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ABSTRACT

In this paper, we present a deep-learning-based framework for
audio-visual speech inpainting, i.e., the task of restoring the
missing parts of an acoustic speech signal from reliable au-
dio context and uncorrupted visual information. Recent work
focuses solely on audio-only methods and generally aims at
inpainting music signals, which show highly different struc-
ture than speech. Instead, we inpaint speech signals with gaps
ranging from 100 ms to 1600 ms to investigate the contribu-
tion that vision can provide for gaps of different duration. We
also experiment with a multi-task learning approach where
a phone recognition task is learned together with speech in-
painting. Results show that the performance of audio-only
speech inpainting approaches degrades rapidly when gaps get
large, while the proposed audio-visual approach is able to
plausibly restore missing information. In addition, we show
that multi-task learning is effective, although the largest con-
tribution to performance comes from vision.

Index Terms— speech inpainting, audio-visual, deep
learning, face-landmarks, multi-task learning

1. INTRODUCTION

In real life applications, audio signals are often corrupted
by accidental distortions. Impulsive noises, clicks and even
transmission errors might wipe out audio intervals. The pro-
cess of restoring the lost information from the audio context
is known as audio inpainting [1], and, when applied to speech
signals, we refer to it as Speech Inpainting (SI). Since human
speech perception is multimodal, the use of visual infor-
mation might be useful in restoring the missing parts of an
acoustic speech signal. Visual information was successfully
used in many speech-related tasks, such as speech recogni-
tion, speech enhancement, speech separation, etc. (cf. [2, 3]
and references therein), but it has not been adopted for SI yet.
In this paper, we address the problem of Audio-Visual Speech
Inpainting (AV-SI), i.e. the task of restoring the missing parts
of an acoustic speech signal using audio context and visual
information.

The first audio inpainting works aimed at restoring short
missing gaps in audio signals [1, 4, 5, 6]. For inpainting long

gaps, i.e., hundreds of milliseconds, several solutions have
been proposed. Bahat et al. [7] tried to fill missing gaps
using pre-recorded speech examples from the same speaker
and Perraudin et al. [8] exploited self-similarity graphs within
audio signals. However, the first approach required a differ-
ent model for each speaker and the second one was less suit-
able for speech, since it could only inpaint stationary signals.
Prablanc et al. [9] proposed a text-informed solution to in-
paint missing speech combining speech synthesis and voice
conversion models.

Several researchers attempted to solve audio inpainting
using deep learning. In [10], a Convolutional Neural Net-
work (CNN) model was used to inpaint missing audio from
adjacent context. Other works exploited Generative Adver-
sarial Networks (GANs) to generate sharper Time-Frequency
(TF) representations [11, 12]. Recently, Zhou et al. [13]
demonstrated that exploiting visual cues improved inpainting
performance. However, these approaches only restored music
signals, which usually have long term dependencies, unlike
speech. Chang et al. [14] and Kegler et al. [15] both tried
to generate speech from masked signals with convolutional
encoder-decoder architectures. They evaluated their systems
on long gaps (about 500 ms), while in our work we aim at
inpainting also extremely long segments (until 1600 ms),
where additional information, like video, is essential to cor-
rectly restore speech signals. A very recent work proposed
a two-stage enhancement network where binary masking of
a noisy speech spectrogram was followed by inpainting of
time-frequency bins affected by severe noise [16].

In this paper, we propose a deep learning-based approach
for speaker-independent SI where visual information is used
together with the audio context to improve restoration of
missing speech. Our neural network models are able to gen-
erate new information and they are designed to fill arbitrarily
long missing gaps with coherent and plausible signals. In ad-
dition, we present a Multi-Task Learning (MTL) [17] strategy
where a phone recognition task is learned together with SI.
The motivation of the MTL approach lies in previous work,
which showed that speech recognition can improve not only
speech enhancement [18] (and vice versa [19, 20]), but also
speech reconstruction from silent videos [21].

Additional material, which includes samples of the in-
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painted spectrograms together with the respective audio clips,
can be found at the following link: https://dr-pato.
github.io/audio-visual-speech-inpainting/.

2. METHODS AND MODEL ARCHITECTURES

In this section we provide a formulation of the problem and
describe the architectures of the models that we propose. As
done in previous work [1], we assume to know a priori the
location of reliable and lost data and we use this information
in the signal reconstruction stage. In general, the models ex-
ploit reliable audio context and visual cues to restore missing
gaps in speech signals. As audio and video features, we used
log magnitude spectrograms and face landmarks motion vec-
tors, respectively. In a recent work, the specific visual features
used here have proven to be effective for audio-visual speech
enhancement [22].

2.1. Audio-Visual Speech Inpainting Model

Let x[n] denote an observed acoustic speech signal, i.e.,
speech signal with missing parts, with n indicating a discrete-
time index. We refer to the log magnitude spectrogram of
x[n] as X(k, l), where k and l are a frequency bin index
and a time frame index, respectively. The information about
the location of missing portions of the signal is encoded
in a binary mask M(k, l), which indicates whether a time-
frequency tile of the spectrogram of the observed signal is
lost, M(k, l) = 1, or reliable, M(k, l) = 0. We assume that
X(k, l) = 0 if M(k, l) = 1. In addition, we denote with
V (l) a sequence of visual feature vectors, obtained from the
resampled visual frame sequence, since acoustic and visual
signals are generally sampled at different rates. We define the
problem of AV-SI as the task of estimating the log magnitude
spectrogram of the ground-truth speech signal, Y (k, l), given
X(k, l), M(k, l), and V (l).

In this paper, Y (k, l) is estimated with a deep neural
network, indicated as a function, Fav(·, ·, ·), whose overall
architecture is shown in Fig. 1. The audio and video fea-
tures are concatenated frame-by-frame and used as input of
stacked Bi-directional Long-Short Term Memory (BLSTM)
units that model the sequential nature of the data [23]. Then,
a Fully Connected (FC) layer is fed with the output of the
stacked BLSTM units and outputs the inpainted spectrogram
O(k, l). To extract the inpainted spectrogram within the time
gaps, O(k, l) is element-wise multiplied with the input mask
M(k, l). Finally, the fully restored spectrogram, Ŷ (k, l), is
obtained by an element-wise sum between the input audio
context spectrogram, X(k, l), and the inpainted spectrogram.
More formally:

Ŷ (k, l) , Fav(X(k, l),M(k, l), V (l))

= O(k, l)�M(k, l) +X(k, l)
(1)

where � is the element-wise product. The model is trained
to minimize the Mean Squared Error (MSE) loss, JMSE(·, ·),

between the inpainted spectrogram, Ŷ (k, l), and the ground-
truth spectrogram, Y (k, l).

2.2. Multi-Task Learning with CTC

In addition to the plain AV-SI model, we devised a MTL ap-
proach, which attempts to perform SI and phone recognition
simultaneously. Our MTL training makes use of a Connec-
tionist Temporal Classification (CTC) loss [24] which is very
similar to the one presented in [21] for the task of speech
synthesis from silent videos. The phone recognition subtask
block in Fig. 1 shows the phone recognition module. It is fed
with the stacked BLSTM units’ output and has a linear FC
layer followed by a softmax layer which outputs a CTC prob-
ability mass function l̂ = [p1(l), . . . ,pP (l)], with l ∈ [1, L],
where L is the size of the phone dictionary and P is the num-
ber of phone labels in the utterance.

The MTL loss function is a weighted sum between the
inpainting loss, JMSE(·, ·), and the CTC loss, JCTC(·, ·):

JMTL(Y, Ŷ , l, l̂) = JMSE(Y, Ŷ ) + λ · JCTC(l, l̂), (2)

with λ ∈ R, where l is the sequence of ground truth phone
labels. The phone distribution is used to estimate the best
phone sequence. We find the phone transcription applying
beam search decoding [25] with a beam width of 20.

2.3. Audio-only Inpainting Baseline Model

An audio-only baseline model is obtained by simply remov-
ing the video modality from the audio-visual model, leaving
the rest unchanged. We consider audio-only models both with
and without the MTL approach described in section 2.2.

3. EXPERIMENTAL SETUP

3.1. Audio-Visual Dataset

We carried out our experiments on the GRID corpus [26],
which consists of audio-visual recordings from 33 speakers,
each of them uttering 1000 sentences with a fixed syntax.
Each recording is 3 s long with an audio sample rate of 50 kHz
and a video frame rate of 25 fps. The provided text transcrip-
tions were converted to phone sequences using the standard
TIMIT [27] phone dictionary, which consists of 61 phones.
However, only 33 phones are present in the GRID corpus be-
cause of its limited vocabulary.

We generated a corrupted version of the dataset where
random missing time gaps were introduced in the audio
speech signals. Our models are designed to recover multi-
ple variable-length missing gaps. Indeed, for each signal we
drew the amount of total lost information from a normal dis-
tribution with a mean of 900 ms and a standard deviation of
300 ms. The total lost information was uniformly distributed
between 1 to 8 time gaps and each time gap was randomly
placed within the signal. We assured that there were no gaps

https://dr-pato.github.io/audio-visual-speech-inpainting/
https://dr-pato.github.io/audio-visual-speech-inpainting/


 

B
LS

TM

C
O

N
C

A
T

B
LS

TM

B
LS

TM

 F
C

Mask

Audio Context

Video

Inpainted Spectrogram

Restored Spectrogram

 F
C

So
ft

m
ax CTC 

Decoding
PHONEME 
SEQUENCE

PHONE RECOGNITION SUBTASK

M(k, l)

X(k, l)

V(l)

O(k, l)

Ŷ(k, l)

l̂

Fig. 1. Overall architecture of the audio-visual speech inpainting system. CONCAT: frame-by-frame concatenation; BLSTM:
Bi-directional Long-Short Term Memory unit; FC: Fully Connected layer; CTC: Connectionist Temporal Classification.

shorter than 36 ms and the total duration of the missing gaps
was shorter than 2400 ms. Similarly to [15], the information
loss was simulated by applying binary TF masking to the
original spectrograms. The generation process was the same
for training, validation and test sets.

Our systems were evaluated in a speaker-independent set-
ting, with 25 speakers (s1-20, s22-25, s28) used for training, 4
speakers (s26-27, s29, s31) for validation and 4 speakers (s30,
s32-34) for testing. Each set consists of the same number of
male and female speakers, except for the training set which
contains 13 males and 12 females. Furthermore, to evaluate
the effect of the gap size, we generated additional versions of
the test set, each of them containing a single gap of fixed size
(100/200/400/800/1600 ms).

3.2. Audio and Video Processing

The original waveforms were downsampled to 16 kHz. A
Short-Time Fourier Transform (STFT) was computed using
a Fast Fourier Transform (FFT) size of 512 with Hann win-
dow of 384 samples (24 ms) and hop length of 192 samples
(12 ms). Then, we computed the logarithm of the STFT mag-
nitude and applied normalization with respect to global mean
and standard deviation to get the acoustic input features.

The missing phase was obtained by applying the Local
Weighted Sum (LWS) algorithm [28] to the restored spectro-
gram. Finally, we computed the inverse STFT to reconstruct
the inpainted speech waveform.

We followed the pipeline described in [22] to extract the
video features, i.e., 68 facial landmarks motion vectors. We
upsampled the video features from 25 to 83.33 fps to match
the frame rate of the audio features.

3.3. Model and Training Setup

The models in Section 2 consist of 3 BLSTM layers, each
of them with 250 units. The Adam optimizer [29] was used

A V MTL L1 H PER H STOI N PESQ N

Unprocessed 0.838 0.508 0.480 1.634
7 0.482 0.228 0.794 2.458
7 7 0.452 0.151 0.811 2.506
7 7 0.476 0.214 0.799 2.466
7 7 7 0.445 0.137 0.817 2.525

Table 1. Results on the test set. The PER score of uncor-
rupted speech is 0.069. A: audio; V: video; MTL: multi-task
learning with CTC.

to train the systems, setting the initial learning rate to 0.001.
We fed the models with mini-batches of size 8 and applied
early stopping, when the validation loss did not decrease over
5 epochs. The λ weight of the MTL loss, JMTL(·, ·, ·, ·), was
set to 0.001. All the hyperparameters were tuned by using a
random search and the best configuration in terms of the MSE
loss, JMSE(·, ·), on the validation set was used for testing.

4. RESULTS

4.1. Evaluation Metrics

We evaluated the system using L1 loss, Phone Error Rate1

(PER), and two perceptual metrics, STOI [30] and PESQ
[31], which provide an estimation of speech intelligibility
and speech quality, respectively. While the L1 loss was com-
puted only on the masked parts of the signals, the other three
metrics were applied to the entire signals, as it is not possible
to perform the evaluation on very short segments. Obviously,
PER, STOI, and PESQ show lower sensitivity, when the

1PER was obtained with a phone recognizer trained on uncorrupted data.
The phone recognizer consists of 2 BLSTM layers (250 units) followed by a
FC and a softmax layers.
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Fig. 2. Effect of gap size on speech inpainting performance.

masked part is small (< 400 ms), since a large fraction of the
original signal is unchanged in that case. For L1 and PER,
lower values are better, while for STOI and PESQ higher
values correspond to better performance.

4.2. Discussion

The evaluation results of the proposed models on the test set
are reported in the Table 1. On average, the masking process
discarded about half of the original speech information, as
confirmed by the PER score of unprocessed data.

Audio-visual models outperform the audio-only coun-
terparts on all metrics, demonstrating that visual features
provide complementary information for SI. In particular, the
PERs of audio-visual models are lower by a considerable
margin, meaning that generated signals are much more in-
telligible. The improvements in terms of STOI and PESQ
are not as large as PER, mainly because the two perceptual
metrics are less sensitive to silence than PER. Nonetheless,
they are significantly better than the unprocessed data scores
confirming the inpainting capability of our models.

The MTL strategy is also beneficial, and results suggest
that exploiting phonetic data during the training process is
useful to improve the accuracy of SI. However, we observe
just a small improvement of the audio-visual MTL model over
the plain audio-visual one. This might be explained by the
fact that, unlike for the audio-visual system, MTL strategy
does not add any additional information at the inference stage.

4.3. Gap size analysis

Table 1 reports the average results using multiple variable-
length time gaps, not providing information about how the
gap size affects the SI capability of our models. For this

reason, we generated other test sets, each of them con-
taining samples with a single time gap of fixed length
(100/200/400/800/1600 ms). Fig. 2 shows the inpainting
results for each metric on these test sets. As expected,
while for short gaps all models reach similar performance,
the difference between audio-only and audio-visual models
rapidly increases when missing time gaps get larger. The
performance of audio-only models drops significantly with
very long gaps (≥ 800 ms). Therefore, the audio context
does not contain enough information to correctly reconstruct
missing audio signals without exploiting vision. In general,
audio-only models inpaint long gaps with stationary signals
whose energy is concentrated in the low frequencies. On the
other hand, audio-visual models are able to generate well-
structured spectrograms, demonstrating the benefit that visual
features bring to inpaint long gaps. The reader is encouraged
to check the difference between audio-only and audio-visual
models in the spectrograms provided as additional material
(cf. Section 1).

Regarding the models trained with the MTL approach, we
can notice a good improvement in terms of L1 loss and PER,
even if the contribution is not as high as the one provided by
the visual modality.

5. CONCLUSION

This work proposed the use of visual information, i.e., face-
landmark motion, for speech inpainting. We tested our mod-
els on a speaker-independent setting using the GRID dataset
and demonstrated that audio-visual models strongly outper-
formed their audio-only counterparts. In particular, the im-
provement due to visual modality increased with duration of
time gaps. Finally, we showed that learning a phone recogni-
tion task together with the inpainting task led to better results.
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