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Abstract—Human Pose Estimation is a fundamental task for
many applications in the Computer Vision community and it has
been widely investigated in the 2D domain, i.e. intensity images.
Therefore, most of the available methods for this task are mainly
based on 2D Convolutional Neural Networks and huge manually-
annotated RGB datasets, achieving stunning results. In this paper,
we propose RefiNet, a multi-stage framework that regresses an
extremely-precise 3D human pose estimation from a given 2D
pose and a depth map. The framework consists of three different
modules, each one specialized in a particular refinement and data
representation, i.e. depth patches, 3D skeleton and point clouds.
Moreover, we present a new dataset, called Baracca, acquired
with RGB, depth and thermal cameras and specifically created
for the automotive context. Experimental results confirm the
quality of the refinement procedure that largely improves the
human pose estimations of off-the-shelf 2D methods.

I. INTRODUCTION

The Human Pose Estimation (HPE), i.e. the localization

of significant joints of the human body, on an image is a

crucial and enabling task in many vision-based applications,

like Action Recognition [1], [2] and People Tracking [3].

Recently, many methods based on deep learning architectures

[4], [5], [6] have in turn improved the accuracy in joint detec-

tion and localization on intensity images, achieving stunning

results. Encouraged by the seminal work of Shotton et al.

[7] developed for depth images, the research on marker-less

human pose estimation is now more focused on RGB images.

The combination of effective deep learning approaches (e.g.

Convolutional Neural Networks) and huge datasets of RGB

images (e.g. COCO [8]) have led to impressive performance,

in terms of accuracy, computational load, and generalization

capabilities. Nowadays, it is possible to obtain a reliable

localization of body joints even in presence of challenging

situations such as occlusions, cluttered backgrounds, low-

quality images, and so on. The pose is provided in 2D image

coordinates, thus without the third coordinate – referred as the

depth or z-value – and lacking any metric information.

In this work, we are focusing on applications that require a

extremely-precise estimation of the 3D position of each joint.

Taking into account, for instance, the automotive field [9],

[10], the configuration of some car parameters could be set

depending on anthropometric measures of the driver and the

passenger. An automatic system based on computer vision

could be an excellent solution in this regard.
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Fig. 1: A baseline method for the 3D human pose estimation

from depth maps compared to the proposed one. K is the

mapping operation between 2D and 3D coordinates, requiring

camera calibration parameters and depth values. Further details

are in Section III.

Some preliminary works [11], [12] have proposed methods

to recover a complete 3D pose from RGB images with

promising results. However, even if these methods predict a

good estimation of the pose, they fail to recover the correct

positioning in the camera space as well as the real scale of

the body [12]. Thus, the errors will affect the computation

of the corresponding measures of body parts and limbs (e.g.

the exact height of person or the length of arms and legs).

In these cases, depth sensors are a valid solution in place

of traditional cameras. Indeed, depth cameras are more and

more widespread, miniaturized, and cheap; they have been

recently integrated in some embedded and mobile devices;

and, in particular, they capture 3D information of the scene.

In this paper, we aim to combine the aforementioned

successful deep learning architectures for 2D human pose esti-

mation with the 3D measurement capabilities of depth sensors.

Specifically, we focus on depth data collected through active

devices, i.e. sensors coupled with an infrared light emitter.

These sensors are safe for humans, invariant to environmental

light conditions, and they can operate even without external

light sources.

Aware that existing 2D pose estimation methods [4], [5],

[6] achieve remarkable accuracy and real-time performance,

and considering the lack of pose estimation systems relying
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on depth data, we propose RefiNet, a framework designed

to recover an accurate 3D human pose estimation from a

given 2D one. In particular, RefiNet is a multi-stage system

that regresses a precise 3D human pose through a sequential

refinement of an approximate 2D estimation on a depth map.

It consists in three different modules, each one specialized in

a particular type of refinement and data representation. Thanks

to its modular structure, each module can be activated or

deactivated according to the needs. The initial 2D estimation

can be obtained exploiting any 2D human pose estimation

system available in the literature thanks to the adopted training

procedure. The predicted 3D pose is expressed in the 3D

camera-space coordinate system.

Summarizing, our contributions are the following:

• We propose RefiNet, a multi-stage framework for 3D

human pose refinement. To the best of our knowledge,

this paper is one of the first attempts to investigate the

human pose refinement in combination with depth data;

• The framework, built as a set of three independent mod-

ules, exploits different data representations, ranging from

2D depth patches to 3D point clouds and is independent

of the off-the-shelf methods used for the initial 2D human

pose estimation.

• We present Baracca, a novel dataset acquired with a set of

RGB, depth, and thermal cameras. It contains nearly 10k

frames of 30 different subjects from 8 different points of

view. The dataset is designed for the automotive context

and contains sequences in which the subject is inside a

car and others that simulate the outside car view. This

dataset is used in conjunction with the proposed method

for the anthropometric measure estimation task.

Dataset and source code are publicly available at https://

aimagelab.ing.unimore.it/go/3d-human-pose-refinement.

II. RELATED WORK

In this Section, we analyze the Human Pose Estimation on

intensity (RGB or grey-level) and depth images and the Human

Pose Refinement task.

Human Pose on intensity images. Intensity images repre-

sent the input of the large majority of methods available in

the literature. Recently, most state-of-art 2D pose estimators

exploit CNNs [13], [14], [15], [4], [16], [5]: we briefly

analyze here works relevant for this work. The well-known

work introduced by Cao et al. [4] proposed the use of Part

Affinity Fields to learn the links between body parts. This work

represents an evolution of the sequential architecture described

in [13]. Recently, [5] introduced a model that preserve high-

resolution representations through the whole pose estimation

pipeline, repeating multi-scale fusions inside the deep model

and achieving state-of-art results.

Since all these methods achieve a good accuracy in the 2D

domain, we believe they can be successfully exploited also in

other domains, e.g. the depth domain.

Human Pose on depth images. Only a limited number

of works tackles the problem of human pose detection on

depth maps, probably due to the limited number of datasets

containing real or synthetic labelled depth data. Indeed, most

of depth-based datasets are relatively small, i.e. not oriented to

deep learning-based approaches, and automatically annotated,

i.e. the annotations about the position of the body joints are

extracted through [7], resulting in unreliable and imprecise

annotations.

The work of Shotton et al. [7] represents a milestone in the

human pose estimation task on depth maps: it is based on

Random Forest trained on a not-released synthetic dataset. In

addition to a reasonable accuracy and real-time performance,

its widespread has been guaranteed by its implementation on

the Microsoft Kinect SDK. Then, this method has been largely

used both in gaming and research activities.

The method described in [17] proposes a method, based on

Hough forests, that directly regresses body joint coordinates

from depth maps, without the use of any intermediate rep-

resentation. The system is able to localize visible as well as

occluded body joints. In [18], random trees are employed to

the body joint localization from a single depth image. Then,

joints are classified using a nearest neighbor approach.

In [19], authors present the ITOP dataset, which contains

about of 50k low-quality depth images from both top and

side views with manually-annotated body joints. In the same

work, they propose a model able to embed local regions

into a view-invariant feature space for the human pose es-

timation. Recently, a new dataset, called Watch-R(efined)-

Patch (WrP), has been proposed in [20], along with a fully

convolutional [21] and multi-stage network architecture to

perform pose estimation on depth maps. Starting from the

automatic human pose annotations of Watch-n-Patch (WnP)

[22], authors manually correct about 3k joint locations on

depth maps.

Other works, related to scanner-based 3D models, estimate the

human pose finding the correspondences between an acquired

point cloud and a pre-defined 3D model [23], [24] or through

a Gaussian mixture model [25]. These methods, based on 3D

models instead of depth images acquired with active depth

sensors, are out of the scope of this paper.

Human Pose Refinement. Existing methods of Human Pose

Refinement are based on the 2D information of the intensity

images. Generally, these methods [26], [14], [27] exploit

a multi-stage architecture, trained end-to-end, in order to

iteratively refine the pose estimation of previous stages or

models. Others [28] exploit a shared weight model to estimate

the error on the pose prediction. As reported in [29], all of

these methods merge in a single model the pose estimation

and the refinement task, obtaining a refinement module that is

strictly dependent on the estimation approach. Moon et al. [29]

proposed a solution called PoseFix, a model-agnostic human

pose refinement network which is trained with synthetic poses

generated exploiting the error statistics presented in [30]. A

similar approach has been introduced in [31], where a simple

post-processing network is trained through synthetic poses

generated starting from ad-hoc rules.

The approach proposed in [32], based on RGB and segmen-

tation images, focuses on body part to refine a 3D pose.

https://aimagelab.ing.unimore.it/go/3d-human-pose-refinement
https://aimagelab.ing.unimore.it/go/3d-human-pose-refinement


III. PROPOSED METHOD

RefiNet is a multi-stage framework that estimates an accu-

rate 3D human pose in the real world using a depth image,

starting from a set of 2D image-coordinates of the body joints,

resulting from an approximate initial estimation. An overview

of the proposed framework, compared to a baseline method,

is shown in Figure 1. For the sake of clarity and ease of

comprehension, the reported schema includes the generation of

an initial 2D estimation (“HPE”), discussed in Section III-A.

Regardless of the method used for the initial estimation,

RefiNet refines the predicted joints and outputs an accurate

3D human pose, expressed as a set of 3D joints in the camera

space, i.e. in the absolute 3D camera coordinate system.

The RefiNet framework is developed in a modular way

and it is divided into three different modules (Module A, B

and C), detailed in the following subsections. Each module is

individually trained and is independent from the others. During

the testing phase, each module refines the noisy pose given as

input. The overall pipeline of RefiNet is depicted in Figure 2.

A. Initial 2D pose estimation

RefiNet requires an initial 2D human pose estimation on a

depth image. In this section, we present some approaches that

can be used to obtain it and a baseline approach to recover the

3D body pose from the 2D estimation and the depth image.

The 2D coordinates of the body joints can be obtained

using any off-the-shelf pose estimator applied on a 2D image,

i.e. the RGB image, the IR amplitude channel, or the depth

image (depending on the sensor/dataset used). Supposing the

use of well-known human pose estimators trained on RGB

datasets (such as COCO [8] and MPII Human Pose [33]), the

RGB channel would ensure the best results, but not all the

sensors and datasets provide it along with the depth channel.

Moreover, coordinate translation and parallax issues between

the RGB channel and the depth one should be taken into

account. On the other end, the depth and the IR amplitude

channel are aligned by definition, but the pose estimation

methods may perform worse or even not work on these kinds

of data. For instance, we had to retrain them from scratch to

work on depth data. However, the lack of depth-based datasets

with accurate manual joint annotations negatively affects the

performance of these depth-based models.

Once the 2D estimation is computed and mapped in the

depth-map space, each 2D joint coordinate can be translated

into the camera-space 3D coordinates using camera calibration

parameters and the value sampled from the depth image. The

3D pose estimation obtained with this approach is always an

approximation. Even in case of correct 2D pose estimation, the

resulting 3D joints would lie on the body surface and may be

affected by errors due to occlusions and noise. An overview of

this approach is depicted in Figure 1 (top). To overcome these

limitations, we propose the use of the RefiNet framework, as

in Figure 1 (bottom).

B. Module A: 2D patch-based refinement

The first module of the framework refines the 2D human

pose exploiting visual cues computed on depth maps.

The input of the module are a set of body joints, expressed

in (x, y) coordinates and the corresponding depth image. A

depth-map patch is cropped around each body joint and used

as input of the deep network described below, which outputs an

offset w.r.t. the input coordinates. The offset is represented as

a displacement vector (−→x ,−→y ) which denotes the displacement

of each joint w.r.t. its initial position. Indeed, considering the

input coordinates (x, y) and the predicted vector (−→x ,−→y ), the

refined coordinates of each joint on the depth image can be

further computed. In this way, Module A is able to correct

small errors in the 2D joint predictions. It is worth note that

a small error in terms of 2D coordinates on the depth image

could highly influence the sampled z-value, resulting in an

inaccurate 3D skeleton (see Figure 4a).

Model. The deep network of Module A is based on 3 different

blocks. The first block takes the depth-image patches as input

and extracts features through a single 7×7 convolutional layer

with 64 feature maps. Then, the spatial dimension is reduced

by applying a max pooling layer with stride s = 2. The second

block id composed of 2 residual layers [34] with 64 and 128
feature maps and stride s = 2. An average pooling layer is

then used to aggregate the feature maps. Finally, a series of

fully connected layers with 256, 256, 2 hidden units regresses

the 2D joint displacement from the averaged deep features.

Loss Function. The adopted loss function LA is the mean

squared error between the predicted and the ground truth offset

for each body joint. A mask is applied in order to ignore non-

visible joints in the loss computation:

LA =
1

N

n
∑

i=1

Wi ·
∥

∥

∥

−→vi −
−→
ti

∥

∥

∥

2

2

(1)

where n is the number of joints of the skeleton and, for each

joint i, −→vi = (
−→
vxi ,

−→
v
y
i ) is the predicted displacement,

−→
ti =

(
−→
txi ,

−→
t
y
i ) is the ground truth, and Wi is the binary mask. Wi =

0 iff the joint annotation is missing or the joint is not visible.

Training. Given a input joint in (x, y) coordinates, a 40× 40
squared bounding box (patch) centered in (x, y) is extracted

from the depth map. If needed, patches are padded accordingly

to the joint location and the width and height of the depth im-

age. Each patch is then normalized to obtain a zero-mean unit-

variance tensor that is fed to the network. Network weights are

updated using the Adam optimizer [35] and a learning rate of

0.001, in combination with batch normalization and dropout.

The training phase is performed using ground truth data only,

i.e. the network is not trained on the output of any specific 2D

human pose estimator, aiming to obtain a generic refinement

module. Specifically, the network input is artificially created

applying Gaussian noise (with µ = 0, σ = 5) on the

ground-truth joint coordinates provided as annotations in the

training dataset. This procedure aims to simulate the error

distribution over the skeleton joints of a generic 2D Human

Pose Estimation method.
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Fig. 2: Overview of the proposed framework referred as RefiNet. Module A analyzes 2D depth patches, extracted from depth

maps. Module B works directly on the 3D skeleton while module C processes point clouds computed around individual joints.

C. Module B: skeleton-based refinement

The second module of the framework converts the 2D joint

coordinates into the 3D camera space (i.e. the 3D real-world

camera coordinates) and refines the 3D human pose using

only the 3D skeleton. It takes the 2D (x, y) joint coordinates

predicted in the depth map coordinate system as input and

computes the 3D real-world coordinates xC , yC , zC using the

camera calibration parameters K = {fx, fy, cx, cy}:





xC

yC
zC



 =





(x− cx) ·
z
fx

(y − cy) ·
z
fy

z



 (2)

where z is the value of the depth map sampled in (x, y), fx
and fy are the focal lengths, cx and cy the coordinates of

the optical center. To mitigate the effect of noise and missing

depth data, the sampling of z is performed by calculating

the median value within a 3 × 3 neighborhood of (x, y).
Then, the 3D human skeleton – expressed as the set of body

joints in camera space – is fed to the deep model described

below, that predicts the refined 3D skeleton joints in real-world

coordinates. Compared to the previous one, Module B converts

the coordinates from the 2D depth-map space to the 3D camera

space and directly regresses the refined position of every joint

of the human skeleton.

Model. The network, inspired by the successful work of Mar-

tinez et al. [36], is composed of a sequence of 4 blocks: one

input block, consisting in a fully-connected layer with 1024
units; two residual blocks, each containing 2 fully-connected

layers with 1024 units; one output block, corresponding to a

fully-connected layer with n · 3 units where n is the number

of joints of the skeleton. Each fully-connected layer consists

of a linear layer, a batch normalization layer, and a ReLU

activation.

Loss Function. The adopted loss function is the mean squared

error between the predicted and the ground truth position of

each skeleton joint in the camera coordinate system:

LB =
1

N

n
∑

i=1

‖si − ti‖
2

2
(3)

where n is the number of joints and, for each skeleton joint i,

si is the predicted joint position (xCi
, yCi

, zCi
), and ti is the

ground truth joint position.

Training As in Module A, during the training procedure we

apply Gaussian noise (µ = 0, σ = 5) on the ground-truth

annotations taken from the training dataset and use these noisy

joints as input of the module. The noise is applied on the (x, y)
coordinates, before retrieving the z-value and converting them

into 3D camera coordinates, in order to simulate the error of a

2D human pose estimator. Adam [35] is adopted as optimizer

and the learning rate is set to 0.001.

D. Module C: point cloud-based refinement

The third module of the framework firstly converts the

depth map into a point cloud (using the camera calibration

parameters K). Then, it refines the body joints exploiting the

3D information of the point cloud by sampling the points

in the neighborhood of each joint location. To this aim, we

exploit the PointNet architecture [37], specifically developed

to handle point clouds. We extract and analyze small point

clouds sampling a squared 3D space around each skeleton

joint instead of considering the whole depth map – ranging

from the head to the feet of the subject – to compute a single,

huge point cloud.

Similarly to Module A, Module C is based on a deep model



that learns how to correct the location of each body joint

by predicting independent offsets. Each regressed offset is

expressed as the displacement vector (−→xC ,
−→yC ,

−→zC) between

the input locations of the (xC , yC , zC) joint coordinates in

the camera space and the refined ones.

Model. Taking inspiration from [37], we propose an archi-

tecture based on 2 parts: one block for feature extraction and

one for offset regression. The first block computes single-point

features with a series of fully-connected layers. Then, single-

point features are aggregated through a max-pooling layer. For

further details, see [37]. The second block computes the joint

offset from the point-cloud features through a fully-connected

layer with 128 units and ReLU activation and an output layer

with 3 units (corresponding to the 3D displacement vector).

Loss Function. The adopted loss function is the mean squared

error between the predicted and the ground truth 3D offset for

each skeleton joint:

LC =
1

N

n
∑

i=1

∥

∥

∥

−→vi −
−→
ti

∥

∥

∥

2

2

(4)

where n is the number of joints and, for each joint i,
−→vi = (

−→
xvi
C ,

−→
yviC ,

−→
zviC ) is the predicted displacement while

−→
ti = (

−→
xti
C ,

−→
ytiC ,

−→
ztiC ) is the ground truth value.

Training. As in the previous modules, Gaussian noise (µ =
0, σ = 42) is added on the ground-truth annotations of the

training set to create the input data. In this case, since the

module works in the 3D camera space, the noise is added

to the (xC , yC , zC) coordinates of each joint before the crop

of the point cloud. We adopt the Adam [35] optimizer, the

learning rate is set to 0.001 and both batch normalization and

dropout, with drop probability 0.2, are employed.

IV. EXPERIMENTAL EVALUATION

In this section, we report the dataset used in the experiments

and present the novel Baracca dataset. Then, we detail the

conducted experiments and the obtained results. Finally, a real-

world application is proposed on the Baracca dataset.

A. Datasets

The main drawback of using depth maps for the Hu-

man Pose Estimation task is the lack of manually-annotated

datasets. Many datasets include annotations on the body sur-

face (e.g. [20]) while datasets obtained using, for instance, the

Mocap system are not always reliable because the depth value

of a body joint usually correspond to the marker placed on

the body surface and the visual appearance and 3D shape are

altered by the markers.

ITOP. The dataset, introduced in [19], consists of about 40k

training and 10k testing depth maps of 20 subjects performing

15 different actions. Depth images were recorded using two

Asus Xtion Pro, a Structured Light depth sensor having a

resolution of 320 × 240 pixels. One sensor is placed above

(“top-view”) and the other one in front of (“side-view”)

the acquired subject. Annotations consist in the 2D and 3D

coordinates of 15 body joints. Exploiting the two points of

Fig. 3: Samples from the Baracca dataset, inside car sequences.

The dataset contains RGB, IR, depth, and thermal images.

view, the body joints are semi-automatically annotated and

manually refined to lie inside the body of the subject, i.e. at

the 3D center of the physical joint.

Baracca. To further evaluate the applicability of the proposed

approach, we collected a new dataset, called Baracca and

acquired with RGB, depth, and thermal cameras. It contains

nearly 10k frames of 30 different subjects in 8 different

positions. For each subject, 10 pictures are simultaneously

acquired by each camera from 8 different points of view (5
outside the car, 3 inside the car). The same set of cameras is

used for each point of view.

The dataset is designed for the automotive context and contains

sequences in which the subject is inside a car and others that

simulate the outside car view. Two cameras were exploited for

the acquisition. The first one is the Pico Zense DCAM7101,

a depth sensor based on the Time-of-Flight technology. It is

able to acquire infrared and depth images of 640× 480 pixels

at 30 fps, covering the range 0.2 - 5 meters. It is coupled with

an RGB sensor (1920 × 1080 pixels). The second one is the

PureThermal 2 board2 equipped with a FLIR Lepton 3.53, a

low-resolution (160× 120 pixels) radiometric thermal sensor.

A set of anthropometric and biometric measurements is also

provided for each subject, to allow the challenging task of

their estimation from the acquired images. The available mea-

surements are the following: Age, Weight, Height, Shoulder

width, Forearm length, Arm length, Torso width, Leg length,

Eye height from the ground. The dataset does not contain

ground truth keypoint annotations.

1https://www.picozense.com/en/spec.html?spec=710
2https://groupgets.com/manufacturers/getlab/products/

purethermal-2-flir-lepton-smart-i-o-module
3https://groupgets.com/manufacturers/flir/products/lepton-3-5

https://www.picozense.com/en/spec.html?spec=710
https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module
https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module
https://groupgets.com/manufacturers/flir/products/lepton-3-5


TABLE I: mAP (Eq. 5, percentage) and mDE (Eq. 6, centimeters), for both the side and the top view of the ITOP dataset.

Mod. A, Mod. B, and Mod. C refer to the three modules of RefiNet. The ✓ symbol indicates that the module is used for the

refinement. In the first row we report the results of the 2D predictors; improvements are calculated w.r.t. these values.

Side view

Mod. A Mod. B Mod. C
OpenPose [4] HRNet [5]

mAP ↑ Improv. mDE ↓ Improv. mAP ↑ Improv. mDE ↓

0.646 - 12.634 - 0.670 - 10.711 -

✓ 0.687 6.35% 10.442 17.4% 0.699 4.32% 10.060 6.08%

✓ 0.775 20.0% 8.463 33.0% 0.787 17.5% 8.185 23.6%

✓ 0.719 11.3% 11.834 6.33% 0.734 9.55% 10.693 0.17%

✓ ✓ 0.796 23.2% 8.042 36.3% 0.804 20.0% 7.790 27.3%

✓ ✓ ✓ 0.818 26.6% 7.646 39.5% 0.824 23.0% 7.447 30.5%

Top view

Mod. A Mod. B Mod. C
OpenPose [4] HRNet [5]

mAP ↑ Improv. mDE ↓ Improv. mAP ↑ Improv. mDE ↓

0.153 - 70.672 - 0.175 - 68.755 -

✓ 0.164 7.19% 69.137 2.17% 0.173 -1.14% 68.580 0.25%

✓ 0.665 334.6% 10.464 85.2% 0.713 307.4% 9.836 85.7%

✓ 0.205 34.0% 68.218 3.47% 0.215 22.9% 66.444 3.36%

✓ ✓ 0.675 341.2% 10.349 85.4% 0.718 310.3% 9.550 86.1%

✓ ✓ ✓ 0.619 304.6% 10.973 84.5% 0.663 278.9% 10.160 85.2%

B. Experiments

The proposed method, called RefiNet, performs a refine-

ment of 2D body joints on a depth map in order to obtain

accurate 3D pose coordinates in the real world. Thanks to the

adopted training procedure, which requires only ground truth

3D keypoints, the architecture is independent from how the

input 2D coordinates are calculated. As outlined in Section

III, the independence from the method that predicts the 2D

body joints allows the use of pre-trained 2D human pose

estimators, such as OpenPose [4] and HRNet [5], on RGB or

IR images. The predicted 2D coordinates needs to be mapped

to the depth image then RefiNet can be applied to improve the

3D prediction (see Figure 1). However, authors of the ITOP

dataset provide depth images only. Therefore, we train from

scratch OpenPose and HRNet on the training set of ITOP using

the Adam optimizer, a learning rate of 0.001 and weight decay

0.0001. Since our method is independent from the 2D model,

we expect to obtain similar results with both the architectures.

In order to assess the quality of the predictions, we adopt

two common evaluation metrics: the mean Average Precision

(mAP), as proposed in [19], and the mean Distance Error

(mDE). The mAP is the percentage of predicted joints whose

3D distance from the ground truth is lower than a threshold τ ;

the mDE is the average distance between the predicted joints

and the ground truth. They are defined as

mAP =
1

N

∑

N

(

‖v −w‖2 < τ
)

[%] (5)

mDE =
1

N

∑

N

‖v −w‖2 [cm] (6)

where N is the overall number of joints, v is the predicted

joint while w is the ground truth joint. In our experiments, we

set the threshold τ = 10 cm, as in [19].

C. Results

The experimental results on the side and the top view of

ITOP are reported in Table I. In the left part, a ✓ symbol

specifies which modules of RefiNet are employed. The first

row contains the results of the plain 2D to 3D pipeline (see

Figure 1 top and Section III-A).

As it can be seen, the use of RefiNet with all the modules

(top table, last row) achieves the best results on the ITOP

Side view, with an overall improvement of about 25% over

mAP and one of about 35% over mDE. As expected, refining

the output of OpenPose and HRNet leads to similar results,

confirming that RefiNet is invariant to different 2D predictors.

As shown in Figure 2, Module A refines the 2D position

of the body joints, but the depth values are still inaccurate

(due to their sampling from the depth map); Module B refines

the 3D joints obtaining an accurate and plausible 3D skeleton;

Module C refines the 3D skeleton by looking at the 3D points

around the skeleton joints. Other qualitative results, which

show the progressive improvement of the RefiNet components,

are reported in Figure 4.

On the ITOP Top view, we achieve the best results us-

ing only the 2D patch-based module and the skeleton-based

module (Mod. A and B) of RefiNet (bottom table, fifth row).

In this case, the mAP improvement is around 325% and the

mDE one is around 86%. As in the side view scenario, the

results are similar regardless of the 2D predictor. On the

contrary, in this setting the combined use of the point cloud-

based module (Mod. C) with modules A and B does not lead

to an improvement of the results due to the data available

from this view. In fact, the first module (Mod. A) improves

the 2D prediction on the depth map, but the lower part of

the body is not visible from the top view then the z-axis

coordinate sampled from the depth map is not correct. The



(a) 2D prediction (b) Module A (c) Module B (d) Module C

Fig. 4: Side and top view output samples. Starting from the left, initial 2D prediction [4] (input of RefiNet) then outputs of:

2D patch-based refinement (Mod. A), skeleton-based refinement (Mod. B), and point cloud-based refinement (Mod. C).

TABLE II: Comparison between 3D methods [19], [38], the

baseline approach (based on [5]), and the proposed method.

Body part
ITOP side view ITOP top view

[38] [19] Bas. Ours [38] [19] Bas. Ours

Upper Body 84.8 84.0 71.2 77.9 84.8 91.4 32.8 72.1

Lower Body 72.5 67.3 62.3 85.7 46.1 54.7 0.1 71.4

Full Body 80.5 77.4 67.0 81.8 68.2 75.5 17.5 71.8

second module (Mod. B) learns to improve the 3D skeleton

obtaining a plausible pose, in particular improving the depth

axis of the lower-body joints. At this point, the third module

(Mod. C) should refine the 3D prediction of each joint by

looking at the point cloud. However, point clouds computed

from the top view are partial or empty for most of the joints,

leading to a decrease of the performance.

In Table II, we show a reference comparison between the

baseline approach (Fig. 1, Sec. III-A), the proposed method,

and the best results reported in [19]. Results show that our

method reaches comparable results w.r.t. 3D methods specif-

ically designed to work on depth maps. From the top view,

results are lower due to the occlusion of the lower joints by

the upper body. It should be noted that the proposed method

can leverage on pre-trained deep models that can work “in

the wild” and improve their predictions during the 2D to 3D

conversion. The improvement w.r.t. the baseline approach is

confirmed in all the tested cases.

D. Estimation of anthropometric measurements

In this section we present a real-world application of the

proposed method using the Baracca dataset. As mentioned

above, the height and other anthropometric measurements can

be used to automatically adapt the car to the driver/passenger.

In order to achieve a good user experience, the system should

have a low average error and a low variance. In fact, not only

should the system correctly estimate the height, but also avoid

significant mistakes.

TABLE III: Height estimation. We averaged the mean error

and std. deviation of each subject, expressed in cm. Baseline

(based on [5]) predictions are compared to the refined ones.

Method
Baseline Ours

Mean Std Mean Std

LR 5.586 1.468 5.656 1.330

AdaBoost 4.347 1.018 3.372 0.755

RF 2.230 0.377 1.983 0.321

kNN 0.783 0.503 1.276 0.348

In order to obtain the subject’s height, we firstly predict the

3D human pose with RefiNet. Then, we estimate the height

of the subject starting from a set of body limb measures

computed as the distance between 2 known 3D joints. Three

well-known regression algorithms, such as Linear Regression,

k-Nearest Neighbor, and Random Forest, are evaluated. We use

HRNet [5] to predict the 2D pose from the depth map, then

we refine the prediction with RefiNet, using the modules A

and C. The 2D human pose estimator and RefiNet are trained

on ITOP, while the tests on the Baracca dataset are conducted

without any kind of fine-tuning or model adaptation. We use

3 relevant measures as input to the regressors; among the

others we selected the head-neck, the neck-shoulder, and the

shoulder-elbow distance (in cm) since the corresponding joints

are usually visible from the in-car view. The output measure

is the human height, one of the most important information

required by car adaptation systems.

For each subject, we estimate his/her height for each frame

(i.e. 10 images) recorded with 3 different camera positions (i.e.

with the camera placed on the A pillar, on the rear-view mirror,

and behind the steering wheel). We evaluate the quality of the

algorithm using the average error and the standard deviation

between the predictions and the real heights of the subjects.

We performed leave-one-out cross validation at subject level,

i.e. we leave out for test all the available data of a subject.

Average results are reported in Table III. As highlighted in



TABLE IV: Performance analysis of the proposed method. We

report the number of parameters, the inference time and the

amount of video RAM (VRAM) required by the system.

Model Parameters (M) Inference (ms) VRAM (GB)

OpenPose 52.311 44.859 1.175

HRNet 28.536 43.385 1.107

Module A 0.828 1,872 0.669

Module B 4.302 0.824 0.665

Module C 2.935 13.806 1.681

RefiNet Pipeline 8.064 16.473 1.705

the table, the use of the refined joints slightly enhances the ac-

curacy in terms of average error, but significantly improves the

average standard deviation. This confirms that our framework

is capable of systematically refine body joints thus correcting

pose errors and reducing the skeleton variability.

An analysis of the required computing resources and mem-

ory is reported in Table IV. In addition to the 2D pose

estimation method, our architecture requires only 16.5 ms to

compute using 1.7 GB of RAM on a GPU NVidia 1080Ti.

V. CONCLUSION

We propose RefiNet, a multi-stage refinement framework

which provides an accurate 3D human pose starting from a

depth map and a coarse 2D pose. The first module improves

the 2D position of joints on the depth map, the second one

converts and improves the 3D representation, and the last

one enhances the 3D absolute location using point clouds.

Experiments on ITOP confirms that RefiNet steadily improves

the baseline approach and results are comparable to the ones of

3D models. We also present Baracca, an automotive-oriented

dataset containing RGB, IR, depth, and thermal images and

anthropometric measurements. Results on Baracca show that

the proposed method stabilizes the predicted human skeleton.
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