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Two-electron selective coupling in an edge-state based conditional phase shifter
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We investigate the effect of long-range Coulomb interaction on the two-electron scattering in the integer
quantum Hall regime at bulk filling factor two. We compute the dynamics of the exact two-particle wave function
by means of a parallel version of the split-step Fourier method in a 2D potential background reproducing the
effect of depleting gates in a realistic heterostructure, with the charge carrier represented by a localized wave
packet of edge states. We compare the spatial shift induced by Coulomb repulsion in the final two-electron wave
function for two indistinguishable electrons initialized in different configurations according to their Landau index
and analyze their bunching probability and the effect of screening. We finally prove the feasibility of this device
as a two-qubit conditional phase shifter able to generate controlled entanglement from product states.
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I. INTRODUCTION

Over the years, single-electron and two-electron interfer-
ence have been realized in a large variety of devices op-
erating in the integer quantum Hall regime, making them
an ideal platform for electron quantum optics [1–5] and a
possible candidate for quantum computing architectures based
on flying qubits [6–9]. Early implementations of the electronic
Mach-Zehnder interferometer (MZI) at bulk filling factor one
proved self-interference of the electron wave function and
the viability of coherent transport in edge states [10–12]
but are affected by a fundamental geometrical limit that
jeopardizes their concatenation in series. A new geometry
has been then proposed recently by Giovannetti et al. [13],
where the scattering between the first two copropagating edge
channels is generated by an alternative design of the beam
splitter [14,15]. The scalability of this new approach allows,
in principle, the implementation of two-qubit logic gates,
as the Hanbury-Brown-Twiss interferometer [16–21], where
exchange symmetry induces the Hong-Ou-Mandel (HOM)
effect [22–26] and the conditional phase shifter (CPS) for
entanglement generation [27]. Together with the effect of
electron-electron interaction, the interplay between the geom-
etry of the device and the electron correlations plays a crucial
role in the quantum logic gate operation [28].

In the literature, the numerical simulation of Hall inter-
ferometers usually exploits the chirality of edge states to
model electron transport in effective 1D schemes [8,29].
Moreover, delocalized edge states are often considered as
current-carrying states. Differently, we simulate single and
two-electron transport in a full-scale 2D Hall nanodevice by
using a time-dependent framework based on the split-step
Fourier method [31], where electrons are described by single-
charge wave packets. We numerically setup the 2D potential
landscape generated by modulation gates in order to compute
the edge states with the exact shape induced by our design of
the confining barrier; such states are then linearly combined

with a Gaussian weight function. With a large but affordable
computational cost [28], this method provides access to the
dynamical properties of an interacting system of electrons
directly from the exact two-particle state and allows us to
introduce in a rigorous way electron-electron repulsion. This
proved to be relevant in devices whose functioning is based
on two-electron scattering, as the HOM interferometer in
Ref. [22], where we observe the transition from an exchange-
driven to a Coulomb-driven bunching of strongly-localized
wave packets. Moreover, by encoding the initial electron
state in a Gaussian wave packet [12,15,22], we reproduce
the injection of a hot electron by means of single-electron
sources [32–38], as recently proposed theoretically by Riu
et al. with quantum dot pumps [39].

In this paper, our full-scale numerical approach is applied
to simulate two-electron scattering in the active region of a
solid-state conditional phase shifter [28], as the one depicted
in Fig. 1(a). The figure shows the interferometer pattern
created by the external potential (gray structure) induced
by modulation gates and the electron wave packets at an
intermediate time [30]. The design of the two multichannel
MZIs in the integer quantum Hall (IQH) regime is devised
in Ref. [13] and simulated in Ref. [15]; in our proposal
for a conditional phase shifter, two of these interferometers
are concatenated in parallel, as schematically represented in
Fig. 1(b), and generate four channels, two of them (ground
and first excited) running at each side of the 2DEG. Self-
interference in each MZI is affected by a selective Coulomb
interaction that couples only those electron states localized
in the first excited channels. The distance between the two
electron paths is decreased by a potential mesa, where the
bulk filling factor is one, so that their mutual interaction is
increased. Figure 1(c) shows the band structure of the active
region for Coulomb coupling (yellow box). Here, the spatial
confinement of the transverse probability distribution for the
single-electron wave function (dashed black line) ensures the
absence of tunneling between counterpropagating channels.
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FIG. 1. (a) Two parallel multichannel MZIs, with the design proposed in Ref. [15], define a conditional phase shifter T in the IQH regime.
Two edge channels copropagate at each side of the device due to the bulk filling factor two. The Landau level with index n = 1 (dashed
line) is localized at one edge of the step potential that lowers the filling factor to one (labeled with MESA) between the two beam splitters
(BS1, BS2). The edge channel with n = 0 (solid line) is confined at the other edge of the mesa. Thanks to the spatial separation between the
paths with n = 0 and n = 1 in this region, an electron accumulates different phases in the two channels. The yellow squared box identifies
the active region where electrons interact; the two-electron Coulomb repulsion V12 can be increased or decreased by tuning the width of the
MESA. The red and the blue wave packets show the single-electron density probability of the counterpropagating charges, computed at an
intermediate time of their evolution with our numerical approach. See also the Supplemental Material of Ref. [30] for an animation of the
two-particle dynamics. (b) Schematic representation of the device. Two single-electron Mach-Zehnder interferometers are concatenated in
parallel to realize a conditional phase shifter. (c) Band structure of the active region of the conditional phase shifter of panel (a) at one of the
two edges of the device. The first three Landau levels (n = 0, 1, 2) are displayed as solid lines labeled with En; the dots at n = 1 identify the
edge states combined to generate a Gaussian wave packet in the second channel with σ = 40 nm and a central energy E 0 = 21 meV. The
single-electron probability distribution of the electron wave packet in the transverse direction of the second edge channel is also displayed
(dashed line).

According to its strength, Coulomb coupling affects the
two-electron state at the output of the device, by selectively
rotating only the component of the wave function with both
electrons in the first excited states; this realizes the transfor-
mation [27,28]

T(γ ) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiγ

⎞
⎟⎠. (1)

The present device provides the ideal playground for our
numerical model: The geometrical parameters of the potential
landscape, e.g., the length of the coupling region and the
distance between the channels, affect significantly the strength
of Coulomb repulsion and therefore the corresponding
angle γ .

This paper is organized as follows. In Sec. II we summarize
the numerical model of localized carriers in edge states in the
IQH regime and our simulation approach of the two-electron
device. Then, Sec. III A describes the selective action of
the Coulomb interaction in a simple geometry for the active
region, with two sharp potential barriers at the edges of the

2DEG. We analyze how the Landau level band structure
affects the effectiveness of electron-electron repulsion and
calculate the total amount of energy exchanged during the
two-electron scattering in Sec. III B. After computing the
bunching probability for short interchannel distances, we
include screening effects on the two-particle dynamics in
Sec. III C. Finally, we adopt a more realistic model of the
confining potential with smoothed Fermi-like barriers, and
in Sec. III D we predict the γ factor expected in a full-scale
conditional phase shifter.

II. PHYSICAL SYSTEM AND NUMERICAL MODEL

In our numerical simulations, two interacting electrons
with charge q = −e and an effective mass m∗ propagate in a
confined 2DEG on the xy plane and are immersed in a perpen-
dicular magnetic field B = Bẑ. The effect of the magnetic field
on the electron transport is described in the Landau gauge,
which introduces the vector potential Ai = Bxiŷ in the single-
particle Hamiltonian Hi, with i = 1, 2 indicating the first or
second electron, respectively. In the presence of Coulomb
interaction V12 and a confining potential V , the two-electron
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Hamiltonian reads:

H = (p1 − qA1)2

2m∗ + (p2 − qA2)2

2m∗ + V1 + V2 + V12

=
∑
i=1,2

(
p2

xi

2m∗ + p2
yi

2m∗ + eBxi pyi

2m∗ + e2B2x2
i

2m∗ + V (ri )

)

+V12(r1, r2). (2)

Here, magnetic components of the kinetic operators in the
Landau gauge clearly couples the x coordinate in the real
space and the ky coordinate in the reciprocal space, for each
particle.

At the initial time, when the two counterpropagating elec-
trons are distant, the mutual interaction is negligible (V12 �
0) and each single-particle Hamiltonian Hi in Eq. (2) is
separable on the real-space domain. By adopting the ansatz
φi = ϕni,ki (xi )eikiyi , the noninteracting Hamiltonian can be ex-
pressed in the effective 1D form

Hiφi =
[
− h̄2

2m∗
∂2

∂x2
i

+ 1

2
m∗ω2

c

(
xi − x0

i

)2
(3)

+ V (xi, yi )

]
ϕni,ki (xi )e

ikiyi , (4)

where ki is the wave vector in the y direction of the re-
ciprocal space, |ωc| = eB/m∗ is the cyclotron frequency, ni

is the Landau index, and x0
i = −eBki/h̄ is the center of an

effective parabolic confinement in the x direction induced by
the magnetic field.

In the presence of a translationally invariant potential in
the x direction, V (x, y) = V (x), by selecting a wave vector k
and Landau index n, we identify the eigenstates ϕn,k (xi ) that
diagonalize the single-particle effective Hamiltonian in 1D:

H eff(x) = − 1

2m∗
∂2

∂x2
+ 1

2
m∗ω2

c (x − x0)2 + V (x). (5)

The Hamiltonian above determines the localization of the
electron wave function in the transverse direction of the device
(orthogonal to the propagation direction), due to the presence
of the magnetic confining potential, VB(x) = 1

2 m∗ω2
c (x − x0)2

which adds to the external one, V (x).
Note that in the bulk of the confined 2DEG, where V (x) �

0, the eigenfunction ϕn,k coincides with the eigenstate of an
harmonic oscillator with frequency ωc. In the presence of a
non-negligible confining potential, the eigenstates of the ef-
fective Hamiltonian H eff

i must be computed numerically, and
their shape depends on the smoothness of V (x). The single-
particle wave function φ(x, y) = ϕn,k (x)eiky is indeed called
edge state, and it is composed by a delocalized plane-wave
term in the longitudinal direction, eiky, and a confined wave
function ϕn,k (x) in the transverse one. The corresponding
eigenenergy for a given value of the quantum numbers n and
k is

En(k) = h̄ωc
(
n + 1

2

) + εn(k), (6)

which depends on the wave vector k only if εn(k) �= 0, i.e., in
proximity to the confining edge barrier.

A. Gaussian wave packets as charge carriers

To simulate a flying-qubit implementation of the condi-
tional phase shifter, we encode the electrons in Gaussian wave
packets of edge states belonging to the same Landau level n:

ψα (x, y) =
∫

dkF
(
k, k0

α, σα

)
ϕn,k (x)eiky. (7)

The weight function F (k, k0
α, σα ) = C exp(−σ 2

α (k − k0
α )2)

linearly combines edge states with different wave vectors
k and a given Landau index n. The index α labels the
translationally invariant region where the single-electron wave
packet is initialized. The smoothness of the confining edge
barrier, Vα (x), together with the central wave vector k0

α and
the real-space broadening σα of the wave packet, determine
the group velocity vα

g of the electron state. As proved in the
numerical simulations of single and two-electron dynamics
in Ref. [12], Ref. [15], and Ref. [22]; the Gaussian wave
packets in Eq. (7) maintain all the properties of edge states,
i.e., the chirality and immunity to backscattering. Moreover,
the Gaussian shape of the single-electron state is preserved
much more efficiently with respect to alternative frameworks,
as in the presence of a Lorentzian or exponential distribution
in the energies.

In the present geometry, we identify two translationally-
invariant regions, Vα and Vβ , where the single-electron wave
packet is initialized. The two interacting electrons are as-
sumed to be injected in counterpropagating channels, and
therefore the confining potentials must be characterized by
the same smoothness but opposite bending, as in the geom-
etry of the HOM interferometer from Ref. [22]. In order to
include the fermionic antisymmetry of the two-electron wave
function, the orbital single-electron wave packets ψα and ψβ

generated in the two initialization regions of the device are
combined in the antisymmetric form

�(r1, r2) = ψα (r1)ψβ (r2) − ψβ (r1)ψα (r2)√
2

. (8)

We stress that the above wave function depends on four
real-space coordinates: The memory burden needed to allo-
cate numerically the corresponding 4D array (about 1 Ter-
abyte in our numerical simulations) can be afforded only
by exploiting the resources of supercomputing facilities with
memory-distributed architectures and parallel techniques for
high-performance computing. In particular, we distribute the
two-particle wave function on a Cartesian topology of MPI
processes, which maps the domain of the second particle
(x2, y2).

B. The split-step method for time evolution

In our dynamic approach, the two-electron wave function
�(r1, r2) at initial time t = 0 in Eq. (8) is evolved by itera-
tively applying the evolution operator

U (δt ) = e−i H12 ·δt
h̄ , (9)

with the Hamiltonian H12 defined in Eq. (2). In particular, we
adapt the split-step Fourier method and the Trotter-Suzuky
factorization to the present case of two interacting charges,
as detailed in the following.
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In the presence of non-negligible electron-electron interac-
tion, H12(x1, y1, x2, y2) can be rewritten as

H12 = V (r1) + V (r2) + V12(r1, r2) + Tx(x1, x2) + Ty(y1, y2),

(10)

with V single-particle external potential and

Tx = p2
x1

2m∗ + p2
x2

2m∗ , (11)

Ty = p2
y1

2m∗ + 2eBx1 py1

2m∗ + e2B2x2
1

2m∗ + p2
y2

2m∗

+ 2eBx2 py2

2m∗ + e2B2x2
2

2m∗ . (12)

Equations (11) and (12) represent the 2D kinetic operators for
two free electrons in a perpendicular magnetic field, projected
on the x or y direction of the real space. The potential

operator V is characterized by a diagonal representation in
the real space, x1y1 and x2y2. The kinetic operator Tx1,x2 is
represented by a diagonal matrix in the 2D reciprocal space
kx1 kx2 . The operator Ty1,y2 is diagonal only in the 4D reciprocal
space defined by x1ky1 x2ky2 . Finally, V12 couples the x and y
coordinates, so that its diagonal representation is possible only
in the 4D configuration space x1y1x2y2, which is the domain
of the two-particle wave function.

According to the Trotter-Suzuky factorization method [31],
the U (t ; 0) operator for an evolution time t = N · δt is factor-
ized into three exponentials:[

e− i
h̄ δtH12

]N = [
e− i

h̄ δt ·(V1+V2+V12 )e− i
h̄ δt ·Tx e− i

h̄ δt ·Ty
]N

, (13)

so that Fourier transforms Fx1,x2 (Fy1,y2 ) and antitransforms
F−1

x1,x2
(F−1

y1,y2
) can be applied to switch from the real to the

reciprocal space and to exploit the locality of the modified
kinetic operators Tx(x1, x2) [Ty(y1, y2)] in the reciprocal space
[kx1 , kx2 ] ([ky1 , ky2 ]). The evolution operator finally reads

U (t, 0) =[
e− i

h̄ δt ·(V1+V2+V12 )F−1
y1,y2

e− i
h̄ δt ·Ty1 ,y2 Fy1,y2 F

−1
x1,x2

e− i
h̄ δt ·Tx1 ,x2 Fx1,x2

]N
. (14)

C. Numerical modeling of the active region

We initially describe the active region of the device in
Fig. 1(a) with a simplified geometry to expose the selectivity
of Coulomb coupling for two electrons initialized in the first
two Landau levels n = 0, 1. In this model, the two-electron
wave function propagate in a confined 2DEG with two sharp
barriers in the transverse direction of the device. Thus, the
external potential in the single-particle Hamiltonian is V (x) =
Vb[�(xL − x) + �(x − xR)], where Vb is the height of the
barrier, xL and xR identify the turning points at the edges, and
�(x) is the Heaviside function.

Figure 2 compares the band structure of the first three
Landau levels E0(x0), E1(x0), and E2(x0) (solid lines) with
the transverse shape of the external potential profile V (x) at
the right side of the initialization region. The dots on the
two Landau levels identify the centers x0(k) of the eigen-
states involved in the linear combination of Eq. (7) for two
single-electron wave packets in the ground (n = 0) or in
the excited (n = 1) channel. The present device operates at
bulk filling factor two, i.e. the first two Landau levels are
available at the energies involved in our operating regime,
which are well below the third Landau level with a minimum
energy E2 = 21 meV. We observe that, for a central energy
E0 ≈ 15 meV and a real-space broadening σ = 40 nm, the
first Landau level is characterized by a sharper bending, thus
resulting in a higher group velocity (or, equivalently, a smaller
magnetic mass) for a Gaussian wave packet initialized in
n = 0 with respect to the same in n = 1. We therefore expect
that Coulomb repulsion determines a larger spatial shift δy for
two electrons localized in n1 = n2 = 1 with respect to alter-
native configurations. This effect is further enhanced by the
different probability distribution of the single-electron wave
packets with n = 0, 1 in the transverse direction of the device,
displayed in Fig. 2. The initial wave packet with n = 1 has
a larger probability in the bulk of the 2DEG. Note, however,
that both wave packets are mostly localized at positive values

of the real-space domain in the x direction, thus ensuring a
negligible overlap with the counterpropagating state, which
is symmetric with respect to the origin. Then, for a distance
d > 100 nm between the edges, the two-electron scattering
is purely driven by Coulomb interaction, and no interchannel
tunneling is present.

III. RESULTS

In the following, we discuss the selective coupling of
two electrons in counterpropagating Gaussian wave packets

FIG. 2. Band structure of the active region induced by the sharp
potential barrier (gray shaded area) for the first three edge channels
at B = 5 T. The dots define the centers x0(k) of the edge states
contained in the Gaussian wave packets with n = 0 and n = 1.
The transverse profiles of the probability density for a wave packet
injected with a central energy E 0 = 15 meV and σ = 40 nm in n = 0
and n = 1 are also displayed (dashed yellow and purple lines).
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FIG. 3. (a) Spatial shift δy for two indistinguishable electrons in the two excited configurations (01) and (11), with σ = 40 nm and in the
presence of the long-range unscreened Coulomb interaction of Eq. (15) with dz = 1 nm. The label GAUS refers to a Gaussian single-electron
wave function, while LOR to a Lorentzian wave packet. (b) Spatial shift δy for two indistinguishable electrons in the ground configuration (00)
with the same parameters as above. (c) Map of the active region of the device with the external potential (gray) and initial density probability
distributions of two single-electron wave packets (red) in the three configurations under study: (00) both electrons in the ground channel 0,
(01) one electron in channel 0 and one electron in the excited channel 1, (11) both electrons in channel 1. Black arrows define the direction of
propagation of the wave packets.

of edge state, by comparing three different configurations
labeled as (n1, n2) with n1 = 0, 1 and n2 = 0, 1, and simulate
their Coulomb-driven scattering by assuming an unscreened
long-range soft Coulomb interaction:

V12 = e2

4πεr

√
(x1 − x2)2 + (y1 − y2)2 + d2

z

, (15)

where εr is the medium permittivity of GaAs and dz = 1 nm
avoids the divergence at r1 = r2 with a negligible effect on
the numerical results since the wave functions of the two
quasiparticles in the device of Fig. 1 are always spatially well
separated, i.e., the joint probability is essentially zero for any
two coordinates less than about 100 nm apart.

A. Exact two-electron scattering in 2D

Due to the exchange symmetry, we expect that at the
final time (when Vc is negligible due to the large distance
between the two electrons) the probability of one of the
two particles integrated over the other one shows the same
value in the two outputs, as in the initial condition. The
effect of Coulomb interaction is then traced to the difference
between the final density probability of the second particle
in the interacting case and in the noninteracting case, in the
direction of propagation (i.e., the y direction of the device).
Indeed, when two electrons approach each other, electron-
electron repulsion transforms part of their kinetic energy into
interparticle potential energy, so that the velocity along their
path is reduced. As the relative distance returns then to the
original value, the potential energy is transformed back into

kinetic energy and the initial velocity is restored. This turns
into a delay in the propagation of the two electrons compared
to the noninteracting case that corresponds to a phase factor
in front of the |11〉 component of the two-qubit wave function
in the global T transformation.

The difference between the maximum of this distribution
in the interacting and noninteracting scenario, namely δy,
depends on the geometry of the active region. The latter
can be strongly affected by the distance between the two
lateral edges, the wave-packet size, and the smoothness of
the confining barriers. With regards to the last parameter, a
proper design of V (x) with sharp lateral barriers is necessary
to induce a quasiparabolic dispersion of the second or first
Landau level, rather than a linear one, to ensure a measurable
δy. Indeed, in the presence of linear dispersion, the change in
the kinetic energy of the two wave packets does not change
the velocity, so that the displacement δy is zero.

Figures 3(a) and 3(b) compare the values of δy in the
three configurations, namely (00), (01), and (11), that are
displayed in Fig. 3(c) for a range of distances between the
edges, ranging from d = 100 to d = 200 nm. Note that, as
described above, no tunneling is present in this operating
regime. The effect of Coulomb repulsion generally decreases
with the distance between the two borders of the device d and
determines a larger longitudinal shift δy for the configuration
with two electrons in the excited channel n = 1. This trend
agrees with the lower group velocity in the excited edge
channel, together with a larger Coulomb interaction due to the
transverse spatial distribution of the wave packet for n = 1 in
Fig. 2. The discrepancy between the values of δy in the three
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FIG. 4. Single-electron density probability for a Lorentzian wave
packet with � = 50 nm and n = 0 at (a) initial and (b) final time.

cases increases significantly when the distance between the
two edges is reduced.

We also remark that the functioning of this solid-state im-
plementation of the conditional phase shifter does not depend
qualitatively on the shape of the wave packet. To prove this,
we simulate the interaction of two Lorentzian single-electron
wave packets in our device, by adopting the numerical model
validated for levitons [36,40] in Ref. [41]. In this scenario,
the weight function F (k) has an exponential distribution on
the Fourier space, so that the wave function is Lorentzian
in the real space. Note that the present single-electron ex-
citation operates in the same regime of the Gaussian wave
packets. Figure 4(a) displays the initial distribution of the
density probability in the longitudinal direction of the real
space, while panel (b) shows the same density probability
after its evolution in time. Differently from the Gaussian
excitation, the Lorentzian pulse does not maintain its shape
during the evolution, and oscillations are present in the tail of
the density probability. Figure 3 also displays the values of
the spatial shift generated by a two-electron scattering in the
active region for a Lorentzian wave packet. By simulating the
long-range Coulomb-driven interaction for two wave packets
in the (00) configuration [Fig. 3(b)], we observe that the
trend of the spatial shift does not differ qualitatively from
the one computed with the Gaussian modeling of the electron
state. Figure 3(a) further shows the value of dy computed by
studying the interaction of two Lorentzian states initialized
in the excitated channel (n = 1). In the present case, the
computed value for the phase shift is larger than the one
predicted in the Gaussian case; this follows from the lower
group velocity of the Lorentzian excitation, whose dynamics
is more strongly affected by the nonlinearity of the band
structure due to the large number of edge states in the tails
of the weight distribution. However, also in the Leviton-like
modeling of single-electron wave packets, the values of the
spatial shifts in the ground and in the excited channel differ
by tens of nanometers.

FIG. 5. (Top) Integrated Coulomb energy per length size Ec in
Eq. (17) exchanged during the scattering of two indistinguishable
electrons in the (00) configuration as a function of the distance
between the edges of the confining potential d for different wave
packet sizes σ . (Bottom) Ratio between the integrated Coulomb
energy per length size Ec in the (00) configuration and in the (11)
configuration.

B. Estimate of the interaction energy

To analyze the interplay between the effects related to the
different band structures of the Landau levels and the real-
space distribution of the charge encoded in the Gaussian wave
packets, we estimate the total amount of energy exchanged
during the two-electron scattering in the active region. We ini-
tially map the Coulomb potential V12(x1, y1, x2, y2) by fixing
the x1 and x2 coordinates to the maxima of the single-electron
wave packets, namely x1 = xM

1 in the channel on the right
and x2 = xM

2 in the channel on the left [see Fig. 3(c)]. The
Coulomb potential energy V (xM

1 , y1, xM
2 , y2) is then averaged

over the discrete set of y coordinates that define the path of
each edge channel, i.e., y1 = −y2 = Y with Y ∈ [−Ly, Ly],
where Ly is the positive coordinate of the boundary in the y
direction.

To provide a better estimate of the energy exchanged,
we also account for the 2D spatial distribution of the
single charge. Therefore, we average the Coulomb po-
tential V (x∗

1,Y ; x∗
2,−Y ), on a 2D Gaussian distribution

F (x, x∗, y, y∗), that is centered in x∗ = xM and y∗ = Y , i.e.,

F (x, xM, y,Y ) = axe−(x−xM )2/2σ 2
x aye−(y−Y )2/2σ 2

y , (16)

where σx and σy are the real-space broadening in the trans-
verse and longitudinal direction, respectively, and ax and ay

are normalization constants. The integrated Coulomb energy
exchanged during the scattering per length size then reads:

Ec = 1

Ly

∫
dY dr1dr2F

(
x1, xM

1 , y1,Y
)

×V
(
xM

1 ,Y, xM
2 ,−Y

)
F

(
x2, xM

2 , y2,−Y
)
. (17)

Ec is displayed in the top panel of Fig. 5 as a function of the
distance d for different values of σ . Here, we approximate
the spatial distribution of a single-electron wave packet
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with n = 0 by means of the above Gaussian distribution
F (x, xM, y,Y ) with σx = 5 nm and σy = σ .

The integrated Coulomb energy Ec shows that for smaller
wave packets the repulsion is larger, as a result of the increase
in charge localization. This difference decreases with the
distance d , in agreement with the fact that Coulomb repulsion
becomes less effective when the electrons are further sepa-
rated. Note, however, that this simple model does not take into
account the real shape of the edge states and their correspond-
ing band structure; indeed, when the distance between the two
edges is reduced, the minimum of the Landau level is raised,
so that for a given distance of the center x0(k) to the turning
point of the barrier, xL or xR, the energy broadening of the
wave packets shifts to lower values, thus decreasing the group
velocity of the wave packet. This is expected to affect more
strongly smaller wave packets in the real space, and therefore
at shorter distances δy eventually increases with σ .

Finally, the bottom panel of Fig. 5 displays the ratio
between the integrated energy exchanged during the scatter-
ing in the (00) configuration and in the (11) configuration,
which is—in our operating regime—between 80% and 90%.
The large discrepancy between the values of δy in the two
configurations does not find an explanation in the amount of
Coulomb energy exchanged alone: The different bending of
the Landau levels—and therefore the smaller group velocity
of the electron in the excited channel—is the origin of this
effect.

C. Screening and bunching probability

Besides exposing the spatial shift generated by Coulomb
interaction, the exact computation of the four-degrees-of-
freedom wave function allows us to measure dynamically the
two-electron bunching probability. The real-space domain is
partitioned in a TOP (y > 0) and a BOTTOM (y < 0) region,
which correspond to the outputs of the single-electron wave
packets ψα and ψβ , respectively. As in the electron HOM
experiment in Ref. [22], we compute the bunching probability
as

Pb =
∫

STT

dr1dr2|�(r1, r2)|2 +
∫

SBB

dr1dr2|�(r1, r2)|2,

(18)

where STT and SBB are 4D domains in the configuration space
with y1, y2 > 0 and y1, y2 < 0, respectively. We estimate Pb(t )
in the two different cases of distinguishable and indistinguish-
able particles, for two small values of the distance d , namely
d = 30 and d = 40 nm, and in the (00) configuration. Note
that, differently from the operating regime of the numerical
simulations above (with d > 100 nm), the two single-electron
wave functions in counterpropagating channels partially over-
lap in the transverse direction at initial time, so that tunneling
between them could occur during the scattering.

The numerical results are displayed in Fig. 6. In this
specific case, we reduce the value of the regularization factor
dz by two orders of magnitude in order to allow the two
quasiparticles to get close to each other. Still, a finite value
of dz avoids the Coulomb divergence, occurring with the (un-
physical) simultaneous localization of the two quasiparticles
at a single grid point. We verified that smaller values of the

FIG. 6. Bunching probability Pb(t) during the Coulomb-driven
scattering for two distinguishable/indistinguishable electrons initial-
ized in Gaussian wave packets with σ = 40 nm in the (00) configu-
ration for small values of the distance d . Note that tunneling between
the two counterpropagating channels is present in this regime.

regularization factor do not lead to substantial differences in
our results. For the simulated values of the channel distance d
and distinguishable particles, we measure a nonzero bunching
probability that generally decreases by reducing the distance,
and it almost vanishes for d > 40 nm. We further observe that,
as in the HOM geometry, Coulomb interaction does not fully
reflect the two electron, differently from the expected result
in an effective 1D geometry. In the latter scenario, indeed, the
two electrons are forced to propagate on the same rail, so that
at y1 = y2 they experience diverging value of the Coulomb
interaction. Moreover, with contrast to the case of Ref. [22],
the bunching probability is fully quenched by the presence of
exchange interaction, regardless of the distance between the
two rails. Differently from the wave packets generated after
the interaction with a quantum point contact, the reflected and
transmitted states induced by Coulomb repulsion fully overlap
in the Fourier space.

Finally, we simulate the effect of screening by adding an
exponential damping in the Coulomb repulsion:

V12 = Ce2 exp(−
√

(x1 − x2)2 + (y1 − y2)2/σc)

4πεr

√
(x1 − x2)2 + (y1 − y2)2 + d2

z

, (19)

where σc is the effective interaction length and C the ampli-
tude of the screening. Top panel of Fig. 7 shows the values
of δy in presence of screening for the (00) configuration with
σ = 40 nm and a distance between the edges of the confining
barrier that goes from d = 100 nm to d = 200 nm. In our
operating regime, we simulate a damping length σc of the
order of the width of the active region (Lx = 250 nm) and
observe that the values of δy are reduced by a factor of at
least 1/2. The bottom panel of Fig. 7 compares the spatial
shift δy in the three configurations for the largest separation
between the edges of the device, d = 200 nm, that ensures
the absence of interchannel tunneling. We observe that, for a
screening length σc larger than the distance between the two
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FIG. 7. (Top) Spatial shift δy in the presence of screening for
two indistinguishable electrons initialized in wave packets with
σ = 40 nm in the (00) configuration. The value at σc = 500 nm
corresponds to δy in presence of unscreened long-range interac-
tion. (Bottom) Comparison between the spatial shifts δy for two
indistinguishable electrons with σ = 40 nm in the three different
configurations and d = 200 nm with screening.

edges of the device (from 500 nm to 200 nm), δy decreases by
about 1 nm regardless of the edge channel where electrons
propagate. This decrement does not affect significantly the
large value of δy in the (11) case, while the small spatial shift
in the two weakly-interacting configurations, (00) and (01),
becomes comparable to the resolution of our simulation grid.
When the screening parameter σc further decreases below the
value of d (from 200 nm to 100 nm), the value of δy in the
(00) case vanishes, while the one in the (11) configuration
is still large and measurable. Moreover, the electron density
probability in channel 0 is localized less deeply in the bulk
with respect to channel 1 (yellow and purple dashed lines
for 0 < x < 50 nm in Fig. 2); thus, for such values of d ,
the screened Coulomb repulsion between two (00) charges is
suppressed faster by the exponential damping in Eq. (15).

The above results predict that by properly tuning the ge-
ometrical parameters of the active region with modulation
gates, or by varying the effective length for the screening, e.g.,
by modifying the electron density of the 2DEG, it is possible
to quench the effect of Coulomb repulsion for all configura-
tions except the (11) one, so that electron-electron repulsion
acts as a selective entangler also for this simple geometry.
The components of the latter device have dimensions that are
feasible with current nanotechnology.

In the next section we further simulate the Coulomb-driven
scattering between two indistinguishable electrons with a
more realistic geometry of the active region that corresponds

to the inner part of the loop area in the multichannel Mach-
Zehnder interferometer of Ref. [15]; we then predict the phase
shift γ that rotates the (11) component of the two-electron
wave function in the full-scale conditional phase shifter of
Fig. 1(a).

D. The phase shift γ in the T transformation

We now address a more realistic profile of the confining
potential and predict the phase γ in the T matrix of Eq. (1) for
the full-scale device of Fig. 1(a). First, we model the confining
barrier with a smoothed profile in the x direction:

Vext(x) = Vb

(
1

1 + e
x−xb

λ

+ 1

1 + e
−x+xb

λ

)
, (20)

where Vb = 0.31 eV, λ = 3 nm, and xb = 55 nm. Figure 1(b)
compares the potential profile in the transverse direction of the
device (blue shaded area), to the band structure of the second
Landau level (blue solid line) and the density probability of a
single electron wave packet with n = 1, σ = 40 nm, and an
injection energy of E0 = 20.4 meV (black dashed line). Note
that this regime reproduces the geometry and the injection
protocol of the multichannel MZI described in Ref. [15],
which is the building block of our proposal for a solid-state
implementation of the conditional phase shifter.

Consistently to the findings in the simplified model pre-
sented above, we expect a stronger Coulomb interaction
between the counterpropagating electrons with both Landau
levels n = 1. The sharper bending of the first Landau level
determines a smaller magnetic mass m∗

B with respect to a wave
packet with the same energy distribution but higher cyclotron
index n. The smaller group velocity for n = 1 induces a larger
shift in the real-space δy. Moreover, at a given value of the
injection energy E0(k), the center xn

0 (k) of an edge state
with n = 0 is closer to the profile of the confining barrier
with respect to the corresponding edge state with n = 1. The
transverse probability distribution of two wave packets in the
second Landau level is then larger in the bulk with respect to
the case of two wave packets initialized in the ground state,
thus enhancing the effect of Coulomb interaction.

The relation between the spatial shift δy and the γ factor
in the T matrix cannot be trivially determined by the wave
vector k alone, due to its gauge dependence. We resort to the
difference in the optical paths Leff, that is necessary to produce
a 2π rotation in each single-electron MZI at the edge of the
device.

By means of a single-particle solver, we simulate the
dynamics of single-electron interference in one of the two
Mach-Zehnder interferometers reported in Fig. 1(a). Here,
we artificially introduce a relative shift in the y direction
(�Y ) between the two components of the wave function in
the loop area. This spatial shift corresponds to a relative
phase factor in the single-electron wave function between the
transmitted wave packet in n = 0 and the transmitted one in
n = 1 after the scattering with the potential dip labeled as BS1
in Fig. 1(a). In a full-scale two-qubit device, the introduc-
tion of an artificial shift �Y mimics the effect of Coulomb
repulsion on the electron in the excited edge channel, when
the counterpropagating electron is in the active region [yellow
box in Fig. 1(a)]. In the equivalent single-electron simulation,
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�Y rotates the final state at the output of the MZI. The spatial
periodicity Leff of the interference pattern in the transmission
amplitude for the 0 channel, T (�y), is then related to γ : If Leff

corresponds to a 2π rotation in the output state of a single-
electron Mach-Zehnder experiment, the same rotation, γ =
2π , is obtained by introducing a selective Coulomb repulsion
that shifts the final position of the two wave packets in n = 1
by a factor δy = Leff. Within the present regime, we measure
an effective length Leff = 20 nm. The dynamical simulation
of the Coulomb-driven scattering of two indistinguishable
electrons in the second edge channel provides the shift δy
for the present realistic geometry, which is measured to be
δy = 11 nm.

We finally relate the shift δy to the corresponding γ in the
T transformation in Eq. (1) by using Leff as a reference and
resorting to the following equation:

γ = 2π
δy

Leff
, (21)

which provides γ = π in the full-scale conditional phase
shifter. This proves the feasibility of a selective phase shifter
with a factor π in our geometry, where the smoothed barriers
are characterized by a relative distance W = 110 nm at B =
5 T. Moreover, in our model the value of γ and the spatial shift
δy are related only by the screening-independent parameter
Leff, computed from the single-electron interference pattern in
an isolated MZI. Then, a proper increase of the distance be-
tween the outer edges of the two mesas at the nanometer scale
can be eventually combined with a controlled manipulation
of the screening parameter σc to induce a rotation that ranges
from π/2 to 2π , thus making this device a viable approach for
conditional phase shifting driven by Coulomb interaction.

IV. CONCLUSIONS

We have shown that Coulomb interaction between two
charge carriers moving in two counterpropagating edge chan-
nels can induce a consistent and controllable phase shift in
one of the four configurations of possible Landau levels occu-
pancy. By encoding a qubit state into the Landau level index
degree of freedom of one of the carriers, with only two Landau
levels being energetically accessible, the above phase only
applies to the (11) state, thus creating a two-qubit conditional
phase shifter T . The quantum gate T can be adopted, in turn,
as the two-qubit entangling transformation of a universal set
of quantum gates.

Our simulations address the numerically exact propagation
of the two-particle wave function in a full-scale geometry

of a device operating at bulk filling factor two. Thus, all
the real-space effects of the electron-electron mutual interac-
tion are accounted for, including the generation of quantum
correlations between the longitudinal degrees of freedom
(i.e., the particle positions along the edge channels) and the
effect of the finite localization of the carriers. Indeed, we
found that the higher the spatial localization, the stronger
the effect of Coulomb interaction. Also, a Lorentzian shape
of the charge carrier wave function gives rise to the same
entanglement effect as a Gaussian wave packet, although
the low-energy tail reduces in average the phase of the T
transformation.

Most important, we demonstrated that the conditional
phase generated by the multiedge state device can be as
large as π and its value can be controlled by the static
confinement potential. We emphasize that our multichannel
proposal of two-electron interferometry and controlled en-
tanglement generation, although general in its basic ideas,
is based on the only scalable platform available for an in-
terferometer of the Mach-Zehnder type in the IQH regime.
Single-channel [7,20] or Corbino setups [11] adopted in the
past are indeed characterized by an Ohmic contact inside the
loop area that is not required in our scenario [13]. Within
our model, we observe the evolution and interference of
single-electron wave packets and reproduce the dynamics of
quasiparticles generated from single-electron sources, nowa-
days feasible in the IQH regime [34,36,37]. Moreover, their
propagation in cyclotron-resolved channels instead of spin-
resolved ones [14,29], together with the presence of a tunable
potential mesa and small beam splitters, is proved [15] to
shorten the distance of copropagation and to reduce deco-
herence phenomena arising from interchannel interactions, as
charge fractionalization [42]. Additionally, recent theoretical
studies [43] and experimental works [44,45] observe that a
proper tuning of the energy distribution for the emitted carrier
and the magnetic regime allows controlling the relaxation
processes induced by inelastic scattering with acoustic and
optical phonons.
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