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Significance statement (max 120words, summary of work)

The classification of immunological deposits is a pivotal procedure of Kidney Pathology. It requires trained 
personnel and the images interpretation is a complex and slow procedure. Deep Learning has the potential 
to automate the image classification procedure and increase the accuracy and reproducibility. This approach 
can allow to extract new features important for the reclassification of kidney diseases in a diagnostic and 
prognostic perspective. 12259 kidney immunofluorescence images were used to train Convolutional Neural 
Networks to recognize the classic patterns reported in the immunofluorescence analysis. The algorithm 
developed the ability to recognize microscopic patterns and showed substantial agreement with three 
different pathologists. The algorithm can become a support tool in the routine kidney immunofluorescence 
analysis with time saving and reproducibility advantages.
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Abstract
Background. Immunohistopathology is an essential technique in the diagnostic workflow of a kidney biopsy. 
Deep Learning is an effective tool in the elaboration of medical imaging. We wanted to evaluate the role of 
a Convolutional Neural Network  as a support tool for kidney immunofluorescence reporting.

Methods. High magnification (400X) immunofluorescence images of kidney biopsies performed from the 
year 2001 to 2018 were collected. The report, adopted at the Division of Nephrology of the AOU Policlinico 
di Modena, describes the specimen in terms of 'Appearance', 'Distribution', 'Location' and 'Intensity' of the 
glomerular deposits identified with fluorescent antibodies against IgG, IgA, IgM immunoglobulins, C1q and 
C3 complement fractions, Fibrinogen, kappa and lambda light chains. The report was used as ground truth 
for the training of the Convolutional Neural Networks.

Results. 12259 immunofluorescence images of 2542 subjects undergoing kidney biopsy were collected. The 
test set analysis showed accuracy values between 0.79 ('Irregular Capillary wall' feature) and 0.94 ('Fine 
Granular' feature). The agreement test of the results obtained by the Convolutional Neural Networks with 
respect to the ground truth showed similar values to three pathologists of our center. Convolutional Neural 
Networks were 117.3 times faster than human evaluators in analyzing 180 image tests. A web platform, 
where it is possible to upload digitized images of immunofluorescence specimens, is available to evaluate the 
potential of our approach.

Conclusion. The data showed that the accuracy of Convolutional Neural Networks are comparable to that of 
pathologists experienced in the field. 
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Introduction
The kidney histopathological diagnosis involves a combined and complementary approach of different 
microscopic techniques: essentially, they consist of light microscopy, immunohistopathology and electron 
microscopy. The kidney biopsy is frequently necessary to distinguish among diseases with similar clinical 
presentation. The evaluation of glomerular disease by light microscopy alone rarely allows a definitive 
diagnosis, for which the information from immunohistopathology and electron microscopy analysis are 
required. All these elements must finally be integrated with the patient's clinical history and laboratory 
findings to obtain the conclusive diagnosis. Immunofluorescence technique (or other immunohistopathologic 
approaches) is required to demonstrate deposits of immunoglobulins and complement components. Some 
specific kidney diseases such as, for example, IgA Nephropathy, anti-glomerular basal membrane 
glomerulonephritis and C3 glomerulopathy can only be diagnosed by the result of immunofluorescence. The 
analysis of the immunofluorescence pattern of deposition in glomerular diseases is a time-consuming 
activity, it relies on the availability of specific resources and requires an experienced operator for 
interpretation. In pathology, as in many other clinical disciplines, the ability of artificial intelligence algorithms 
to interpret medical images is taking on a dominant role. Some examples of the application of these 
technologies are emerging also in kidney pathology 1, 2. An artificial neural network is an interconnected 
ensemble of simple processing elements, with the ability of learning how to perform different tasks directly 
from data. Each element, or artificial neuron, receives input values from several preceding nodes, processes 
them, and computes the output in order to forward it to the next set of neurons. When this hierarchic 
architecture is formed by several layers, the strategy takes the name of Deep Learning. Each node has a set 
of weights used to multiply its inputs. These weights are the processing ability of a neural network. 
Convolutional Neural Networks present weights in the form of small filters, which learn to recognize specific 
characteristics regardless of their position within the input image. They are randomly initialized, and then 
updated during the training process in order to optimize the final output. The learning strategy causes neural 
networks to adapt their filters in order to gain the ability to extract meaningful features directly from the set 
of images used during the training process. This is the reason why, unlike any other machine learning 
technique, deep learning algorithms require no hand-crafted feature. Given the aforementioned hierarchical 
architecture, automatically extracted features grow more complex as the depth of the network increases. 
However, very deep neural networks tend to learn to classify the training set with extremely high accuracy 
while failing to generalize their capabilities to samples that were not used during training. This phenomenon 
takes the name of overfitting3, and causes networks to learn to recognize each training image instead of the 
semantic content within. Therefore, many efforts have been devoted to finding valid regularization 
techniques 4-6. Convolutional Neural Networks have been widely proved to outperform other strategies in 
countless computer vision tasks such as semantic segmentation, object detection, object classification and 
others 7-9. This kind of architecture is able to process images in an extremely effective and computationally 
efficient manner. In fact, Convolutional Neural Networks have been extensively employed in many medical 
imaging fields such as skin lesion analysis 10, 11 and retinopathy or pneumonia12, 13, growing into an extremely 
powerful tool to support specialists in the clinical decision making. In this work, we aimed to exploit artificial 
neural networks to build an automated tool supporting the diagnostic process for the immunofluorescence 
classification of kidney biopsy.

Methods

Kidney biopsy and Immunofluorescence staining and image acquisition
The analysis of the immunofluorescence images used in this study was approved by the local Ethical 
Committee (‘Comitato Etico dell’Area Vasta Emilia Nord’, Protocol #434/2019/OSS/AOUMO). The 
immunofluorescence images were collected in our center during the years 2001 – 2018; they were 
obtained from native or kidney allograft biopsies, independently of the clinical indication for the biopsy 
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collection. The only inclusion criterion for the study was the availability of images and of the pathology 
report. In the kidney biopsy procedure, two cores of kidney tissue were obtained in the cortical kidney area 
by a semiautomatic needle (16 or 18 gauge x 16cm, Bard Max-Core). The core assigned to light microscopy 
was Bouin-fixed and routinely processed according to conventional procedures. The second core, prepared 
for direct immunofluorescence, was quickly frozen in liquid nitrogen sliced in 3m cryo-section (Cryostat 
CM1950, Leica Microsystem) and stained with FITC-conjugated rabbit antisera directed against human 
immunoglobulin (IgG, IgA, IgM and their fractions: Lambda and Kappa chains), Fibrinogen (F) and 
complement components C1q and C3 (all antisera were from DakoCytomation). The slides were incubated 
with the primary antibodies at 20°C in the dark for 30min, then washed 2 times, 15min each, in PBS (IgG 
and C3 1:80; IgA, IgM, C1q; F, K, Lambda 1:40; each dilution with PBS1X). Images were captured at 400X 
apparent magnification with a fluorescence microscope (BX41 with U-RFL-T, Olympus) by a digital camera 
(XC30, Firmware version 4.0.2, Olympus) controlled by a dedicated software (CellB software, Olympus), and 
stored as gray-scale uncompressed TIFF images with 16 bits per pixel. All the images were captured with a 
standardized protocol and in particular at a fixed time of exposure. The quality and sharpness of the 
available images can be checked on line (https://nephronn.ing.unimore.it/public/) on a sample of 180 
images (Test set).

Ground Truth Training and Test Sets
The immunofluorescence report (Supplemental Material Table 1 adopted at our center describes the 
‘Appearance’, ‘Distribution’ and ‘Location’ of immune deposits. Furthermore, the ‘Intensity’ of staining is 
described by a semi-quantitative rank with discrete values from 0 to 3 (by 0.5 intervals).

A separate description is detailed for each anatomical compartment (glomeruli, tubules, interstitium, 
vessels), but in the present work only the glomerular compartment was considered. The standard report 
includes the evaluation of immunoglobulins, fibrinogen and complement deposition. The deposit 
‘Appearance’ is categorized in the following predefined classes: granular (coarse granular or fine granular), 
linear or pseudo-linear (Supplemental Material Figure 1). The ‘Distribution’ of deposits is described as focal 
or diffuse, and segmental or global (Supplemental Material Figure 2). With regard to ‘Location’, the 
following predefined classes were annotated: mesangial or capillary wall (Supplemental Material Figure 3). 
When possible, capillary wall sub-location has been defined: continuous regular capillary wall (sub-
epithelial), discontinuous regular capillary wall, irregular capillary wall. All annotations underwent a quality 
control check and when needed they were corrected by an experienced kidney pathologist. Ground Truth 
was provided by F.L. and L.M (respectively Pathologist 3 and 2). All the pathologists reviewed the test set: 
F.F. (Pathologist 1) in particular did not contribute to the Ground Truth definition but participated to the 
test set evaluation. A detailed description of pathologist contribution is reported in the ‘Author 
Contribution’ section. 

Convolutional Neural Networks Design
For all the features with the exception of ‘Intensity’, the algorithm is required to assign an image to one of k 
categories. In order to do so, a neural network processes the input image and outputs k values, each of which 
is the likelihood that the input sample belongs to the k-th class. One image can only belong to one class; 
therefore, the final prediction is the class with the highest score.  A different strategy is employed to predict 
the ‘Intensity’ of the deposits as a value ranging from 0 to 3 (with intervals of 0.5). For this task, a neural 
network is asked to output a probability for each of the possible intensity values (7 different classes). The 
final intensity prediction is obtained as:
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n
∑
k

pk ∗ vk

where n is the number of classes (n=7), p is the probability that the network assigns to kth class and v is the 
value represented by kth class.

Convolutional neural networks designed for classification progressively reduce the image dimensions, while 
increasing the number of feature maps obtained after each layer. ResNet-10114  exploits 101 convolutional 
layers to progressively transform input images composed of 512x512 pixels and the 3 channels (R, G, and B) 
in images with 16x16 pixels and 2048 feature maps. From each 16x16 features map, a single value is obtained 
as the average of the 256 pixels and, finally, a non-convolutional fully connected layer is trained to process 
the 2048 mean values of the channels of features and obtain the two output values, representing the final 
predicted probability for each class. Input images are given a square shape by adding black bands close to 
the borders when needed, and are then resized to 512x512.

In order to help Convolutional Neural Networks to generalize their processing abilities, and therefore avoid 
overfitting, two regularization techniques are applied during the training process: data augmentation 4 and 
dropout5. To perform data augmentation, each image is randomly flipped and rotated before feeding it to 
the network, since neither of these two transformations should change the content of the image, and 
therefore the deposit characteristics. To put dropout into use, feature maps are randomly set to zero before 
the fully connected layer, in order to boost the resilience of the model. Regularization techniques are 
excluded during inference, when the goal is to obtain the best possible prediction for a single, novel image.

In this work transfer learning is exploited by pre-training Convolutional Neural Networks using ImageNet 15, 

16 and then fine-tuning them to correctly classify immunofluorescence images. The learning rate set to  1 ―5

during the fine-tuning process, and a weighted cross-entropy loss is employed.

In order to improve the interpretability of the algorithm, the Grad-Cam method17 is used to draw attention 
heatmaps. This is done by first automatically analyzing how each convolutional filter affects the predictive 
score of each class, and assigning a weight to each filter-class couple. Then, when a sample is fed to the 
network the weights are used to highlight which pixels of the input image had a bigger impact on the 
prediction of the final class.

Assessment of Convolutional Neural Networks Performance

The Convolutional Neural Networks classification performance in feature recognition of ‘Appearance’, 
‘Distribution’ and ‘Location’ is assessed using four different metrics:

 ; 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

‘Accuracy’ is the ratio between the correct predictions and the total predictions’

; ‘Recall’ has the same statistical meaning as ‘Sensititvity’𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠        

   ; ‘Precision’ has the same statistical meaning as ‘Positive 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
Predictive Value’

  ; ‘F1 Score’ has the same statistical meaning as ‘Weighted𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

Average of Precision and Recall’
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Moreover, Receiver Operating Characteristic (ROC) curves are presented, to display the relation between 
True Positive Rate  and False Positive Rate and to compute the Area Under the Curve (AUC). 
True Positive Rate is equal to the Recall, while False Positive Rate is calculated according to the following 
equation:

     ; False Positive Rate has the same statistical 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
meaning as ‘Fall-Out’

For the Convolutional Neural Networks performance of the ‘Intensity’ we represented the classification 
result in a confusion matrix. The confusion matrix is a specific type of data representation18 that reports the 
classes of data provided by the algorithm on each row, while it represents the classes of observed data on 
each column (or vice versa). The name derives from the fact that it allows a simple visualization of mistakes 
that the system tends to make in the classification of objects.

Furthermore, we calculated Mean Absolute Error (MAE) and Mean Squared Error (MSE). Where f x ∈ X 
represent predicted values and y ∈ Y represent ground truth labels, MAE and MSE are defined as:

𝑀𝐴𝐸 =  
∑𝑛

𝑘 = 0|𝑦𝑘 ― 𝑥𝑘|

𝑛

𝑀𝑆𝐸 =  
∑𝑛

𝑘 = 0
(𝑦𝑘 ― 𝑥𝑘)2

𝑛

Agreement between evaluators, Convolutional Neural Networks and ground truth was calculated by the 
Cohen’s K 19. The average between features K presented in Table 4 is reported as mean ± standard 
deviation. All the statistical Analysis were performed by the software package STATA/IC 11.2 for Windows 
(STATA Corp 4905 Lakeway Drive, College Station TX 77845, USA).
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Results

The dataset
The database of immunofluorescence analysis collects the reports of 2542 consecutive subjects that 
underwent kidney biopsy between October 2001 and December 2018 in the Division of Nephrology and 
Dialysis of the AOU Policlinico di Modena, Italy. For each specimen at least one image of a glomerulus for 
each antibody is available, but frequently the images of more than one glomerulus are stored for the same 
antibody. The main clinical characteristics of the patients are reported in Table 1. The biopsy samples were 
obtained from native or transplant kidneys, independently of the indication for the biopsy procedure. The 
only criterion for inclusion was the availability of images and of the pathology report. 2225 are reports of 
native kidneys while 317 reports describe biopsies of transplanted kidneys. The first ten more frequent final 
diagnoses for the native kidneys are reported in Supplemental Table 1. Each report describes the result of 
the immunofluorescence analysis of the kidney specimen of the patient for the following deposits: IgG, IgA, 
IgM, C1q, C3, Fibrinogen, kappa and lambda light chains. The definition of the features collected in this 
study are described in Figure 1-3 of supplemental materials. The distribution of the immunofluorescence 
features is reported in Supplemental Table 3 and 4. According to the prevalent histological diagnosis of IgA 
Nephropathy, the most frequent ‘Location’ feature is mesangial, the most frequent ‘Appearance’ feature is 
coarse granular and the most frequent ‘Distribution’ feature is global / diffuse. The image dataset collects 
12259 images. The partitioning of the images into a training set (11059 images), validation set (200 images) 
and test set (1000 images) is shown in Figure 1. For each feature, a different training, validation and test set 
was prepared. Given the fact that negative samples are overrepresented for every feature, it is crucial that 
the three subsets have similar positive/negative samples ratio. In particular, a test set containing no 
positive samples would be futile. The presence (or absence) of the investigated feature is thus taken into 
account when splitting the dataset, in order to force similar data distribution into every subset. Every other 
patient metadata is ignored during the partitioning and their distribution in the subsets is ruled by random 
distribution.

Performance of the Convolutional Neural Networks 
We trained the neural networks to recognize the four different ‘Locations’: mesangial, continuous regular 
capillary wall, discontinuous regular capillary wall, irregular capillary wall. A general class named capillary 
wall obtained by merging all the different kinds of capillary wall locations was added to the analysis. 
Regarding ‘Location’, the pattern recognition tasks are completely independent classification problems, since 
each image could present neither, none, or every combination of the investigated location characteristics. 
For each one of the tasks, a specific Convolutional Neural Network is trained to classify a single image as 
either presenting or not presenting the pattern of interest. The same approach is taken to tackle the deposit 
‘Appearance’ (linear/pseudolinear, coarse granular and fine granular) and the deposit ‘Distribution’ 
(segmental and global). Since our dataset is composed of high-magnification images (400X) that do not allow 
a panoramic evaluation of the slice, the ‘Location’ features ‘diffuse’ or ‘focal’ have been left out from the 
analysis. The discontinuous regular capillary wall and the linear/pseudolinear features were not further 
assessed because of the low performance of the Convolutional Neural Network on these parameters: the 
linear / pseudolinear and discontinuous regular capillary wall F1 scores were 0.26 and 0.09 respectively, much 
lower values than obtained by the other features (Table 2). We suspect that the bad performance of these 
features is mainly attributable to the poor representation in our dataset (linear / pseudolinear and 
discontinuous regular capillary respectively 88, 335 and 232 features - Supplemental Table 3). However, only 
the evaluation of a larger dataset with a greater representation of these features will allow to verify this 
hypothesis. 
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Table 2 represents the performance of the neural network to predict the immunofluorescence features. All 
the features of ‘Location’, ‘Appearance’ and ‘Distribution’ obtained levels of accuracy around 0.8 and above. 
The highest performance was obtained by the ‘Appearance’ feature ‘fine granular’ (0.94) followed by the 
‘Location’ feature ‘continuous regular capillary wall’ (0.91). The ROC curve of each feature is presented in 
Figure 3. 

Eight representative examples of the ground truth and automatic feature classification used in the test set 
are depicted in Figure 2. Furthermore, the figures show the results obtained through the Grad-Cam method. 
The heatmaps indicate that neural networks correctly identify the glomerulus within an image, and search 
for the pattern in the appropriate section of the image. The final decision to classify the images is notably 
influenced by the deposits on the glomerular structure.

For what concerns the ‘Intensity’, we were able to predict the intensity level of images with a good level of 
approximation as confirmed by the Mean Absolute Error (MAE) of 0.398, and a Mean Squared Error (MSE) of 
0.455, which are two of the most relevant metrics for regression tasks such as intensity prediction20. Table 3 
presents the confusion matrix of the seven intensity classes, where the predicted class for each sample is the 
closest one to the real output value (which is a continuous number between 0 and 3).

We have preliminary data suggesting that the algorithm is robust enough to correctly recognize the 
glomerular pattern even in the presence of unusual tubular changes. We refer to some peculiar conditions 
with the presence of deposits along the tubular basement membrane as, for example, can occur in lupus 
nephritis or in light chain deposition disease. We have included in the supplementary materials the figures, 
the Ground Truth and the interpretation of the Convolutional Neural Network of two cases (Supplemental 
Figure 4 and 5, Supplemental Table 7 and 8). Nonetheless, given the small number of these cases, this 
statement will have to be confirmed in the light of a broader series.

Agreement between pathologists, ground truth and Convolutional Neural Network
We compared the classifications of a set of 20 images for each feature (180 test images overall) between 
three different pathologists and Convolutional Neural Networks with respect to ground truth (Supplemental 
Table 5). The human evaluators as well as the Convolutional Neural Network were blinded about clinical 
information related to the images. The data suggest a fair to moderate agreement between pathologists and 
ground truth; Convolutional Neural Networks had a performance with respect to ground truth comparable 
to human evaluators. We also calculated for each possible evaluator, Convolutional Neural Network and 
ground truth pair, an average between the Cohen's K of each feature (Table 4). Also in this case the data 
suggest a moderate agreement between the different evaluators and, in particular, Convolutional Neural 
Networks show comparable performance to human evaluators. The inter-agreement Cohen’s K of every 
feature is reported in supplemental materials table 6.

Time analysis
The three pathologists spent respectively 25, 23 and 18 minutes in the analysis of the 180 test images. This 
corresponds to an average time of evaluation per image of 7.3 ± 1.2 seconds. The execution time of the 
Convolutional Neural Networks has been calculated on an Intel(R) Xeon(R) E5-2650 v2@2.60GHz CPU with 
32 cores and 126GB of RAM, running Ubuntu 18.04 LTS and using a Tesla K80 GPU with 12GB of memory. 
The time for the complete analysis of the 180 test images by the Convolutional Neural Networks was 11.2 
seconds. This corresponds to 62.5 milliseconds per image which is 117.3 times faster than the average human 
evaluator.
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Discussion
In this study we presented a Deep Learning approach for the automatic reporting of immunofluorescence 
specimens of kidney biopsy. The main finding of our work is that Convolutional Neural Networks achieve an 
accurate definition of the main pathology features usually collected from this type of specimen:  
‘Appearance’, ‘Distribution’, ‘Location’ and ‘Intensity’ of the deposits. The comparison of agreement among 
three pathologists shows a moderate agreement and, in this respect, Convolutional Neural Networks show 
a similar performance to human evaluators. The interest in Deep Learning applied to nephropathology has 
grown significantly in recent years. The researchers adopted Deep Learning technology to achieve different 
goals: some focused on the automated identification of the main microscopic structures (glomeruli, 
tubules, vessels etc.) 21-25, some authors worked on the segmentation of the identified structures 2, and 
others have used Convolutional Neural Networks to obtain automated clinical classifications1, 2. We can 
consider our approach as part of the strategies for developing a tool for assisting in automated clinical 
classification. In this work we did not deal with the problem of the preliminary extraction of glomerular 
structures, that was already addressed in many previous papers21-25. Since our dataset was already made up 
of high-magnification images of individual glomeruli historically collected in the last 18 years of manual 
reporting of the kidney specimens, we focused our attention on the pure classification of these images. 
Immunohistopathologic analysis (in particular the immunofluorescence approach) has never been 
previously addressed with Deep Learning techniques. We therefore focused on the ability to extract from 
these images the features normally collected by our pathologists during the examination. The 
immunofluorescence interpretation, like many other clinical imaging techniques, is a field in which the 
Deep Learning approach can offer a significant contribution. Indeed, any medical imaging technique 
involving human reporting is conditioned by a significant interpretative subjectivity. This poor 
reproducibility has been repeatedly documented in the old kidney histopathological literature 26-29 and has 
been recently confirmed in studies concerning the application of Deep Learning in kidney pathology 1, 2. The 
indices of agreement between human pathologists vary according to the metrics used, the preparation of 
the specimen, the histological parameters assessed, and the kidney disease considered; overall, reported 
agreement rate between human kidney pathologists is fair to moderate with agreement ratio ranging 
between 0.3 and 0.6. The agreement among the pathologists of our center settles within the moderate 
level, according to Cohen’s K methodology 30. In this scenario, the Convolutional Neural Network 
algorithms have ground truth agreement performances similar to the human operators. Our data suggest a 
high accuracy in identifying the analyzed features, which varies from 0.79 to 0.94. The feature in which the 
system performs best is the identification of the ‘Fine Granular Appearance’, which together with the 
‘Continuous Regular Capillary wall Location’ (the second-best identified feature), are often associated in the 
definition of the subepithelial deposits of Membranous Glomerulonephritis. With regard to these two 
patterns, the levels of agreements expressed between pathologists and ground truth has proved to be 
completely analogous to that between Convolutional Neural Networks and ground truth. However, even if 
less outstanding, also the agreement relating to the remaining features shows a Convolutional Neural 
Networks performance comparable to the human evaluators. It can be assumed that the imperfect 
concordance between ground truth with respect to Convolutional Neural Network and pathologists may be 
attributable to a different analytical setting (direct microscopic visualization of the specimen compared to 
captured images). However, we believe that this is a partial and not a substantial explanation of the 
phenomenon. In fact, our data suggest that under the same analytical conditions, the pathologists show a 
rather modest agreement between them (table 4), a well-known phenomenon against which an automated 
approach can bring improvements. Even for Intensity, a critical parameter for the reporting, a substantial 
subjectivity is documented (data not shown). To the best of our knowledge, there are no literature data 
suggesting that a simple determination of the fluorescence intensity level could replace a subjective (or 
Convolutional Neural Network) assessment. The classification of intensity still remains a semi-quantitative 
evaluation as several pre-analytical variables are not completely controllable and do not allow a purely 
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quantitative evaluation. These include the variability of fluorescence emission between commercial 
antibody batches, the decay of UV lamp fluorescence during its lifetime and many other confounders that 
are not usually under control (lab temperature, solution batches, manual skill of the technician etc.).

The reproducibility of the evaluation, which in itself already has enormous value, is not the only advantage 
that Deep Learning can introduce in this field; the speed of interpretation, the amount of data that can be 
analyzed and the relative economic savings all represent elements of great interest in the adoption of this 
technology. About this aspect the speed of execution of the analyses is crucial: the pathologists spent on 
average 22 minutes in the assessment of 180 images. Convolutional Neural Networks processed the same 
images in 11.2 seconds with comparable accuracy. This in itself represents 117.3 times greater efficiency than 
the human evaluator. Nevertheless, compared to the evaluation of a specimen in a real scenario, it must be 
taken into account that our simulation does not consider the times of identification of the glomeruli and the 
image acquisition from the microscope, since these were not goals of our study.

Our group has developed a web platform at https://nephronn.ing.unimore.it/ where it is possible to upload 
digitized images of glomeruli from immunofluorescence preparations at high magnification (400X). Once 
the image is loaded, it is analyzed and the prediction for each one of the 9 features currently available in 
our algorithm is presented. Due to the current hardware constraints, the web application relies on 
shallower neural networks than the ones described in this paper, causing a classification accuracy drop of 
about 5%. This platform will allow the kidney pathology community to directly experience the potential of 
our approach. In particular, this service will allow the development of possible collaborations with other 
kidney pathology centers for sharing images and contributing to the development of a larger common 
immunofluorescence database. At the moment, in fact, this experience is based on a relatively 
homogeneous data set; indeed, in this study, all the preparations were obtained from a single center that 
processed and digitized the images with a single protocol. It cannot be excluded that our algorithm may 
have lower performances when applied to images derived from other centers. Another limitation of our 
approach consists in the impossibility of recognizing with a significant accuracy the features that were less 
represented in our data set (discontinuous regular capillary wall and the linear / pseudolinear) or which are 
not captured by our standardized report (for example the amorphous / globular - IgM / Complement 
staining in segmental glomerulosclerosis). With collaborations already formalized with other laboratories, 
we plan to increase our data set and to incorporate these additional features into our algorithm in the near 
future. Another possible limitation of our approach could be identified in the double role of pathologist 2 
and pathologist 3 in defining the ground truth and in the analysis of the Testing set. However, we do not 
believe that this negatively affects the result of our work. Indeed, the dual role of pathologists 2 and 3 
would have possibly inflated their K value of concordance with the ground truth to the detriment of 
pathologist 1 and the Convolutional Neural Network. This phenomenon, which however does not emerge 
from the data (table 4), would eventually make the estimate of concordance K of the Convolutional Neural 
Network more conservative.

We can speculate that our algorithm can be part of a larger computer-aided pathology diagnostic platform. 
This platform, in the context of a network of nephrological centers engaged in kidney biopsy diagnostics, 
could provide for local scanning of immunofluorescence preparations (Whole Slide Imaging). The scanned 
image could  be sent to the central processing center which will apply a glomeruli identification algorithm2, 

25 and the subsequent analysis of the individual glomeruli for the automatic definition of the characteristics 
of 'Appearance', 'Distribution', 'Location' and 'Intensity'. An averaged summary of the results obtained by 
each glomerulus could therefore be organized in a report which would be sent to the local center for 
validation and implementation in the flowchart of the biopsy diagnostic process. 

In conclusion, we presented a Deep Learning approach capable of recognizing with significant accuracy the 
main features normally collected in the reporting of kidney immunofluorescence. The data showed an 
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accuracy comparable to what is normally expressed by pathologists who are experts in the field. In the near 
future, the collaboration with other centers with experience in kidney pathology will allow us to complete 
our algorithm with features that are currently under-represented and will guarantee external validity of our 
analysis. We believe that the algorithm developed by our group can become a useful tool to support the 
reporting of kidney immunofluorescence.
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Figures

Figure 1. The image dataset collects 12259 images. The partitioning of the images into a training set (11059 
images), validation set (200 images) and test set (1000 images) is shown.

Figure 2. Each panel of the figure represents the result of the feature specific Convolutional Neural Networks 
elaboration of a test image. Inside each panel the picture on the left shows the original test image, while the 
picture on the right shows its heatmap. In the heatmap the red area shows the sections of the image most 
involved in the classification process by the Convolutional Neural Network. All the presented images were 
correctly classified by the specific Convolutional Neural Network. A) Parietal; B) Mesangial; C) Continuous 
Regular Capillary Wall; D) Irregular Capillary Wall; E) Coarse Granular; F) Fine Granular; G) Segmental; H) 
Global

Figure 3. ROC curves of the Convolutional Neural Networks performance of prediction of each feature.
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Table 1. Main clinical characteristics of the patients.

Subjects 2542
M : F (%) 62% : 38%
Age (years) 52 (38 - 66)
Creatinine (mg/dl) 1.6 (1.0 - 2.7)
eGFR (ml/min/1.73m2) 45 (22 - 78)
CKD class:        1 18%

2 18%
3a 13%
3b 16%
4 18%
5 17%

Hb (g/dl) 12.0 (10.1 - 13.7)
Urine Protein/Creatinine 1.8 (0.5 - 4.3)
Hematuria 56%
systolic BP (mmHg) 130 (120 - 142)
diastolic BP (mmHg) 80 (70 - 84)
Diabetes 11%
Hypertension 37%
Clinical presentation:  

None 11%
Urinary Abnormalities 44%

Nephrotic Syndrome 32%
Nephritic Syndrome 9%

Macrohematuria 4%
M:F = male : female sex ratio; eGFR= estimated glomerular filtration rate; CKD = chronic kidney disease; Hb 
= hemoglobin; SBP = systolic blood pressure; DBP = diastolic blood pressure. With the exception of the 
male:female ratio, all the data are expressed as median (25° - 75° percentile) and percent.
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  Table 2. Neural network performance in feature prediction.

 Feature Accuracy Recall Precision F1 Score AUC
coarse granular 0.84 0.61 0.34 0.44 0.85

Appearance
fine granular 0.94 0.76 0.43 0.47 0.83
segmental 0.81 0.50 0.36 0.42 0.81

Distribution
global 0.82 0.74 0.87 0.79 0.89
mesangial 0.84 0.78 0.71 0.74 0.89
capillary wall 0.81 0.77 0.66 0.71 0.87
continuous regular 
capillary wall 0.91 0.82 0.75 0.78 0.94

Location

irregular capillary wall 0.79 0.67 0.49 0.57 0.84
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Table 3: Confusion Matrix of the intensity classes.

Confusion matrix provides insight how prediction is correctly distributed over the seven different classes of 
intensity. The ground truth labels are given vertically and the predicted labels by the Convolutional Neural 
Network are written on the horizontal axis.

 
0 0.5 1 1.5 2 2.5 3

0 0.82 0.11 0.04 0.00 0.02 0.00 0.01

0.5 0.31 0.29 0.22 0.05 0.07 0.02 0.05

1 0.16 0.16 0.28 0.06 0.24 0.00 0.10

1.5 0.16 0.10 0.20 0.04 0.20 0.02 0.28

2 0.03 0.03 0.10 0.10 0.34 0.00 0.39

2.5 0.06 0.03 0.07 0.01 0.25 0.03 0.55

3 0.00 0.00 0.02 0.00 0.06 0.00 0.92
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 Table 4. Average agreement between evaluators.

The average K of each feature ± standard deviations of K of each feature is reported (180 test images 
overall). CNNs = Convolutional Neural Networks

Average Ground Truth CNNs Pathologist 1 Pathologist 2

Pathologist 3 0.39 ± 0.18 0.43 ± 0.22 0.56 ± 0.15 0.49 ± 0.17
Pathologist 2 0.42 ± 0.07 0.54 ± 0.21 0.56 ± 0.16
Pathologist 1 0.45 ± 0.21 0.52 ± 0.15

CNNs 0.49 ± 0.20

Page 60 of 77

ScholarOne support: 888-503-1050

Clinical Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplemental material

Table of Contents of Supplemental material

 Supplemental Table 1. Immunofluorescence report.

 Supplemental Table 2. Final diagnoses of the kidney biopsies.

 Supplemental Table 3. Numeric distribution of the immunofluorescence features.

 Supplemental Table 4. Percent distribution of the immunofluorescence features.

 Supplemental Table 5. Ground truth agreement between pathologists and Convolutional Neural 

Networks.

 Supplemental Table 6. Inter-agreement Cohen’s K of each feature.

 Supplemental Table 7. Comparison of the report of a case of Lupus Nephritis (Supplemental 

Figure 4) between Ground Truth and Convolutional Neural Network.

 Supplemental Table 8. Ground truth agreement between pathologists and Convolutional Neural 

Networks.

 Supplemental Figure 1. Classification of the ‘Appearance’ of the deposits of the Immunofluorescence 
specimen.

 Supplemental Figure 2. Classification of the ‘Distribution’ of the deposits of the Immunofluorescence 
specimen.

 Supplemental Figure 3. Classification of the ‘Location’ of the deposits of the Immunofluorescence 
specimen.

 Supplemental figure 4. IgG direct Immunofluorescence of a Lupus Nephritis case.
 Supplemental figure 5. IgG direct Immunofluorescence of a Light Chain deposition disease.

Page 61 of 77

ScholarOne support: 888-503-1050

Clinical Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplemental Table 1. Immunofluorescence report.

   IgG IgA IgM C1q C3 F Kappa Lambda
linear         
pseudolinear         
coarse granular         

appearance

fine granular         
diffuse/segmental         
diffuse/global         
focal/segmental         

distribution

focal/global         
mesangial         
capillary wall         
continuous regular capillary wall 
(subepithelial)         

capillary wall regular discontinuous         

location

irregular capillary wall (subendothelial)         

GL
O

M
ER

U
LI

 INTENSITY         

The immunofluorescence report adopted at our center describes the ‘Appearance’, ‘Distribution’ and 
‘Location’ of immune deposits. Furthermore, the ‘Intensity’ of staining is described by a semi-quantitative 
rank with discrete values from 0 to 3 (by 0.5 intervals). The report includes the evaluation of IgG, IgA, IgM 
immunoglobulins, complement fractions C1Q, C3, Fibrinogen, Kappa and Lambda light chains.
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Supplemental Table 2. Final diagnoses of the kidney biopsies.

Diagnosis Freq Percent
IgA Nephropathy 401 16%
Membrabnous Glomerulonephritis 232 9%
Mesangial Proliferative Glomerulonephritis without immune deposits 150 6%
Diabetic Nephropathy 146 6%
Mesangial Proliferative Glomerulonephritis with IgM Deposits 134 5%
Chronic Interistitial Nephritis 111 4%
Unclassified Nephropathy 98 4%
Membranoproliferative Glomerulonephritis 78 3%
Benign Nephroangiosclerosis 65 3%
Lupus Nephritis 64 3%
Other Diagnoses 1063 41%
Total 2225 100%
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Supplemental Table 3. Numeric distribution of the immunofluorescence features.

   IgG IgA IgM C1q C3 F Kappa Lambda Overall
linear 28 11 4 1 6 10 9 19 88

pseudolinear 139 75 18 2 14 22 45 20 335

coarse granular 55 78 277 87 260 28 74 127 986
appearance

fine granular 171 126 109 43 182 41 135 165 972

diffuse/segmental 50 91 265 67 138 52 57 96 816

diffuse/global 565 734 656 279 987 370 618 937 5146

focal/segmental 32 61 209 59 134 71 37 51 654
distribution

focal/global 15 22 59 14 43 11 9 23 196

mesangial 154 682 556 183 661 186 292 613 3327

capillary wall 158 301 318 95 305 264 158 300 1899
continuous regular capillary wall 
(subepithelial) 365 135 116 87 295 67 291 341 1697

discontinuous regular capillary wall 17 17 35 14 97 13 14 25 232

GL
O

M
ER

U
LI

location

irregular capillary wall (subendothelial) 93 135 514 183 378 83 131 207 1724
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Supplemental Table 4. Percent distribution of the immunofluorescence features.

   IgG IgA IgM C1q C3 F Kappa Lambda
linear 0.96% 0.38% 0.14% 0.03% 0.20% 0.34% 0.31% 0.65%

pseudolinear 5% 3% 0.61% 0.07% 0.48% 0.75% 1% 0.68%

coarse granular 2% 3% 9% 3% 9% 0.96% 3% 4%
appearance

fine granular 6% 4% 4% 1% 6% 1% 5% 6%

diffuse/segmental 2% 3% 9% 2% 5% 2% 2% 3%

diffuse/global 19% 25% 22% 10% 34% 13% 21% 33%

focal/segmental 1% 2% 7% 2% 5% 2% 1% 2%
distribution

focal/global 1% 1% 2% 0.48% 1% 0.38% 0.31% 0.78%

mesangial 5% 23% 19% 6% 23% 6% 10% 21%

capillary wall 5% 10% 11% 3% 10% 9% 5% 10%
continuous regular 
capillary wall 
(subepithelial)

12% 5% 4% 3% 10% 2% 10% 12%

discontinuous regular 
capillary wall 0.58% 0.58% 1% 0.48% 3% 0.44% 0.48% 0.85%

GL
O

M
ER

U
LI

location

irregular capillary wall 
(subendothelial) 3% 5% 18% 6% 13% 3% 4% 7%
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Supplemental Table 5. Ground truth agreement between pathologists and Convolutional Neural 
Network.

Agreement between human evaluators (three different pathologists) and Convolutional Neural Networks 
was calculated by the Cohen’s Kappa (Kappa ± standard deviation of 20 test images per feature).

Pathologist 1 Pathologist 2 Pathologist 3 CNN
vs vs vs vsFeature

Ground Truth Ground Truth Ground Truth Ground Truth
coarse granular 0.40 ± 0.20 0.50 ± 0.21 0.60 ± 0.20 0.40 ± 0.24

Appearance
fine granular 0.30 ± 0.16 0.30 ± 0.22 0.20 ± 0.22 0.30 ± 0.25
segmental 0.41 ± 0.20 0.50 ± 0.21 0.10 ± 0.22 0.20 ± 0.25

Distribution
global 0.67 ± 0.21 0.40 ± 0.18 0.60 ± 0.22 0.60 ± 0.21
mesangial 0.80 ± 0.22 0.50 ± 0.21 0.50 ± 0.21 0.90 ± 0.11
capillary wall 0.60 ± 0.22 0.40 ± 0.22 0.40 ± 0.22 0.50 ± 0.22
continuous regular 
capillary wall 0.60 ± 0.20 0.40 ± 0.18 0.50 ± 0.22 0.60 ± 0.21

Location

irregular capillary wall 0.30 ± 0.22 0.40 ± 0.20 0.20 ± 0.20 0.40 ± 0.24
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Supplemental Table 6. Inter-agreement Cohen’s K of each feature.

Pathologist 1, 2, 3 (Pat.1, Pat. 2, Pat. 3); Ground Truth (GT); Convolutional Neural Network (CNNs).

Mesangial GT CNNs Pat.1 Pat.2
Pat.3 0.50 ± 0.22 0.59 ± 0.21 0.70 ± 0.18 0.34 ± 0.26
Pat.2 0.50 ± 0.22 0.59 ± 0.21 0.50 ± 0.22
Pat.1 0.80 ± 0.15 0.70 ± 0.18
CNNs 0.90 ± 0.11

Capillary wall GT CNNs Pat.1 Pat.2
Pat.3 0.40 ± 0.24 0.70 ± 0.18 0.60 ± 0.21 0.60 ± 0.21
Pat.2 0.40 ± 0.24 0.90 ± 0.11 0.42 ± 0.23
Pat.1 0.60 ± 0.21 0.51 ± 0.22
CNNs 0.50 ± 0.22

Continuous 
Regular Capillary 

wall GT CNNs Pat.1 Pat.2
Pat.3 0.50 ± 0.22 0.31 ± 0.24 0.52 ± 0.21 0.34 ± 0.23
Pat.2 0.40 ± 0.24 0.32 ± 0.27 0.74 ± 0.20
Pat.1 0.60 ± 0.21 0.57 ± 0.22
CNNs 0.60 ± 0.21

Irregular Capillary 
wall GT CNNs Pat.1 Pat.2

Pat.3 0.20 ± 0.25 0.40 ± 0.24 0.48 ± 0.23 0.52 ± 0.24
Pat.2 0.40 ± 0.24 0.40 ± 0.24 0.48 ± 0.23
Pat.1 0.30 ± 0.25 0.30 ± 0.25
CNNs 0.40 ± 0.24

Coarse Granular GT CNNs Pat.1 Pat.2
Pat.3 0.60 ± 0.21 0.76 ± 0.18 0.76 ± 0.18 0.66 ± 0.21
Pat.2 0.50 ± 0.22 0.89 ± 0.13 0.66 ± 0.21
Pat.1 0.40 ± 0.24 0.76 ± 0.18
CNNs 0.40 ± 0.24

Fine Granular GT CNNs Pat.1 Pat.2
Pat.3 0.20 ± 0.25 0.30 ± 0.25 0.30 ± 0.25 0.70 ± 0.18
Pat.2 0.30 ± 0.25 0.35 ± 0.25 0.35 ± 0.25
Pat.1 0.10 ± 0.26 0.61 ± 0.30
CNNs 0.30 ± 0.25

Segmental GT CNNs Pat.1 Pat.2
Pat.3 0.10 ± 0.26 0.06 ± 0.27 0.42 ± 0.23 0.18 ± 0.26
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Pat.2 0.50 ± 0.22 0.43 ± 0.25 0.45 ± 0.22
Pat.1 0.30 ± 0.25 0.38 ± 0.22
CNNs 0.20 ± 0.25

Global GT CNNs Pat.1 Pat.2
Pat.3 0.60 ± 0.21 0.35 ± 0.26 0.67 ± 0.20 0.55 ± 0.23
Pat.2 0.40 ± 0.24 0.47 ± 0.27 0.86 ± 0.16
Pat.1 0.50 ± 0.22 0.38 ± 0.28
CNNs 0.60 ± 0.21

Page 68 of 77

ScholarOne support: 888-503-1050

Clinical Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplemental Table 7. Comparison of the report of a case of Lupus Nephritis (Supplemental Figure 4) 
between Ground Truth and Convolutional Neural Network (CNN).

   
IgG

Ground Truth IgG CNN

linear

pseudolinear

coarse granular
appearance

fine granular yes

segmental
distribution

global yes yes

mesangial

capillary wall

continuous regular capillary wall (subepithelial) yes yes

discontinuous regular capillary wall

GL
O

M
ER

U
LI

location

irregular capillary wall (subendothelial)

Intensity 3 3

The Convolutional Neural Network could correctly recognize the deposits of the tuft (except for the fine 
granular appearance) despite of the presence of the extraglomerular deposits. 

Supplemental Table 8. Ground truth agreement between pathologists and Convolutional Neural 
Networks.

 
  

Lambda Light 
Chain

Ground Truth

Lambda Light 
Chain
 CNN

linear yes

pseudolinear

coarse granular
appearance

fine granular

segmental
distribution

global yes yes

mesangial

capillary wall yes yes

continuous regular capillary wall (subepithelial)

discontinuous regular capillary wall

GL
O

M
ER

U
LI

location

irregular capillary wall (subendothelial)

Intensity 3 3

The Convolutional Neural Network (CNN) could correctly recognize the deposits of the tuft despite of the 
presence of the extraglomerular deposits. The Convolutional Neural Network could not recognize the linear 
appearance because it was not trained for this task.
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Supplemental Figure 1. Classification of the ‘Appearance’ of the deposits of the Immunofluorescence 
specimen 1-3.

APPEARANCE
LINEAR and PSEUDO-LINEAR Scheme Example
The presence of the linear pattern is 
characteristic of the deposition of 
antibody against components of the 
glomerular basement membrane 
(GBM). The presence of circulant IgG 
against GBM is typical of the 
Goodpasture’s syndrome 4. Linear 
staining is also reported in diabetic 
nephropathy (pseudolinear) along the 
glomerular capillary walls with 
immunoglobulin G (IgG). In 
membranous glomerulonephritis the 
deposits are usually discrete and 
uniform, but in some cases, especially 
at the initial stage of the disease, they 
are small and confluent. In these 
instances, they could have a 
pseudolinear appearance.

COARSE GRANULAR Scheme Example
Coarse granularity can be identified in 
different conditions. For example, this 
pattern can be found in the deposits of 
membranoproliferative lesions and in 
the sub-epithelial deposits of 
postinfectious glomerulonephritis.

FINE GRANULAR Scheme Example
Fine granularity as opposed to coarse 
granularity has smaller diameter 
deposits. This condition can, for 
example, be observed in the deposits of 
the membranous glomerulonephritis at 
the initial stages.
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Supplemental Figure 2. Classification of the ‘Distribution’ of the deposits of the Immunofluorescence 
specimen 1-3.

DISTRIBUTION
DIFFUSE Scheme Example
The term ‘diffuse’ describes a lesion 
that is involving more than 50% of 
glomeruli. 

FOCAL Scheme Example
Focal describes a lesion that is Involving 
less than 50% of glomeruli.

GLOBAL Scheme Example
The term ‘global’ describes a lesion that 
involves all of a glomerular tuft.

SEGMENTAL Scheme Example
The term ‘segmental’ describes a lesion 
that involves part of a glomerular tuft.
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Supplemental Figure 3. Classification of the ‘Location’ of the deposits of the Immunofluorescence 
specimen 1-3.

LOCATION
MESANGIAL Scheme Example
Mesangial deposition of 
immunoglobulin is the typical pattern of 
the IgA Nephropathy. However, 
mesangial deposition can be founded in 
other conditions such as 
membranoproliferative 
glomerulonephritis or postinfectious 
glomerulonephritis.

CONTINUOUS REGULAR CAPILLARY 
WALL

Scheme Example

The regular continuous capillary wall 
pattern corresponds to the 
identification of subepithelial deposits 
possible through ultramicroscopic 
analysis. This is the typical 
immunofluorescence finding of 
Membranous glomerulonephritis: a 
diffuse global granular deposits of 
immune reactants that follow the 
contour of the GBM.

DISCONTINUOUS REGULAR CAPILLARY 
WALL

Scheme Example

This pattern is also described as "bumps 
and humps" or "lumpy-dumpy", 
traditionally associated with 
postinfectious glomerulonephritis.

IRREGULAR CAPILLARY WALL Scheme Example
The irregular capillary wall pattern 
corresponds to the identification of 
subendothelial deposits, ribbon-like 
deposits, negative in the mesangium, 
giving the appearance of lobes. This 
pattern is frequently associated with 
membranoproliferative 
glomerulonephritis.
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Supplemental Figure 4. IgG direct Immunofluorescence of a Lupus Nephritis case (400X). The image shows 
the presence of regular continuous capillary wall deposits of the glomerulus and basal membrane deposits 
of the tubules. The Convolutional Neural Network could correctly recognize the deposits of the tuft despite 
of the presence of the extraglomerular deposits (see Supplemental Table 7).
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Supplemental Figure 5. IgG direct Immunofluorescence of a Light Chain deposition disease (400X). The 
image shows the presence of deposits of the capillary wall of the glomerulus and basal membrane deposits 
of the tubules. The Convolutional Neural Network could correctly recognize glomerular deposits despite of 
the presence of the extraglomerular deposits (see Supplemental Table 8).
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