
Original Article

Data-Driven Computational Simulation in Bone Mechanics

J. A. SANZ-HERRERA,1 J. MORA-MACÍAS,2 J. AYENSA-JIMÉNEZ,3
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Abstract—The data-driven approach was formally intro-
duced in the field of computational mechanics just a few
years ago, but it has gained increasing interest and applica-
tion as disruptive technology in many other fields of physics
and engineering. Although the fundamental bases of the
method have been already settled, there are still many
challenges to solve, which are often inherently linked to the
problem at hand. In this paper, the data-driven methodology
is applied to a particular problem in tissue biomechanics, a
context where this approach is particularly suitable due to
the difficulty in establishing accurate and general constitutive
models, due to the intrinsic intra and inter-individual
variability of the microstructure and associated mechanical
properties of biological tissues. The problem addressed here
corresponds to the characterization and mechanical simula-
tion of a piece of cortical bone tissue. Cortical horse bone
tissue was mechanically tested using a biaxial machine. The
displacement field was obtained by means of digital image
correlation and then transformed into strains by approxi-
mating the displacement derivatives in the bone virtual
geometric image. These results, together with the approxi-
mated stress state, assumed as uniform in the small pieces
tested, were used as input in the flowchart of the data-driven
methodology to solve several numerical examples, which
were compared with the corresponding classical model-based
fitted solution. From these results, we conclude that the data-
driven methodology is a useful tool to directly simulate
problems of biomechanical interest without the imposition
(model-free) of complex spatial and individually-varying
constitutive laws. The presented data-driven approach recov-
ers the natural spatial variation of the solution, resulting
from the complex structure of bone tissue, i.e. heterogeneity,
microstructural hierarchy and multifactorial architecture,
making it possible to add the intrinsic stochasticity of
biological tissues into the data set and into the numerical
approach.

Keywords—Data-driven approach, Computational biome-

chanics, Experimental bone tissue mechanics, Numerical

simulation.

INTRODUCTION

Data Science (DS) has impacted both industry and

research in an unprecedented way in our daily lives.23

Its objective is not only to use data to feed previously

established mathematical models or to find statistical

properties or correlatioanans, but to unravel hidden

correlations, trends, information or even knowledge,

to support decisions or, in a more advanced state, to

directly make such decisions. DS has found room for

development in many fields, particularly in marketing,

e-commerce,13 social sciences1 and healthcare,28

among a vast literature and an immense variety of

examples. The recent appearance of the Internet of

Things will represent a new scenario for new devel-

opments of DS with endless applications.2

Although not at the same level, DS methodology is

also starting to be applied to mathematical modeling

and simulation of physical systems. This represents a

new paradigm in Predictive Physics, which works in

the substitution of phenomenological laws (deduction),

derived from the intelligent fitting of years of tests, by

the direct ‘extrapolation’ (induction) of the set (model-

free) of available data.21,23 The solution obtained in

this way is considered to be closer, and hence more

accurate, to the actual measured data, since it is not

restricted to a parametric modeling of the constitutive

behavior. We name this approach as data-driven (DD)

modeling.
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In the context of Mechanics, DD has been devel-

oped in recent years from different perspectives.

Kirchdoerfer and Ortiz16 introduced an algorithmic

data-driven scheme in Continuum Mechanics which

finds the closest (optimal) stress–strain solution pair

from an available dataset to the set of potential solu-

tions. This solution is enforced to fulfill the compati-

bility and equilibrium equations that are introduced in

this formulation as constraints in the optimization

function by means of Lagrangian multipliers. This

formulation has been extended to dynamics,18 and

further elaborated to account for noisy datasets from a

statistical perspective.3,17 One inconvenience of data-

driven simulations is the need for a complete and

accurate dataset. This is not always the case, so

Ayensa-Jimenez et al.4 presented a general method to

consistently fill and expand (upsampling) missing,

incomplete and noisy datasets. Chinesta et al.15 pro-

posed applying manifold learning techniques, in com-

bination with a directional search strategy reminiscent

to the LaTin method,20 to reduce the dimension of the

dataset, making it smoother and accelerating the

optimization process.

In this paper, we focus on data-driven bone tissue

mechanics. Since the role of mechanics in functional

aspects and long-term adaptation of biological (hard

and soft) tissues is today inarguable, during the last

five decades, researchers have worked on their experi-

mental mechanical characterization to understand

their behavior in both physiological and pathological

conditions.11,33 Experimental techniques such as mag-

netic resonance elastography,24 indentation,25 uniaxial

tensile tests12 and biaxial tests,14,32 have been some of

the techniques employed to quantify their properties.

Regarding mineralized tissues such as cortical bone,

it has been shown that their macroscopic mechanical

properties are directly related to their microscopic

architecture,38 adapting the latter to the former in the

long-term in a process known as bone remodeling.10

Recent studies presented different correlations between

changes in the mechanical response with local changes

in tissue composition and microstructure. Experiments

with different techniques have been carried out to

obtain the elastic modulus of bone tissue26,38 and its

mineral density8 at the microscale level. These data

have been directly compared with macroscopic in vivo

or ex vivo experiments26 and with computational

models.38

Digital Image Correlation (DIC) is an optical

technique that directly provides full-field displacements

and strains with microscopic resolution, being suit-

able for testing inhomogeneous, anisotropic and non-

linear samples, such as biological tissues. The tech-

nique consists of taking digital images during the test

of a specimen and comparing its initial geometry

(considered as the reference state) with the final (de-

formed) one. DIC is a non-invasive method that allows

to perform dynamic tests, with a broad range of

validity and high limits for the displacements; and is

carried out with a simple preparation of the specimens.

This technique has been successfully used to measure

deformations in bone tissue9,40 and offers advantages

over other methods, such as nanoindentation.26,38

All cited works use parametric modeling to fit the

constitutive behavior of the tested material. However,

it has been shown repeatedly22 that the model fitting

approach is far from providing sufficiently accurate

results in some regions of the experiment. Therefore, a

data-driven approach may represent the actual

behavior of the tissue better if a sufficient set of

experimental data is available.

The aim of this study is therefore to introduce a

data-driven framework in the context of bone tissue

mechanics, including mechanical tissue characteriza-

tion. First, mechanical testing of horse cortical bone

samples is performed to get the required experimental

data. These samples are bi-axially loaded and the

strain field of the region of interest is recorded for

different loading conditions by means of DIC. These

results are then used as an input dataset in the

flowchart of the data-driven methodology, serving as a

surrogate material for constitutive behavior models in

several numerical examples. To the best of the authors’

knowledge, this is the first study specifically designed

for data-driven methodology simulations in the con-

text of biomechanics. In addition, the present study

adds useful new data about the mechanical properties

of the equine femur in comparison to others in the

literature.7,19,27,30

MATERIALS AND METHODS

The two components of the data-driven approach

shown in this paper are: (i) building an experimental

dataset of the mechanical behavior of the cortical bone

tissue, and (ii) implementing a data-driven scheme to

obtain the solution to problems of interest. The

methods associated to these two components of the

methodology are explained in the next subsections.

Bone Tissue Data Acquisition

Sample Preparation

A piece of cortical bone from the mid diaphysis was

extracted from the femur of an adult horse previously

fresh frozen at 2 80 �C (Fig. 1a). A plane sample,

50 9 20 9 4 mm, was obtained by milling. The long

sides of the rectangular specimen are parallel to the
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longitudinal axis of the femur. Due to limited avail-

ability of cortical tissue, only one specimen sample was

prepared for testing. The ends of the specimen, 10 mm

in size, were embedded in epoxy resin to fix them to the

testing machine (Fig. 1b). Once embedded, for mea-

suring strains with the DIC technology, the sample was

spray painted first to generate a white background,

while little black speckles were sprayed afterwards.

Fig. 2 shows the surface of the samples after painting.

Mechanical Testing

In the mechanical tests, longitudinal compressive

(LF) and transversal compressive (TF) forces were

applied biaxially to the sample according to the

scheme shown in Fig. 2. A push-pull testing machine

(KEELAVITE�) was used to apply the LF by means

of an automatically controlled hydraulic actuator

(MTS 407�). This system was equipped with an Eaton

Lebow 20 Klbf load cell (model: 3174-20K) for LF

measurement. As observed in Fig. 1, the sample was

threaded longitudinally to the testing machine actua-

tor. In the transversal direction, a manually controlled

linear screw type actuator41 was used to apply the TF

as shown in Fig. 2. The TF was applied as a contact

force between the sample lateral surface and a thick

steel platen (20 9 20 9 5 mm). The platen (Fig. 2) is

guided by a rectangular slider. Parallel planar surfaces

of the sample, machined by milling, and appropriate

tolerances between the platen and the slider, ensure

uniform contact between platen and the sample sur-

face. The TF applied, up to 1500 N, was monitored

with a load cell connected in series (Interface 2 Klbf,

model: WMC-2000).

Strains were measured in the 10 9 10 mm region of

interest in the middle of the sample (Fig. 2) by using a

DIC system (Limess�, Vic Snap� and Vic2D�). The

camera provided a 38 9 32 mm field of view in the

sample (2452 9 2052 pixels, with an approximately 15

lm pixel size). From the DIC pictures, the estimated

displacements in the spray-painted speckle pattern

were obtained over the sample to calculate the strain

field in a 10 9 10 mm region of interest (Fig. 2). The

average pattern density was approximately 37 dots/

mm2. A 192 9 176 points strain field was generated in

the 10 9 10 mm surface (around 733 9 667 pixels). The

correlation algorithms used to estimate the displace-

ments and strains (Vic2D) are based on gray value

interpolation. Depending on the gray value, an inten-

sity pattern is defined at each point. The intensity is a

function that depends on position, displacement and

strain value. Therefore, difference of intensity for the

same position is due to changes in displacement and

strain. The algorithm determines the displacement and

strain parameters, so that the intensity values at each

point in the deformed and undeformed regions

match.36,37 Among the different correlation options

allowed by the software, normalized squared differ-

ences were used.

The mechanical test carried out consists of applying

the LF with a triangular wave (amplitude: 1500 N,

mean force value: 2 750 N approximately, frequency:

0.0887 Hz) while the TF moves within the range of

approximately 0 to 600 N. During loading, the DIC

camera took pictures of the sample surface every 20

FIGURE 1. (a) Cutting process of the horse femur to extract a
piece from the mid diaphysis; (b) plane sample during the
embedding process.

LF

TF

30

5

20

FIGURE 2. Picture of the sample taken by the DIC camera
and scheme of the longitudinal forces (LF) and transversal
forces (TF) applied to the specimen. The region of interest is
marked in red.
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ms. Thus, it was possible to calculate the strain field of

the region of interest for different loading states in

some cycles of the triangular wave and generate a data

set for the data-driven implementation. This consisted

of the applied forces (LF and TF) and the mean values

of the strain field in the region of interest, in the lon-

gitudinal and transversal directions (eL and eT). It was

checked, by means of a finite element (FE) modeling of

the experimental setup shown in Fig. 2, that both stress

and strain fields are homogeneous and uniform across

the measured region of interest.

Data-Driven Numerical Implementation

The implementation of the data-driven methodol-

ogy proceeds by searching for the closest stress–strain

pair, i.e. r; eð Þ, in the dataset D � r; eð ÞD, constrained
to the equilibrium and compatibility equations. This

may be written as follows:

min r;e;rD2D;eD2Dð Þ
1
s
d2ðr; rDÞ þ

1
� d

2ðe; eDÞ
� �

s:t:

r � r ¼ 0

e ¼ 1
2
ruþrTuð Þ

r � n ¼ tn in Ct

u ¼ �u in Cu

ð1Þ

with u the displacement field, s and � the representative
values of the stress and strain ranges in the test data,

respectively; tn are the prescribed values of the traction

field at the Neumann boundary Ct, associated to the

normal vector n, while �u are the prescribed values of

the displacement field at Dirichlet boundary Cu. Fi-

nally, d is the metric defining the distance of the stress–

strain pair to the dataset. In this work, this metric was

defined as the Euclidean distance,

dðx; xDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

ðxi � xi;DÞ
2

r

ð2Þ

Substitution of Eq. (2) into (1) yields,

min r;e;rD2D;eD2Dð Þ
1
s
r� rDk k2þ 1

� e� eDk k2
n o

s:t:

r � r ¼ 0e ¼ 1
2
ruþrTuð Þr � n ¼ tn in Ctu ¼ �u in Cu

ð3Þ

Using a FE discretization procedure over a single ele-

ment (the reader is referred to the basics of FE in

Reference 42, Eq. (3) yields,

min rðeÞ;eðeÞ;rðeÞD2D;eðeÞD2Dð Þ
1
s

r
ðeÞ � r

ðeÞ
D

�

�

�

�

2
þ 1

� e
ðeÞ � e

ðeÞ
D

�

�

�

�

2
n o

s:t:

e
ðeÞ ¼ BðeÞ � uðeÞ

P

k wk � B
ðeÞ;T

k � r
ðeÞ
k ¼ FðeÞ

ð4Þ

where BðeÞ is the shape function gradient matrix and

FðeÞ the vector of forces which accounts for the body

and boundary forces. Subscript (e) denotes discretized

variables defined over an element. On the other hand,

wk are the corresponding weights of the integration

(Gauss) points defined over the element.

The first compatibility (discretized) constraint in (4)

can be directly substituted back in the objective func-

tion. On the other hand, the second FE discretized

constraint can be included via a Lagrange multiplier,

finally resulting in the following expression:

min rðeÞ;eðeÞ;rðeÞD2D;eðeÞD2Dð Þ

�

1
s

r
ðeÞ � r

ðeÞ
D

�

�

�

�

2
þ 1

� BðeÞ � uðeÞ � e
ðeÞ

D

�

�

�

�

2
þ

þ
P

k wk � B
ðeÞ;T

k � r
ðeÞ
k � FðeÞ

� �

� gðeÞ
�

ð5Þ

Taking variations in (5), we get:

duðeÞ ¼ 0 !
1

�
BðeÞ � uðeÞ � e

ðeÞ
D

� �

¼ 0 ð6aÞ

drðeÞ ¼ 0 !
1

s
r
ðeÞ � r

ðeÞ
D

� �

þ BðeÞ � gðeÞ ¼ 0 ð6bÞ

dgðeÞ ¼ 0 !
X

k

wk � B
ðeÞ;T
k � r

ðeÞ
k � FðeÞ ¼ 0 ð6cÞ

Without abusing notation, s and � are redefined in

Eqs. (6a) and (6b).

After some algebraic manipulation of (6b) and

substitution of (6c) in (6b) we obtain,
X

k

wk � B
ðeÞ;T

k � B
ðeÞ

k � u
ðeÞ ¼

X

k

wk � B
ðeÞ;T

k � e
ðeÞ

D;k

X

k

wk � B
ðeÞ;T

k � s � B
ðeÞ

k � g
ðeÞ ¼

X

k

wk � B
ðeÞ;T

k � r
ðeÞ

D;k � FðeÞ

ð7Þ

Equation (7) is then integrated over all finite elements

of the mesh. Hence,
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A
Nel

e¼1

X

k

wk � B
ðeÞ;T

k � B
ðeÞ
k

 !

� u ¼ A
Nel

e¼1

X

k

wk � B
ðeÞ;T

k � e
ðeÞ
D;k

 !

A
Nel

e¼1

X

k

wk � B
ðeÞ;T

k � s � B
ðeÞ

k

 !

� g ¼ A
Nel

e¼1

X

k

wk � B
ðeÞ;T

k � r
ðeÞ

D;k

 !

� F

ð8Þ

In Eq. (8), A is the FE assembly operator and Nel the

number of elements of the FE mesh. Note that F is

referred to as the global force vector after assembly.

The algorithmic implementation of the set of Eq. (8)

is detailed in Box below following.16

In this work, the finite element and algorithmic

development of box 1 was implemented using Mat-

lab� assuming the plane stress hypothesis (using the

referred FE modeling of the experimental setup shown

in Fig. 2, we corroborated that the out-of-plane stress

field was negligible in the region of interest).

Simulation Cases

The DD methodology is always restricted to the

availability of stress–strain measurements coming from

experimental setups. Due to the complexity in the 3D

mechanical characterization of the bone tissue, the

experimental data are restricted to the 2D case, as

shown in the previous sections, as a first approach.

Therefore, based on the DD finite element discretiza-

tion according to the implementation described in

‘‘Data-driven Numerical implementation’’ section, two

different simplified and academic 2D examples of

application were defined.

The first application example (see Fig. 3a) refers to a

square plate loaded at different longitudinal and

transversal directions. Due to the simplicity of this

problem, the plate was meshed using 8 triangular and

linear elements. This problem was simulated using our

implemented DD approach. Additionally, the analyti-

cal solution of this problem allowed us to fit a con-

stitutive model for the tested cortical bone material, as

used by others,6,39 assuming an orthotropic behavior:

eL

eT

� 	

¼
1=EL � mTL=ET

�mLT=EL 1=ET

� 	

�
rL

rT

� 	

ð9Þ

where eL and eT are the longitudinal and transversal

strains, respectively; rL and rT are the longitudinal and

transversal stresses, respectively; and EL and ET are the

longitudinal and transversal Young’s moduli, respec-

tively. mLT is the Poisson’s ratio in the longitudinal-

transversal plane. Due to the symmetry of the com-

pliance matrix in (9), mTL ¼ mLTET=EL. This fitting

procedure is the classical alternative way of solving the

problems in Figs. 3a and 3b, and allowed us to com-

pare the DD results with the standard FE ones, as

shown in ‘‘Data-Driven Results’’ section.

On the other hand, the example of application

shown in Fig. 3b was solved for a biaxial compressive

load of TF = 1.3 9 105 N/m and LF = 2.6 9 105 N/

m, both using the model free DD approach and stan-

dard FE simulations together with the referred classi-

cal fitting approach, assuming an orthotropic material

modeling, as shown above. The FE mesh was com-

posed of 1024 triangular linear elements (Fig. 4). Finer

meshes yielded average differences in results below

2%, such that the selected mesh was considered inde-

pendent from results.

In order to quantify the differences between the

model free DD and the model-based FE simulations,

the following difference indicators were defined:

T

L

TF

LF

10 cm x 10 cm

T

L

5 cm x 5 cm

R=2.5 cm

(a) (b) LF

TF

FIGURE 3. Examples of application for the data-driven
simulations. (a) Square plate under biaxial compressive
loading. (b) Plate with a hole under biaxial compressive
loading.

FIGURE 4. FE mesh for the application example shown in
Fig. 3b.
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FIGURE 5. (a) Longitudinal force (LF) and transversal force (TF); (b) mean longitudinal strain (Le) and transversal strain (Te).

FIGURE 6. Experimentally (DIC) obtained microscopic transversal (a) and longitudinal (b) strain fields for LF¼ �458:0 N and TF=-
531.9 N.

diffðuiLÞ ½%� ¼ 100 �
u
i;FE
L

�u
i;DD

L

mean u
i;FE
L½ �

�

�

�

�

�

�

�

�

diffðuiTÞ ½%� ¼ 100 �
u
i;FE
T

�u
i;DD

T

mean u
i;FE
T½ �

�

�

�

�

�

�

�

�

diffðeiLÞ ½%� ¼ 100 �
e
i;FE
L

�e
i;DD

L

mean e
i;FE
L½ �

�

�

�

�

�

�

�

�

diffðeiTÞ ½%� ¼ 100 �
e
i;FE
T

�e
i;DD

T

mean e
i;FE
T½ �

�

�

�

�

�

�

�

�

diffðriLÞ ½%� ¼ 100 �
r
i;FE
L

�r
i;DD

L

mean r
i;FE
L½ �

�

�

�

�

�

�

�

�

diffðriTÞ ½%� ¼ 100 �
r
i;FE
T

�r
i;DD

T

mean r
i;FE
T½ �

�

�

�

�

�

�

�

�

ð10Þ

with uiL, u
i
T, e

i
L, e

i
T, r

i
L and riT the longitudinal and

transversal components of the field variables, at each

node i of the FE mesh, respectively. Superindexes FE

and DD refer to the method with which the solution

was computed. Finally, mean½�� denotes the mean va-

lue of all the nodes of the FE mesh of the corre-

sponding input variable.

RESULTS

Bone Tissue Experimental Results

Figure 5 shows the values of the LF and TF versus

time (Fig. 5a) for the time points in which strains in the

region of interest were recorded using DIC, i.e. when a

picture was taken by the DIC system. It is observed

that the LF follows a triangular wave between 0 and

2 1500 N while the TF decreases up to 2 600 N

(Fig. 5a). Figure 5b shows the mean values of the

longitudinal (Le) and transversal (Te) strains in the

region for the same time points represented in Fig. 5a.

Le ranges between 0 and 2 0.1%, reaching the lowest

values when the transversal force is the highest. Te

ranges between 0.05 and 2 0.05%, with the minimum

values of Te reaching the maximum TF in compres-

sion. The strain field, measured with DIC, is given in

Fig. 6, for LF¼ �458:0 N and TF¼ �531:9 N. The
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FIGURE 7. Horse femur cortical bone behavior. Measured dataset.

FIGURE 8. Results for the square plate subjected to longitudinal and transversal forces (Fig. 3a). Longitudinal force versus (a)
longitudinal strain and (b) transversal strain for a null value of the transversal force. Transversal force versus (c) transversal strain
and (d) longitudinal strain for a null value of the longitudinal force.
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measured stress values, needed in the dataset for the

DD simulations (‘‘Data-driven Numerical Implemen-

tation’’ section), were obtained by dividing the mea-

sured forces shown in Fig. 5a by the compressive area

(20 9 4 mm) in the tests (Fig. 2).

The results presented in this section for the test

described in ‘‘Bone Tissue Data Acquisition’’ section

are then model-free, used without any previous fitting

or calibration procedure. Hence, the results were

obtained without the need to determine the overall

mechanical properties to model the cortical bone

behavior. Instead, these results are used as the dataset

for the data-driven simulations as described in ‘‘Data-

Driven Numerical Implementation’’ section. This da-

taset is shown in Fig. 7. The results of the simulations

are presented in the next section.

Data-Driven Results

The plate of the first example of application (see

Fig. 3a) was first subjected to a range of transverse

force with null longitudinal component. Then, the

plate was subjected to a range of longitudinal forces

with null transversal component. The DD simulations

provided a constant stress and strain level along the

plate, which is basically the closest point of solution in

the dataset. The DD results of these simulations can be

seen in Fig. 8 (dot plot) for the considered range of

longitudinal and transversal forces. This problem

allowed us to fit the constitutive model Eq. (9), using

minimum square fitting, as plotted in Fig. 8 over the

measured values in the dataset. The model yields the

following mechanical parameters for a 2D orthotropic

behavior: EL ¼ 22:9GPa, ET ¼ 15:7GPa, mTL ¼ 0:30
and mLT ¼ 0:44. These fitted mechanical properties

were used in standard FE simulations for the problem

shown in Fig. 3b, as is presented next.

FIGURE 9. Plate with a hole under a biaxial compressive loading of TF 5 1.3 3 105 N/m and LF 5 2.6 3 105 N/m. Displacement
field [m]. Left: Model based fitting solution. Right: DD simulations. (a) Longitudinal displacement. (b) Transversal displacement.
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The longitudinal and transversal components of the

displacement field are shown in Fig. 9 for the DD and

model-based (standard) FE simulations. Also, the

longitudinal and transversal components of the strain

and stress tensors are plotted in Figs. 10 and 11,

respectively, for both approaches.

Finally, Fig. 12 shows the difference maps along the

geometry of the plate with a hole for the different

analyzed variables defined.

DISCUSSION

The results presented in this work provide, on one

hand, additional data regarding the characterization of

cortical bone tissue mechanics given the experimental

setup implemented specifically in this study. This setup

was based on the DIC technique, which proved to be

very useful to properly characterize the stress–strain

relation for cortical bone. In fact, a classical model-

based fitting was carried out in this work, yielding the

following values (considered as an orthotropic mate-

rial): EL ¼ 22:9GPa, ET ¼ 15:7GPa, mTL ¼ 0:30 and

mLT ¼ 0:44. This information is complementary to

other studies performed on the cortical bone. For

example, values in the range 15-22 GPa were reported

for the elasticity modulus of equine cortical

bone.5,29,31,34 For human bone tissue, values in the

range 10–25 GPa are found for the elasticity modulus,

and 0.3–0.6 for the Poisson’s ratio.35

On the other hand, and most interestingly, the or-

thotropic model-based fitting for the behavior of the

cortical bone tissue allowed us to compare FE simu-

lations with those obtained with the model-free DD

approach proposed in this paper. Apparently, and

according to Figs. 9, 10, 11, similar trends and values

were obtained for the field variables following both

methodologies. The displacement field is smooth both

for FE and DD simulations, as shown in Fig. 9.

However, it can be observed in Figs. 10 and 11 that the

FIGURE 10. Plate with a hole under a biaxial compressive loading of TF 5 1.3 3 105 N/m and LF 5 2.6 3 105 N/m. Strain field [–].
Left: Model based fitting solution. Right: DD simulations. (a) Longitudinal strain component. (b) Transversal strain component.
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fluctuation found in the results, typically obtained in

the experimental tests as can be seen in the dataset in

Fig. 7, is naturally recovered and reproduced for both

strain and stress in the DD simulations, in contrast to

the smoother solution obtained by means of the FE

analysis. This fluctuation found in the tests is a direct

consequence of the heterogeneity, microstructural

hierarchy and multifactorial architecture of the cortical

tissue, and demonstrates that model-based fitting dif-

fers from the actual behavior. In fact, indicators of the

difference between the variable fields (as defined in

Eq. (10)) are non-negligible in some regions of the

domain, with values of the the order of 25–80% for the

longitudinal and transversal components of the dis-

placement field; of 30–70% for the longitudinal and

transversal components of the strain field (peak values

up to 50 and 170% at some local regions for the lon-

gitudinal and transversal components, respectively);

and 14–40% for the longitudinal and transversal

components of the stress field (peak values up to 60%

at some local regions for the transversal component).

A higher difference magnitude is repeatedly observed

in the transversal direction than in the longitudinal

one, according to Figs. 9, 10, 11. This may be attrib-

uted to the higher dispersion found in the experimental

results in the transversal direction, as seen in Figs. 8c

and 8d in comparison to the longitudinal direction

(Figs. 8a and 8b).

As main limitations of this study, we can mention

the different hypotheses assumed with respect to the

acquisition of strains from the bone tissue and how

they were post-processed. Some of these hypotheses

are associated to the tissue properties. On the one

hand, cortical bone tissue is a heterogeneous and not

fully perfect linear elastic material. The mean value of

the strains from a discrete (DIC) strain field (with

approximately 57 lm among points of the speckle in

average) was used as input for the data-driven imple-

FIGURE 11. Plate with a hole under a biaxial compressive loading of TF 5 1.3 3 105 N/m and LF 5 2.6 3 105 N/m. Stress field
[Pa]. Left: Model based fitting solution. Right: DD simulations. (a) Longitudinal stress component. (b) Transversal stress
component.
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mentation, assuming a continuous elastic behavior.

Therefore, the effect of bone heterogeneity in the mean

value of strain has been considered, but not the local

differences, which would require multiscale techniques.

Regarding the sample preparation, the size and

homogeneity of the speckle pattern was also limited,

since painting was applied manually. That limits the

scale of the strain measurements. On the other hand,

the increase of thickness of the sample due to painting

has been neglected. Finally, the main limitation of this

FIGURE 12. Plate with a hole under a biaxial compressive loading of TF 5 1.3 3 105 N/m and LF 5 2.6 3 105 N/m. Variable field
difference in [%] as computed from Eq. (10). (a) diffðui

LÞ, (b) diffðu
i
TÞ, (c) diffðe

i
LÞ, (d) diffðe

i
TÞ, (e) diffðr

i
LÞ and (f) diffðriTÞ.
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study was the use of a single bone sample to illustrate

the methodology given the focus and scope of the

present work. More samples and regions of interest

within each sample would reinforce the conclusions

provided by this study. This will be the focus of future

work.

Conclusions

The present study shows, for the first time, the

development of an experimental setup for the charac-

terization of cortical bone tissue mechanics in con-

nection with DD simulations. The comparison of the

model-free DD methodology versus the classical con-

stitutive modeling approach and FE simulations sug-

gests that DD simulations are more realistic and

accurate to analyze cortical bone mechanics, since they

naturally recover the typical fluctuations in the stress–

strain tests. We hypothesize that the fluctuations of

stress and strain fields found in our DD results are a

direct consequence of the heterogeneity, microstruc-

tural hierarchy and multifactorial architecture of this

tissue. These preliminary results suggest that DD

simulations may be an interesting alternative to be

further explored, versus standard in-silico analysis in

biomechanics.
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