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Broomcorn millet (Panicum miliaceum L.) is not one of the founder crops domesticated in Southwest 
Asia in the early Holocene, but was domesticated in northeast China by 6000 bc. In Europe, millet 
was reported in Early Neolithic contexts formed by 6000 bc, but recent radiocarbon dating of a dozen 
’early’ grains cast doubt on these claims. Archaeobotanical evidence reveals that millet was common 
in Europe from the 2nd millennium bc, when major societal and economic transformations took place 
in the Bronze Age. We conducted an extensive programme of AMS-dating of charred broomcorn millet 
grains from 75 prehistoric sites in Europe. Our Bayesian model reveals that millet cultivation began 
in Europe at the earliest during the sixteenth century bc, and spread rapidly during the fifteenth/
fourteenth centuries bc. Broomcorn millet succeeds in exceptionally wide range of growing conditions 
and completes its lifecycle in less than three summer months. Offering an additional harvest and thus 
surplus food/fodder, it likely was a transformative innovation in European prehistoric agriculture 
previously based mainly on (winter) cropping of wheat and barley. We provide a new, high-resolution 
chronological framework for this key agricultural development that likely contributed to far-reaching 
changes in lifestyle in late 2nd millennium bc Europe.

Broomcorn millet (Panicum miliaceum L., Poaceae family) is a resilient, fast-growing, water-efficient, drought-
tolerant plant that copes well on poor soils, is successful in both low and high altitudes and across a wide 
latitudinal range, produces many nutrient-rich grains and abundant biomass, and serves as food, fodder, raw 
material and perhaps as symbol in rituals1,2 [131, 153],3–7. The agrarian methods used in growing and processing 
of wheat and barley are applicable to this crop8–10, save for, perhaps, more intensive weeding required by millet, 
especially early in the growing cycle cf.11. In particular, the short growing season of up to three months, which 
can be completed during the summer, makes broomcorn millet highly attractive to different agrarian systems. In 
cultivation regimes focused on winter crops, it offers an additional harvest, increasing annual grain production 
and preventing famine in years when winter crops fail. It is also aptly suited to economic systems where cultiva-
tion is practiced only during a short time-window, such as may have been the case with pastoral groups of Bronze 
Age Central Asia12, or where the availability of cropping areas was seasonally restricted (e.g. in floodplains13). 
It offers lush and abundant forage for animals, indispensable in the dry season. In cuisine, it adds to taste and 
texture, and diversifies the food options7. These qualities appeal to modern-day millet farmers in Europe9; they 
were at least part of the reason why broomcorn millet became a staple crop in Asia and Europe. In some regions 
nowadays, broomcorn millet is a cornerstone of food economy and a guarantee of food security14.

Early millet in Europe: the question of ‘when?’
Broomcorn millet grains are common at later prehistoric sites in Europe15–18. These finds testify to the far-
reaching dispersal of the crop that was first domesticated in modern-day China. Its spread and adoption across 
central and western Asia and Europe is one of the most clear-cut examples of ’food globalisation’ or ‘trans-Eura-
sian exchange’ of technologies and inventions between the distant parts of the "Eurasian dyad"19–24. The earliest 
recorded finds of broomcorn millet in China in the form of charred grains derived from Early Neolithic sites in 
the north/north-east of the country and have been dated to the early-mid 6th millennium bc4,25,26. In Europe, 
archaeobotanical finds of broomcorn millet were previously reported for Neolithic sites whose occupation started 
as early as the late 7th millennium bc (e.g. in the southern and eastern Balkans), as well as a number of later pre-
2nd millennium bc sites17. However, radiocarbon dating of ten charred grains from Neolithic (6–5th millennium 
bc) layers demonstrated their (much) later date, not earlier than the very end of the seventeenth century bc27. 
This discovery cast doubt on any reported ’Neolithic’ broomcorn millet in Europe, and hinted that the east-to-
west transfer of this crop might have taken place later than thought. The earliest so far directly dated broomcorn 
millet grains in Central Asia date to the mid–late 3rd millennium cal bc (Begash, Kazakhstan: 2470–2190 cal 
bc at 94.7% confidence (Beta-266458, 3840 ± 40 BP28,29); Adji Kui 1, Turkmenistan: 2210–1960 cal bc at 94.0% 
confidence (3708 ± 45 BP, no laboratory code30); southeast from this region, in the Kashmir Valley, millet from 
the site of Pethpuran Teng, Kashmir, is equally early (2580–2450 cal bc at 92.3% confidence [D-AMS 033182, 
3981 ± 34 BP]31). Nevertheless, persistent reports of European finds of pre-2nd millennium bc broomcorn millet 
grains have kept open the question of when broomcorn millet arrived in Europe.

The precise chronology and character of the spread of broomcorn millet is the key to understanding the 
processes by which it entered Europe and the mechanisms for its uptake and final incorporation within food 
production, diet, cuisine, and the wider socio-economy. We therefore conducted a large radiocarbon-dating 
programme, targeting ’early’ millet finds in eastern, central and northern Europe, and obtaining over 100 AMS-
dates on charred grains from c. 70 sites (Figs. 1, 2). This paper presents the results and, in combination with the 
published data, uses them to address the questions of When and Where broomcorn millet arrived in several large 
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regions of Europe, which we refer to as North Pontic, Carpathian Basin, Po Basin, central Europe and North-
central Europe. We do this by (a) modelling the spread of the crop within the selected parts of Europe using a 
Bayesian approach, and (b) weaving together radiocarbon dating evidence and relevant archaeobotanical and 
stable isotope data. 

Results
New AMS measurements.  Given the size of charred broomcorn millet grains (e.g. 1.7–2.0 mm in length, 
1.4–1.7 mm in breadth2 [131]; 0.78–1.53 mg per grain32 [Table 31]), the dry mass prior to chemical pretreatment 
was sometimes very low (0.4–0.9 mg for 19 specimens, Supplementary Dataset). Extraction yields varied, due 
to differences in grain preservation conditions. We disregarded results from samples yielding < 100 μg (0.1 mg) 
of carbon, as their 14C ages are too imprecise to be informative. For most samples, the AMS δ13C value (which 
is used to correct the measured 14C concentration for fractionation) is lower than the expected δ13C value for 
charred broomcorn millet (c. − 11.1 ± 0.5‰33 [319]). The low AMS δ13C values may be partly due to fractiona-
tion during sample preparation (oxidation and graphitisation), but is more likely due to fractionation in the 
AMS (most probably at the ion source), which is pronounced with small graphite targets (Goslar, T. personal 
communication via email, 4 May 2020). Indeed, an exponential regression of AMS δ13C against graphite weight 
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Figure 1.   The location of sites in Europe with published and new broomcorn millet dates: (1) Rykan; (2) 
Guamsky Grot; (3) Zanovskoe; (4) Dikiy Sad; (5) Olbia; (6) Vinogradnyi Sad; (7) Maidanetske; (8) Zalissya; (9) 
Ivane-Puste; (10) Măgura-Buduiasca; (11) Teleac; (12) Miercurea-Sibiului; (13) Debrecen; (14) Cornești; (15) 
Kalakača; (16) Gomolava; (17) Pécel; (18) Bosut; (19) Fajsz; (20) Százhalombatta; (21) Vráble; (22) Crišnjevi; 
(23) Oštrovi; (24) Gasteil; (25) Lasinja; (26) Orehova Vas; (27) Neudorf; (28) Retznei; (29) Dragomelj; (30) 
Tribuna; (31) Custoza; (32) Santa Giulia; (33) Lavagnone; (34) Binningen; (35) Hagnau; (36) Ansfelden; (37) 
Meidling; (38) Stillfried; (39) Ipf; (40) Knittlingen; (41) Pisek-Sever; (42) Maszkowice; (43) Königshofen; (44) 
Goddelau; (45) Lipnik; (46) Velim; (47) Fechenheim; (48) Witów; (49) Roztoky; (50) Bruchenbrücken; (51) 
Miechów; (52) Zahájí; (53) Valečov; (54) Soví převis; (55) Jülich-Güsten; (56) Schafstädt; (57) Niederröblingen; 
(58) Bösenburg; (59) Quenstedt; (60) Großbahren; (61) Radis; (62) Lutomiersk; (63) Borken; (64) Warendorf; 
(65) Watenstedt; (66) Szczepidło; (67) Hundisburg; (68) Olbetal; (69) Altenrheine; (70) Potsdam; (71) Möthlow; 
(72) Lüdelsen; (73) Rathsdorf; (74) Walsleben; (75) Smuszewo; (76) Rullstorf; (77) Hittfeld; (78) Pasewalk; 
(79) Badegow; (80) Schwerin; (81) Flögeln; (82) Vogelsang; (83) Butzow; (84) Wismar; (85) Wahlstedt; (86) 
Zweedorf; (87) Depenau; (88) Flintbek; (89) Borgstedt; (90) Brekendorf; (91) Risinge; (92) Starčevo; (93) 
Okolište; (94) Donje Moštre; (95) Hisar; (96) Yabalkovo; (97) Assiros.[Map generated using the software: QGIS 
3.10.5—A Coruña (https​://qgis.org); copyright by OpenStreetMap contributors, terrestris GmbH & Co KG 
(https​://www.terre​stris​.de), and Natural Earth Data (https​://www.natur​alear​thdat​a.com)].
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Figure 2.   Examples of the dated loose and fused broomcorn millet grains from sites in Europe: (1) Altenrheine; 
(2) Vráble; (3) Pécel; (4) Teleac; (5) Ipf; (6) Binningen; (7) Königshofen; (8) Oštrovi; (9) Maszkowice; (10) 
Lavagnone; (11) Santa Giulia; (12) Soví převis; (13) Meidling-im-Thale; (14) Stillfried; (15) Wismar; (16) 
Custoza; (17) Hagnau; (18) Kalakača.
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predicts an average δ13C value of c. − 10‰ for normal-size targets (1 mg), which falls in the range expected for 
C4 plants, with increasing fractionation (more negative δ13C values) as the dating targets get smaller (Supple-
mentary Fig. 1).

Radiocarbon dates on broomcorn millet grains in Europe: the dataset.  Table 1 summarizes the 
available AMS-dates on broomcorn millet in the study region and in South-east Europe. They include 52 legacy 
dates (31%; including 17 previously unpublished dates) and 116 dates (69%) from this study (see Supplemen-
tary Dataset). One is on abundant uncharred broomcorn millet remains preserved in a bog at the site of Zahájí 
(Czech Republic)34; all others are on charred grain. The previously obtained dates were examined for δ13C values, 
sample weight and the material submitted for dating, as recorded in the laboratory database or published report. 
We established that seven published dates from seven sites and three unpublished dates from two sites were not 
from, or not only from, broomcorn millet grains (Supplementary Dataset). The combined remains of broomcorn 
millet and free-threshing wheat dated at Begash in Central Asia were clearly from the same context28 [1004]. 
Although there are similar examples in Europe, we disregarded such cases and focused on dates exclusively from 
broomcorn millet grains.

Modelling the chronology of spread of broomcorn millet in Europe.  Our preferred Bayesian 
chronological model (Supplementary Fig. 2; Supplementary Model Code; Supplementary Text 1) uses 136 dates 
from 80 sites, out of the 153 apparently accurate dates available on broomcorn millet from 90 sites. Nineteen 
dates clearly falling after 1 cal bc (six published dates from four sites and 13 fresh dates from eight sites) were 
omitted. Multiple iterations of the preferred model revealed two early ‘misfits’, from Lavagnone in northern Italy 
and Ipf in southern Germany (Supplementary Dataset). Both results were too early for their positions in the 
overall model (individual index of agreement ≪ 6035) and inconsistent with other millet 14C dates from the same 
sites and the region. These results were excluded from the preferred model.

We subdivided the study region (Fig. 3) into sub-regions, based on the comparison of model outputs from 
various permutations of the dataset (Supplementary Text 2; Supplementary Fig. 4). The calibrated 14C results 
provide termini ante quos for the earliest occurrence of millet in a subregion, whose date can be estimated from 
the scatter of sample dates. Given the uneven spatial coverage in the data, which is an inevitable consequence of 
research history, we cannot standardize the number of sites and samples in each region (Table 2). The uncertainty 
in start-date varies regionally, depending primarily on data density (the number of samples, the number of dated 
sites and the proportion of these dating close to the beginning of millet cultivation), but also on measurement 
precision and the shape of the calibration curve (we expect the next iteration of the international 14C calibra-
tion curve, due to be released in 2020, will shift the oldest dates in our study slightly later, based on the new 
data36,37). Thus the estimated date of the start of broomcorn millet cultivation is fairly precise in three regions 
(Carpathian Basin, central Europe, North-central Europe), each represented by over 30 samples from at least 
19 sites (Supplementary Dataset). The Po Basin includes only three dated sites, but their six dates are tightly 
clustered, whereas only one of the seven sites included in the North Pontic region is particularly early, and the 
others span a wide date range. The South-east Europe region includes only three dates from two sites, and the 
estimated start date is correspondingly vague.

Figure 4 maps the modelled dates, in 100-year time-slices. The only millet in Europe directly dated to the 
sixteenth century cal bc comes from Vinogradnyi Sad in southwestern Ukraine. By the mid-fifteenth century bc, 
however, broomcorn millet was apparently present in the Middle Danube region—in the territory of modern-day 
Romania (Corneşti-Iarcuri), Hungary (Fajsz 18) and perhaps Croatia (Mačkovac-Crišnjevi)—and in northern 
Italy (Lavagnone). By the mid-fourteenth century bc, it spread across central Europe and as far south as the 
Aegean (Assiros in Greece). There is little evidence that millet spread north of Bohemia during the thirteenth 
century bc, but by the mid-twelfth century bc it was common in northern Germany and Poland. By this date, 
broomcorn millet was probably cultivated throughout the study region. The ostensible gap in the western Balkans 
reflects the state of research, as few sites here have been analysed archaeobotanically. That broomcorn millet was 
present here at least from the mid-thirteenth century bc onwards is demonstrated by dates on the grains from 
Hisar (southern Serbia). Eastern and southern parts of the peninsula (Albania, North Macedonia, Bulgaria, 
Greece) were not included in this dating programme as the material from some of these regions is a part of a 
different study. However, the only so-far published direct-dated millet find from Greece—that from Assiros—is 
included in the model. A charred food crust in a pot from the Late Bronze Age site of Kush Kaya in southern 
Thrace (Bulgaria) contained fragments of broomcorn millet grain, along with barley and flax; the crust was 
directly dated to the mid-fourteenth century bc38 (the date is not used in our model).

Table 1.   The number of published, unpublished and newly produced AMS-dates reported as obtained on 
broomcorn millet from Europe. Our analysis showed that not all of the ’millet-dates’ were obtained (exclusively 
on) broomcorn millet (see remarks in Supplementary Dataset). a Includes five sites with published dates, 
re-dated within this study.

Status Number of dated sites Number of AMS dates

Published before this study 27 35

Unpublished dates included in this study 6 17

Dates produced within this study 69a 116

Total 97 168
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Previous radiocarbon dating of broomcorn millet called into question the reported pre-2nd millennium bc 
occurrences of the crop in Europe27. Our study shows that it is highly unlikely that broomcorn millet reached 
central Europe prior to the mid-2nd millennium bc.

The age of ‘small’ and ‘large’ broomcorn millet deposits.  Archaeobotanical assessments of the early 
distribution of broomcorn millet in Europe suggested its widespread presence prior to and during the Early 
and Middle Bronze Age (before mid-2nd millennium bc), but as a minor crop18,39,40. This was inferred from 
the overall number per site of millet grains or of contexts in which they were found. The finds attributed to the 
Neolithic, Copper and Early Bronze Ages usually occur in the form of one to several grains per deposit and were 
interpreted as indicating that broomcorn millet initially was a tolerated accidental inclusion in the harvests of 
major crops. In contrast, dense, concentrated deposits (with grains often fused into ‘porridge’) of the Middle and 
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Figure 3.   Location of the 80 sites, with small and/or large millet deposits, included in the model and assigned 
to broad geographical regions within which the results are discussed; see Fig. 1 caption for site names (site #4, 
Dikiy Sad, which yielded both small and large millet deposit, is here classified as large).[Map generated using 
the software: QGIS 3.10.5—A Coruña (https​://qgis.org); copyright by OpenStreetMap contributors, terrestris 
GmbH & Co KG (https​://www.terre​stris​.de), and Natural Earth Data (https​://www.natur​alear​thdat​a.com)].

Table 2.   Estimated dates for the start of millet cultivation in each subregion, given by the Bayesian 
chronological model (Supplementary Text 1, 2) and shown in Figs. 4, 5.

Subregion
Number of sites in the 
model

Number of AMS-dates in the model

68% Probability 95% ProbabilityOn small deposits On large deposits

North Pontic 8 8 6 1650–1500 cal bc 1780–1450 cal bc

Carpathian Basin 20 33 7 1480–1420 cal bc 1510–1410 cal bc

Po Basin 3 5 1 1500–1430 cal bc 1570–1410 cal bc

central Europe 19 22 9 1470–1400 cal bc 1490–1330 cal bc

North-central Europe 28 25 15 1230–1160 cal bc 1260–1140 cal bc

South-east Europe 2 0 3 1500–1290 cal bc 1840–1270 cal bc

https://qgis.org
https://www.terrestris.de
https://www.naturalearthdata.com
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Late Bronze Age were taken as reflecting a higher degree of use and/or greater importance of this crop relative 
to others. It was, therefore, concluded that “…the transformation of millets from minor to major (or even main) 
crops took place in the transition from Middle to Late Bronze Age in Europe”18 [361].

Based on the published archaeobotanical records of broomcorn millet finds in Europe, our expectation was 
that the number of obvious large deposits per subregion will be small for the earlier part of the covered period 
(Neolithic-Copper Age), moreover—that there may be none. Rather than seeing this as a ’proof ’ that millet first 
appeared in the respective subregion as a contaminant of other crops, we acknowledged that this can be a result 
of taphonomy (such as e.g. the possibility that small deposits represent re-deposited material from larger depos-
its) and the state of research. The radiocarbon dates presented here allow us to evaluate this notion at a macro-
regional (sub-continental) level. The chronological distribution of small and large deposits of dated pre-Roman 
millet grains included in the model is summarised in Supplementary Fig. 3, their number in Table 2, and their 
geographical distribution in Fig. 3. Supplementary Fig. 3 shows that the overall temporal distribution of small 
deposits is skewed towards early dates, as predicted. In all but one subregion (North Pontic, with lowest data 
density), at least one of the early dates comes from a large deposit. Therefore, we would suggest that among the 
dated deposits in the study region, there is no real difference in the temporal distribution of large and small millet 
deposits, and that our results therefore do not support the impression that millet began as a minor crop and only 
became a major (or the main) crop later. Earlier deposits are not necessarily small, and there are both early and 
late large deposits. Small deposits also occur throughout the period of interest. There is a higher relative incidence 
of small deposits in the late 2nd–early 1st millennium cal bc, but many of these samples are clearly intrusive (in 
Neolithic contexts), and this pattern does not necessarily mean that the importance of millet declined over time.

The northern German dataset forms a useful case-study because of its size and good regional coverage. Here, 
the earliest large deposits of broomcorn millet grain are as old as the first small deposits (isolated grains). This 
suggests that broomcorn millet was established and cultivated on a larger scale and more evenly from the outset. 
Regular cultivation of a crop should produce both large and small deposits, but the visibility of both will depend 
on their preservation and discovery. Regional differences in fieldwork methods and sampling priorities may also 
produce misleading patterns.

This study confirms the previous finding from radiocarbon dating of broomcorn millet grains—that small 
deposits can be (much) younger than the archaeological layers in which they are found. Our programme also 
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included sites where broomcorn millet was more frequent than just one or few grains per context (see Supple-
mentary Dataset). Even in some of these cases, however, archaeological dating proved to be misleading. This 
particularly concerns the much-cited Late Neolithic (late 4th/early 3rd millennium bc) site of Meidling-im-Thale 
(Kleiner Anzingerberg), where 83 millet grains were found in several features within a burnt house41 [67], but 
radiocarbon dating placed the grains from four features no earlier than the eighth century bc. Likewise, over 
670 millet grains were extracted from 31 samples from Late Neolithic and Copper Age layers (5th–4th millen-
nium bc) at Gomolava42 [Table 2]. Three of these ‘millet-rich’ samples were dated directly, and none is older than 
tenth/ninth century bc. In both cases, the number of broomcorn millet grains per site was relatively high, but 
the millet-containing deposits were of low density (one or few millet grains per L/kg of soil).

Discussion
Routes and timing of broomcorn millet diffusion in Europe.  The results of the radiocarbon dating 
program are here discussed in conjunction with the selected archaeobotanical (including grain imprints) and 
stable isotopic evidence. Adding a C4 plant, such as broomcorn millet, to diets otherwise based on plants using 
the C3 photosynthetic pathway increases δ13C values of bones and teeth, because δ13C values of C4 plants are 
typically 10–15‰ higher than those of C3 plants. There are wild C4 plants in Asia and some also occur in Europe 
(e.g. certain chenopods and grasses, especially halophytes) in salt marshes or in steppe environments, where they 
can be seasonally more abundant than C3 plants42, but higher δ13C values in prehistoric humans and domestic 
animals in Europe are more plausibly related to regular consumption of domesticated millets than to increasing 
amounts of wild C4 plants in graze or fodder43,44. Human bone collagen δ13C values are especially sensitive to 
the quantity of protein-rich freshwater or marine foods consumed, as well as the consumption of meat and milk 
from domestic herbivores which consumed C4 plants, whereas tooth enamel or bone apatite δ13C values reflect 
δ13C values in the overall diet, including carbohydrates. Appropriate threshold δ13C values identifying the input 
of C4 foodstuffs will therefore depend on the tissues analysed, the carbon contribution of aquatic species, and the 
δ13C values of local C3 and C4 plants. In Europe, for fully terrestrial diets, human bone collagen δ13C values ≥ c. 
− 18‰ may signify inclusion of C4 plants ("mixed C3/C4 diet"); δ13C values ≥ c. − 12‰ reflect a "predominantly 
C4 diet"45,46.

The modelled date of introduction of the new crop in each of the sub-regions enables us to chart a relatively 
clear spatiotemporal sequence of the east–west spread (Figs. 4, 5). Our ’early millet regions’ correspond well with 
the areas associated with distinct material culture or ’cultural groups’ and their ’influences’, most prominently 
the Sabatinovka (Caбaтинiвcькa кyльтypa) in the North Pontic area, Tumulus and Trzciniec cultures in eastern, 
central and western parts of the study region, and the Late Nordic Bronze Age in the north. This re-iterates the 
previously underlined necessity to tie agricultural/food innovations into material culture and socio-economic 
change15,19, for which a solid temporal frame is instrumental. One of the unexpected discoveries is that, whereas 
there is almost no measurable difference in the modelled dates of millet appearing in the Carpathian Basin, 

North Pontic start

North Pontic dates

Carpathian Basin start

Carpathian Basin dates

Po Basin start

Po Basin dates

central Europe start

central Europe dates

North-central Europe start

North-central Europe dates

South-east Europe start

South-east Europe dates

2000 1500 1000 500 1 cal BC/cal AD 1

Figure 5.   Modelled start date of millet cultivation (OxCal function Boundary) and temporal distribution 
of dated samples (OxCal function KDE_Plot) in each region. The crosses represent median dates of these 
distributions and of individual samples (gray: calibrated individually; black: modelled dates), providing an 
impression of differences in data density between regions.
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the Po Basin and central Europe, there was a significant delay (probably > 200 years) before millet spread from 
central Europe to the north European plain (Figs. 5, 6). A topic for future research is whether this time lag was 
due to ecological or cultural barriers.

North Caucasus and North Pontic.  The two regions are currently represented by dates from only seven 
sites, spanning about a millennium. Our preferred model dates the start of millet cultivation in the North Pontic 
region to the second quarter of the 2nd millennium cal bc (1650–1500 cal bc [68.2% probability] or 1780–
1450  cal bc [95.4% probability]), and depends on the earliest dates from the Late Bronze Age settlement of 
Vinogradnyi Sad on the Southern Bug River, occupied c. sixteenth to thirteenth century bc and associated with 
the Sabatinovka culture, which stretched across the Ukrainian steppe zone47 [237, Fig. 79].

Reports of much earlier occurrences (6th–early 3rd millennium bc, Neolithic-Early Bronze Age) of Pani-
cum miliaceum in the North Pontic were almost entirely based on millet-like impressions in pottery, daub and 
figurines17,48,49. A recent morphological re-examination of many of these impressions, found on mid–4th or 
early 3rd millennium bc (Usatovo culture) clay materials from the northwestern Black Sea coast, excluded millet 
grains as a source for some of the imprints (e.g. those on figurines). Other millet imprints on potsherds and daub 
were confirmed, along with impressions of wheat and barley grain and few other species50. The chronological 
attribution of this material, however, is insecure and it may in fact date to the 2nd millennium bc50 [3209–3210]. 
Another recent high-resolution assessment of some alleged millet grain impressions in Neolithic, Eneolithic and 
later pottery from sites in Ukraine has confirmed the origin of the imprints only in the sherds from the Sabati-
novka culture sites (1600–1300/1200 bc)51.

In the north/northwestern Caucasus, the previously dated large deposit of broomcorn millet grain in Guamsky 
Grot rock shelter southeast of the Azov Sea confirms the presence of millet here at the very end of the 2nd/begin-
ning of the 1st millennium cal bc52. The growing stable isotope evidence from pre- and Early–Middle Bronze 
and Early Iron Age sites (4th–1st millennium bc) in the region indicates that the local pastoralist groups likely 
adopted millet into their diet at the end of the 2nd millennium bc (the regional turn from the Late Bronze to 
the Early Iron Age). This is the time when the high-altitude settlement system was relocated to the valleys and 
the economic focus shifted towards agriculture53–55.

Impressions on the base of a pot in a Kurgan-grave from the second half of the 4th millennium bc (Maykop 
culture) near Stavropol were described as possibly deriving from millet grains, but closer examination was not 
carried out56 [160]. The dates from Guamsky Grot and the presence of broomcorn millet at some Late Bronze 
Age sites in the northwest Caucasus (Adygea57 [Table 2]) and the Don River delta (Safyanovo58 [73]) have been 
used to suggest that the northward diffusion of the northwest Caucasian Kobyakovo culture (1400/1300–1000 
bc) brought the crop into this region. These communities built permanent domestic structures and cultivated 
crops52,53 [256],58.

The earliest date on broomcorn millet from Vinogradnyi Sad gives the impression that the crop reached 
southwestern Ukraine earlier than the northwestern Caucasus. The few early grain-dates from Ukraine cannot 
clarify this. Potentially earlier dates for the first millet occurrences in the southern Caucasus—late first half, or 
middle of the 2nd millennium bc 59,60—leaves a possibility of broomcorn millet appearing at a similar time in 
the southern and northern Caucasus. The intensive interaction that "crisscrossed the whole of the Caucasus and 
extended well beyond its boundaries"61 [380] would have facilitated this, especially from the mid-2nd millennium 
bc onwards (Late Bronze–Early Iron Age) when it was promoted by increasing production and circulation of 
metal objects and metalworking skill61 [378–379, 422].

Kobyakovo communities occupied the area along the Kuban and the lower reaches of the Don rivers, neigh-
boured by the Sabatinovka culture area to the west. To the northeast and east, the upper Don and the middle 
and lower Volga and Ural basins were occupied by the Srubnaya culture (1900–1200 bc)47,62. To the east spread 
the Andronovo cultural complex. The Srubnaya-Andronovo horizon was "a bridge of related cultures [that] 
extended across the Eurasian steppes from the borders of China and Central Asia to the eastern edge of Europe"62 
[5]. The cultural borders were porous and the interactions diverse across this vast region used by mobile pas-
toralists and agriculturalists62–64. Perhaps millet took this ’northerly’ route from the Inner Asian Mountain 
Corridor to Ukraine, across northern central Asia46 [Fig. 6] and following the latitudinal steppe–forest steppe 
gradient in northern Kazakhstan (southwestern Siberia). For the latter region, however, archaeobotanical and 

North Pontic start before Carpathian Basin start 

Carpathian Basin start before Po Basin start 

Carpathian Basin start before central Europe start 

central Europe start before North-central Europe start 

-300 -200 -100 0 100 200 300 years

Figure 6.   Differences between the estimated start dates of millet cultivation (Fig. 4) in various regions. Positive 
values indicate that millet cultivation began earlier in the first-named region. The large uncertainty in the 
North Pontic start date (due to low data density in this region) is responsible for the uncertainty in the time lag 
between the North Pontic and the Carpathian Basin.
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stable isotope data do not indicate broomcorn millet cultivation and/or consumption before the very end of the 
2nd millennium bc or later65,66. From current evidence, therefore, millet appears to have arrived in Europe via 
the "Caucasus corridor", amidst strengthened connections between the two sides of the mountain in the Late 
Bronze Age67 [20, 21]. The early dates of broomcorn millet from southwestern Ukraine are consistent with the 
several-centuries earlier direct-dates from southern Central Asia (Adji Kui 1 and Ojakly30,68) and the Inner Asian 
Mountain Corridor (Begash28).

The stable isotope picture for humans and animals of the 3rd and 2nd millennium bc (Early–Middle Bronze 
Age) in the North Pontic and the lower Don and Volga region displays isotopic variability attributed to seasonal 
movements between pastures, diversity of dietary sources, and changing climatic conditions that shaped the 
local vegetation69. Modern steppe vegetation in this area comprises of C3, mixed C3/C4 and C4 pastures, whose 
extent and composition vary depending on the season and climatic characteristics70,71. In the second half of the 
3rd millennium bc, there seems to have been a period of increased aridity here, which would have favoured C4 
flora72. Elevated δ13C values in human and animal bone collagen were explained by the seasonal consumption 
of C4 plants naturally growing in the area,70–73. In the Yampil region on the Middle Dniester river (in the steppe 
zone), several individuals from the Early–Middle Bronze Age graves (late 3rd-first quarter of the 2nd millennium 
bc) had collagen δ13C values of c. − 19.5‰ and were interpreted as possible millet consumers74. However, δ13C 
values more negative than − 18‰ do not indicate inclusion of C4 plants in the diet46.

The now dated presence of millet from the mid-2nd millennium bc onwards in southern Ukraine shows that, 
from this point on, consumption of this crop could have represented the main source of C4 forage and/or food 
both in coastal areas and, especially, inland. Indeed, in central and eastern Ukraine, a systematic increase in δ13C 
values is seen from the Bronze to the Iron Age, and significantly in the Early Iron Age and the Scythian period69 
[266, 273],75,76. Broomcorn millet grains from several Iron Age sites have been radiocarbon-dated in this and a 
previous study77. Along with the coeval evidence of soil biomarker (miliacin) indicating millet cultivation13, they 
confirm that that the Iron Age isotope data most probably reflect consumption of P. miliaceum.

Carpathian Basin, eastern Alps and Po Basin.  Sabatinovka culture communities (1600–1300/1200 bc) 
in the Pontic steppes and along the Black Sea coast cultivated and consumed millet. At the time, the transect 
from the upper Dniester to the lower Danube and Transylvania, and further into southeastern Romania and 
northeastern Bulgaria, was the area of the Noua-Sabatinovka-Coslogeni cultural complex, a tradition seen as 
an "eastern intrusion"78 [889] that maintained trade in metal objects with much of central-eastern Europe79 
[228–232]. Broomcorn millet grains were recorded at the sites occupied by these groups80, which could have 
served as a medium for the transmission of broomcorn millet further to the west and south. The westward 
spread could have proceeded up the Danube, through long-established communication and exchange networks 
via which a number of other goods were distributed, such as metals, amber, and decorative objects79 [45–57],81,82 
[164–196],83.

The assumed Danube route may have started already in the late sixteenth/early fifteenth century cal bc, as our 
preferred model dates the start of millet cultivation in the Carpathian Basin to the early–mid fifteenth century 
cal bc (1480–1420 cal bc [68.2% probability] or 1510–1400 cal bc [95.4% probability]) (Figs. 4, 5). This was the 
beginning of the Late Bronze Age (eastern Carpathian Basin) or the end of the Middle Bronze Age/transition to 
the Late Bronze Age (western Carpathian Basin). In both cases, this is the time of the Tumulus culture, character-
ized by intensive cross-regional (east–west) connectivity and marked socio-economic change84 [125],85,86. Here 
the human stable isotope studies showed a significant increase in δ13C values, relative to the previous periods, in 
the second half of the 2nd millennium bc87. Early and Middle Bronze Age archaeobotanical assemblages from 
the wider region include rare finds of millet88, but these have not been dated. In contrast, the assemblages from 
the second half of the 2nd millennium bc, particularly the tail-end of the Late, and the Final Bronze Age (last 
quarter of the 2nd millennium bc85), frequently contain remains of broomcorn millet32,39,88,89 [74,75]. Sometimes 
these are concentrated grains, such as in one of the ceramic vessels hoarded in a pit at the Tumulus culture site 
of Lozorno, north of Bratislava in Slovakia3.

In the southwestern part of the Carpathian Basin, up the Sava river, the possible early occurrence of broom-
corn millet at Mačkovac-Crišnjevi corresponds well with the early dates from the Po Basin to the west. Our model 
dates the start of millet cultivation in the Po Basin to the early-mid fifteenth century cal bc (1500–1430 cal bc 
[68.2% probability] or 1570–1410 cal bc [95.4% probability]), which coincides with the start of the fully devel-
oped Terramare culture (1550–1150 bc90). The stable isotopic ratios of humans point to the mid-2nd millennium 
bc for the start of millet consumption in northern Italy; by the mid-fifteenth century bc, the Terramare com-
munities consumed considerable amounts of millet44,91,92. The grains and chaff (glumes) of broomcorn millet 
are frequent and abundant in the archaeobotanical assemblages from this period onwards93,94 [42,114,115]. The 
transfer of goods (e.g. swords, amber) between the Carpathian Basin and the Po Basin/northern Italy (through 
lowland Austria and Slovenia) during the Bronze Age has long been recognized79 [77],84 [127],95,96. It seems that 
the Carpathian Basin acted as a broomcorn millet ’hub’ from where the crop radiated in different directions, 
including south across the central/western Balkans and into northern Greece40,97.

The increased socio-political and economic connectivity across the Mediterranean in the second half of the 
2nd millennium bc81,82,84,96,98 perhaps facilitated a ’southerly’ route of transfer of millet into peninsular Italy 
and the Balkans, with the city of Mycenae as the potential "power node"94 [87]. However, the majority of Late 
Bronze Age (1600–1100 bc) archaeobotanical finds of broomcorn millet in Greece are located in the north, 
including several large deposits40, of which the one at Assiros was direct-dated to the fourteenth century cal bc 
(1405–1305 cal bc [95.4% confidence], refined to 1374–1339 cal bc [95.4% probability] according to the pub-
lished site chronological model)99. In contrast, only one broomcorn millet find has so far been reported in the 
south, consisting of ten (undated) grains from the Mycenaean palace of Tiryns100. A C4 signal was detected in 
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the stable isotopic composition of human and animal bones from mid-2nd millennium bc Greece, with millet 
and other C4 plants stated as possible contributors101–103. The presence of broomcorn millet grains in the mid-late 
2nd millennium bc layers of Troy104 [9] perhaps point to Anatolia as a source area for the introduction of the 
crop in the Aegean. On the other hand, the archaeological evidence (e.g. amber and metal objects) documents 
earlier interactions between the Tumulus culture societies of the Carpathian Basin and the Aegean city-states84,105 
[361]. Further radiocarbon dates on broomcorn millet from the southeast corner of Europe will elucidate its 
diffusion into this region.

Central Europe (north of the Carpathians and the Alps).  According to our preferred model, broom-
corn millet was probably first cultivated in central Europe in the mid-fifteenth century cal bc (1470–1400 cal 
bc [68.2% probability] or 1490–1330 cal bc [95.4% probability]), soon after its appearance in the Carpathian 
Basin. It seems to have appeared almost simultaneously in southern Poland, the Czech Republic and southern 
Germany. A ’northerly’ route of its arrival into southern Poland is possible, through the forest steppe of northern 
Ukraine, up the rivers flowing into the Black Sea. For much of the 2nd millennium bc, the middle and upper 
courses of the Prut, Dniester, Southern Bug and Dnieper were characterized by the Middle–Late Bronze Age 
Trzciniec culture (1800–1100 bc106–108). The fourteenth/thirteenth century bc Trzciniec sites east of the north-
ern Carpathian foothills show similarities in pottery and metal objects with the Noua and Sabatinovka cultures. 
These intercultural contacts107,109 [272–278] may have incorporated crop exchange. The regions north of the 
Alps (the upper Danube and the upper Rhine, including southern Germany, Bohemia and parts of Austria) 
were identified as the area from which the Tumulus culture spread eastwards to the Tisza and the upper-middle 
Oder and Vistula rivers82 [97],84 [125],106,108. Perhaps rather than arriving from the ’east’ into southern Poland, 
broomcorn millet moved west-to-east, along the northern Carpathian foothills and onto the loess plateaus, such 
as the one on which the millet-rich site of Lipnik was located (1400–1100 cal bc).

There are striking similarities in the mid-2nd millennium bc pottery shapes and styles in the "communica-
tion corridor" running along the Tisza river, crossing the Carpathians and connecting their southern basin and 
northern slopes108. We dated broomcorn millet from the site of Maszkowice in the western part of the northern 
Carpathian foothills, where the characteristics of pottery and metal finds correspond to those seen in the south 
of the Tisza valley, within the Otomani-Füzesabony cultural tradition of the Carpathian Basin108. These contacts 
hint at the potential south-north direction of the crop dispersal. The Vistula river tributaries flowing down the 
northern Carpathian foothills, and the Morava and Oder river valleys were recognized as the communication 
channels through which goods and/or people moved between the Carpathian Basin and southern Poland, and 
further to the north107 [199]. We may be seeing several different, possibly synchronous, dispersal routes of millet 
within and beyond the matrix of individual cultural entities.

Our estimated start date for millet cultivation in central Europe is consistent with archaeobotanical data 
from sites in Bohemia, which place the first occurrence of broomcorn millet here at the start of the regional 
Middle Bronze Age (1600–1250 bc110 [267],111). Stable isotope results from animals and humans from sites in 
Bohemia and Moravia suggest a striking change in diet between the early and late 2nd millennium bc, with Late 
Bronze Age diets having a significant contribution of millet112. The age of the recently reported miliacin in soil 
from a fissured ceramic vessel found in a Corded Ware culture (3rd millennium bc) grave at Držovice, central 
Moravia113 is highly questionable. The soil in the pot contained traces of miliacin, but the soil around the pot was 
not tested and so the possibility of contamination cannot be excluded, particularly since the grave was damaged 
by modern digging of a drainage system113 [4222],114 [188]. Without an absolute date for the miliacin itself, it is 
possible that the association is coincidental and that the miliacin is more recent than the pot. There are as yet no 
direct dates on broomcorn millet from sites in Moravia but, assuming the east–west transfer through the Danube 
Basin, it could have reached southern Moravia some time before it is found in Bohemia, the Alpine Foreland 
and the upper reaches of the Rhine.

The broomcorn millet grain from the Corded Ware site of Binningen, located in the northern foothills of 
the Jura mountains north of the Western Alps, gave a twelfth century cal bc date (Supplementary Dataset). The 
isotopic investigations of animals and humans from three sites in southwestern Switzerland revealed 13C enrich-
ment at the end of the 2nd or start of the 1st millennium bc (Final Bronze Age, 1300–800 bc115). Earlier dates 
(fifteenth/fourteenth century cal bc) on broomcorn millet from Lauda-Königshofen in the upper Danube basin 
and Bruchenbrücken on the upper-middle Rhine show that millet had already been cultivated in adjacent regions 
for some time. Lauda-Königshofen was the location of a Corded Ware culture cemetery, where the remains of 
later (metal-age) settlements were also found. The broomcorn millet grains originate from the Corded Ware 
layers, but are obviously intrusive. Stable isotope results from humans buried here in the mid-3rd millennium 
BC gave no indication of consumption of C4 plants116.

North‑central Europe (northern Germany and northern Poland).  There are now forty radiocarbon 
dates on broomcorn millet from twenty-five sites in northern parts of Germany, and this is the best-covered 
region so far. Additional sites in north-central Poland add to the regional picture. The beginning of broomcorn 
millet cultivation in this region is dated to 1230–1160 cal bc (68.2% probability) or 1260–1140 cal bc (95.4% 
probability). Considering the number of relatively early sites and samples dated (Supplementary Dataset), it is 
unlikely that dating more sites will produce significantly earlier dates. By the mid-twelfth century bc, broomcorn 
millet was present in the entire region, suggesting a rapid spread over the lowlands (Figs. 4, 5, 6). The coupled 
biomolecular and isotopic analyses on food remains from a Late Bronze Age (1100–800 cal bc) horizon at the 
site of Bruszczewo in northern Poland testify to its consumption117.

The thirteenth century bc was the time of appearance of the Urnfield culture in central Europe, which, in the 
twelfth century bc spread to the south and the north79 [31],82 [Fig. 1.2],118. Within this general phenomenon, 
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many regional cultural groups have been differentiated, such as the Lausitz/Lusatian culture in central Europe 
whose influence spread to the north79 [346],119. Northern European communities maintained communication 
with the Carpathian Basin and Tumulus culture groups throughout the 2nd millennium bc, particularly during 
its first half120. In the second half of the millennium, the interaction extended beyond (and via) the Tumulus 
culture zone, to the Aegean city-states and was likely centered on amber commerce, along with trade in metals 
and other goods96,105 [365],120 [614]. Agricultural products could have been transmitted through any or all of 
these trans-regional networks. It has been suggested that broomcorn millet arrived into North-central Europe 
through the trade routes following major rivers – the Oder, Elbe and Weser121. Smaller waterways were probably 
also part of this network, such as the Tollense in northeastern Germany, where palaeodietary isotopic evidence 
(seldom available from the region and period due to the prevalent cremation ritual) shows that victims of a Late 
Bronze Age battle were millet consumers122,123 (Supplementary Text 2, Supplementary Fig. 5].

Millet beyond When and Where.  Archaeological scholarship on the origin of domesticated broomcorn 
millet and its journey along the c. 8,000 km east–west Eurasian route(s), as well as the environmental and social 
circumstances at different stages of these process, has grown at an incredible pace, with the major focus on 
the evidence from Asia. In Europe, research on millet has not taken place at a similar scale, although some 
authors suggested possible routes and mechanisms of its introduction40. In the wider context of the long-lasting 
’trans-Eurasian exchange20 of many different elements, including raw materials, technologies, objects, animals 
and diseases64,124, broomcorn millet documents the process of ’food globalisation’ in the Old World17,21–23,26,125. 
Reconstructing the When and Where of broomcorn millet in Europe helps us to understand whether the crop 
arrived “with a bang”126 or if it ‘trickled in’ over the millennia of archaeologically well-documented communica-
tion between the east and the west. Europe in the Middle and Late Bronze Age is a paragon of connectivity and 
intercultural influences, which were particularly intensive in the second half of the 2nd millennium bc. Without 
doubt, the amplified cross-regional interaction for the purpose of trade/exchange served as a catalyst for the 
transmission of agricultural innovations, including broomcorn millet, which perhaps was one of the traded 
goods.

Perhaps the knowledge of millet’s agro-ecological requirements and related culinary traditions travelled along 
with it and contributed to its relatively swift transmission between distant regions. Thanks to its versatility and 
ecological and functional ‘plasticity’, broomcorn millet may have become highly valued asset, especially in chang-
ing or challenging environmental and social settings. There are, however, indications of ‘non-adoption’ or, more 
precisely, non-consumption of millet among some communities at the time when their neighbours consumed 
notable amounts of it. This was seen in the human stable isotopes from the Bronze and Iron Age Trans-Urals66, 
the Terramare culture zone91 and Iron Age coastal Croatia116. Thus, at a more local scale, the introduction and use 
of the new crop may not have been indiscriminate43. Various cultural reasons may have been at play, determining 
the (degree of) acceptance or rejection of broomcorn millet. To explore this further, it is important to understand 
the economic, technological and social environments into which broomcorn millet arrived in Europe, alongside 
the ones it may have created.

Conclusions
This study produced and evaluated over 100 radiocarbon dates directly on charred broomcorn millet grains 
from over 90 sites in Europe. The main aim was to test a substantial number of grains recovered from a range of 
archaeological deposits in Europe attributed to the Neolithic, Copper and Bronze Ages and, in particular, high-
density millet deposits (grain concentrations) attributed to the Bronze Age. This dataset decisively pinpoints the 
middle of the 2nd millennium bc (Middle/Late Bronze Age) as the time of the earliest occurrence of broomcorn 
millet in the studied regions of Europe. The crop emerged at only slightly different times in different parts of 
Europe, earliest in Ukraine, as expected given its eastern origin. Within about a century of its appearance in 
the Carpathian Basin and northern Italy, broomcorn millet was found throughout central Europe. It was not 
immediately diffused into lowland northern Germany, however, and it is only in the late thirteenth/early twelfth 
century cal bc that it spread rapidly through this region.

The radiocarbon dates show that the new crop spread fast and was found in large quantities immediately or 
soon after its introduction in different parts of Europe. The abundance of millet has been taken as a reflection 
of its cultivation. The period for which the stable isotope evidence first hints at the consumption of broomcorn 
millet overlaps with the earliest radiocarbon-dates on both small and large archaeobotanical records of the crop. 
Whereas inter-and intra-regional variations in this pattern can be expected, a general impression is one of a 
relatively swift and potentially comprehensive adoption of the new crop at the continental level.

Broomcorn millet transfer epitomises the process of ’food globalisation’ in the Old World. Not just the 
routes and pace of this process have been of interest. A host of additional questions have been brought forward 
concerning the mechanisms, cultural and environmental context of the spread, as well as the impact of the new 
crop on agrarian production, animal husbandry and food consumption in the source, transit and receiving 
regions. Sweeping changes in economy, social relations and ideology have been archaeologically documented 
in mid-late 2nd millennium bc Europe. Against this backdrop, can we now talk about a ’millet effect’? Some of 
the characteristics of this crop, principally its short growth-cycle and surplus potential, would have had wide 
ramifications in aspects such as intensity and scale of agricultural production, labour organisation, land tenure, 
food storage, culinary practices and, ultimately, social and political power. With the time of the arrival of the 
crop to the western end of the “Eurasian dyad” now determined, we can address the transformative power of 
millet from a solid chronological ground.
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Materials
Published archaeobotanical and radiocarbon studies17,18,27,39,40,48,127 provided an overview of the material poten-
tially available for dating. The study period and regions—Neolithic and Bronze Age periods in eastern, central 
and North-central Europe—were defined in line with the aims and scope of the Collaborative Research Centre 
SFB 1266: Scales of Transformation at Kiel University, the time and funding available through this initiative in 
2017–2019, and the working assumptions that broomcorn millet arrived in the Neolithic and that its full-fledged 
cultivation started in the Middle/Late Bronze Age. The dating programme had two objectives: (1) radiocarbon 
dating of ‘early’ finds of broomcorn millet reported from Neolithic and Copper Age sites and typically consist-
ing of one-few grains, in order to date the first introduction of the crop in different parts of the study region; 
(2) radiocarbon dating of Bronze Age finds of millet, specifically grain concentrations, in order to temporally 
correlate this agricultural innovation with developments in lifestyle, economy and social relations characteristic 
of the period.

Based on their research focus and publications, archaeobotanists working in the parts of Europe targeted by 
the programme were informed about the initiative. They were sent guidelines for the selection and submission 
of the specimens for dating, along with a questionnaire (Supplementary Sample form). The material was received 
in Kiel, where the specimens for dating were selected and photographed (see examples in Fig. 2) and the relevant 
information entered in the ’Millet Dating Programme’ data repository.

Methods
Sampling and AMS‑dating.  We dated charred grains from ’small’ and ’large’ broomcorn millet deposits 
(Supplementary Dataset) from relatively or absolutely dated Neolithic through Bronze Age layers. We did not 
intentionally sample grains from contexts/sites dated to later periods. Small deposits comprise one to several 
dozen grains, usually dispersed throughout an excavation unit/flotation sample. Many of these contexts (feature/
layer) were stratigraphically dated to the late 7th to mid-3rd millennium bc (broadly the Neolithic and Copper 
Age in Europe). Large deposits comprise tens to thousands of grains from a discrete context (e.g. burnt layer or 
lens, pit/oven/hearth fill, pot content), often high-density concentrations of macro-plant remains predominantly 
or entirely composed of broomcorn millet, sometimes agglutinated (fused together) during charring.

Where more than one grain was available, we selected the two largest and best-preserved grains for dating 
(the second as a reserve). We normally dated single grains, but in several cases we dated two or more agglutinated 
grains, because these grains cannot have been significantly different in date, since they were uncharred before 
they were fused together. This study also includes a few 14C dates on bulk samples of two to several millet grains 
from small deposits, homogenized by pulverisation (see Supplementary Dataset). If these samples consisted of 
grains of different dates, the calibrated 14C result must be more recent than the earliest millet grain present; such 
results are therefore still informative in terms of dating the first appearance of millet. We dated samples at the 
Accelerator Mass Spectrometry (AMS) laboratories in Poznań (Poznań Radiocarbon Laboratory, Poland) and 
Kiel (Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, Germany), following standard 
laboratory protocols for charred plant macrofossils (Poznań128 [ZR]; Kiel129). This facilitated the incorporation 
of previously obtained (un)published dates on charred broomcorn millet grains (Supplementary Text 1).

Chronological modelling.  We used Bayesian chronological modelling to visualize spatial patterns in the 
earliest dates130. This approach is based on the premise that while the dates of our samples are constrained by 
when millet cultivation began in any region, it is highly unlikely that our samples include the first grains of 
broomcorn millet grown at any site, or even that they come from the earliest millet-growing site in each region 
(Supplementary Text 2; Supplementary Fig. 2). We used OxCal v.4.335 and the IntCal13 calibration curve131 to 
convert 14C ages to calendar dates, and the OxCal Bayesian chronological modelling functions. The model’s 
posterior density estimates of the dates of samples and events, and of intervals between these dates, are reported 
in italics, to distinguish them from independently calibrated individual dates. The OxCal CQL model code is 
provided as Supplementary Model code, allowing readers to reproduce our models and improve them with new 
data (the OxCal software required to run this model is freely available132).
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