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Università degli Studi di Modena e Reggio Emilia

Email: {name.surname}@unimore.it

†Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche
con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa,
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Abstract—In recent years, many attempts have been dedicated
to the creation of automated devices that could assist both expert
and beginner dermatologists towards fast and early diagnosis
of skin lesions. Tasks such as skin lesion classification and
segmentation have been extensively addressed with deep learning
algorithms, which in some cases reach a diagnostic accuracy
comparable to that of expert physicians. However, the general
lack of interpretability and reliability severely hinders the ability
of those approaches to actually support dermatologists in the
diagnosis process.

In this paper a novel skin image retrieval system is pre-
sented, which exploits features extracted by Convolutional Neural
Networks to gather similar images from a publicly available
dataset, in order to assist the diagnosis process of both expert
and novice practitioners. In the proposed framework, ResNet-50
is initially trained for the classification of dermoscopic images;
then, the feature extraction part is isolated, and an embedding
network is built on top of it. The embedding learns an alternative
representation, which allows to check image similarity by means
of a distance measure.

Experimental results reveal that the proposed method is able
to select meaningful images, which can effectively boost the
classification accuracy of human dermatologists.

I. INTRODUCTION

Skin cancer is one of the most common forms of human
cancer worldwide [1].

Malignant melanoma is less common than basal and squa-
mous cell skin carcinoma (it accounts for only about 3-4% of
all skin cancers) but it is responsible for most of skin cancer
deaths [1], [2], despite the existence of new therapeutic agents,
such as checkpoint and BRAF inhibitors that improve survival
of advanced cases [3]. However, Squamous Cell Carcinoma
(SCC) can become lethal when it metastasizes, since few
standardized and effective therapies for advanced SCC have
been established. Although metastatic Basal Cell Carcinoma
(BCC) is very rare, any delay in diagnosis may allow tumors
to become unresectable [4]. Therefore, early detection of all
skin cancers, not limited to melanoma, is required to prevent
progression of these cancers to advanced stages and reduce
skin cancer-related deaths [4], [5]. The clinical diagnosis of

Fig. 1. Example images from the ISIC 2019 dataset, one for each class.
From left to right: melanoma, melanocytic nevus, basal cell carcinoma, actinic
keratosis, benign keratosis, dermatofibroma, vascular lesion, and squamous
cell carcinoma.

malignant melanoma is still difficult since the morphological
characteristics of other pigmented skin lesions may sometimes
mimic it. In fact, even in specialized centers, the melanoma
diagnosis accuracy achieved with the unaided eye is slightly
better than 60% [6], [7], making the early detection very
hard to obtain. Nowadays, dermoscopy represents one of the
most relevant imaging techniques for melanoma diagnosis.
Dermoscopic images are obtained through a non-invasive in
vivo examination based on a microscope that exploits an
incident light and oil/gel immersion to make skin subsurface
structures, dermoepidermal junction, and upper dermis acces-
sible to visual examination [8], [9], [10].

Several approaches have been proposed to improve the
diagnostic performance of clinicians: the ABCD rule [11], the
CASH algorithm [12], Menzies method [13], 7-point check-
list [14] or some other pattern classification methods [15] to
distinguish between melanoma and non-melanoma pigmented
skin lesions. However, becoming an experienced dermoscopic
reader requires a significant time and training investment [4].
Moreover, even after such training, the readings are often
complex and subjective.

To make readings more objective and qualitative, as well
as support physicians using dermoscopy, many Computer-



Aided Diagnosis (CAD) systems for the automated melanoma
recognition have been proposed [16], [17], [18], [19]. Among
them, deep learning algorithms have revealed to be the most
effective solutions. As a matter of fact, Convolutional Neural
Networks (CNNs) are currently the cornerstone of medical
image analysis [20], [21], [22], [23], [24].

Unfortunately, these approaches require huge amounts of
data, which are hard to obtain and particularly expensive
to annotate. However, since the first convolutional layers
of CNNs learn to recognize simple elements like lines and
colors, pre-training neural networks with existing collections
of natural images [25] can mitigate the need for large anno-
tated medical datasets [26]. Nevertheless, this approach can
introduce biases towards certain characteristics and features.
As an example, CNNs trained using ImageNet are strongly
biased in recognizing textures rather than shapes [27].

With the aim of mitigating this problem, since 2016 the
International Skin Imaging Collaboration (ISIC) has begun
to aggregate a large-scale, publicly available dataset of der-
moscopic skin lesions images (Fig. 1) and hosting multiple
challenges and workshops [28]. The availability of this sub-
stantial amount of dermoscopic images allowed to significantly
improve the performance of machine learning algorithms. A
recent international diagnostic study demonstrates that the
accuracy of machine learning algorithms for pigmented skin
lesion classification proposed in the last years is comparable
with those of expert dermatologists [29]. This is true consid-
ering only individual images and ignoring the clinical history
of the patient: information that the dermatologist has often
available when visiting.

Nevertheless, in the medical diagnosis field the goal should
not be to take an action on behalf of an expert practitioner,
but rather to assist his/her choice. Indeed, empirical experi-
ments have shown that providing the physician with a second
computerized and non-interactive opinion is not well seen
by the dermatologists that even tends to change their own
diagnoses when presented with a second computerized point
of view [30].

In the last years, many attempts have been made to devise AI
approaches, which are not only performing well, but are trust-
worthy, transparent, interpretable and explainable for a human
expert [31]. Among others, the Grad-Cam technique [32] has
proven to be a valid solution for dermoscopic images analysis:
it is able to explain dermatologists on which parts of the input
image the model is mostly focused, by simply providing a heat
map [33].

This paper mainly aims at providing an interactive approach
to effectively support dermatologists in the decision making
process. Given a skin lesion, the designed deep learning-
based algorithm will retrieve a number of other diagnosed
cases that are similar to the original image, thus supporting
and driving the dermatologist to a more precise diagnosis,
without directly providing a second opinion. We thus propose
a Content-Based Image Retrieval (CBIR) tool for searching
and retrieving most similar dermoscopic images. A set of
quantitative experiments shows that the proposed approach

provides a better ranking than existing state-of-the-art solu-
tions on the same topic. Moreover, to test the usefulness of
the devised strategy, five dermatologists have been asked to
classify different images with and without the output provided
by our algorithm: experimental results clearly demonstrate the
benefit of the proposal.

The rest of the paper is organized as follows. Section II
describes the state-of-the-art dermoscopic image analysis so-
lutions and content-based image retrieval systems available in
literature. In Section III the proposed model is described and
then it is evaluated from both a quantitative and qualitative
point of view in Section IV. Finally, in Section V conclusion
are drawn.

II. RELATED WORK

Dermoscopic Images Analysis The extensive usage of der-
moscopic images has been causing a wide interest in their
computed analysis. Traditional computer vision techniques
have focused on several tasks, from basic lesion segmenta-
tion [34] to the identification of meaningful patterns for the
final classification [35]. The groundbreaking evolution of deep
learning pushed the limits of automated dermoscopic images
analysis, with great results especially on the segmentation and
the complete classification tasks [33], [36]. Esteva et al. [23]
compared the performance of CNNs to the accuracy of expert
dermatologists, across two binary classification tasks of both
clinical and dermoscopic images. The results of this study
indicate that neural networks are able to classify skin cancer
with a level of competence comparable to dermatologists.

The International Skin Imaging Collaboration (ISIC) has
been playing a major role in the growth of skin lesion
analysis. They have been collecting a large dataset of publicly
available dermoscopic images [28], [37], [38], and have been
hosting challenges since 2016; the 2019 challenge official
training set counts 25 331 images. The work by Tschandl et
al. [29] thoroughly compares results obtained by CNNs
trained using the public ISIC dataset and the diagnosis carried
out by numerous expert practitioners, proving that, when
trained for the dermoscopic images classification task, neural
networks obtain comparable results to human dermatologists.
The authors also demonstrated the lack of reliability and
resilience to out of distribution samples of these models.

Content-Based Image Retrieval In the work by Ballarini et
al. [39], authors developed a content-based image retrieval
system for a dataset of 533 images, divided into five classes
of lesions, including two non-melanoma cancer types.
Their system relies on visual features, such and color and
composite texture, evolved using genetic algorithms. The
similarity matching function is obtained by composing
Bhattacharyya distance [40] for color covariance-based
features, and Euclidean distance for texture features. In [41],
Baldi et al. proposed another method based on low-level
representative features. They find visually similar images to
a query by means of a hierarchical multi-scale computation
of the Bhattacharyya distance of all the database images.



Another CBIR system for skin lesions was developed by Jiji
and Raj [42], who exploit features such as color, shape and
texture, in order to find the most visually similar images
to a query in a dataset composed of 20 different diseases.
Their categories, however, do not include melanocytic nevi,
and melanomas are not distinguished from other kinds of
skin cancer. In 2016, Rahman et al. [43] proposed a decision
support system based on a fusion between classification
and retrieval. Their model considered high-level features
such as Non-Subsampled Contourlet Transform (NSCT)
and HOG based on Hessian matrix1. The model has been
validated on the ISIC 2016 dataset, containing two skin lesion
categories, melanoma and benign. Belattar et al. [44] used
a kernelized SVM classification algorithm with an active
learning technique and a histogram intersection matching in
a retrieval system with relevance feedback for melanoma
diagnosis. Their experiments were conducted on a dataset
of melanomas and benign lesions. Finally, Pu et al. [45]
applied the retrieval method proposed in [46] to the skin
lesion domain. Their approach consists of training a deep
network that learns to map images to hash codes, in a way
that preserves similar semantics. Their network minimizes a
classification loss function, with additional regulation terms
to achieve desirable hash code properties. Then, similar
images to a query are ranked by means of the Hamming
distance, and clustered with Affinity Propagation (AP). This
last proposal improves the measured precision with respect
to previous methods based on hand-crafted features, and
therefore represents a reference for comparison.

With this paper we present another content-based image
retrieval system that requires no hand-crafted feature. Instead,
we exploit CNNs’ automatically learned filters, and we discuss
three variations of a model trained with a loss function specific
for the retrieval task, that allows us to overcome the limits of
the classification loss and improve the retrieval performance
with respect to state-of-the-art.

III. IMAGE RETRIEVAL

As stated, the aim of this paper is to find a model for
Content-Based Image Retrieval (CBIR) for skin lesion medical
images. Given a query, i.e. a new image of an unknown class,
the task consists of retrieving k images from a labeled dataset,
that are similar to the query. Since the final aim is to provide
physicians with a valuable support for the classification task,
two images are considered similar if they possess common
features ascribable to a certain class of lesions. In order to
extract such features, our approach to the problem consists
of learning an embedding function f from skin lesion images
space I into a compact Euclidean feature space Rd, where
distances correspond to a measure of similarity. In feature
space, distance between images of the same class should be
small, and distance between images of different classes should
be large. After such a mapping has been established, the
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Fig. 2. Example result of the ranking system. On the left an example query
image belonging to the melanocytic nevus class. On the left side the first five
results in order of score from top to bottom. In this example all the output
images are from the same class of the query.

retrieval task can be accomplished by taking the k labeled
images with the minimum distance from the query in the
embedded space. In order to achieve this task, we built and
evaluated four different variations of a deep convolutional
neural network.

For every model, input images are resized to 512×512,
and each channel is normalized by subtracting the mean
and dividing by the standard deviation. Moreover, training
images undergo augmentation techniques to reduce overfitting,
consisting in random flip and random rotation.

A. Classification

The first embedding model is part of a deep neural network
trained for classification. We conducted experiments with
multiple variations of ResNet (with 18, 34, 50, 101 and 152
layers), which have been proved to be effective solutions
for the classification task of the ISIC challenge [28]. The
loss used for this network is the cross-entropy loss. The
network is trained with Stochastic Gradient Descent (SGD),
with an initial learning rate of 0.001, lowered each time the
evaluation accuracy reaches a plateau, with initial weights
pretrained on the ImageNet dataset. After the training process,
the embedding network is obtained by removing the last fully
connected layer, which outputs the classification results. In
this way, only the feature extraction part of the network is
preserved, whose output is a vector of size 512 or 2048,
depending on the ResNet variation used. This intermediate
feature vector represents high-level visual features, strictly
related to the image class, and represents the mapping in
the new euclidean space. This simple model is mainly built
for comparison with the similar proposal by Pu et al. [45],
which also employs a classification network, and with the more
complex models discussed further on.



B. Embedding End-to-End

The second model is a convolutional network trained end-
to-end for the embedding task. Like the previous model, it
is based on ResNet. However, instead of outputting class
probabilities, the last fully connected layer, with output size d,
represents the embedding in Rd. The output vector is divided
by its L2-norm; this regularization ensures that embedded
vectors lie on the surface of the unit (d − 1)-sphere, i.e.,
‖f(x)‖2 = 1.

The loss used for training is the triplet loss [47], that directly
reflects the specific goal of this work. The triplet loss is
calculated over a triplet of input samples composed of an
anchor (a), a positive (p) and a negative (n). Sample a and p
belong to the same class, while n belongs to a different class.
Given a triplet, the loss is computed as:

L(a, p, n) = max(d(f(a), f(p))− d(f(a), f(n)) + α, 0)

In the formula, d(x, y) is the distance between x and y
in feature space, and it can be calculated using a chosen
metric, while α represents a desired margin between positive
and negative pairs. The triplet loss aims at minimizing the
distance from anchor to positive, and maximizing the distance
from anchor to negative. We performed experiments with the
euclidean distance and cosine distance (defined as 1 - cosine
similarity), and we verified that, for this task, cosine distance
yields better results. It is worth noticing that, if feature vectors
lie on the unit (d− 1)-sphere, cosine similarity is the same as
the dot product.

The training process starts with the sampling of balanced
minibatches, with n random elements per class, so that
each skin lesion category is equally represented. For every
minibatch, a network forward yields a corresponding list of
embeddings. Then, triplets are chosen in the following way:
(i) for every class, all possible pairs (a, p), i.e. combinations of
two samples, are listed. Since there are n samples for each of
the 8 classes, the total number of pairs is

(
n
2

)
×8 = 4n(n−1);

(ii) for every pair, a hard negative sample is chosen from
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Fig. 3. Architecture of Model-C (Classification & Embedding) and D
(Classification & Embedding End-to-End). The difference between the two
approaches is that, after the training of the ResNet feature extractor with a
classification loss, Model-D is fine-tuned end-to-end with triplet loss, while
Model-C only updates weights on the embedding part of the network.

the other 7 classes. A hard negative is a sample n for which
L(a, p, n) > 0.

Only hard negatives are useful for the training process,
because they yield a non-zero loss. We experimented the three
most common criteria for the choice of the hard negative:

• random hard: a hard negative randomly selected.
• hardest: the negative sample yielding the highest loss

value.
• random semihard: a random negative n for which
d(f(a), f(p)) < d(f(a), f(n)) < d(f(a), f(p)) + α.

The hardest negative criterion leads to the fastest convergence,
but it is also known to often lead to local minima [48], and
the random semihard criterion is useful to reduce that risk.
These observations hold true in our case, and we got the best
results applying the random semihard criterion, even if the
random hard choice proved to be nearly as effective. After the
choice of negatives, the loss is computed for every triplet, and
losses are averaged to get an aggregated value. This network
is trained with SGD and initial learning rate of 0.01, decreased
every 30 epochs.

C. Classification & Embedding
The third model taken into account is composed of both

a classification network and a separate embedding network.
It builds upon the first model, in the sense that, after the
end of the training process, feature vectors extracted by
the classification network constitute a new dataset, and they
become the input of a fully connected network, that outputs
the final embedding in d dimensions. This embedding network
is composed of three fully connected layers of size 2048, 1024
and d respectively, randomly initialized. The first two layers
are followed by a PReLU activation and a dropout layer; the
whole architecture is depicted in Fig. 3. Like the previous
case, the loss function is the online triplet loss. We trained this
network with SGD, learning rate starting at 0.01 and lowered
every 30 epochs, and batches of 30 samples per class.

D. Classification & Embedding End-to-End
The fourth model shares the same architecture of the third

one: the difference is that, in this case, the feature extractor
and the embedding network are not separated. Instead, after the
training of the classification network, its final fully connected
layer is substituted with the embedding network, and a new
end-to-end training process starts, with online triplet loss. This
means that the backward propagation does not stop at the first
layer of the embedding network, as in Model-C, but instead
reaches the beginning of the feature extractor. Because of the
large size of the network, we are strongly limited in the batch
size: in our tests, we used batches with 3 examples for each
class. The whole architecture, that is the same as Model-C, is
depicted in Fig. 3.

IV. EXPERIMENTAL RESULTS

A. Quantitative
The dataset used for training and evaluating the proposed

models is the ISIC 2019 archive [28], [37], [38], an interna-
tional repository of dermoscopic images built for both clinical



TABLE I
AVERAGE PRECISION AT K MEASURED FOR EVERY MODEL ANALYZED, FOR THREE VALUES OF K, 1, 5, AND 10. CENTRAL COLUMNS REPORT AVERAGE

VALUES SEPARATED FOR EACH CLASS, AND THE LAST COLUMN REPORTS THE BALANCED AVERAGE. NOVEL PROPOSALS ARE IDENTIFIED BY *.

Model Cut-Off k Per class P@k AP@k
MEL NV BCC AK BKL DF VASC SCC

Hash-AP [45] - 0.4786 0.6111 0.5730 0.1896 0.1984 0.1505 0.3842 0.1375 0.3404

Hash-AP ResNet* - 0.8176 0.7558 0.8509 0.7417 0.6256 0.7604 0.8271 0.6851 0.7580

Classification*
1 0.7840 0.9369 0.9347 0.7400 0.8300 0.7733 0.8667 0.7133 0.8224
5 0.7262 0.9111 0.9029 0.7190 0.7724 0.7333 0.8373 0.6853 0.7859
10 0.7040 0.9038 0.8957 0.7160 0.7470 0.7213 0.8307 0.6787 0.7746

Embedding End-to-End*
1 0.7400 0.9018 0.9133 0.6600 0.7520 0.7333 0.8267 0.7000 0.7784
5 0.7314 0.8923 0.9005 0.6820 0.7576 0.7387 0.8240 0.7027 0.7786
10 0.7322 0.8905 0.8993 0.6855 0.7572 0.7440 0.8253 0.7093 0.7804

Class & Embedding*
1 0.7490 0.9347 0.8973 0.7150 0.7700 0.8400 0.9067 0.7133 0.8157
5 0.7542 0.9347 0.9013 0.7170 0.7768 0.8400 0.9013 0.7093 0.8168
10 0.7531 0.9331 0.9032 0.7170 0.7814 0.8453 0.9040 0.7147 0.8190

Class & Embedding
End-to-End*

1 0.7560 0.9022 0.9027 0.6600 0.7600 0.7733 0.8267 0.7133 0.7867
5 0.7458 0.9030 0.8992 0.6770 0.7588 0.7707 0.8293 0.7213 0.7881
10 0.7436 0.9012 0.9009 0.6830 0.7668 0.7760 0.8373 0.7273 0.7920

training and for supporting technical research by means of
the international challenge of the same name, introduced in
Section II. The dataset includes 25 331 images, divided into 8
categories: melanoma (MEL), melanocytic nevus (MN), basal
cell carcinoma (BCC), actinic keratosis (AK), benign keratosis
(BKL), dermatofibroma (DF), vascular lesion (VASC) and
squamous cell carcinoma (SCC). A priori probability of each
class is reported in Table III. We split the dataset into training,
validation and test sets, composed of 19 331, 1 000 and 5 000
images respectively. Every model is trained with the aim of
minimizing the corresponding loss function on the training
set. After each epoch, a partial evaluation of the model is
performed by retrieving the k nearest neighbors taken from the
training set of every sample in validation set, for three values
of k (1, 5, and 10), and computing precision at k (P@k), i.e.,
the number of neighbors that share the same class of the query,
divided by k. The values for k have been chosen in a way that
reflects the use case, that is showing a physician similar lesions
to a new image, which needs to be classified. P@k values
computed on the validation set are used for hyperparameters
optimization and early stopping of the training process. Then,
final values of P@k are computed by substituting validation
set with test set.

In literature, another common metric used to evaluate the
performance of retrieval systems is the recall, i.e. the ratio
of relevant retrieved images to the total number of relevant
images in the dataset. However, the recall is not meaningful
for this use case, because the amount of retrieved images is
orders of magnitude lower than the total number of dataset
images belonging to each class.

As regards the choice of hyperparameters, experiments
revealed that, independently of the model, the best value for
α is 0.2, cosine distance is more effective than euclidean
distance, and the L2 regularization actually improves the re-
sults. Model-dependent hyperparameters, instead, are reported

TABLE II
OPTIMAL HYPERPARAMETERS USED FOR EACH MODEL, FOUND WITH

GRID SEARCH. FE, DIM, LOSS, LR AND BS RESPECTIVELY STAND FOR
FEATURE EXTRACTOR, DIMENSIONS OF FEATURE SPACE, LOSS

FUNCTION, LEARNING RATE AND BATCH SIZE.

Model FE Dim Loss Lr BS

Classification ResNet-50 2048 Cross-entropy 0.001 16
Embedding E2E ResNet-34 300 Triplet 0.001 48
Class & Emb ResNet-50 30 Triplet 0.01 240
Class & Emb E2E ResNet-50 30 Triplet 0.01 24

in Table II. Feature space dimensionality is fixed for Model-A
(Classification): it is equal to the size of the second to last
layer of ResNet, which precedes the fully connected layer for
classification. For the other models, we experimented values
3, 10, 30, 100, 300 and 1 000.

It can be observed that the feature extractors used in the
final models, ResNet-34 and ResNet-50, include a relatively
small number of layers. We verified that deeper versions of
ResNet, with 101 or 152 layers, are more effective for the
classification task, i.e., lead to higher accuracy; however, when
measuring P@k, the results are not satisfactory. As regards
models employing triplet loss, one of the reasons is that
implementation details of the loss itself make large batches
more efficient [48], and, under the same hardware, smaller
networks allow for larger batches. Another consequence is that
Model-C (Classification & Embedding End-to-End) reaches
lower AP@k than Model-D (Classification & Embedding):
the latter, despite being a simpler model, can exploit a batch
size larger by an order of magnitude.

For comparative reasons, we have implemented the method
proposed in [45] and known as Hash-AP. To the best of
our knowledge, it is the only skin lesion CBIR system that
makes use of deep learning to extract visual features, and it
represents the current state-of-the-art in the field. Hash-AP is



a classification network with an added hidden layer that learns
a binary embedding, or hash, and retrieves similar images
to a query measuring the Hamming distance of hash codes,
then clustering the results and the query itself using affinity
propagation. The original model is based on AlexNet [49]. In
order to provide a fair comparison with our proposals, we also
built a variation of Hash-AP based on ResNet, and we verified
that, at least on the ISIC dataset, the retrieval performance
notably improves w.r.t. the original model.

Final results are reported in Table I: P@k is calculated for
each class, and the last column reports the average precision at
k (AP@k), which represents a summary of the model perfor-
mance. AP@k is the average value of per class P@k: in this
way, every class is given the same weight, independently of
its representativeness. Models Hash-AP and Hash-AP ResNet
retrieve a variable number of images, which depends on the
clustering result, and therefore only one value is reported for
them. Novel proposals are marked by a star.

The precision measured for the original Hash-AP model is
quite low. This result can be attributed to the classification
network used, AlexNet, which fails to compete with more
modern architectures, and to the difference between the ISIC
dataset used in this work and the smaller dataset considered
in the original paper. However, the ResNet-50 variation we
implemented alongside the original one reaches an average
precision of almost 0.76, proving the effectiveness of the idea.
As regards models discussed in this paper, the Classification
one yields the highest AP@1, being the only one to exceed
0.82. Nevertheless, for higher values of k, its performance is
less satisfactory and, indeed, this network was not directly
trained for image retrieval. The best performing model for
higher values of k is Model-C, Classification & Embedding.
As stated before, this result is partially related to the batch
size used in training: Model-C has been trained with a batch
size respectively 5 times and 10 times larger than that used for
Model-B and D (Table II). A larger batch size means that, in
the triplet selection process, more negatives are evaluated for
the same positive pair, and thus there is a higher probability
to find a random semihard negative. The improvement with
respect to Hash-AP ResNet demonstrates the effectiveness
of the triplet loss function, that is more suitable than a
classification loss for the retrieval task.

B. Qualitative

In order to understand if our model can be effectively useful
in supporting medical diagnosis, we asked five dermatologists
to undergo a test, composed of two tasks. The first task simply
consisted in classifying 100 dermoscopic images, randomly
sampled from the ISIC test set, without any additional help.
In the second task, the physicians were asked to classify
the same images, but we also showed them the 5 nearest
neighbors of each sample, labeled with their ground truth
classes. The neighbors were found in the training set using
Model-C. The tests were performed using exactly the same 100
images, with the aim of reducing the probability of a possible
improvement being only imputable to the dataset variance. In

TABLE III
A PRIORI PROBABILITY OF EACH SKIN LESION CLASS.

Class Probability

Melanoma 0.1785
Melanocytic Nevus 0.5083
Basal Cell Carcinoma 0.1312
Actinic Keratosis 0.0342
Benign Keratosis 0.1036
Dermatofibra 0.0094
Vascular Lesion 0.0100
Squamous Cell Carcinoma 0.0248

TABLE IV
ACCURACY OF 5 DERMATOLOGISTS ON TASK 1 AND TASK 2, CONSISTING

IN CLASSIFYING 100 SKIN LESION IMAGES WITH AND WITHOUT THE
SUPPORT OF OUR RETRIEVAL NETWORK.

Task 1 Task 2

Dermatologist #1 75% 79%
Dermatologist #2 64% 80%
Dermatologist #3 69% 71%
Dermatologist #4 68% 82%
Dermatologist #5 61% 71%

order to mitigate bias in the second task, each image was
rotated by 180°, and the list was shuffled. We measured the
accuracy of the physician classification for both tasks. Average
result is 67.4% for the first one (images only) and 76.6%
for the second one (images and 5 nearest neighbors). Results
obtained by individual dermatologists are shown in Table IV.
Although a set of five dermatologists constitutes a relatively
small statistical sample, an average improvement of 9.2% on
the very same images proves the usefulness of our CBIR model
as a support in the decision making process.

V. CONCLUSION

In this paper we introduced a novel content-based image
retrieval system for dermoscopic image analysis. The proposed
system is based on learned features obtained through state-of-
the-art convolutional neural networks.

An exhaustive experimental evaluation proved that the pro-
posed solution outperforms competitors on the well known
ISIC dataset. Moreover, the effectiveness and the usefulness
of the devised solution have been demonstrated by a set of
qualitative experiments carried out by a group of dermatolo-
gists.

These results prove that, although the existing knowledge
of dermatologists is invaluable for the diagnosis of skin
cancer, the proposed CBIR model can assist physicians with
dermatologist-grade decision support.
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