
Spotting insects from satellites: modeling the
presence of Culicoides imicola through Deep CNNs

Stefano Vincenzi∗, Angelo Porrello∗, Pietro Buzzega∗, Annamaria Conte†, Carla Ippoliti†, Luca Candeloro†,
Alessio Di Lorenzo†, Andrea Capobianco Dondona†, Simone Calderara∗

∗AImageLab, University of Modena and Reggio Emilia, Modena, Italy
†Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G.Caporale’, Teramo, Italy

Abstract—Nowadays, Vector-Borne Diseases (VBDs) raise a
severe threat for public health, accounting for a considerable
amount of human illnesses. Recently, several surveillance plans
have been put in place for limiting the spread of such diseases,
typically involving on-field measurements. Such a systematic and
effective plan still misses, due to the high costs and efforts
required for implementing it. Ideally, any attempt in this field
should consider the triangle vectors-host-pathogen, which is
strictly linked to the environmental and climatic conditions. In
this paper, we exploit satellite imagery from Sentinel-2 mission,
as we believe they encode the environmental factors responsible
for the vector’s spread. Our analysis - conducted in a data-driver
fashion - couples spectral images with ground-truth information
on the abundance of Culicoides imicola. In this respect, we
frame our task as a binary classification problem, underpinning
Convolutional Neural Networks (CNNs) as being able to learn
useful representation from multi-band images. Additionally, we
provide a multi-instance variant, aimed at extracting temporal
patterns from a short sequence of spectral images. Experiments
show promising results, providing the foundations for novel
supportive tools, which could depict where surveillance and
prevention measures could be prioritized.

Index Terms—Remote-sensing, vector-borne diseases, entomo-
logical surveillance, Culicoides imicola, bluetongue, Infectious dis-
ease, satellite imagery, Sentinels, Deep Learning, Convolutional
Neural Networks, Europe

I. INTRODUCTION

Recent incursions into Europe of some vector-borne dis-
eases (Chikungunya and Malaria), the persistence and spread
of others (West Nile Disease, Bluetongue and Lyme disease),
as well as the risk of introduction of new exotic diseases (Rift
Valley Fever, Crimean Congo Hemorrhagic Fever, African
Horse Sickness) prompt an integrated surveillance action. On
the one hand, such a solution may identify both the presence
and the abundance of the vectors (e.g., ticks, culicoides,
mosquitoes); on the other hand, it may lead to a deeper
knowledge of the territory and the potential habitats of dif-
ferent arthropod species. Over the years, public institutions
and organizations implemented various surveillance plans for
monitoring the spread of vectors in Europe [1]. However, a
systematic and intensive plan would require extremely high
resources and funds. In this respect, the identification of
specific monitoring areas could bring to a cost reduction and
fine-grained entomological surveillance strategies.

The survival and spread of vectors and pathogens in a
given area rely on several factors, such as climate, vegetation,

landscape composition, and hosts’ availability. In the recent
past, various studies relate the presence and the abundance
of vectors with different climatic and environmental factors.
As an example, in [2], the authors defined a series of liable
variables, such as temperature, aridity index, elevation, and
vegetation index. The analysis of these factors capture the
distribution of different species of Culicoides and the envi-
ronment favorable to them. Furthermore, the authors of [3]
pointed out the climate change as responsible for the spread
of certain pathogens, which in turn are involved in the spread
of the above-mentioned diseases.

To sum up, the environmental and climatic conditions
represent a crucial aspect for modeling the distribution and
abundance of vectors. Nowadays, dozens of satellites pro-
vide images at very high resolutions and with unprecedented
rhythms. In this work, we explore the analysis of these images
for predicting the presence of the Culicoides imicola, the
latter being among the species responsible for the Bluetongue
disease. In more details, we conduct all the analyses on the
satellite imagery coming from the Sentinel 2 mission, handled
by the European Space Agency (ESA) [4], [5] within the
Copernicus program. Copernicus builds on a global network
of thousands of sensors for land, ocean and atmospheric
monitoring of Earth, resulting in an impressive number of
daily observations. The Sentinel-2A and Sentinel-2B satellites
are equipped with a multi-spectral device (MSI) capable of
acquiring 13 spectral bands, ranging from visible (RGB) to
short-wave infrared (SWIR), including near-infrared (NIR).

These multi-band images could provide an enormous
amount of information about the landscape composition, frag-
mentation and configuration, which relate to the presence
and abundance of vectors. Aiming to capture these kind of
relationships among data, we gathered a new dataset, which
pairs spectral bands coming from the Sentinel mission with
ground-truth measures of presence/absence for the Culicoides
imicola in a certain area.

However, analyzing these data with shallow machine learn-
ing models would require intense efforts during the features
extraction stage, which could be enhanced using deep learn-
ing techniques. These techniques have already been used in
various researches related to the remote sensing field, such
as soil and crop classification. In our work, we frame the
problem of estimating the presence of C. imicola as a binary
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classification task, and take advantage of Deep Convolutional
Neural Networks (DCNNs) [6], which provide meaningful and
hierarchical representations from multi-band images. To the
best of our knowledge, their application in the field of vector-
borne diseases (VBDs) is still very limited.

We evaluate two kinds of approaches: on the one side,
we adopt a single multi-band image for predicting the given
binary target; on the other side, we underpin a sliding window
approach over time, where the network takes as input a
sequence of multi-band images. Those are acquired during
the month preceding the field catch of the vector: this way,
we aim to assess whether a temporal series of inputs could be
more informative. In the above-mentioned approaches, we rely
on ResNet [7] as a backbone network for the feature extrac-
tion stage, coupled with an aggregation module for merging
representations within the input window. For assessing the
merits of different inputs, we test our solution with: i) RGB
channels ii) the NDVI and NDWI indices; iii) all the 13 raw
bands captured by the Sentinel satellites. Briefly, experiments
show two insightful remarks: firstly, the spectral bands encode
important features for the task at hand; secondly, the multi-
instance approach outperforms the single-instance one.

The manuscript is organized as follows: related works are
discussed in Section II. We describe the datasets we used in
Section III. In Section IV, we introduce the proposed methods.
We report the experiments and ablation studies we conducted
in Section V. We finally draw several conclusions in Section
VI.

II. RELATED WORKS

A. Vector-borne diseases and machine learning approaches

Recently, several studies exploit machine learning algo-
rithms for analyzing the spread of VBDs in a given area.
In this respect, the authors of [8] took advantage of eco-
regions, namely areas’ within which there are associations of
interacting biotic and abiotic features’ [9]. The underlying idea
relies on the observation that areas with similar conditions
are potentially prone to similar disease risk, even though they
are distant from each other. Basically, they proposed a map
of eco-climatic Italian regions, the latter identified through a
data-driven approach. Formally, their clustering method relies
on seven environmental and climatic variables, relevant for
the spread of various VBDs. Afterward, they related the re-
sulting clustering map with ground-truth information about the
Bluetongue vectors and West Nile Disease (WND) outbreaks
in Italy. They showed that the habitat of C. imicola was
represented by two out of the twenty-two eco-regions, thus
indicating high-risk areas and therefore where surveillance
measures could be prioritized.

Differently, [10] predicted both the presence and abundance
of five different vectors (C. imicola, C. newsteadii, Pulicaris
complex, C. punctatus and C. obsoletus) across the Spanish ter-
ritory. The authors pointed out the abundance as an important
factor, essential for mathematical models for estimating both
the potential of the transmitted disease and its future behaviour.
Previous approaches considered the abundance linearly related

to the probability of presence. Instead, they compute the
former by combining the predicted probability with other
features, such as temperature or precipitations. To this aim,
they used various dataset (e.g. GTOPO30, CORINE etc.)
providing meteorological and environmental features (e.g. land
cover, vegetation, ground water etc.), mainly derived from
satellite imagery. Similarly to us, they gather ground-truth
information from traps located near the farms.

In technical details, they fed these data to an ensemble
model, exploiting a classification and regression forest for
estimating the presence and the abundance respectively. Re-
sults show particular factors being fundamental for the spread
of specific vectors. In particular, focusing on the C. imicola,
the authors found summer rainfall and dryness as the most
significant factors for its distribution.

We consider these works as a starting point for our efforts.
However, we highlight several methodological differences: i)
while they identified a priori risk areas, we conduct a a pos-
teriori analysis on top of them; ii) we shift the paradigm from
an unsupervised to a supervised one, modeling the presence
of a vector as a binary classification problem; iii) we do not
rely on hand-crafted features, as we leverage satellite images
for predicting the target directly, allowing the convolutional
model to learn the proper features for the task at hand.

B. Crop and Land classification

In the remote sensing field, numerous researches focus on
crop and land cover classification. A widely used approach
relies on various indices, such as the Normalized Difference
Vegetation Index (NDVI) and the Normalized Difference Wa-
ter Index (NDWI). These two indices arise directly from raw
spectral bands and reflect a clear physical meaning: while
the former quantifies the green biomass, the latter depicts the
water-body mapping. However, they show some limitations:
as an example, the denser the vegetation coverage becomes,
the more they will saturate, and the more performance will
degrade [11].

In such a case, the Enhanced Vegetation Index (EVI) repre-
sents a valid alternative: [12] used the EVI time-series as input
for a deep learning architecture, aiming to classify summer
crops (i.e., Rice, Corn, Safflower, etc.). In this respect, the
motivations behind the adoption of time-series emerge from
seasonal patterns in the dynamics of vegetation. Moreover, the
authors showed that traditional machine learning approaches
(XGBoost, Random Forest, and Support Vector Machine) lead
to lower performance with respect to the proposed deep model,
which exploits one-dimensional convolutions for capturing
both seasonal patterns and small scale temporal variations.

Differently, the authors of [13] described a three-
dimensional Convolutional Neural Network (3D-CNN), infer-
ring crops categories (i.e. Corn, Rice, Soyb and Tree) from
satellite images acquired by the Gaofen-2 satellite [14]. Since
vegetation indices rely on few bands among the available ones,
some crucial information could be discarded, thus resulting in
lower generalization capabilities in the crop classification task.
On this latter point, the authors propose the 3D-CNN, as it can



Fig. 1. Left: Italian locations of 94 capture farms (2018). Right: spatial
distribution of the C. imicola, ranging from August 2000 to August 2017 [8].

look for temporal patterns and dynamics within the raw bands
sequence directly.

Similarly, the authors of [15] proposed a land cover classi-
fication method, with four different classes (crop, tree, water,
and road), underpinning Sentinel bands as input to a Support
Vector Machine (SVM) classifier. In this respect, they conduct
experiments on three different types of features: vegetation in-
dices, hand-selected bands, and, finally, all bands. As observed
in [13], the authors claimed that exploiting all bands leads to
better results.

III. DATASETS

A. Bluetongue vectors Dataset

Aiming to predict the presence of C. imicola, we gath-
ered a dataset coupling satellite patches depicting the Ital-
ian territory with ground-truth information regarding vectors’
catches. In more details, we extracted the data regarding
the presence/absence of the C. imicola species from the
‘Culicoides collections’. Such information have been stored
in a centralized database, hosted by the IZSAM Institute1 as
part of the Bluetongue National Surveillance Plan [16]. This
plan takes place in Italy since 2000 [17], and defines field
and laboratory protocols for the collection of Culicoides and
their identification. The catches of these insects are conducted
near the farms through various traps, activated in the evening
and collected the next morning. Eventually, an entomological
laboratory examines the traps for identifying the Culicoides
species and their actual amount.

B. Satellite Imagery

As mentioned before, the multi-spectral images we rely on
are acquired through optical devices onboard the Sentinel-2A
and 2B satellites. These images depict the Earth’s surface with
a high spatial, temporal, and spectral resolutions.

The two satellites simultaneously orbit around the Earth on
the same trajectory, at the height of about 780 km, staggered
between them by 180 degrees. They provide a multispectral

1Namely, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise.

TABLE I
SPECTRAL BANDS FROM SENTINEL-2 MSI SENSOR, COUPLED WITH

THEIR WAVELENGTH AND RESOLUTIONS.

Bands Wavelength (µm) Res (m)

B1 Coastal Aerosol 0.443 60
B2,3,4 BGR channels 0.490 10
B5 Vegetation Red Edge 0.705 20
B6 Vegetation Red Edge 0.740 20
B7 Vegetation Red Edge 0.783 20
B8 NIR 0.842 10
B8A Vegetation Red Edge 0.865 20
B9 Water Vapour 0.945 60
B10 SWIR (Cirrus) 1.375 60
B11 SWIR 1.610 20
B12 SWIR 2.190 20

”photograph” of the territory that they fly over every five days.
The spectral bands (see Table I) are acquired under different
resolutions, in particular at 10, 20 and 60 meters per pixel.
The ESA makes these images available through an online
platform 2.

In the following list, we sum up the main characteristics for
each band, arranged in ascending order with respect to their
wavelength:
• B1: it identifies any type of aerosol;
• B2: the blue color, useful to discriminate between the

different types of vegetation. Compared to lower frequen-
cies, it provides a better clear water penetration and a
superior illumination of the materials in shadow;

• B3: the green color, which excels in highlighting muddy
water, and helps in finding oil on the water surface and
vegetation;

• B4: the red color, suitable for finding urban and soil
features; its good response to dead foliage allows to
discriminate between the vegetation types;

• B5,6,7,8A,8: all these bands are designed specifically for
analyzing and classifying the vegetation. In particular,
the last one enables shorelines mapping and extracting
information about biomass content;

• B9,10: belonging to the infra-red region, they both aim
at identifying water vapour. Notably, the second one is
specific for cirrus clouds;

• B11,12: the last two bands distinguish areas covered by
ice and snow from clouds.

C. Datasets integration

We combined the ground-truth information regarding C. im-
icola catches with the ones coming from Sentinel-2 satellites.
With no loss of generality, we restrict our analysis to the year
2018, as Sentinel-2B data have been made available since
March 2017 only.

For each capture, we collect the corresponding satellite im-
age depicting its site location. To avoid misleading associations

2Please refer to https://scihub.copernicus.eu for additional details.

https://scihub.copernicus.eu


Fig. 2. The proposed framework, in its multi-instance variant: it takes multiple samples as input, each of which is independently processed by a shared CNN,
the latter acting as the feature extractor (e.g. resnet18). Afterward, we stack those representations and form the input for the next neural aggregation module,
which fulfills one of the following two options: (a) a 1D-Convolution based schema, leveraging the underlying time ordering; (b) an attention-based module,
which estimates the importance of each representation during the overall computation. Best viewed in color.

TABLE II
FOR EACH ITALIAN REGION, THE NUMBER OF ENTOMOLOGICAL CATCHES

AND SATELLITE IMAGES FOR THE YEAR 2018.

Regions Farms Catches Images

Abruzzo 6 196 491
Basilicata 2 102 142
Calabria 5 192 495
E. Romagna 13 489 999
Lazio 3 112 216
Lombardy 13 431 984
Marche 5 229 429

Regions Farms Catches Images

Molise 1 26 69
Apulia 4 196 280
Sardinia 10 419 778
Sicily 6 188 423
Tuscany 8 374 702
Veneto 10 384 792
Umbria 6 262 503

between input and targets, we focus on farms with an accurate
georeferencing only. Importantly, we create each example so
that the image’s acquisition date is as close as possible to
the time at which the trap was placed. Among the different
spatial resolutions available, we adopt 20 meters as the default
input resolution. We empirically observe that it represents
a good compromise between preserving images’ details and
the overall memory footprint. This way, for each capture
site, we obtain a 224x224 pixel image (resulting in a cutout
of 4480x4480 m), which captures environmental information
near the farm. These catches take place periodically, at variable
intervals.

Given a capture, the presence or absence of the C. imicola
represents the ground truth we adopt during our experiments.
The dataset is unbalanced in favor of the absence of the vector.
On the one hand, the positive catches constitute approximately
one-seventh of the total. On the other hand, the distribution of

positive labels is not uniform among different regions: in this
respect, Figure 1 (right) shows the distribution of the catches
over the Italian territory, as well as the tiles of the satellite
images (left).

To sum up, the final dimension of the dataset equals the
number of catches, in our case 3671, distributed among 94
farms. For our purposes, we leverage 7514 satellite images.
As mentioned before, 3182 samples refer to the negative
class, thus indicating the absence of the C. imicola, while 489
samples belong to the positive one. We propose in Table II a
region-wise summary regarding the dataset.

IV. MODELS

A. Features Extraction

Our proposal heavily relies on ResNet [7] as feature ex-
tractor for the overall architecture. In more details, ResNet is
one of the most used networks for classification and object
detection tasks. The underlying idea - which makes this archi-
tecture so powerful - regards the residual blocks, which aim to
simplify the training of neural networks characterized by many
layers. In this regards, several researches [18], [19] highlight
networks’ depth as a crucial factor: indeed, deeper models
allow to learn richer representations. On the other hand, the
deeper the networks become, the more the vanishing gradient
issue [20] emerges. A careful initialization has addressed
this problem primarily [20], as well as placing intermediate
normalization layers [21]. Differently, ResNet and its variants
tackle the degradation problem by means of skip connections,



as the network is equipped with an identity mapping between
each block and the following one. This way, the gradients can
be back-propagated without suffering from numerical issues.
Moreover, identity shortcut connections add neither additional
parameters nor computational complexity.

Since we rely on a few labeled data, our proposal exploits
a ResNet pre-trained model on the Imagenet dataset [22],
and then fine-tune it on ours. Since training a model from
scratch could be hard, a standard guideline envisions a pre-
training stage on a large dataset. Therefore, one could take
such an achieved optimum as an initialization point for the
next optimization phase, the latter guided by the task at hand.

B. Attention-based Features Aggregation
As we rely - for both the training and the inference stages

- on multiple images at a time, we designed two solutions for
aggregating representations coming from each sample. Let us
start from the first one: we discard information arising from
the temporal order and focus on features of each image solely.

Such an approach is based on the work described in [23],
where the authors proposed a novel neural module for handling
Multiple Instance Learning (MIL) problems. MIL represents
a variation of the supervised learning paradigm, where a
single label refers to a bag of instances. Considering X =
{x1, x2, . . . , xK} as a bag of samples exhibiting neither
dependency nor ordering among each other, the labels of
each individual sample are y1, y2, . . . , yK , with yk ∈ {0, 1};
however, they remain unknown during the training phase. In
this respect, the assumption underlining the MIL framework
can be summarized as follows:

Y =

{
0, iff

∑
k yk = 0,

1, otherwise.
(1)

The authors’ proposal consists in training a MIL model by
optimizing the log-likelihood function. Importantly, the prob-
ability assigned to a given bag must be permutation invariant:
this way, the solution to the MIL problem arises naturally from
the Fundamental Theorem of Symmetric Functions [24].

We inherit from [23] a general three-steps approach for clas-
sifying a bag of instances: i) to apply a non-linear transforma-
tion to instances trough a function f ; ii) to exploit a symmetric
function σ to aggregate these features; iii) to transform such
a comprehensive feature vector again by means of a function
g. In our work, we adopt the embedding level approach for
designing the function f , the latter mapping instances to a
low dimensional embedding through a deep neural network.
This way, the whole approach results flexible and trainable
end-to-end. For the second step - the one implementing the
aggregation phase - we rely on the attention mechanism. In this
regards, we compute a weighted average of instances’ latent
representations, where a multi-layered perceptron outputs the
coefficients. Given a bag of k embeddings H = {h1, . . . , hK}
and parameters W and V , we combine them as follows:

z =

K∑
k=1

akhk, (2)

where:

ak =
exp{W> tanh

(
V h>k

)
}

K∑
j=1

exp{W> tanh
(
V h>j

)
}

. (3)

Our assumptions deviate from the MIL framework ones,
where the bag would be labeled as positive whether at least one
of its sample is positive (see Eq. 1). In our problem, differently,
we evaluate how past images influence the prediction for the
current one, regardless of their order.

C. Convolution-based Features Aggregation

As a second step, we aimed to assess whether the temporal
information could bring meaningful features for the task
at hand. In this regards, we compare the above-described
proposal with a different one, which exploits the images’
acquisition time. Starting from a query image, this alternative
takes as input five images from the temporal neighborhood
of the query, restricting to the ones acquired before. We
then arrange the images according to their temporal order.
Afterward, the ResNet backbone independently processes each
sample within the sequence, so resulting in a list of 512-
dimensional embeddings. We then apply a one-dimensional
convolution, followed by a max-pooling stage, on the temporal
axis (see Fig. 2 a)). Eventually, a linear layer outputs the
binary predictions (the same holds for the attention-based
architecture).

During the preliminary stage, we intentionally discard re-
current networks for designing such a time-aware approach.
Indeed, we would not benefit from the capabilities of these net-
works, as we focus on short and fixed-length input sequence.
In support of this, [25] presented an empirical evaluation of
convolutional and recurrent architectures. From their remarks,
convolution arises as a natural starting point for sequence mod-
eling problems; this is due to its low memory requirements, its
stable gradient and its suitability for parallelism. Eventually,
as shown in [12], the one-dimensional convolutions are able
to extract features from satellite imagery, thus being viable for
classifying crops.

V. EXPERIMENTS

A. Evaluation protocol

For avoiding overfitting and misleading conclusions, we
adopt the Stratified K-Fold cross-validation to evaluate the
performance of our models (with K = 5). Stratified K-Fold
is defined as a simple variation of the K-fold, in a way that
each fold preserves approximately the probability distribution
of the classes (the one that can be computed on the complete
dataset). Moreover, before splitting the dataset, we make sure
each fold holds samples from all regions under consideration;
thus guaranteeing the model to inspect images with different
environmental and vegetative characteristics.



B. Metrics

We propose several metrics to evaluate the performance
among various scenarios and architectures. Since the dataset at
hand is actually unbalanced, an high accuracy value does not
represent a symptom of satisfying performance nor generaliza-
tion capabilities. Differently, metrics as precision and recall are
suitable, as well as the F1-score, the latter rewarding solutions
showing high values for both of the former. Eventually, we
assess the models computing the Area Under the Precision-
Recall Curve (AUPRC) for the positive class, thus obtaining
a threshold-invariant summary.

C. Implementation details

Before being fed into the network, we normalize each
spectral band independently, by computing the 2nd and 98th

percentile values. We use these ones as boundaries for clip-
ping each pixel. We empirically found that percentiles gain
robustness when compared to the minimum and maximum,
which suffer in presence of noisy acquisitions. After clipping
the pixels’ values accordingly, we apply the min-max normal-
ization technique [26].

During each experiment, we exploit the pre-trained weights
for finetuning ResNet. We apply data augmentation to the input
images, as horizontal flip, vertical flip, and rotation. In our
experiments, we train the model for 150 epochs, setting the
learning rate fixed at 0.001. The batch size equals to 16. For
regularization purpose, we apply the dropout technique, with
a drop probability of 0.2.

For mitigating the above-discussed classes unbalance, we
exploit the weighted counterpart of the cross-entropy loss. In
so doing, the weight of the positive class is seven times greater
the weight of the negative one.

D. Baselines

Firstly, we consider as baseline classifier the one imple-
menting a naive strategy, as generating random predictions
by sampling from the class distribution of the training set.
Indeed, such a naive choice leads to a measure of ‘baseline’
performance, namely the expected success rate when simply
guessing. This way, we are able to evaluate whether the model
effectively learns from the data.

Secondly, we assess a single-instance binary classifier,
equipped with resnet18 as feature extractor. Moreover, we
tested it on different input settings, such as RGB, the Nor-
malized Difference Vegetation Index (NDVI) coupled with
the Normalized Difference Water Index (NDWI) (see Eq. 4),
and all 13 bands. Moreover - as previously done in [15]
- we test the B4, B8A and B11 bands, the ones involved
during the NDVI and NDWI computations. The reasons be-
hind these analyses are twofold: on the one hand, we can
evaluate whether more acquisition will lead to significant
improvements; on the other hand, we get a clear view on the
contribution of spectral bands when compared to their hand-
designed derivatives.

NDVI =
B8A −B4

B8A +B4
; NDWI =

B8A −B11

B8A +B11
. (4)

TABLE III
RESULTS OBTAINED IN THE SINGLE-INSTANCE SETTING.

Model [pre-trained yes/no] Acc. Pr. Rc. F1 AUPRC

Random classifier [7] .819 .169 .140 .153 .116

RGB [7] .922 .702 .584 .637 .606
RGB [3] .931 .764 .616 .679 .653

NDVI + NDWI [7] .926 .708 .640 .668 .656
NDVI + NDWI [3] .928 .714 .616 .659 .668

B4 + B8A + B11 [7] .908 .612 .607 .609 .632
B4 + B8A + B11 [3] .912 .697 .602 .643 .641

Spectral bands [7] .913 .619 .705 .656 .668
Spectral bands [3] .924 .667 .721 .689 .682

E. Single-instance Classification

We report in Table III the results for the single-instance
setting. Looking at the first row, the one showing the random
classifier’s performance, we can draw the following consid-
erations: firstly, the problem unbalance makes the accuracy
unsuitable for judging the model’s capabilities; secondly, as
all variants achieve higher F1 and AUPRC scores, our model
effectively learns useful patterns from the data.

Looking at Table III, we draw the following remarks:
• The raw bands lead to the highest performance for our

problem. Such a result strengths the underlying intuition
of our work, which exploits the environmental patterns
arising from raw satellite images for predicting the pres-
ence of C. imicola;

• The NDVI and NDWI indices yield better results than the
B4, B8A and B11 bands, namely the ones from which
the former are computed: such a finding highlights their
relevance for the field. However, it is worth noting that
exploiting all the channels brings to even better results;
thus indicating the occurrence of significant features
ignored by the NDVI and NDWI;

• We remark the beneficial effects arising from the Ima-
geNet pre-training: despite the ours being a completely
different task, the convolutional weights can be inherited
and fine-tuned for working on spectral bands. This may
be useful when facing remote sensing applications, espe-
cially the ones characterised by few labeled data.

For additional notes on the single-istance setting, please
refer to Subsection V-G .

F. Multi-instance Classification

In the multiple-instance setting we evaluate three variants:
i) Attention-based (Section IV-B); ii) 1D-Convolution (Sec-
tion IV-C); iii) a Mean-based approach, the latter computing
the mean of ResNet’s activations along the temporal dimen-
sion. We design such a baseline for investigating the impact of
the proposed aggregation modules w.r.t. a naive one. Indeed,
averaging the representations does not consider the samples’



TABLE IV
RESULTS OBTAINED IN THE MULTI-INSTANCE SETTING.

Model Acc. Pr. Rc. F1 AUPRC

Single-istance .924 .667 .721 .689 .682

Mean-based .957 .783 .877 .826 .804

Attention-based .955 .786 .853 .817 .812

Conv-based .956 .786 .860 .821 .821

ordering, nor it is able to identify the key instances. It is worth
noting that the three variants compared in this section takes all
spectral bands as input. We apply the same data augmentation
and hyperparameters adopted per the single-instance setting,
except for the number of epochs, which is lowered to 120 due
to faster convergence.

We report the results in Table IV and observe that:
• The single-instance classifier earns worse results w.r.t. the

multi-instance one. Indeed, the latter can capture temporal
patterns, appearing in more than one image. Additionally,
in the single-instance approach, the prediction could suf-
fer in the presence of noisy acquisitions. As an example,
we mention the cloudiness, which affects a large part of
the available data. Differently, under the multi-instance
setting, it is unlikely that all five images are cloudy;

• The Conv-based model leads to slightly better results
w.r.t. the attention-based one; thus indicating that the
order contains some valuable information for the task;

• Both the Attention-based and the Conv-based models
exhibit a better AUPRC value compared to the Mean-
based one. Nevertheless, F1-score does not support this
result. We will conduct further investigations to assess
which of the two metrics is more suitable for the problem
at hand.

G. Limitations and Future Works

Even though the results being suitable, we found that the
spectral bands perform just slightly better than the RGB
ones (especially when looking at the F1-score, see Table III).
This indicates the curse of dimensionality when dealing with
complex data as the multi-spectral images. In future works,
we will explore this aspect, trying to increase the gap between
spectral bands and other hand-crafted representations. In this
regards - further than gathering more data - we envision a
network pre-training on crop and land classification directly,
for which large datasets [27] are available currently. This
could result in a proper initialization, thus improving the
generalization capabilities of our model.

As discussed in Subsection V-A, we assess our proposal
through Stratified K-Fold. In doing so, each of the K runs
has been conducted by splitting entomological information
about catches in two non-overlapping sets (namely, the training
and test set). As a consequence, the same capture site could
appear in both the training and test set, even though under

different time periods. Because of this, we cannot claim for
sure whether the model generalizes to unseen sites. We will
remove such a limitation in future works, defining a clear
cross-site evaluation protocol.

As can be appreciated in Fig. 1 (right), the C. imicola
shows some subtle patterns in its geographical distribution.
In particular, it follows a sort of locality principle, stating
that neighboring sites are likely to share the same levels
of abundance. Thus, one could infer the presence of the
C. imicola in a certain area just looking to its neighboring
nodes, modeling the overall environment as a graph connecting
sites and regions. This way, we could frame the problem
under the graph-based semi-supervised framework [28], the
latter assuming the label information to be smoothed over the
graph. In this respect, we will profit from recent advances on
Graph Convolutional Neural Networks (GCNNs) [29], [30]
and propose a novel inference engine, which would exploit
the local dynamics arising from the spread of C. imicola.

VI. CONCLUSION

In this work, we focus on predicting whether the C. imicola
vector is present in the area of interest. We achieve that
through a novel deep-learning-based approach, which extracts
meaningful features from a sequence of satellite imagery
depicting that area. Even though a bigger dataset may en-
hance its performance, our model already provides suitable
generalization capabilities than both the usual hand-crafted
features and the RGB bands only; therefore, all the spectral
bands must carry fundamental features about the spread of
the vector. Furthermore, we propose a multi-instance model
leveraging temporal patterns, which leads to better results than
single-instance one. Future work aims to improve the overall
performance through a targeted pre-training phase, over a large
dataset specific for satellite imagery. Moreover, as we observe
locality playing a significant role in the geographical spreading
of C. imicola, we will frame the here-discussed problem in
terms of semi-supervised learning over graphs.
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