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Progress towards an effective non-Markovian description of a system interacting with a bath
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We analyze a system coupled to a bath of independent harmonic oscillators. We transform the bath in chain
structure by solving an inverse eigenvalue problem. We solve the equations of motion for the collective variables
defined by this transformation, and we derive the exact dynamics for a harmonic oscillator in terms of the
microscopic motion of the environmental modes. We compare this approach to the well-known generalized
Langevin equation and we show that our dynamics satisfies this equation.
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I. INTRODUCTION

Ultrafast physical processes captured the attention of the
scientific community because they arise in different physical
situations ranging from chemistry [1] to condensed matter [2],
to biophysics [3]. From the theoretical point of view these pro-
cesses are described by open systems, i.e., systems interacting
with the surrounding environment. Most commonly, for an
effective description open quantum systems are approximated
by Markovian dynamics, which require a large separation
of time scales between the system and the environment [4].
Ultrafast processes are those for which the time scale of
the relevant system is about of the same order as that of
the bath into which it is immersed. Therefore an effective
characterization of such processes—if existing at all—must
rely on other modes of description, which most likely need to
be non-Markovian. This justifies the growing interest in non-
Markovian open quantum system dynamics. It is important to
stress that non-Markovian descriptions can only be effective
on short time scales: this feature will play a crucial role in
choosing the best strategy to tackle non-Markovian dynamics.

The model most widely used to describe open quantum
systems is the “independent oscillators” (IO) model [5–7].
In this model the system is bilinearly coupled to a bath of
independent harmonic oscillators. This model has been thor-
oughly studied, and it proved fundamental for the description
of Markovian and non-Markovian quantum Brownian motion
[6,8,9]. Considering the Heisenberg equations of motion of
this model, one can derive a generalized Langevin equation
(GLE) that gives a phenomenological description of how
the environment affects the system [5,10–14]. The structure
of the GLE is perfect for deriving the Markovian limit, which
in the classical regime recovers the Langevin equation for
Brownian motion. In short, the GLE is suitable to analyze ther-
mal effects, diffusive effects, and the fluctuation-dissipation
relations due to the environment. However, as we shall argue,
the GLE is not suited in situations when the time-scale
separation is small and non-Markovian features are dominant.
Indeed, the picture given by the IO model and the GLE only
tells us that the interaction with the environment gives rise to
some non-Markovian memory effects, but it is not clear how
one can capture them in an effective way.

*ferialdi@math.lmu.de
†duerr@math.lmu.de

In order to tackle this problem, we will consider another
representation which better suits the analysis of short-time
dynamics. As we shall show, the IO model indeed is not
suitable for this scope, because the influence of the interaction
between the system and the environment is not “time” ordered
as all the environmental oscillators act “at the same time” on
the system. A better representation from this point of view
is a chain model, i.e., a system interacting with a chain of
first-neighbor interacting harmonic oscillators [15,16]. This
model allows one to order the influence of the interaction in
time, and one can have a clearer physical picture of what
is going on: the first oscillator of the chain will first affect
the system, and only at a later time the influence of the
second oscillator of the chain will reach the system, and so
on and so forth. Moreover, as we will show, such a model
allows one to express the system dynamics in terms of the
microscopic motion of the bath constituents [cf. Eq. (29)].
As IO models, due to their structural closeness to GLE are
mostly considered in applications, we ask the question: How
can we achieve a chain structure from an underlying model
of independent oscillators? The neatest way to perform the
transformation between these two descriptions is by solving
an inverse eigenvalue problem (IEP). These problems are well
known in the field of vibration theory, and the literature is vast
(see, e.g., [17,18], and references therein).

Our analysis applies to both classical mechanics (if one
considers phase-space variables) and to quantum mechanics
(if one considers Heisenberg equations of motion). The paper
is organized as follows: in Sec. II we introduce the two models
for the environment, and we solve the IEP that univocally
determines the parameters of the chain. In Section III we
solve the equations of motion of the chain model in terms
of the environmental modes, obtaining the exact dynamics
of the system. We eventually compare our results with the
phenomenological GLE.

II. INDEPENDENT OSCILLATORS AND CHAIN MODELS

We consider an open quantum system made of a particle
bilinearly interacting with an environment of N independent
harmonic oscillators. We assume the environment to be
arbitrarily big but finite. The Hamiltonian describing this IO
model reads:

HIO = p2

2M
+ V (x) + x

N∑
k=1

ckqk +
N∑

k=1

1

2

(
p2

k + ω2
kq

2
k

)
, (1)
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where x,p are the position and momentum operators of
the relevant system, ck are positive constants, and qk,pk

are position and momentum operators of the environmental
oscillators with proper frequency ωk . V (x) is a generic
renormalized potential, which includes the term x2 ∑

k c2
k/2ω2

k

that guarantees boundedness and translation invariance of
the model. Note that this implies that also an initially free
particle will always acquire an oscillatory behavior due to
the interaction with the environment. Introducing the vector
of the position operators of the environmental oscillators
qT = (q1, . . . ,qN ), one can write their Heisenberg equations
of motion as follows:

d2

dt2
q(t) = −ω · q(t), (2)

where ω is the diagonal matrix of the oscillator frequencies:
ω = diag(ω2

1, . . . ,ω
2
N ), with ω1 < ω2 < · · ·ωN . Substituting

the system (2) in the Heisenberg equation for x, one obtains
the following GLE [5,6]:

ẍ(t) +
∫ t

0
ds η(t − s)ẋ(s) + V ′(x) = g(t), (3)

where the prime denotes differentiation with respect to x.
The kernel η(t − s) is called friction kernel, since in the
Markov limit the integral term becomes the friction constant
of the Langevin equation. The stochastic force g(t) depends
on the initial conditions of the bath operators and is responsible
for the diffusive behavior. The explicit but cumbersome
expressions for η(t − s) and g(t) can be easily derived in terms
of the IO parameters [6,14]. Equation (3) can be taken as the
starting point for Markovian and non-Markovian descriptions.
The Markovian description would arise when there is little
memory, i.e., η(t) is close to a Dirac delta and g(t) is close to
Brownian motion. Non-Markovian dynamics arise of course
for kernel, not approximative deltalike.

We now focus on the alternative mode of description—a
chain model for the bath—which turns out to be more suitable
to study the short-time behavior of the dynamics. A system
interacting with a chain of first-neighbor interacting harmonic
oscillators is described by the following Hamiltonian:

HCHAIN = p2

2M
+ V(x)+DxX1 +

N∑
k=2

Dk−1Xk−1Xk

+
N∑

k=1

1

2

(
P 2

k + �2
kX

2
k

)
. (4)

Here x is the position of the system, a tracer particle, and Dk

are positive coupling constants, Xk are the position operators
of the chain oscillators, Pk are their conjugated momenta, and
�k their frequencies. The Heisenberg equations for Xk read

d2

dt2
X(t) = −T · X(t), (5)

where XT = (X1, . . . ,XN ), and T is the following tridiagonal
matrix:

T =

⎛
⎜⎜⎜⎜⎝

�2
1 −D1 0 · · ·

−D1 �2
2 −D2 · · ·

0 −D2 �2
3 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ . (6)

We may think of (4) as defining a microscopic model in its
own right, but in this paper we wish to take as fundamental the
IO model and aim at achieving a description in terms of (4).
We shall refer to the chain description as if it were a model
and call the Xk the environment. Accordingly, we want to be
able to relate our subsequent analysis of the chain model to
the IO model at any time. In order to do so, we require the
Hamiltonians HIO, HCHAIN to be “equivalent,” in the sense
that they give the same dynamics for the tracer particle x.
Accordingly, the parameters entering HCHAIN are not free, but
they have to be particular functions of the parameters of HIO.
Moreover, the chain oscillators X have to be specific linear
combinations of the independent oscillators q. Let us introduce
an orthogonal N×N matrix O, and define

Xj =
∑

k

Ojkqk. (7)

In order to satisfy our requirements, the matrix O has to be
such that Eqs. (2) and (5) are equivalent. Substituting Eq. (7)
in (5) one easily finds that this requirement reduces to that of
determining the orthogonal matrix O such that

T = O · ωOT . (8)

The problem of determining a matrix starting from its eigen-
values is known under the name of inverse eigenvalue problem.
Kindred relations between the two environments have already
been considered in the literature. In [19] the authors define
“collective modes” through a transformation that makes use of
a hierarchical bath construction. The parameters of the chain
are not obtained analytically, but fitted with some experimental
data. A similar hierarchical transformation for an infinite chain
is used in [20], where the authors derive (formally) the chain
parameters from the propagator of the initial GLE. Another
approach for infinite chains has been proposed in [21], where
the collective modes are obtained exploiting the properties of
orthogonal polynomials.

Inverse eigenvalue problem

IEPs arise in different areas of theoretical and applied
sciences, such as, e.g., vibration theory, control theory, particle
physics, geophysics, and engineering [17,18]. In general, an
IEP consists in finding the entries of a matrix T, starting
from its eigenvalues and some additional initial data. In
our case the matrix T is a Jacobi matrix, i.e., a positive
semidefinite, symmetric, tridiagonal matrix. An N×N Jacobi
matrix has 2N − 1 free entries, while the IO model gives us
N conditions (the eigenvalues ωk). In order to find a unique
solution to our IEP we need N − 1 supplementary conditions,
which are obtained by exploiting the equivalence between HIO

and HCHAIN. In particular, matching the interaction terms of
Eqs. (1) and (4) one finds that DX1 = ∑

k ckqk , which by
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means of Eq. (7) implies O1k = D−1ck . The knowledge of the
first line of O provides enough conditions to uniquely solve the
Jacobi IEP. The algorithm to determine O and T is standard
so we do not repeat it here. We do refer only to the results
essential to this paper; further details can be found in [17,18].
The entries of the matrix O read

Ojk =
(

j−1∏
l=1

D−1
j−1

)
Pj−1(ωk), (9)

where Pj (λ) is the characteristic polynomial of the j th leading
principal minor of T, evaluated in λ. Note that the explicit
expressions for the Pj are determined recursively exploiting
the following recurrence relation:

Pj+1(λ) = (
�2

j − λ
)
Pj (λ) − D2

jPj−1(λ) (10)

with P−1 = 0. Once the transformation matrix O is deter-
mined, the entries of T are given by the following relations:

�2
j =

∑
k

ω2
kO

2
jk, (11)

Dj = −
∑

k

ω2
kOjkOj+1k. (12)

These equations complete the set of parameters that we will
need in the following discussion. From now on we will
consider the matrix T as known, i.e., as fully determined in
terms of the parameters of the IO model. The dynamics given

by Eq. (4) with the parameters here defined is equivalent to that
given by Eq. (1). Moreover, note that the �j are not necessarily
ordered with respect to the index j . The chain oscillators
X manifestly represent a particular collective behavior of
the independent oscillators. Unfortunately, their structure in
terms of q is rather cumbersome and does not allow for a
straightforward physical interpretation.

III. NON-MARKOVIAN DYNAMICS
OF A HARMONIC OSCILLATOR

The aim of this section is to determine how the collective
modes X affect the dynamics of the system. For this we need
to solve the set of equations of motion (5). In order to do
so, we approximate the tracer particle potential V (x) [cf. (4)]
harmonically, i.e., we consider now a harmonic oscillator with
proper frequency �. The Heisenberg equations of the open
system can then be explicitly written as follows:

ẍ(t) = −�2x(t) + DX1(t), (13)

Ẍi(t) = −�2
i Xi(t) + Di−1Xi−1(t) + DiXi+1(t), (14)

ẌN (t) = −�2
NXN (t) + DN−1XN−1(t), (15)

where the dots denote differentiation with respect to t , and the
index i ranges from 1 to N − 1. We rewrite these equations in
integral form:

x(t) = f0(t) +
∫ t

0

sin[�0(t − s)]

�0
DX1(s)ds, (16)

Xi(t) = fi(t) +
∫ t

0

sin[�i(t − s)]

�i

[Di−1Xi−1(s) + DiXi+1(s)] ds, 1 � i � N − 1, (17)

XN (t) = fN (t) +
∫ t

0

sin[�N (t − s)]

�N

DN−1XN−1(s)ds, (18)

where we have relabeled �0 = �, X0 = x, and

fi(t) = Xi(0) cos[�it] + Ẋi(0)
sin[�it]

�i

. (19)

In order to obtain the dynamics of x(t) in terms of the Xi , we substitute recursively Eq. (17) in Eq. (16). One can prove that
substituting the equations up to Xn(t) (for every n � N ), x(t) reads

x(t) = f̃n(t) +
n∑

i=1

(
i∏

l=0

Dl

�l

)
Di−1

Di

∫ t

0
Ki(t − s)Xi−1(s)ds +

(
n∏

l=0

Dl

�l

) ∫ t

0
Kn(t − s)Xn+1(s)ds, (20)

where recursively

Ki(t − s) =
∫ t

s

Ki−1(t − l) sin[�i(l − s)]dl, f̃i(t) = f̃i−1(t) +
(

i−1∏
l=0

Dl

�l

) ∫ t

0
Ki−1(t − s)fi(s)ds, (21)

with K0(t − l) = sin[�(t − l)], f̃0(t) = f0(t), and fi(s) given by Eq. (19). Equation (20) is obtained by induction. To see its
correctness for n = 1 substitute Eq. (17) for X1(t) in Eq. (16) to find

x(t) = f0(t) + D

�

∫ t

0
sin[�(t − s)]f1(s)ds + D2

��1

∫ t

0
K1(t − s)x(s)ds + DD1

��1

∫ t

0
K1(t − s)X2(s)ds. (22)
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This equation can be easily recast in the form of Eq. (20). Assume now that Eq. (20) is true for a generic n � N , and substitute
Eq. (17) for Xn+1(s) in the second line of Eq. (20). After some simple manipulation one can show that Eq. (20) results for n + 1,
i.e.,

x(t) = f̃n+1(t) +
n+1∑
i=1

(
i∏

l=0

Dl

�l

)
Di−1

Di

∫ t

0
Ki(t − s)Xi−1(s)ds +

(
n+1∏
l=0

Dl

�l

)∫ t

0
Kn+1(t − s)Xn+2(s)ds. (23)

It is important to note that Eq. (20) is exact. Although only n equations have been substituted into x(t), the second line of
Eq. (20) contains all the information regarding the evolution of the remaining N − n modes, encoded in Xn+1(s). It is easy to
show that, if one substitutes all the N equations for Xi , x(t) satisfies the following equation:

x(t) = f̃N (t) +
N∑

i=1

(
i∏

l=0

Dl

�l

)
Di−1

Di

∫ t

0
Ki(t − s)Xi−1(s)ds. (24)

Indeed, DN = 0 by definition. Accordingly, the second line of
Eq. (20) is null.

This equation determines the dynamics of x(t) in terms
of the full set of Xi . One can identify two different con-
tributions to the evolution of x: one is given by f̃N (t)
that collects the initial conditions of the collective modes;
the second is a purely non-Markovian integral contribution
which involves the whole past evolution of the collective
modes.

In order to study the evolution of x(t), recall that X0 = x

and rewrite Eq. (24) as follows:

x(t) = D2

��1

∫ t

0
K1(t − s)x(s)ds + FN (t), (25)

where the function FN (t) collects all terms of Eq. (24) that do
not depend on x:

FN (t) = f̃N (t) +
N∑

i=2

(
i∏

l=0

Dl

�l

)
Di−1

Di

×
∫ t

0
Ki(t − s)Xi−1(s)ds. (26)

Equation (25) explicitly shows that the dynamics of x is ruled
by an integral equation. Furthermore, we stress that Eq. (26)
can be rewritten in terms of the independent oscillators by
exploiting Eq. (7):

Xj (s)=
∑

k

Ojk

(
qk(0) cos ωks+q̇k(0)

sin ωks

ωk

)
. (27)

Recalling the definition of Eq. (21), and performing the
integration, one finds that the kernel K1(t − s) is

K1(t − s) = �1 sin[�(t − s)] − � sin[�1(t − s)]

�2
1 − �2

. (28)

Since this is a simple combination of two sine functions,
Eq. (25) can be solved using standard techniques [22]. The
solution reads

x(t) = FN (t) + D2

μ1μ2
(
μ2

2 − μ2
1

)
×

∫ t

0
(μ2 sin[μ1(t − s)]−μ1 sin[μ2(t − s)])FN (s)ds,

(29)

where

μ1,2 =
√

1

2

(
�2 + �2

1 ±
√

�
)
, (30)

� = (
�2 − �2

1

)2 − 4D2. (31)

Note that in order to have real values for μ1,2 and avoid
multivalued x(t), one needs the condition � � 0 to hold true.
Equation (29) is the main result of this paper: it displays the
exact solution of our problem, representing the dynamics of
a harmonic oscillator under the influence of a chain of N

harmonic oscillators. We stress that all the parameters entering
this equation are known analytically. Furthermore, by means
of Eqs. (26) and (27), one can rewrite Eq. (29) in terms of
the qk: this implies that for any sets of parameters and initial
conditions of the IO model, Eq. (29) also provides the exact
dynamics for this model. In this sense, Eq. (29) describes how
the non-Markovian dynamics of the system depends on the
microscopic motion of the IO bath constituents.

The dynamics of x(t) is determined by the function FN (t)
defined in Eq. (26). FN (t) is stochastic since it depends on
the initial conditions qk(0) of the environmental oscillators
which are unknown. We then see that, as expected, x(t)
displays the same diffusive behavior as the one given by
stochastic force g(t) in Eq. (3). Moreover, FN (t) displays
two different contributions: the one given by fN (t) describes
the behavior of the effective modes as if they were free
oscillators. The second contribution depends on the interaction
among the modes and the dynamics of the full chain.
An important feature of Eq. (29) is the way the peculiar
environmental structure and the non-Markovian features show
up: on the one side each Xi contributes to the dynamics
via the integral kernel Ki+1, reflecting the physical ordering
among the effective modes. On the other side, the kernels
themselves have a nested structure [see Eq. (21)]. It is indeed
this particular structure that paves the way for obtaining an
effective description of the non-Markovian dynamics. One
should also mention that such a structure is similar to the one
obtained by Mori with his continued fraction description of
the generalized Brownian motion [10,23]. This suggests that
our derivation is a particular (and exactly solvable) case of the
general projective technique proposed by Mori. However, we
could not provide any direct evidence for this.

As previously mentioned, the GLE (3) is the reference result
for non-Markovian dynamics. It is then essential to compare
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our result to the GLE and show which are the advantages
given by the microscopic description. One major difference
is that the GLE is an integrodifferential equation that needs
to be solved, and remarkably the solution method (and its
succesfulness) strongly depends on the spectral properties of
the bath. In other words, the solution cannot be easily obtained
for every set of environmental parameters. On the contrary,
Eq. (29) is the solution of Eq. (25), and it explicitly displays
the dynamics of the system for any environment. Furthermore,
since by construction the dynamics of the IO and chain models
are equivalent, Eq. (29) is also the solution of the GLE (3) for a
harmonic oscillator. This result gives an important contribution
to the field as it allows for the exact treatment of a wider
class of environments. Moreover, besides extending the range
of applicability of the GLE, Eq. (29) also has the value of
being easier to analyze both at the analytical and numerical
levels. It is worth mentioning that while in Eq. (3) one can
quite easily perform the Markov limit, obtaining the Langevin
equation in the classical regime, one cannot do this as easily
in Eq. (29). The GLE and the chain equation hence are two
complementary descriptions, from which different effective
descriptions can arise: the first is suitable to understand how
the environment phenomenologically affects the system, and
the second to understand how non-Markovian features emerge
from the underlying motion on short time scales. How such
an effective description of non-Markovian dynamics can be
realized will be analyzed in detail in a subsequent paper.

IV. CONCLUSIONS

In order to provide a microscopic description of non-
Markovian dynamics, we transformed the IO environment in
a chain fashion, by solving an inverse eigenvalue problem. We
derived the exact equation of motion for a harmonic oscillator,
in terms of the microscopic motion of the environmental
modes. This result represents a fundamental step forward in
the understanding of non-Markovian dynamics. Equation (29)
shows how the microscopic behavior of the bath influences
the system: the environmental oscillators act in a specific
collective way, defining some collective modes. An interesting
feature of the dynamics is that each collective mode Xi acts
through a kernel Ki+1: this peculiar structure will be the subject
of further studies. Remarkably, Eq. (29) provides the solution
of the most important phenomenological equation describing
general open quantum systems. This result allows one to shed
new light on the understanding of non-Markovian phenomena,
allowing for an easier and deeper analysis both at the numerical
and analytical levels.
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