terms are odd T products.
With the help of Eq. (15), we decompose these two
terms similarly to Eq. (14), and we iterate this procedure
to all the odd T products obtained. After a long calculation,
exploiting Eq. (12), one finds that the result of this
iteration is
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T

�
B̂j1ðt; s1Þ

Yn
i¼2

Z
t

0

dti

Z
ti

0

dsiÂ
ji
ΔðtiÞB̂jiðti; siÞ

�

¼
Xn−1
k¼0

cn−k−1j1
ðÂ; B̂Þ ðn − 1Þ!

k!
Mk

t ; ð16Þ

where cn−k−1j1
ðÂ; B̂Þ are functionals of ÂΔ and B̂, whose

analytical expressions are obtained from the recursive
substitution just performed. The explicit calculation leading
to Eq. (16), as well as the explicit expressions of the cn are
reported in Ref. [14]. Substituting Eq. (16) in Eq. (13), after
some manipulation one eventually finds that [14]

_Mt ¼ −Âj
ΔðtÞ

�Z
t

0

ds1
X∞
n¼1

ð−1Þncnj ðÂ; B̂Þ
�
Mt: ð17Þ

Applying this expression to ρ̂0, one finds

_̂ρt ¼ −Âj
ΔðtÞ

�Z
t

0

ds1Ajkðt; s1ÞÂk
Δðs1Þ

þ 2iBjkðt; s1ÞÂk
cðs1Þ

�
ρ̂t; ð18Þ

where

Ajkðt; s1Þ ¼ DRe
jk ðt; s1Þ þ

X∞
n¼1

αnjkðt; s1Þ; ð19Þ

Bjkðt; s1Þ ¼ DIm
jk ðt; s1Þ þ

X∞
n¼1

βnjkðt; s1Þ; ð20Þ

and the functions αn, βn are suitable combinations of DRe

and DIm, obtained from the cn [14]. We stress that the
kernels A, B are determined analytically.
Equation (18) is the most general closed ME for a trace

preserving, CP, Gaussian, non-Markovian dynamics. It is a
time-local ME that, as one expects for a Gaussian dynamics,
displays a quadratic dependence on the system operators.
If the system under study is linear, i.e., the free

Hamiltonian is at most quadratic, one can further simplify
Eq. (18). In this case indeed, since the system operators
evolve with the free Hamiltonian Ĥ0, their Heisenberg
equations are linear. Such a system of coupled equations
can always be solved univocally by setting two boundary
condition. In particular, if we choose as boundary values

ÂkðtÞ and _̂A
kðtÞ, the solution can be written as follows:

Âjðs1Þ ¼ Cjkðt − s1ÞÂkðtÞ þ ~Cjkðt − s1Þ _̂AkðtÞ; ð21Þ

where C, ~C are specific kernels that explicitly depend on the

Hamiltonian, and that satisfy Cð0Þ ¼ − _~Cð0Þ ¼ 1 and
_Cð0Þ ¼ ~Cð0Þ ¼ 0. Substituting this expression in Eq. (18)
one obtains the following time-local closed ME:

_̂ρt ¼ ½ΓjkðtÞÂj
ΔðtÞÂk

ΔðtÞ þ ΘjkðtÞÂj
ΔðtÞ _̂A

k
ΔðtÞ

þΞjkðtÞÂj
ΔðtÞÂk

cðtÞ þϒjkðtÞÂj
ΔðtÞ _̂A

k
cðtÞ�ρ̂t; ð22Þ

where

ΓjkðtÞ ¼ −
Z

t

0

ds1Ajlðt; s1ÞClkðt − s1Þ; ð23Þ

ΘjkðtÞ ¼ −
Z

t

0

ds1Ajlðt; s1Þ ~Clkðt − s1Þ; ð24Þ

ΞjkðtÞ ¼ −2i
Z

t

0

ds1Bjlðt; s1ÞClkðt − s1Þ; ð25Þ

ϒjkðtÞ ¼ −2i
Z

t

0

ds1Bjlðt; s1Þ ~Clkðt − s1Þ: ð26Þ

Switching to the Schrödinger picture one can write the ME
in a more familiar way:

_̂ρt ¼ −i½Ĥ0; ρ̂� þ ΓjkðtÞ½Âj; ½Âk; ρ̂�� þ ΘjkðtÞ½Âj; ½ _̂Ak
; ρ̂��

þ ΞjkðtÞ½Âj; fÂk; ρ̂g� þϒjkðtÞ½Âj; f _̂Ak
; ρ̂g�: ð27Þ

Equations (22)–(27) are the main result of this Letter, i.e.,
the most general trace preserving, CP, Gaussian, non-
Markovian ME for a linear system. This ME is the
generalization of the Lindblad ME to non-Markovian
dynamics. We stress that this result is exact and all the
functions entering these equations are analytical. We
observe that the ME is characterized by an explicit

dependence not only on ÂðtÞ, but also on _̂AðtÞ. This is a
purely non-Markovian feature, since the Lindblad super-
operator (10) instead depends on ÂðtÞ only. More com-
ments on this issue are given later with specific examples.
We now focus on some interesting physical systems, and

we exploit our general achievement to provide the ME
unraveled by a non-Markovian, dissipative SSE.
Non-markovian quantum brownian motion.—In their

seminal paper [3], Hu, Paz, and Zhang derived the ME
for a particle interacting with an environment of harmonic
oscillators using the path-integral formalism. Since the
Hamiltonian they analyzed is a particular case of our
general result, we provide a straightforward way to give
an alternative derivation of such a ME. The system
considered in Ref. [3] is a harmonic oscillator of mass
m coupled to the bath via the position operator. The ME is
easily obtained substituting Â ¼ q̂ in Eq. (27) (only one Â):

_̂ρt ¼ −i½Ĥ0; ρ̂� þ ΓðtÞ½q̂; ½q̂; ρ̂�� þmΘðtÞ½q̂; ½p̂; ρ̂��
þ ΞðtÞ½q̂2; ρ̂� þmϒðtÞ½q̂; fp̂; ρ̂g�: ð28Þ

This is the sameME obtained byHu-Paz-Zhang; it isCP and
it describes quantum dissipation in the non-Markovian
regime. The functions Γ, Θ, Ξ, ϒ are given by
Eqs. (23)–(26) with Cðt−s1Þ¼cosωðt−s1Þ and ~Cðt − s1Þ ¼
− sinωðt − s1Þ=mω, and they display a series structure
coming from A and B. The equivalence of the functions
Γ, Θ, Ξ, ϒ with those obtained by Hu-Paz-Zhang
can be easily checked in the weak coupling limit, i.e.,
considering only the “zero order” terms of Eqs. (19)–(20)
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[cf. Eqs.(2.46a)–(2.46d) of [3]]. Nonetheless, since the
coefficients of Eq. (28) have a series structure, our derivation
provides a straightforward way to obtain higher order
expansions of such coefficients.
Caldeira and Leggett derived a Markov limit of the CP

ME (28), obtaining a non CP ME [Eq. (28) with Θ ¼ 0]
[15]. The common explanation of this fact is that a term of
the type ½p̂; ½p̂; ρ̂�� is missing because the limiting pro-
cedure is such that it is lost. What we argue is that CP is
broken by the dissipative term ½q̂; fp̂; ρ̂g�. Indeed, such a

term is a contribution of the _̂A type (p̂ ∼ _̂q) that, as
previously stressed, is not expected in a Markovian ME.
Such an unexpected term arises from the limiting pro-
cedure, and we believe that this is the real issue with it.
Accordingly, in the Markovian regime one cannot correctly
describe dissipation by considering a system-bath coupling
only via q̂. As we will clarify with the next example, the
correct way to describe Markovian quantum dissipation is
by considering a system-bath coupling involving both q̂
and p̂ (as already suggested in Ref. [16]).
Non-markvovian dissipative SSE.—Another interesting

application of our main result is the derivation of the ME
associated to a non-Markovian dissipative SSE. Our start-
ing point is a given SSE and we derive the ME which is
unraveled by it. We consider the QMUPL collapse model,
that is particularly interesting because it offers itself for a
detailed mathematical analysis [17–19]. The ME for the
non-Markovian QMUPL model has never been computed,
nor in the dissipative and nondissipative cases; this result
will allow us to analyze the physical features of this model
that could not be investigated so far. The SSE describing
the non-Markovian dissipative QMUPL model reads [19]

d
dt

jψ ti ¼
�
−
i
ℏ

�
Ĥ0 þ

λμ

2
fq̂; p̂g

�
þ

ffiffiffi
λ

p �
q̂þ i

μ

ℏ
p̂

�
ϕðtÞ

−2
ffiffiffi
λ

p
q̂
Z

t

0

dsDðt; sÞ δ

δϕðsÞ
�
jψ ti: ð29Þ

The integral term and the fact that the real noise ϕ is
coupled both to q̂ and p̂, make it hard to derive a closed ME
with standard techniques (e.g., path integration). This
equation can be rewritten in the form (7) by defining
the following operators Â1 ¼ ℏq̂, Â2 ¼ −μp̂, and noises
ϕ1 ¼ i

ffiffiffi
λ

p
ϕ, ϕ2 ¼

ffiffiffi
λ

p
ϕ. Given these prescriptions one can

immediately obtain the ME for this model from Eq. (27). In
particular, if Ĥ0 is a harmonic oscillator one obtains the
following result:

_̂ρt ¼ −i½ĤðtÞ; ρ̂� þ ΓðtÞ½q̂; ½q̂; ρ̂�� þ ΘðtÞ½q̂; ½p̂; ρ̂��
þ ΞðtÞ½q̂2; ρ̂� þϒðtÞ½q̂; fp̂; ρ̂g� þ γðtÞ½p̂; ½p̂; ρ̂��; ð30Þ

where ĤðtÞ ¼ Ĥ0 þ αðtÞp̂2 þ ½βðtÞ þ ðλμ=2Þ�fq̂; p̂g, and
the explicit expressions of the coefficients are given in
Eq. [14]. This ME displays all the terms entering the ME
describing non-Markovian Brownian motion, plus three

further contributions. Two of them (½p̂2; ρ̂� and ½fq̂; p̂g; ρ̂�)
are responsible for energy renormalization, while the term
½p̂; ½p̂; ρ̂�� is a new contribution to diffusion. The existence
of these new terms is due to the fact that in Eq. (29) the
interaction is mediated both by the position and momentum
operators, while the open system leading to Eq. (28) interacts
with the bath only via q̂. Indeed, one can easily check that
the ME (28) is unraveled by the SSE (29) when the coupling
q̂þ ip̂ is replaced with q̂þ iq̂. As expected, the white
noise limit of Eq. (30) recovers the ME obtained in Ref. [20]
for the Markovian dissipative QMUPL model. This
Markovian ME has the same structure of the one describing
CP quantum (Markovian) Brownian motion [16,21].
We stress that if one considers an open system coupled to a

bath both via q̂ and p̂ (and not only q̂, like in the Hu-Paz-
Zhang and Caldeira-Leggett MEs), its reduced dynamics is
described by the ME (30). As already mentioned, this ME
leads to the correct CP dissipative ME under the Markov
limit. The dissipative term containing p̂ is now a legitimate
Markovian contribution (Â type) because p̂ enters the
coupling. Moreover, also the term ½p̂; ½p̂; ρ̂�� naturally
emerges from the p̂ coupling and does not need to be added
by hand. These facts suggest that the correct way to describe
dissipation in theMarkov regime is by considering a system-
bath coupling mediated both by q̂ and p̂, as it is implicitly
assumed in collisional models [21]. The physical intuition is
the following: dissipation is a dynamical feature, and as such
it requires a dynamical description. In Markovian dynamics,
the instantaneous interaction between the systemand thebath
erases any dynamical effect of the bath on the system, and to
keep track of dissipation one needs a dynamical coupling
(i.e., p̂). In the non-Markovian regime instead, the dynamics
hasmemory of the interaction, and the q̂ coupling is sufficient
to describe dissipation (e.g., the Hu-Paz-Zhang ME). Of
course, if one wants to coherently describe dissipation both
in the Markovian and non-Markovian regimes (allowing for
a smooth transition between them), one should consider
the coupling via q̂ and p̂ also in the non-Markovian case.
Non-markovian non-dissipative dynamics.—An open

system dynamics is nondissipative when DIm ¼ 0.
Applying this restriction to Eqs. (19)–(20) one finds that
the kernels ΞjkðtÞ, ϒjkðtÞ do not contribute to the ME. The
only contribution comes from the parts of ΓjkðtÞ and ΘjkðtÞ
proportional to DRe. Accordingly, the ME (27) in the
nondissipative case reads

_̂ρt ¼ −i½Ĥ0; ρ̂� þ ~ΓjkðtÞ½Âj; ½Âk; ρ̂�� þ ~ΘjkðtÞ½Âj; ½ _̂Ak
; ρ̂��;

ð31Þ
with

~ΓjkðtÞ ¼ −
Z

t

0

ds1DRe
jl ðt; s1ÞClkðt − s1Þ; ð32Þ

~ΘjkðtÞ ¼ −
Z

t

0

ds1DRe
jl ðt; s1Þ ~Clkðt − s1Þ: ð33Þ
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If the system under study is a harmonic oscillatorwith proper
frequency ω, the prescription Â ¼ ffiffiffi

λ
p

q̂ in Eq. (31) leads to

_̂ρt ¼ −i½Ĥ; ρ̂� þ λ ~ΓðtÞ½q̂; ½q̂; ρ̂�� þ λ ~ΘðtÞ½q̂; ½p̂; ρ̂��; ð34Þ
where ~Γ and ~Θ are given by Eqs. (32)–(33) with Cðt − sÞ ¼
cosωðt − sÞ and ~Cðt − sÞ ¼ − sinωðt − sÞ=mω. This ME is
the non-Markovian generalization of the Joos-Zeh ME [22],
and displays a purely non-Markovian contribution to
diffusion (½q̂; ½p̂; ρ̂��). The white noise limit [DReðt; sÞ →
δðt − sÞ] of Eqs. (32)–(33) gives, respectively, Γ → −1 and
Θ → 0, leading Eq. (34) to recover the ME by Joos-Zeh.
We stress that, if one considers the momentum coupling,

the requirement of nondissipative dynamics coincides with
setting μ ¼ 0. One can easily check that by imposing this
requirement on Eq. (30) one recovers Eq. (34). Moreover,
the SSE unravelling Eq. (34) is obtained by setting μ ¼ 0
in Eq. (29). This is the SSE describing the nondissipative,
non-Markovian QMUPL model [18].
Conclusions.—In this Letter we provide the exact closed

ME for a wide class of non-Markovian dynamics, both for
linear and nonlinear systems. This very general result allows
us to investigate many physical systems and, under suitable
conditions, it recovers the ME for non-Markovian quantum
Brownian motion. The derivation of the ME for a system
coupled to a bath both via q̂ and p̂, suggests that quantum
dissipation is better described by amodel of this kind (instead
of the q̂ coupling only). We showed that our general result
provides a straightforward tool to obtain the ME unraveled
by a non-Markovian SSE, allowing for a deeper analysis
of the physical features of non-Markovian collapse models.
These features, as well as the analysis of the ME (30) for an
open system will be investigated in a forthcoming paper.
The procedure outlined in this Letter can also be applied
to the pure dephasing spin-boson model, the reason being
that the free Hamiltonian commutes with the interaction
Hamiltonian and the commutation relation (2) is satisfied.
Substituting Â ¼ σz in Eq. (27) one recovers the knownME
for this model [1,23]. The general spin-boson model can be
analyzed only by generalizing the method here proposed.
This topic will be the subject of further studies. The achieve-
ment of this Letter will improve the understanding of non-
Markovianity under the physical point of view.
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