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Abstract

Background: Zr region is characterized by very rapid changes in the ground state structure of

the nuclei. In particular, the onset of deformation when passing from 98Zr to 100Zr is one of the

fastest ever observed in the nuclear chart. It has been probed both experimental and theoretically

that certain low-lying excited states of Zr isotopes own different shapes than the ground state.

Purpose: We intend to disentangle the interplay between the sudden changes in the ground state

shape, i.e., the existence of a quantum phase transition, and the presence in the spectra of coexisting

states with very different deformation, i.e., the presence of shape coexistence.

Method: We rely on a previous calculation using the Interacting Boson Model with Configura-

tion Mixing (IBM-CM) which reproduces in detail the spectroscopic properties of 96−110Zr. This

IBM-CM calculation allows to compute mean-field energy surfaces, wave functions and any other

observable related with the presence of shape coexistence or with a quantum phase transition.

Results: We obtain energy surfaces and the equilibrium value of the deformation parameter β,

the U(5) decomposition of the wave functions and the density of states.

Conclusions: We confirm that Zr is a clear example of quantum phase transition that originates

from the crossing of two configurations with a very different degree of deformation. Moreover,

we observe how the intruder configuration exhibits its own evolution which resembles a quantum

phase transition too.

PACS numbers: 21.10.-k, 21.60.-n, 21.60.Fw

Keywords: Zr isotopes, shape coexistence, quantum phase transition, interacting boson model.
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I. INTRODUCTION

Nuclei over the full nuclear mass (N,Z) surface are characterized by the presence of

clear cut regularities as the appearance of nuclear shells at magic numbers. Symmetries,

on the other hand, allow to establish hallmarks in the chart of nuclei defining spherical,

rigidly deformed and gamma-unstable nuclei. Therefore, most of the nuclei can be grouped

in one of the previous classes. The different patterns in the mass table are modulated

by the interplay between the different components of the nuclear force, namely, monopole

interaction, pairing interaction, quadrupole (low multipole in general) interaction. The

monopole part explains the changing energy of the single-particle levels [1]; pairing tends

to stabilize the atomic nuclei in a spherical shape; while the quadrupole interaction is at

the origin of the appearance of a deformed mean-field producing nuclear deformation. In

short and playing a central role, the detailed balance between the different components of

the nuclear force is the responsible of the final shape of the nucleus.

Another remarkable aspect of the nuclear chart is the existence of transitional regions,

where the structure of the nuclei evolves from one of the limiting cases to another as a

function of the neutron and/or the proton number. In certain regions the evolution can

be very rapid and the nucleus changes from being spherical to strongly deformed in just a

few mass units, e.g., in the rare-earth region around N = 90 [2, 3] or in Zr-Sr [4, 5] region

around N = 60. For such situations the term quantum phase transition (QPT) was coined

[6, 7] due to the similarities with the very well known thermodynamic phase transitions.

A QPT implies an abrupt change in the properties of the ground state that results in the

rapid change of several observables, namely, two-neutron separation energies, E(4+1 )/E(2
+
1 ),

B(E2:4+1 → 2+1 ), among others. QPT can be of two types, either of first or of second order.

In the first order case a discontinuity in the first derivative of the energy with respect to a

control parameter is present while in the second order case the discontinuity hold for the

second order derivative. The first-order QPT’s suppose a more abrupt change than the

second order ones.

To complete the description of the mass table, one has to take into account that in

many cases the change of shape not only occur when moving to neighbour nuclei, but also

the properties in a given nucleus, as a function of the increasing excitation energy may be

changing, giving evidences of deformed excited states. Hence, it is possible to find states with
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FIG. 1. Energy systematics of even-even Zr isotopes from A = 90 to A = 110. Levels identified as

regular are marked in blue and connected with dashed blue lines, while those identified as intruder

are marked in red and connected with dashed red lines.

very different shapes in the spectrum of a single nucleus. The different shapes correspond

to different n-particle n-hole excitations across a shell closure. These excitations give rise

to an increasing number of active nucleons that can strongly affect the effective nuclear

force. A notable example can be found in the doubly magic nucleus 40Ca which is spherical

for the ground state but 2p-2h and 4p-4h excitations lead to deformed and superdeformed

shapes, respectively [8]. The existence of states with different shapes in a narrow range of

energies is known as shape coexistence and not only appears in nuclear physics, but also in

molecules and other quantum systems [9]. Shape coexistence is present in many regions of

the nuclear mass table, in general in those around shell or sub-shell closures of both protons

and neutrons. Of particular interest is the region around the shell closure Z = 82, i.e.,

the even-even Pt, Hg, Pb, and Po, where many of these isotopes have been studied both

experimentally and theoretically, confirming the presence of two and even three families
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of states with a different degree of deformation. It is worth to note that in some cases

the interaction among the different families is rather weak as in Hg and Pb while in the

case of Pt and Po is rather strong. Moreover, in certain cases the intruder configuration,

corresponding to 2p-2h excitations become the lowest-lying configurations, contrary to the

0p-0h configurations now describing highly-lying states, as is the case for Pt and Po. On

the other hand, in the case of Hg or Pb the ground state always corresponds to a regular

0p-0h configuration.

QPT and shape coexistence share several aspects, namely, the rapid structural changes

over a chain of isotopes or isotones and the presence of very low-lying 0+ states. As a con-

sequence, the excitation energy of the 2+1 can drop or the value of the B(E2 : 2+1 → 0+1 ) can

increase suddenly in few mass units. Besides, in both cases, the value of the nuclear radius

separates from the linear trend or the two-nucleon transfer reaction intensities experience

a rapid increase. However, some differences are in order, in particular, the existence in the

case of the shape coexistence of a set of states, intruder states, with a parabolic excitation

energy systematics that is centered with respect to the mid shell. These states present also

a different deformation than the ground state band. This behavior is not observed in the

case of a QPT.

The region around Z = 40, in particular, regarding the Zr isotopes, but also the Sr ones,

is an ideal region to study the interplay between shape coexistence and the presence of a

QPT, that is the reason for focusing on this mass region in this work. On one hand, this

region shows all the hints pointing to the presence of a QPT but, at the same time, a set

of states owns an energy systematics symmetric with respect to the mid shell and presents

a different deformation than the rest of states, therefore one can say that shape coexistence

is present in the spectrum.

The organization of the present paper is as follows: in Sec. II some hints for the presence

of shape coexistence are provided; in Sec. III the corresponding evidences for the existence

of QPT’s are shown; in Sec. IV a brief summary of the interacting boson model with con-

figuration mixing (IBM-CM) is presented; Sec. V is devoted to presenting the results of the

IBM-CM calculations; finally in Secs. VI and VII, discussion, conclusions and outlook are

presented, respectively.
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II. EVIDENCES OF SHAPE COEXISTENCE IN ZR NUCLEI

Shape coexistence implies that in a narrow range of energy, states with different defor-

mation coexist. Because deformation is not strictly an observable, it is needed to rely on

observables that are tightly linked to deformation, such as excitation energy and B(E2)

transition rate systematics, radii, etc. In addition, the existence of highly hindered E2 or

E0 transitions points towards the presence of states with different degree of deformation.

Energy systematics is one of the first hints pointing to the presence of extra configurations

in the spectra of an isotope chain [9]. In particular, in the case of even-even Hg and Pb

isotopes a parabolic-like trend in the energy levels centered at the mid shell, N=104, is clearly

observed for a set of states, together with a rather flat behavior for another group of states.

In both cases the flat systematics corresponds to regular states while the parabolic one to

the intruder ones. There are other isotope chains where the presence of extra configurations

is not so clearly observed. This is precisely the case of Pt isotopes, where due to the large

mixing between regular and intruder states combined with the crossing of the bandheads

of regular and intruders families makes the presence of intruder states somehow concealed

(see [10, 11] for more details). The case of Po is also similar, though here, the mid shell

is barely reached experimentally [12, 13]. In both cases it is hard to separate a parabolic

systematics from a flat one. The case of Zr is very much the same, as one can readily see in

Fig. 1 where the presented energy systematics of the even-even Zr isotopes span the range

from A = 90 till 110. According to the experimental information accumulated during last

decades (see references below in this section), it is possible to determine the character of

certain states, hence the regular ones are labeled in blue while the intruder ones in red,

moreover the states with the same internal structure are connected with lines. In this figure

one can easily observe several features, the first one is the presence of shell and subshell

closures for A = 90 and A = 96, respectively. The second is the increase in the density of

levels below E≈ 1.5 MeV for A ≥ 100 owing to the lowering of the intruder configuration

that becomes the ground state for A = 100 and onwards. However, the parabolic trend

for the intruder energy systematics is not observed. Anyhow, the existence of low lying 0+

states is also a good indicator of the presence of additional particle-hole configurations.

The connection of the different shapes with different particle-hole configurations makes

two-neutron, two-proton or α transfer reactions ideal tools to identity states with rather
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FIG. 2. Two-nucleon or α transfer strengths to the 0+2 state in the Zr isotopes, relative to the 0+1

state. (a) Stands for data from (6Li, 8B) and (b) for data from (14C, 16O) reactions. Data taken

from the corresponding Nuclear Data Sheets and from [9].

different shapes. In Fig. 2, the probability of populating a given state either with two-

nucleon or with α transfer reaction, relative to the probability for populating the ground

state is depicted. This figure shows strong evidences for pairing collectivity in both the 0+1

and 0+2 states, thereby being a clear evidence of the presence of “coexisting” characteristics

in those two states. These data are pointing out to the underlying pairing collectivity in

these nuclei and they are the result from two-neutron transfer in (6Li, 8B) (labeled with (a))

and from the (14C, 16O) (labeled with (b)) reactions, respectively. For more details on the

Z≈ 40, N≈ 60 nuclei see also section III.A.3 and Fig. 29 and 30 of Ref. [9]. All in all, these

data are the hard evidence of the fact that the ground and first excited 0+ states exhibit a

“coexisting” character, i.e., the transfer strength goes strongly to more than one “pairing

condensate”.

In the last decades a huge experimental effort has been carried out to complete the

picture of deformation in Zr area, mainly through the determination of excitation energies

and lifetimes. For mass A = 94, besides the [14] compilation, recent information has been

obtained from lifetime data using neutron scattering [15, 16] as well as the B(E2) values

extracted from inelastic electron scattering at low momentum transfer into the 2+1,2 states.

This allowed a comparison with the data obtained at the Kentucky facility from neutron

inelastic scattering such as branching ratios, multipole mixing ratios, and spin assignments

indicating very much the same results, however with an increased precision [17, 18]. For

mass A = 96, the major part of data can be found in the compilation [19], moreover,

data on g-factors have been determined by Coulomb excitation of 96Zr beams in inverse

kinematics. Besides, the lifetime of the 2+1 state has been redetermined using the Doppler
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Shift Attenuation (DSA) method [20]. Interesting information has been extracted from single

and double-β decay Q values among the triplet of nuclei 96Zr, 96Nb and 96Mo [21]; recent

high-resolution electron scattering allowed to extract the B(E2; 0+1 → 2+2 ) value as well as

decay strengths originating from the 2+2 excited states by Kremer et al. at the S-DALINAC

[22]. The E2 collectivity deduced in this way was moreover discussed by Pietralla et al. [23]

for the heavy Zr nuclei. Moving into the transitional nucleus at A = 98 (compilation can

be found in [24]), lifetime data have been measured using the EXILL-FATIMA array at the

cold neutron beam line at the Institut Laue-Langevin (ILL-Grenoble) by Betterman [25] and

Ansari et al. [4], the latter also extracting lifetimes for the A = 100 and A = 102 Zr isotopes.

These lifetime data are of essential use in obtaining a deeper understanding of the changing

structure when moving from A = 96 towards the isotopes beyond A = 100. Coming to the

98Zr nucleus, very recent data taken at the ATLAS/CARIBU facility at Argonne National

Laboratory, through Coulomb excitation studies, have allowed to determine an upper limit

of the B(E2; 2+1 → 0+1 ) value in 98Zr. Moreover, new lifetime data by Singh et al., using

the recoil-distance Doppler shift method at GANIL, were published [26]. These data are of

major importance to trace the transition from A = 96 into the strongly deformed A = 100 Zr

isotope [27]. More details on that study by Witt et al. have very recently been published [28].

Data on 100Zr are presented in the compilation [29], the ones on 102Zr are in [30], and 104Zr are

in [31]. Data for 106Zr and 108Zr are in [32] and [33], respectively. Regarding 106Zr, in Ref. [34]

the energy of the states 6+1 and 8+1 have been measured. This experiment was performed

at GANIL using the large-acceptance spectrometer VAMOS++ trough the reaction (238U,

9Be) in inverse kinematics with the aim of studying the spectra of 104−105−106Zr. A detailed

study by Paul et al. [35] of the 110Zr nucleus and its lowest-lying states has been carried out

very recently. The above information is the base to separate between regular and intruder

states in Fig. 1.

The analysis of the E0 transition rates has been proven to be an ideal tool to disentangle

the presence of different configurations in the spectrum and its degree of mixing [36]. In

particular, a small value of ρ2(E0 : 0+i → 0+j ) suggests that states 0+i and 0+j have largely

different degrees of deformation, implying no (or negligible) mixing between these two 0+

states. In Fig. 3 the ρ2(E0) experimental values for the known 0+2 → 0+1 transitions together

with the theoretical IBM-CM values (see Sec. IV) are depicted. The values for the range

A = 94 − 98 are rather small, suggesting that the involved configurations are rather pure
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FIG. 3. Evolution of the value of ρ2(E0 : 0+2 → 0+1 ), from 94Zr till 100Zr. Black full line for

experimental values while red dashed ones for IBM-CM calculations.

and owing a different structure. Indeed, the 0+1 state is assumed to be regular while the 0+2

one of intruder nature. However, the ρ2(E0) transition rate for A = 100 is one of the largest

ones observed over the full nuclear mass table, pointing to the existence of a large mixing

between the intruder and the regular sectors concerning the two first 0+ states.

III. QUANTUM PHASE TRANSITION INDICATORS IN ZR NUCLEI. IS THERE

ANY HINT OF X(5) CRITICAL POINT SYMMETRY?

A QPT develops in systems where the structure of the ground state changes abruptly for a

specific value of the control parameter and the temperature is equal to zero. In particular, a

QPT is related to quantum systems which Hamiltonians, that express the change in between

different symmetries called A and B, can be written down as,

Ĥ = (1− x)Ĥ(symA) + xĤ(symB), (1)
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FIG. 4. Schematic spectra (full black lines and left y-axis) of few 0+ states for an IBM Hamiltonian

undergoing a first order QPT at a value of the control parameter equal to 9/11. Value of the

order parameter β (dashed magenta line and right y-axis). Dashed cyan zone corresponds to the

coexistence region. See Ref. [39] for details on the calculation of β.

where Ĥ(symA) and Ĥ(symB) correspond to Hamiltonians that own a given symmetry,

either A of B, that in most of cases can be considered as dynamical symmetries [37]. In the

familiar Ising model [38], Ĥ(symA) can be identified with the term leading the system into a

ferromagnetic phase, while Ĥ(symB) with that part leading into the paramagnetic phase [7].

The QPT happens for a critical value x = xc where the wave functions switch from having the

symmetry A to having the symmetry B. The existence of a QPT supposes also the abrupt

change in the so called order parameter that presents a null value in the symmetric phase

while different from zero in the broken phase [7]. Hence, the order parameter represents,

albeit in a schematic way, the symmetry of a given phase.

Following the classical classification of QPT’s, the transitions can be separated in first
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and second order (or continuum) QPT’s [40]. In the case of a first order QPT (according to

the Erhenfest classification, the first derivative of the ground state energy with respect to

the control parameter presents a discontinuity), there is a narrow region around xc where

the two symmetries can coexist. However, in the case of a second order QPT (according to

the Erhenfest classification, the second derivative of the ground state energy with respect

to the control parameter presents a discontinuity), there is no coexistence of symmetries for

any particular value of x. Another important feature is that in the case of a second order

QPT, the excitation energy of the first excited state at the critical point vanishes, while

for the first order QPT it takes a very small value. This is schematically presented for an

IBM calculation (with a single configuration) in Fig. 4 for the case of a first order QPT,

where the spectra corresponding to few 0+ states and the value of the order parameter for a

schematic IBM Hamiltonian are depicted. The two limiting phases, deformed and spherical,

and the critical point are marked. The aim of presenting this figure is two fold. First to

illustrate how, in general, a QPT induces the lowering of a set of states and the compression

of the spectra and, second, to see the evolution of the order parameter (calculated in the

thermodynamic limit) [39], that is connected with the deformation of the ground state, and

that suffers a sudden change passing from zero to finite values when crossing the critical

point.

The position of a QPT in a given model depends on the topology of its potential energy

surface and the case of a first order QPT, that is the one of interest for this work, implies the

existence of two degenerated minima which own two different shapes [3]. In the case of the

IBM with a single configuration, this degeneracy exists for the critical value of the control

parameter, i.e., 9/11, as shown in Fig. 4. Before the critical point, the order parameter is

different from zero, while after, it is equal to zero (see magenta line in Fig. 4). The two

minima coexist only in a narrow region around the critical point. The use of the IBM with

two configurations, i.e, the IBM-CM, introduces a net difference with respect to the case of

a single configuration because both configurations coexist for the whole parameters space

of the Hamiltonian. In this case, the first order QPT will appear where both configurations

do cross, but, on the other hand, the lowest configuration could also experience a QPT.

Strictly speaking, a QPT is only well defined in the thermodynamic limit, i.e., for systems

consisting of an infinite number of particles. Therefore, in nuclear systems, due to its finite

size, all the abrupt changes will be somehow smoothed out [37]. On the other hand, there
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+
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is an additional difficulty when dealing with QPT’s in nuclei that is the absence of a real

control parameter because the Hamiltonian of a given nucleus cannot be changed externally.

This drawback is partially solved considering that the number of neutrons (protons), or A,

in a chain of isotopes (isotones) acts as an effective control parameter. Note, that doing so,

the order parameter is not a continuous but a discrete variable [3]. We mention that the

variation of A may involve the change of several Hamiltonian parameters and not only one,

as illustrated in the schematic case of Eq. (1). In fact, in this work 12 parameters should

be determine in every Zr isotope. The way to do so has been extensively discussed in great

detail in Ref. [41] and in an abridged way in Section IV. In Fig. 5 different observables

that can be considered as indicators of the presence of a QPT are presented. In Fig. 5(a)

the experimental and theoretical values (see Section IV and [41]) of the nuclear radii are

presented with A = 90 taken as the reference nucleus. This observable is related with the

evolution of the order parameter and it shows a sudden increase at A = 100. In Fig. 5(b)
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the two-neutron separation energy is depicted and both the experimental and the IBM-CM

theoretical values are shown. This observable is tightly connected with the derivative of

the ground state energy and exhibits a sudden change in its trend at A = 100. Finally, in

Fig. 5(c) the ratio E(4+1 )/E(2
+
1 ) (experimental and IBM-CM theoretical values) is presented.

This ratio is connected with the evolution of the order parameter. Indeed the observed trend

is similar to the behavior of the order parameter in Fig. 4. The value of this observable

experiences a sudden increase at A = 100.

According to the previous figures, it is a logical step to assume that Zr undergoes a

QPT for A ≈ 100 being possible to define an order parameter (Fig. 5(c). Moreover, there

exists a kind of discontinuity in the first derivative of the energy, i.e., as observed in the S2n

(Fig. 5(b).

In the areas where a QPT develops it could be of application the concept of critical point

symmetry. This concept was introduced twenty years ago by Iachello, first for the transition

between spherical and gamma-unstable shapes [42], named as E(5) critical point symmetry

and later for a transition from sphericity to axial deformation, called X(5) [43]. In our case

the relevant critical point symmetry is X(5) because the competition is between a spherical

and an axially deformed shape. The interesting conclusion follows from the X(5) critical

point because it provides the value of parameter free excitation energy and transition rate

ratios that can be directly compared with the experimental information. In the case of Zr,

the most promising nuclei to be compared with X(5) are 100Zr and 102Zr. In Table I, some

X(5) key ratios are compared with 100Zr and 102Zr. The experimental data for 152Sm are

also given for comparison purposes. Because of the scarcity of data, in some cases we have

resorted to theoretical IBM-CM calculations (see Sec. IV) and in this case they appear

marked with an asterisk. Note that in the case of 100Zr all the considered states belong to

the intruder band, hence in some cases the index for a given L is a unit higher than for the

X(5) one, e.g., the 0+3 and 2+3 states. In the case of 102Zr, the 0+2 state is the one used to be

compared with X(5) although theoretically has a regular character (76%), however the 0+3

state is not known experimentally, but it is expected to presents a major intruder character

(76%). The 0+3 state presents a theoretical value of E(0+3 )/E(2
+
1 ) equal to 6.87. The 2+2 state

is mainly of intruder character and, therefore this is the one used in the comparison with

X(5).

Regarding 100Zr, the agreement with the X(5) limit is only acceptable (similar to the
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TABLE I. Comparison of key observables in the X(5) limit with 152Sm, 100Zr and 102Zr. ∗ stands

for theoretical IBM-CM values in absence of experimental data.

X(5) X(5) 152Sm 100Zr 102Zr

E(4+1 )/E(2
+
1 ) 2.91 3.01 2.66 3.16

E(6+1 )/E(2
+
1 ) 5.45 5.80 5.00 6.39

E(0+2,3)/E(2
+
1 ) 5.67 5.62 3.91 5.92

B(E2:4+1 →2+1 )

B(E2:2+1 →0+1 )
1.58 1.50 1.39 1.59

B(E2:2+2,3→2+1 )

B(E2:2+1 →0+1 )
0.09 0.04 0.14∗ 0.18∗

B(E2:2+2,3→4+1 )

B(E2:2+1 →0+1 )
0.36 0.13 0.006∗ 6 10−7∗

B(E2:0+2,3→2+1 )

B(E2:2+1 →0+1 )
0.63 0.23 0.37∗ 0.11∗

B(E2:2+23
→0+1 )

B(E2:2+1 →0+1 )
0.02 0.007 0.017∗ 0.027∗

case of 152Sm) for E(4+1 )/E(2
+
1 ), E(6

+
1 )/E(2

+
1 ),

B(E2:4+1 →2+1 )

B(E2:2+1 →0+1 )
,

B(E2:2+2,3→2+1 )

B(E2:2+1 →0+1 )
,

B(E2:0+2,3→2+1 )

B(E2:2+1 →0+1 )
and

B(E2:2+23
→0+1 )

B(E2:2+1 →0+1 )
, however it fails for the most important ratio E(0+2,3)/E(2

+
1 ) which is too low. In

the case of 102Zr the comparison is similar with the difference that in this case the agreement

for E(0+2,3)/E(2
+
1 ) is reasonable but not so for E(6+1 )/E(2

+
1 ). In short, the excited 0+ states

in 100Zr are too low in excitation energy while the yrast band in 102Zr is too rigid. Hence,

it is obvious that there is no crystal-clear correspondence with the X(5) critical symmetry,

however the agreement for certain ratios is similar when comparing with the corresponding

ratios for the case of 152Sm and therefore, it is fair to claim that 100−102Zr presents certain

resemblance with the X(5) critical symmetry.

IV. THE INTERACTING BOSON MODEL WITH CONFIGURATION MIXING

FORMALISM

The selected formalism to perform theoretical calculations in the region of interest, i.e.,

94−110Zr, is an enlarged version of the IBM [44]. The original version of the IBM was

proposed in the mid 1970’s by Iachello and Arima [44] for dealing with medium and heavy
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mass even-even nuclei and it supposes a strong reduction of the available Hilbert space for

the nucleons because only the degrees of freedom corresponding to pairs of nucleons coupled

either to angular momentum L = 0 (S pairs) or to angular momentum L = 2 (D pairs)

are considered. Moreover, these pairs are bosonized and, hence, the building blocks of the

model are s and d bosons. The number of effective bosons, N, corresponds to half the

number of nucleon pairs, regardless of its proton or neutron nature (this is strictly true for

the simplest version of the model, IBM-1, but in other versions it is possible to define proton

and neutron bosons). The IBM-1 model was enlarged for treating nuclei where more than

one particle-hole configuration was used [45, 46]. In this model, the original boson space

[N ] is enlarged to [N ] ⊕ [N + 2] where in the case of Zr isotopes N is the boson number,

corresponding to the number of active protons outside the Z = 40, zero in the case of Zr,

plus the number of active neutrons outside the shell closure N = 50 divided my two. The

[N +2] space corresponds to considering two extra bosons that come from the promotion of

a pair of protons across the shell closure Z = 40, generating an extra boson made of proton

holes and another made of proton particles.

The Hamiltonian in this formalism can be written as,

Ĥ = P̂ †
NĤ

N
ecqfP̂N + P̂ †

N+2

(

ĤN+2
ecqf +∆N+2

)

P̂N+2 + V̂ N,N+2
mix , (2)

where P̂N and P̂N+2 are projection operators onto the [N ] and the [N +2] boson spaces, re-

spectively, V̂ N,N+2
mix is describing the mixing between the [N ] and the [N+2] boson subspaces,

and

Ĥ i
ecqf = εin̂d + κ′iL̂ · L̂+ κiQ̂(χi) · Q̂(χi), (3)

is a simplified form of the general IBM Hamiltonian called extended consistent-Q Hamilto-

nian (ECQF) [47, 48] with i = N,N + 2, n̂d being the d boson number operator,

L̂µ = [d† × d̃](1)µ , (4)

the angular momentum operator, and

Q̂µ(χi) = [s† × d̃+ d† × s](2)µ + χi[d
† × d̃](2)µ , (5)

the quadrupole operator. The parameter ∆N+2 accounts for the energy needed to promote

a pair of protons across the shell closure Z = 40, corrected for the pairing and the monopole
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interaction energy [49, 50]. The operator V̂ N,N+2
mix describes the mixing between the N and

the N + 2 configurations and it is defined as

V̂ N,N+2
mix = ωN,N+2

0 (s† × s† + s× s) + ωN,N+2
2 (d† × d† + d̃× d̃)(0). (6)

This approach has been used successfully for describing the spectroscopic properties of

Pt [10, 11, 51], Hg [52, 53], Po [12, 13], and Zr isotopes [41, 54]. The good reproduction of

the available experimental data justify the use of only 0p-0h and 2p-2h excitations in the

previous cited works. In the Zr isotopic series, a few data in the heavier Zr isotopes may

hint to the need for including also 4p-4h excitations, not used in the present paper.

The parameters of the Hamiltonian and T̂ (E2) operator need to be fixed either from

microscopical considerations, e.g., through a mapping from a shell model Hamiltonian, or

from a phenomenological procedure, i.e., performing a least-squares fit to energy levels and

B(E2) transition probabilities. In this work, the second procedure has been used to obtain

the Hamiltonian’s and the T̂ (E2) parameters, as explained in detail in Section IV.B of

Ref. [41]. In Table III of Ref. [41] the fitted parameters of the Hamiltonian and the T̂ (E2)

operators are given and explained.

V. RESULTS

A. Mean-field energy surfaces and the evolution of deformation

One of the standard ways to study QPT’s or shape coexistence is through the density

functional theory (DFT) that allows to obtain a mean-field energy surface and provides a

clear picture about the deformation of the system. In particular, in the IBM it is possible to

calculate mean-field energy surfaces defining the so called intrinsic state formalism [55–58]

that is not more than a condensate of bosons (or coherent state), namely, a condensate

of deformed bosons that depend on two deformation parameters βB and γB, where the

sub-index B stands for the parameters corresponding to bosons. These deformation values

should not be confused with the β and γ deformation parameters as describing a quadrupole

deformed nuclear surface. The intrinsic state formalism is defined as,

|N ; βB, γB〉 =
1√
N !

(

1
√

1 + β2
B

(

s† + βB cos γB d
†
0 +

1√
2
βB sin γB (d†2 + d†−2)

)

)N

|0〉 (7)
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and, therefore, the mean-field energy corresponds to the matrix element E(N, βB, γB) =

〈N ; βB, γB|Ĥ|N ; βB, γB〉. The value of βB and γB which minimize the expectation value of

the energy provide the shape of the nucleus with a given number N of bosons.

The latter formalism needs to be extended when dealing with IBM-CM, defining a matrix

within coherent state bands,

HCM =





E(N, βB, γB) Ω(βB)

Ω(βB) E(N + 2, βB, γB)



 . (8)

which lowest eigenvalue will correspond to the mean-field energy surface of the model (see

[59–62] for a detail description of the formalism). One can easily compute this energy

surfaces once the parameters of the Hamiltonian are given. In our case we use the ones

obtained in [41].

The comparison of the IBM-CM energy surface with the one from mean-field DFT using

a realistic interaction needs some care because the IBM deformation parameters should be

rescaled. Therefore, one needs to establish a connection between (βB, γB) and (β, γ). To do

so we closely follow the technique presented in [63], using the ansatz,

β = 1.18
2

A
βB(N + 2 (1− ω)) δ + ξ. (9)

where δ and ξ are fitting parameters to be obtained from the comparison of the IBM defor-

mation parameters with the ones of the collective model. On the other hand, it is assumed

that γB = γ.

The main novelty of this work with respect to [63] is that in the present study, the value

of β is extracted from the quadrupole shape invariants using the wave function obtained

from the IBM-CM calculation with the parameters given in [41] while in [63] it was obtained

from a mean-field energy surface using a Gogny-D1S interaction. The equations involved to

extract β from the quadrupole shape invariants are [64, 65],

q2 =
√
5〈0+|[Q̂× Q̂](0)|0+〉, (10)

β =
4 π

√
q2

3Z e r20 A
2/3
, (11)

where r0 = 1.2A1/3 fm and e the charge of the proton.

As next step we perform a least-squares fit using the value of β extracted from the

quadrupole shape invariants and the value of βB from IBM corresponding to the minimum
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FIG. 6. (a) Comparison of the scaled value of β from the IBM-CM mean-field energy (“Min.”)

and from Eqs. (10) and (11) (“From q2”). The scaled value of β corresponding to the unperturbed

“regular”, [N], and the unperturbed “intruder”, [N+2], configurations are also depicted. (b) Energy

of the unperturbed regular and intruder IBM bandheads, compared with the ground-state energy

(full IBM-CM diagonalization).

of the mean-field energy surface. This procedure leads to the following values of the fitting

coefficients including its respective errors δ = 1.98(15), ξ = 0.110(17).

In Fig. 6(a) the scaled β values extracted from Eq. (9) are compared with the ones

obtained from the quadrupole shape invariant (10,11). We also show the ones corresponding

to the unperturbed [N] and [N+2] configurations. Note that the IBM-CM β value for

A = 100 corresponds to a spherical minimum, although the deformed one was used for

performing the least-squares fit previously described, because it is known that for A = 100

Zr is already strongly deformed. The spherical minima (for A < 100) have values of β 6= 0

because the obtained intercept in the least-squares fit is also different from 0. According

to the presented results, the regular configuration always present a very small value of β
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FIG. 7. Matrix coherent-state potential energy surface along the axial axis for even-even Zr iso-

topes, from 94Zr up to 110Zr. The deepest energy minimum is set to zero.

and therefore we identify them with spherical states. The intruder configuration shows a

rather different trend. On one hand, it is strongly perturbed because of the vicinity of the

N = 50 and N = 56 shell and subshell closures, respectively. On the other hand, it presents

the rapid change from a spherical shape towards a deformed one, around A = 100. The

agreement between the mean-field results and the ones extracted for the quadrupole shape

invariants is remarkable. The switch in β from the regular to the intruder configuration

is perfectly understandable according to Fig. 6(b) where the unperturbed energies of the

regular and intruder configurations cross at A = 100. Note that the value of β obtained

from the quadrupole shape invariant already corresponds to a deformed shape for A = 100

while not the one from mean field. This is due to the existence of two almost degenerate

minima at the IBM-CM mean-field level for A = 100, one spherical and the other deformed,

being the spherical minimum a little deeper than the deformed one (see Figs. 7(d) and 8(d)).

However, the calculation in the laboratory frame leads to a deformed shape for A = 100.

In Fig. 7 the axial energy surface for the whole chain of isotopes is depicted, while in

Fig. 8 the energy surfaces in the (β, γ) plane is presented. Note that the rescaled β value
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FIG. 8. Matrix coherent-state potential energy surface in the β−γ plane for even-even Zr isotopes,

from 94Zr up to 110Zr. The energy spacing between adjacent contour lines is 100 keV and the deepest

energy minimum is set to zero, corresponding to the red color.

has been used in all the figures. These two sets of figures confirm the existence of a single

minimum of spherical nature for 94−98Zr; for 100Zr two minima coexist with almost the same

energy, though the spherical is the deepest one; in 98−102Zr a rapid transition from a spherical

to well-deformed shapes is observed; from 102Zr onwards two minima coexist, although in

this case the deformed is the deepest one and the spherical minimum is very shallow. This
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fact is more clearly observed in Fig. 7 as compared with Fig. 8. Note that the deformed

minimum for the heavier isotopes is always prolate.

It can be of interest to compare the results presented in the present study with the mean-

field energy surfaces obtained with realistic interactions. In the literature, we encountered

several recent calculations in which the Zr isotopes are studied. In the Bruyères-le-Châtel

compilation [66, 67], Hartree-Fock-Bogoliubov calculations based on the Gogny-D1S effective

interaction are presented. The obtained values of β in the deformed cases are quite similar

to the ones obtained in the present study, although the minima of 98−100Zr are oblate (almost

degenerate with the prolate one), and, in general, prolate and oblate minima are connected

through a triaxial valley. The same holds for the other isotopes. In general, in the well

deformed cases βoblate ≈ 0.2 while βprolate ≈ 0.4. The IBM-CM calculations for these nuclei

present β ≈ 0.4. In Ref. [68], HFB energy surfaces using a Gogny-D1M interaction are

used and mapped into an IBM-CM with three different particle-hole configurations. Here,

also prolate and oblate almost degenerate minima coexist, but also a spherical minima,

although at very high energy, exists. The main drawback of this approach is that it predicts

a deformed shape for 96Zr and 98Zr. In Ref. [69], Monte Carlo shell-model calculations are

carried out for the Zr isotopes. Within this approach it is possible to generate total energy

surfaces and to extract information on the deformation of the states. Here, the deformed

nuclei corresponds to prolate shapes and the potential energy is flat in the γ direction, with

presence of a local minimum in the oblate side, but less deformed than the prolate one.

The value of β for 100−101Zr is approximately 0.35 which is slightly smaller than the value

obtained with a Gogny interaction. In Ref. [70], the interaction Gogny-D1S has also been

used and an oblate-prolate transition is observed, passing from A = 98 to A = 100, resulting

in a prolate shape with β ≈ 0.44 for 100Zr. In [71] a relativistic EDF is considered, obtaining

a general prolate-oblate coexistence for the deformed part of the Zr chain and, in the case

of 100Zr, also a spherical-prolate coexistence. Moreover, in the heaviest isotope the deepest

minimum corresponds to the oblate one.

In summary, a comparison between the realistic mean-field calculations and the IBM-

CM energy surfaces points to certain similarities, as for example, the spherical shape of the

lightest isotopes and the presence of a local spherical minimum for 100Zr, although at the

same time an oblate minimum is present in the realistic mean-field calculations together

with a shallow valley connecting with the prolate one, which is almost degenerate with the
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first one. However, in the IBM only the spherical and the prolate minima are present, which

seems to be a limitation of the used approach.Most of the realistic mean-field calculations

present an oblate shape (global minimum) for the heaviest isotopes while the IBM energy

surface calculations always generate a prolate one.

B. Wave function structure

To know about the structure of the different eigenstates of Zr isotopes, it is very en-

lightening to express the wave function using the U(5) basis in both the regular and the

intruder spaces. This basis allows to distinguish between states with a spherical character,

i.e., states described with wave functions having an almost single U(5) component as well

as states with a broad distribution of U(5) components. To do so, we express explicitly the

eigenfunctions in the U(5) basis, making use of the corresponding U(5) quantum numbers,

namely, nd, τ , and n∆, for the N and N+2 subsystems, respectively,

Ψ(k, JM) =
∑

nd,τ,n∆

aknd,τ,n∆
(J ;N)ψ((sd)Nnd,τ,n∆

; JM)

+
∑

nd,τ,n∆

bknd,τ,n∆
(J ;N + 2)ψ((sd)N+2

nd,τ,n∆
; JM) . (12)

Here, nd corresponds to the number of d bosons, τ to the boson seniority, n∆ to the number

of d boson triplets coupled to zero, and k is a rank number to label the state. The nd content

of the wave function, that we will call NDC, either in the regular or the intruder sector are

defined as,

NDC(nd, k,N) =
∑

τ,n∆

(

aknd,τ,n∆
(J ;N)

)2
(13)

NDC(nd, k,N + 2) =
∑

τ,n∆

(

bknd,τ,n∆
(J ;N + 2)

)2
(14)

fulfilling the normalization constraint,

∑

nd

NDC(nd, k,N) +
∑

nd

NDC(nd, k,N + 2) = 1. (15)

Here, the sum extends over all allowed nd values in the Hilbert spaces. NDC provides precise

information on the structure of the considered states. On one hand, if only one, or very few,

of the nd components have a sizeable value, it implies that the state has a vibrational or

spherical character, either in the regular or in the intruder sector. On the other hand, if the
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FIG. 9. U(5) decomposition (nd content, NDC, see text for details) of the yrast band and the

states 0+2 , 2
+
2 , 4

+
2 , and 6+2 of 94Zr (panels (a) and (b)), 96Zr (panels (c) and (d)), 98Zr (panels (e)

and (f)). Columns labeled with “Regular” correspond to the decomposition in the regular sector,

while labeled with “Intruder” to the decomposition in the intruder sector.
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NDC values are broadly distributed over several nd components, the state can be defined to

exhibit a rotational or deformed character. This is a possible way to express the underlying

structure of the wave functions derived from the IBM-CM, but the NDC values do not

correspond in any direct way with observables as measured in the various experiments.

In Figs. 9 and 10 we depict the value of NDC for the first and the second member of each

angular momentum 0+, 2+, 4+, 6+. We present the results for the isotopes where the most

rapid changes in structure are expected. In panels (a) and (b) of Fig. 9, 94Zr is presented. It

is easily appreciated how the states 0+1 , 2
+
1 , 4

+
1 own a regular and spherical character, while

6+1 is also of spherical nature but situated mainly in the intruder sector. On the other hand,

the states 0+2 , 2
+
2 , 4

+
2 are indicative of a deformed behavior (the distribution is spread over

several components) in the intruder sector, although containing a small contribution in the

regular side. Finally, the structure of the state 6+2 is intruder and spherical. The nuclei 96Zr

and 98Zr (panels (c), (d), (e), and (f)) exhibit a similar structure, namely, 0+1 , 4
+
1 , and 6+1

present a regular and spherical behavior; 2+1 and 2+2 also present a spherical behavior but

with components in the regular and in the intruder sectors; finally, 0+2 , 4
+
2 , and 6+2 owns

an intruder, but spherical character. In Fig. 10 we enter into the region where deformation

quickly appears and consequently, the yrast band of the three nuclei (panels (a), (c), and

(e)) exhibit an almost 100% intruder component for all analyzed angular momenta, with

NDC values spread over many components, again acting as a strong hint for the presence

of a deformed shape. For the non-yrast states, the situation is slightly different in every

isotope. In the case of 100Zr (panel (b)), the states 0+2 and 2+2 present a spherical and

regular character, while 4+2 and 6+2 an intruder and deformed one. In the case of 102Zr (panel

(d)), only the 0+2 state presents a regular and spherical character, while the rest of the band

exhibits an intruder and rather deformed character, with the NDC distributed over many

nd components. Finally, in 104Zr (panel (f)), all the states show an intruder character with a

rather spread NDC distribution, but also with a very large component at the lowest possible

value of nd. The corresponding figures for 104−110Zr (not shown) present the same trend as

in 102Zr.

In summary, one observes how the structure of the regular states evolves from being

spherical for 94,96,98,100,102Zr to being slightly deformed in 104Zr and onwards (not shown

in figures). Concerning the structure of the intruder states, they start with a deformed

structure in 94Zr, but then the internal structure changes into a spherical one for 96−98Zr, in
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FIG. 10. Same caption than Fig. 9, but for 100Zr (panels (a) and (b)), 102Zr (panels (c) and (d)),

104Zr(panels (e) and (f)).
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100Zr it presents a mixed structure, finally, becoming deformed in 102−104−106Zr and onwards.

C. Density of states

The density of low lying states is a property that is expected to be strongly perturbed

by the presence of intruder states or by the existence of a QPT. Hence, it is worth to be

analyzed. As a matter of fact, Bucurescu and Zamfir [72] propose the density of states as

an indicator to distinguish between shape coexistence and the presence of a QPT.
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FIG. 11. Number of states below an excitation energy E=4 MeV as a function of A, computed

using IBM-CM calculations [54]. Black full line corresponds to the number of 0+ states and red

dashed one to the total number of states, up to and including L= 8.

In this section we present a quantity that is related with the density of states as it is

the number of states below a certain energy, namely 4 MeV. To such an end we rely on the

IBM-CM results from [54]. Owing to that the presence of low lying 0+ states is a hint for

the existence of shape coexistence we compute the number of 0+ states together with the

total number of states up to and including L = 8 below 4 MeV in Fig. 11.
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In Fig. 11 the theoretical number of 0+ and the total number of states are presented.

Both present a sudden increase when reaching the critical point, A = 100. The number of

0+ states remains rather constant after the critical point although with a smooth decrease,

but it is barely affected by the presence of the mid shell. Concerning the total number of

states below 4 MeV, it also suffers a rapid increase at the QPT point, but in this case there

are also abrupt changes after this point.

Bucurescu and Zamfir [72] suggest that the behavior of the density of states can provide

some hints to distinguish between the presence of shape coexistence from the presence of a

QPT. The key point is that a QPT implies the existence of a maximum, with a peak, in the

density of states, while the existence of shape coexistence supposes a rapid increase in the

density of states but rather with a plateau than with a peak.

According to our results it seems that the number of 0+ states points towards the presence

of shape coexistence. However, the peak in the total number of states rather suggests the

existence of a QPT. Hence, no clear conclusions can be obtained from this analysis.

VI. DISCUSSION

So far we have accumulated evidences pointing either to the presence of shape coexistence

or to the existence of a QPT and most probably the reader got the impression that both

phenomena are, indeed, difficult to be separated because both are tightly connected. To

shed some light on this issue it is useful to perform a set of schematic calculations comparing

both situations but at the same time being close to what happens experimentally for the Zr

isotopes. This is illustrated in Fig. 12 where the spectrum of an IBM-CM mixing calculation

is compared with an IBM single configuration one. In panels (a), (c), and (e) we used a

configuration mixing Hamiltonian with εN = 1 (in arbitrary units) and the remaining of

the regular Hamiltonian parameters are put equal to zero, while εN+2 = x, κN+2 = x−1
N+2

,

χ = −
√
7/2, and the remaining of the intruder parameters are put equal to zero. The number

of bosons is set to N = 18 (N + 2 = 20) and the mixing term to ωN,N+2
0 = ωN,N+2

2 = 0.02.

This small value will ensure a tiny mixing between the regular and the intruder sectors in

the wave function. The shift parameter is fixed to ∆N+2 = 0.75 to guaranty a crossing of the

regular and the intruder 0+ bandheads at x = 9/11 ≈ 0.8181 for ωN,N+2
0 = ωN,N+2

2 = 0.0.

Moreover, in panels (b), (d), and (f) we present the calculation for a single IBM configuration
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FIG. 12. (a) Absolute energy systematics of Jπ = 0+ states for an IBM Hamiltonian with two con-

figurations, one with constant parameters and another one that experiences a QPT (see text); (b)

absolute energy systematics of Jπ = 0+ states for an IBM Hamiltonian with a single configuration

that experiences a QPT (see text); (c) the same as in panel (a) but for the relative energy; (d) the

same as in panel (b) but for the relative energy; (e) regular component of the first three low-lying

states corresponding to panel (a); in panel (f), the 〈nd〉 value for the first three low-lying states

corresponding to panel (b). The green curve stands for the derivative of the ground state energy.

All energies are given in arbitrary units.

with ε = x, κ = x−1
N

, χ = −
√
7/2, with the remaining parameters equal to zero and using

N = 20. Note that x acts as a control parameter in both Hamiltonians.

The schematic IBM-CM Hamiltonian was built in order to mimic the Zr systematics,

with a regular configuration which Hamiltonian remains essentially constant and an in-

truder configuration that undergoes a QPT. The mass number A = 100 qualitatively should

correspond to the control parameter x = 9/11, simply because, as pointed out in Section

III, 100Zr corresponds to a critical point. Moreover, increasing (decreasing) values of x qual-

itatively correspond to decreasing (increasing) values of A because the nuclei become more

spherical (deformed) as x increases. On the other hand, the IBM single configuration cal-
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culation only aims at reproducing what happens in the Zr ground states. Once more, there

is a QPT at x = 9/11. To help the understanding of Fig. 12, we have added the labels 98Zr,

100Zr, and 102Zr as an extra reference to guide the eye inspecting the content of this figure.

What strikes in the comparison is that for x < 9/11 and E < 0 both spectra are almost

identical. The reason is that for this area the leading Hamiltonians in left and right panels

are approximately the same. However, above E = 0 clear differences are present because

the almost harmonic spectrum of the regular Hamiltonian, i.e., E=0, 2, 3, 4, . . ., is present

in panels (a) and (c), but not in (b) and (d). These vibrational states are clearly observed

because of the small mixing that has been used. Besides, in panels (a) and (c) one can

note how the spherical states repel the deformed ones and avoided crossings are present,

happening in particular for the ground state. Regarding panels (b) and (d), the global

spectrum undergoes an evolution from deformed to spherical shapes because of the depen-

dence of the Hamiltonian on x. To better appreciate the analogies and differences between

both calculations, the lowest three states are marked. Concerning these three states, for

x < 9/11, the left panel and the right panel show essentially the same trend because for this

zone the spherical states (regular) are not yet influencing the lower part of the spectrum.

However, for x = 9/11 the slope of the energy curves changes more rapidly in the IBM-CM

case as compared with the single configuration one. The reason is due to the crossing and

repulsion between regular and intruder families of states. The most evident consequence is

that the change in the first derivative (green long dashed curves) of the ground state energy

is much faster in the left than in the right panels. Second consequence refers to the phonon

structure of the states for x > 9/11. In panel (a) and (c) the first and the second states

have 〈nd〉 ≈ 0, while the third has 〈nd〉 ≈ 2 (not shown in the figure). This follows from the

fact that the first and the third states have intruder nature while the second one is mainly

of regular character, as shown in panel (e). In panel (b) and (d), however, the ground state

has 〈nd〉 ≈ 0, the second 〈nd〉 ≈ 2, while the third 〈nd〉 ≈ 3, as illustrated as a function of x

in panel (f). As a consequence, the presence in the spectrum of two low lying 0+ states with

〈nd〉 ≈ 0 is a direct consequence of the existence of two families of states. The existence of

two families of states is responsible of the more rapid lowering of the first excited state as

compared with the case of a single configuration [see panels (c) and (d)].

The quantity presented in panels (e) and (f), the regular component and 〈nd〉, respectively,
are both ideal candidates to serve as an order parameter. The observed changes are much
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more rapid in the case of two configurations than in the case of a single one, as already

observed for the ground state energy. Therefore, an extra consequence of the presence of

two configurations is that the induced QPT happens abrupt as compared with the case when

considering only a single configuration. This is also observed in the green long dashed line

of Fig. 12(a) and Fig. 12(b).

In left panels, one observes that the QPT that the intruder configuration undergoes

favours the more rapid lowering of the intruder states. It is evident that the crossing of two

configurations with a constant Hamiltonian induces a certain discontinuity in the derivative

of the ground state energy with respect to a control parameter, but this discontinuity will

increase if on top of the crossing, the intruder ground state evolves from being spherical to

becoming deformed. This fact can be explained inspecting Fig. 6(b) in which one observes

a large energy gain in binding energy being due to the onset of deformation.
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FIG. 13. Energy systematics for Zr isotopes from the IBM-CM calculation, separating in states

which are mainly regular (full lines with full symbol) and mainly of intruder nature (dashed lines

with open symbols), compared with an IBM calculation using a single configuration [73] (dotted

line and starts).

What has been presented so far in the schematic calculations turns out to be equivalent
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to the comparison of the IBM-CM results used in this work and extracted from Ref. [41]

with the results of an IBM calculation for Zr using a single configuration, e.g, the one used

in Ref. [73] (only calculated up to A = 104). In the latter paper, the IBM parameters were

obtained through a least-squares fit to the available information (available in 2005), with

special emphasis in the two-neutron separation energy, that was considered as the main

indicator hinting towards the existence of a QPT. In Ref. [73] it was proven that the even-

even Zr isotopes undergo a QPT with 100Zr being the critical nucleus. To study how both

approaches are compared, in Fig. 13 we depict part of the spectra of both Hamiltonians.

The regular and the intruder states in the IBM-CM calculation are separated taking into

account the value of its regular component, i.e., if larger than 0.5 are marked as regular

while if smaller than 0.5 are marked as intruder. A first relevant fact is that the single

configuration calculation gives rise to too high excitation energies for L > 2 in the lightest

isotopes. Moreover, it follows reasonably well that the excitation energy of the 2+1 state all

the way and the one of the 4+1 and 6+1 states from A = 100 and onwards. A second important

result corresponds to the good reproduction of the 0+2 excitation energy for A = 94, 96, 98

and 104, but not for A = 100 and 102. Therefore, some states present in the spectrum,

namely, the 0+2 state for 100Zr, cannot be correctly reproduced using a single configuration.

Consequently, in Ref. [73] it was explained that the experimental 0+2 state of 100Zr, which is of

approximate spherical character, was excluded from the least-squares fit. This is, therefore,

the main drawback of the single-configuration calculation, i.e., some states are beyond the

model space and cannot be correctly reproduced, particularly the very low-lying excited

0+ states. In the case of the IBM-CM calculation, very low-lying 0+ states are correctly

explained because the crossing of two different configurations, intruder and regular.

Therefore, one can conclude that the differences between the energy systematics of both

approaches can be understood considering the level repulsion and quantum integrability as

explained in [74]. For a single configuration, the existence of a sizeable interaction matrix

elements between the first two 0+ states prevents its approaching, and instead, a large

repulsion results. However, in the case of regular and intruder configurations, the existence

of a quantum number with different value for both, namely N and N+2, allows the crossing

of both configurations in the case of no mixing term, or the presence of a small repulsion for

sufficiently small values of the mixing term, leading to a much more abrupt change in the

slope of the ground state energy than in the case of a QPT with a single configuration.

31



VII. CONCLUSIONS AND OUTLOOK

In the present study, a connection between shape coexistence and QPT has been system-

atically studied from different points of view and exemplified for the case of Zr nuclei. First,

we have reviewed the many experimental evidences for shape coexistence and for QPT. Next,

the possible fulfillment of the X(5) critical point symmetry has been considered concluding

that the evidences are rather mixed and that 100Zr and 102Zr present certain characteristics

of the X(5) symmetry but not all of them. The IBM-CM mean-field energy surfaces have

been presented, both in the axial direction and in the β − γ plane. The scale that connects

the IBM deformation parameters and the one from the collective model has been obtained

for every isotope. With the goal of analyzing in depth the structure of the wave function,

a decomposition in the U(5) basis was carried out, observing how the structure of the in-

truder states changes from being spherical to being well deformed. Also, the evolution of

the density of states as a function of mass number has been explored, without obtaining a

clear conclusion. Finally, a schematic calculation has been conducted to obtain some hints

to distinguish between shape coexistence and QPT.

In short, in the even-even Zr isotopes, ample experimental evidence exists for a QPT

showing up , with 100Zr as the “critical nucleus”. This conclusion is based on the exper-

imental information [S2n, E(4
+
1 )/E(2

+
1 ), or B(E2:4+1 → 2+1 ) evolution] and supported by

several theoretical models, including the IBM used in the present work. It is also self-

evident, in view of the available experimental information, that states with a very different

structure coexist in a narrow region of energy and, consequently, shape coexistence shows

up in the Zr isotopic chain of nuclei and is responsible for the evolution of the nuclear struc-

ture in this region of the nuclear mass table. It is fair to say that the existence of a QPT

is triggered by shape coexistence and is the result of the crossing in the 0+ ground state

of two configurations corresponding with different structural properties, i.e., spherical and

deformed character. The reduce mixing between regular and intruder configurations and

the evolution of the intruder configuration from a spherical shape to a deformed one when

passing from 98Zr to 100Zr is at the origin of the unique properties of the shape evolution

observed in this mass area. Similar conclusions have been formulated in a recent conference

contribution by Poves [75] and in [8] with a discussion for the doubly-magic 40Ca nucleus.

A possible conclusion is that if the shell gap at Z,N = 20 single-particle levels would have
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been a little smaller, this doubly magic nucleus would have turned up as deformed in its

ground state band [9].

The study of the possible relationship between shape coexistence and QPT in Zr isotopes

has been also carried out in Refs. [76, 77], obtaining similar conclusions, although in these

works the authors claimed that there is an addition evolution into gamma-unstable shapes

in 106Zr an onwards.

The presented analysis can encourage further studies in this mass region, for example in

the Sr isotopes, but also at the border of this deformation area, i.e., for Kr and Mo isotopes.
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