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Abstract
For a generic n-qubit system, local invariants under the action of SL(2,C)⊗n

characterize non-local properties of entanglement. In general, such properties
are not immediately apparent and hard to construct. Here we consider two-qubit
Yang–Baxter operators and show that their eigenvalues completely determine
the non-local properties of the system. Moreover, we apply the Turaev pro-
cedure to these operators and obtain their associated link/knot polynomials.
We also compute their entangling power and compare it with that of a generic
two-qubit operator.

Keywords: braiding quantum gates, local invariants, Yang–Baxter operators,
link polynomials, entangling power

1. Introduction

Entanglement, perhaps the most bizarre feature of the quantum world [1, 2], plays a crucial role
in quantum information processing and quantum computation [3, 4]. Its non-local nature goes
against our classical intuition, but it can be used to analyze a quantum system in a systematic
manner, via group theory and classical invariant theory [5, 6]. The parameters appearing in
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quantum states and quantum operators can in fact be organized by their response under the
local action of SL(2,C)⊗n, for an n-qubit system defined on

(
C2
)⊗n

. This action defines an
orbit space of equivalence classes such that the states or operators in a given orbit have the
same non-local properties. This analysis has been performed in [7–13] for local unitaries of
pure and mixed states on finite-dimensional Hilbert spaces and in [14] for two-qubit gates. As
is well known from these early works, the systematic computation of these local invariants
is a tedious task that gets harder as one increases the number of qubits. Nevertheless, this is
important to understand all possible entanglement in a finite quantum system and hence must
be tackled.

In this work we explore the possibility of simplifying this task by ‘creating’ quantum sys-
tems with braid operators built from Yang–Baxter operators (YBOs), i.e. operators that solve
the (spectral parameter-independent) Yang–Baxter equation. In recent years it has been under-
stood that such operators can also act as quantum gates [15–23], leading to the speculation of a
broad connection between topological and quantum entanglement. We work on the two-qubit
space (n = 2), though we expect the properties we find to generalize to higher n.

For a generic two-qubit operator, an obvious set of independent local invariants under
SL(2,C)⊗2 are class functions of the operator or functions of its independent eigenvalues, since
SL(2,C)⊗2 acts on the operator as a similarity transformation. However, this is not necessarily
the whole story and there may be more independent local invariants. We expect the number of
independent local invariants to reduce and get closer to the number of independent eigenvalues
if some constraints on the operator are imposed. We explicitly see that all the local invariants
are solely functions of the eigenvalues for two-qubit braid operators of the form⎛

⎜⎜⎝
� 0 0 �
0 � � 0
0 � � 0
� 0 0 �

⎞
⎟⎟⎠ . (1.1)

These matrices generate entangled two-qubit states and we denote them X-type operators,
for obvious reasons. We find twelve such classes of YBOs that can be both unitary and
non-unitary7.

We organize our results as follows. In section 2 we find one linear and five independent
quadratic invariants for an arbitrary two-qubit operator under the action of SL(2,C)⊗2. The
same procedure can also be carried out for more than two qubits. For the special case of an arbi-
trary X-type two-qubit operator, we show in section 3 that independent invariants are exhausted
by one linear and five quadratic invariants. In section 4 we restrict the X-type operators to
braid operators and observe that all the local invariants are expressed solely as functions of
the eigenvalues and that the number of independent local invariants coincides with the num-
ber of independent eigenvalues in each of twelve possible classes. In section 5 we enhance
the X-type braid operators using the procedure outlined in [25] and compute their associated
link/knot polynomials. It turns out that the polynomials are not always local invariant, although
they can be expressed in terms of the eigenvalues of the braid operators. In section 6 we also
consider the entangling powers [26] of the X-type braid operators and compare them with the
entangling power of an arbitrary X-type operator. We end with an outlook and discussion in
section 7. In appendix A we investigate the relation between our classification of X-type YBOs

7 In [24], two-qubit braid operators are completely classified in ten forms, as discussed in appendix A. Among these ten
forms, RH1,3 and RH2,3 in (A.9) are not of the form (1.1). We check in appendix B that RH1,3 and RH2,3 have analogous
properties to the X-type YBOs.
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and Hietarinta’s classification [24]. For completeness, an analogous computation is presented
in appendix B for families of braid operators that are not of the form (1.1).

2. SL(2,C)⊗2 invariants of general two-qubit operators

We consider an operator R acting on two qubits |i1 i2〉 as a 4 × 4 matrix (its row and column
are labeled by (i1i2) and (̃i1 ĩ2), respectively):

R |i1 i2〉 =
1∑

ĩ1,̃i2=0

Ri1 i2, ĩ1 ĩ2

∣∣̃i1 ĩ2
〉
. (2.1)

When an invertible local operator (ILO)

Q = Q1 ⊗ Q2 ∈ SL(2,C)⊗2 (2.2)

acts on two-qubit states (QR |i1 i2〉, Q
∣∣̃i1 ĩ2

〉
), we can interpret that R is transformed as QRQ−1.

More precisely

Ri1 i2, ĩ1 ĩ2
→

1∑
i′1,i′2,̃i′1,̃i′2=0

(Q1)i1 i′1
(Q2)i2 i′2

Ri′1 i′2, ĩ′1 ĩ′2
(Q−1

1 )̃i′1 ĩ1
(Q−1

2 )̃i′2 ĩ2
, (2.3)

where untilded (tilded) indices with a = 1, 2, say ia (̃ia), are transformed by Qa (Q−1
a ). From

this transformation property, one can see that invariants under the action of the ILO can be con-
structed from a set of Rs by contracting their indices with the four invariant tensors εia ja , ε̃ia j̃a ,
δia j̃a , δ̃ia ja , with ε01 = −ε10 = 1, ε00 = ε11 = 0. Note that the resulting expressions would also
be invariant under the action of a general ILO belonging to C∗ · SL(2,C)⊗2, namely stochas-
tic local operations and classical communication (SLOCC) [27]. The factor C∗ represents the
multiplication by a nonzero complex number and does not affect R, since these are similarity
transformations.

In the following, we present the invariants at linear and quadratic orders in R. Einstein’s
convention—repeated indices are understood to be summed over—is used for notational
simplicity.
Linear invariant. The invariant at linear order is only one and given by

I1 = Ri1 i2, ĩ1 ĩ2
δi1 ĩ1

δi2̃i2
= Tr R, (2.4)

where Tr denotes the trace taken on the whole Hilbert space of the two qubits. In this case there
is no possibility of contraction by εia ja or ε̃ia j̃a . In order to use εi1 j1 for example, we need two
untilded indices with the suffix 1, but Ri1 i2, ĩ1 ĩ2

has only one.
Quadratic invariants. By exhausting all possible index contractions of Ri1 i2, ĩ1 ĩ2

R j1 j2, j̃1 j̃2
by

the invariant tensors, we first list eight invariants which are independent of I2
1 :

I2,1 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

δi1 j̃1
δ̃i1 j1

δi2 j̃2
δ̃i2 j2

= Tr R2, (2.5)

I2,2 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

δi1 j̃1
δ̃i1 j1

δi2̃i2
δ j2 j̃2

= tr1
[
(tr2 R)2

]
, (2.6)

I2,3 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

δi1 ĩ1
δ j1 j̃1

δi2 j̃2
δ̃i2 j2

= tr2
[
(tr1 R)2

]
, (2.7)

3



J. Phys. A: Math. Theor. 54 (2021) 135301 P Padmanabhan et al

where tra (a = 1, 2) denotes the partial trace taken on the local Hilbert space at the ath qubit;

I2,4 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

εi1 j1 ε̃i1 j̃1
δi2 j̃2

δ̃i2 j2
= Tr [Y1(Θ1R)Y1R] , (2.8)

I2,5 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

δi1 j̃1
δ̃i1 j1

εi2 j2 ε̃i2 j̃2
= Tr [RY2(Θ2R)Y2] , (2.9)

where Ya is the Pauli y-matrix acting on the ath qubit, and Θa represents the partial transpose
with respect to indices on the ath qubit;

I2,6 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

εi1 j1 ε̃i1 j̃1
δi2 ĩ2

δ j2 j̃2

= tr1 [Y1(tr2Θ1R)Y1(tr2 R)] , (2.10)

I2,7 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

δi1 ĩ1
δ j1 j̃1

εi2 j2 ε̃i2 j̃2

= tr2 [(tr1 R)Y2(tr1 Θ2R)Y2] , (2.11)

I2,8 = Ri1 i2, ĩ1 ĩ2
R j1 j2, j̃1 j̃2

εi1 j1 ε̃i1 j̃1
εi2 j2 ε̃i2 j̃2

= Tr
[
RTY1Y2RY1Y2

]
. (2.12)

In addition to the eight quadratic invariants above, there are two more quadratic invariants
constructed from one R acting on the qubits 1 and 2 (denoted by R12), and the other R acting
on a qubit outside of this space, e.g. acting on the qubits 2 and 3 (labeled by the indices j3, j̃3
and denoted by R23):

I2,9 = Ri1 i2, ĩ1 ĩ2
R j2 j3, j̃2 j̃3

δi1 ĩ1
δ j3 j̃3

δi2 j̃2
δ̃i2 j2

= tr2 [(tr1 R12)(tr3 R23)] , (2.13)

I2,10 = Ri1 i2, ĩ1 ĩ2
R j2 j3, j̃2 j̃3

δi1 ĩ1
δ j3 j̃3

εi2 j2 ε̃i2 j̃2

= tr2 [Y2(tr1 Θ2R12)Y2(tr3 R23)] . (2.14)

We should notice that I2
1 , I2,r (r = 1, . . . , 10) are not all linearly independent. In fact, the

equation

a1I2
1 +

10∑
r=1

a2,rI2,r = 0 (2.15)

for arbitrary R has the nontrivial solution

a2,6 = a2,1 + a2,2 − a2,4,

a2,7 = a2,1 + a2,3 − a2,5, a2,8 = −a2,1 + a2,4 + a2,5,

a2,9 = a2,10 = −a1 − a2,1 − a2,2 − a2,3. (2.16)

Plugging this into (2.15) yields a1 f1({I}) +
∑5

s=1 a2,s f2,s({I}) = 0, where f1({I}) and
f2,s({I}) (s = 1, . . . , 5) denote linear combinations of the quadratic invariants. Since this equal-
ity holds for arbitrary a1 and a2,s (s = 1, . . . , 5), we obtain the relations f1({I}) = 0 and

4
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f2,s({I}) = 0 (s = 1, . . . , 5) whose explicit form is

I2
1 − I2,9 − I2,10 = 0, I2,1 + I2,6 + I2,7 − I2,8 − I2,9 − I2,10 = 0,

I2,2 + I2,6 − I2,9 − I2,10 = 0, I2,3 + I2,7 − I2,9 − I2,10 = 0,

I2,4 − I2,6 + I2,8 = 0, I2,5 − I2,7 + I2,8 = 0. (2.17)

From (2.17), we see that only five of the quadratic invariants (e.g. I2,4, I2,5, I2,8, I2,9, I2,10) are
independent.

3. SL(2,C)⊗2 invariants of X-type two-qubit operators

In this section, we consider the case that the 4 × 4 matrix R in the previous section takes the
X-type form:

R =

⎛
⎜⎜⎝

h1 0 0 h2

0 h3 h4 0
0 h5 h6 0
h7 0 0 h8

⎞
⎟⎟⎠ , (3.1)

which is relevant to generate entangled states. hi(i = 1, . . . , 8) are complex parameters and the
matrix eigenvalues are given by

λ1± =
1
2

[
h1 + h8 ±

√
(h1 − h8)2 + 4h2h7

]
,

λ2± =
1
2

[
h3 + h6 ±

√
(h3 − h6)2 + 4h4h5

]
. (3.2)

Since the eigenvalues do not change under general similarity transformations for R, they are
obviously SL(2,C)⊗2-invariant combinations of the parameters.

It can be seen that the invariants presented in the previous section are not simply a function
of these eigenvalues, but they contain other terms, that have to be invariant combinations on
their own. To check this, let us specialize the linear and quadratic invariants to (3.1)

I1 = h1 + h3 + h6 + h8 = λ1+ + λ1− + λ2+ + λ2−,

I2,4 = 2(h1h6 − h4h5 − h2h7 + h3h8)

= 2{λ1+λ1− + λ2+λ2− + (λ1+ + λ1−)(λ2+ + λ2−)}
− 2(h1 + h6)(h3 + h8),

I2,5 = 2(h1h3 − h4h5 − h2h7 + h6h8)

= 2{λ1+λ1− + λ2+λ2− + (λ1+ + λ1−)(λ2+ + λ2−)}

− 2(h1 + h3)(h6 + h8),

I2,8 = 2(h4h5 + h3h6 + h2h7 + h1h8)

= −2{λ1+λ1− + λ2+λ2− + (λ1+ + λ1−)(λ2+ + λ2−)}

+ 2(h1 + h3)(h6 + h8) + 2(h1 + h6)(h3 + h8),

I2,9 = h2
1 + h2

8 + (h1 + h8)(h3 + h6) + 2h3h6

5
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= (h1 − h8)2 + (h1 + h3)(h6 + h8) + (h1 + h6)(h3 + h8),

I2,10 = h2
3 + h2

6 + (h1 + h8)(h3 + h6) + 2h1h8

= (h3 − h6)2 + (h1 + h3)(h6 + h8) + (h1 + h6)(h3 + h8), (3.3)

where I2,1, I2,2, I2,3, I2,6, and I2,7 are obtained from the above through the identities (2.17). On
the rhs in each formula of (3.3), we can identify the part not expressed by the eigenvalues as an
additional invariant combination8. From I2,4, I2,5, I2,9 and I2,10, we see that h1 − h8 and h3 − h6

are invariants. Since λ1+ + λ1− = h1 + h8 and λ2+ + λ2− = h3 + h6 are also invariant, it is
seen that h1, h3, h6, and h8 are invariant themselves. Looking at (3.2), we can conclude that the
six combinations

h1, h3, h6, h8, h2h7, h4h5, (3.4)

are independent SL(2,C)⊗2 invariants. These can also be expressed as

h1 =
1
2

[
λ1+ + λ1− +

√
I2,9 − I2,8 −

I2,4 + I2,5

2

]
,

h3 =
1
2

[
λ2+ + λ2− +

√
I2,10 − I2,8 −

I2,4 + I2,5

2

]
,

h6 =
1
2

[
λ2+ + λ2− −

√
I2,10 − I2,8 −

I2,4 + I2,5

2

]
,

h8 =
1
2

[
λ1+ + λ1− −

√
I2,9 − I2,8 −

I2,4 + I2,5

2

]
,

h2h7 =
1
4

[(
λ1+ − λ1−

)2 − I2,9 + I2,8 +
I2,4 + I2,5

2

]
,

h4h5 =
1
4

[(
λ2+ − λ2−

)2 − I2,10 + I2,8 +
I2,4 + I2,5

2

]
, (3.5)

which are clearly functions of the eigenvalues and quadratic local invariants I2,4, I2,5, I2,8, I2,9

and I2,10.
As far as the number of independent invariants is concerned, we have two additional invari-

ants other than the eigenvalues. Note that, in principle, six is the lower bound of the number
of the invariants, because there might appear more independent invariants when we consider
invariants containing higher powers of R. However, by studying the dimension of orbits of the
operator R in (3.1) under the action of SL(2,C)⊗2 as follows, one can show that the number of
independent invariants is precisely six.

8 For example, we can show that (h1 + h3)(h6 + h8) cannot be written in terms of the eigenvalues as follows. Suppose it
is a function of the eigenvalues: (h1 + h3)(h6 + h8) = f(λ1+,λ1−,λ2+,λ2−). Taking derivatives with respect to h2 (h4),
we see that f depends on the eigenvalues only through the combination λ1+ + λ1− = h1 + h8 (λ2+ + λ2− = h3 + h6).
Hence, (h1 + h3)(h6 + h8) = f(h1 + h8, h3 + h6). Derivatives on the rhs with respect to h1 and h8 should give the
same result, whereas this is not the case on the lhs. This inconsistency proves the statement. A similar proof goes for
(h1 + h6)(h3 + h8).

6
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The operator R acting on the two qubits i and i + 1 can be expanded in terms of the Pauli-
matrix basis as

R = lIiIi+1 + a3ZiIi+1 + a6IiZi+1 + b9ZiZi+1

+ b1XiXi+1 + b2XiYi+1 + b4YiXi+1 + b5YiYi+1, (3.6)

where I is the 2 × 2 unit matrix, and X, Y and Z are the Pauli matrices. l, a3, a6, b9 are functions
of h1, h3, h6 and h8, whereas b1, b2, b4, b5 depend on h2, h4, h5, h7 as

b1 =
1
4

(h2 + h4 + h5 + h7) , b2 =
i
4

(h2 − h4 + h5 − h7) ,

b4 =
i
4

(h2 + h4 − h5 − h7) , b5 =
1
4

(−h2 + h4 + h5 − h7) . (3.7)

To study the orbits we consider the Lie algebra generators of SL(2,C)⊗2 and their commutators
with R. Among six such commutators, namely

[
XiIi+1, R

]
,
[
IiXi+1, R

]
,
[
YiIi+1, R

]
,
[
IiYi+1, R

]
,[

ZiIi+1, R
]

and
[
IiZi+1, R

]
, the first four generate terms which are not present in the original

operator R. For example,

[
XiIi+1, R

]
= − i

2
(h1 + h3 − h6 − h8) YiIi+1 −

i
2

(h1 − h3 − h6 + h8) YiZi+1

+
i
2

(h2 + h4 − h5 − h7) ZiXi+1 +
i
2

(−h2 + h4 + h5 − h7) ZiYi+1, (3.8)

provides terms proportional to YiIi+1, YiZi+1, ZiXi+1 and ZiYi+1 which are not contained in
(3.6). In what follows, we do not consider such commutators that do not preserve the X-type
form. On the other hand, the last two commutators

[
ZiIi+1, R

]
and

[
IiZi+1, R

]
preserve the

X-type form and modify the coefficients b1, b2, b4 and b5 as[
ZiIi+1, R

]
= b′

1XiXi+1 + b′
2XiYi+1 + b′

4YiXi+1 + b′
5YiYi+1,[

IiZi+1, R
]
= b′′

1XiXi+1 + b′′
2XiYi+1 + b′′

4YiXi+1 + b′′
5YiYi+1, (3.9)

where

b′
1 =

1
2

(h2 − h4 + h5 − h7) , b′
2 =

i
2

(h2 + h4 + h5 + h7) ,

b′
4 =

i
2

(h2 − h4 − h5 + h7) , b′
5 =

1
2

(−h2 − h4 + h5 + h7) , (3.10)

and

b′′
1 =

1
2

(h2 + h4 − h5 − h7) , b′′
2 =

i
2

(h2 − h4 − h5 + h7) ,

b′′
4 =

i
2

(h2 + h4 + h5 + h7) , b′′
5 =

1
2

(−h2 + h4 − h5 + h7) . (3.11)

These actions do not change the coefficients l, a3, a6 and b9, consistently to h1, h3, h6 and
h8 being invariants. Regarding the operator R as a vector, the elements of the Lie algebra of
SL(2,C)⊗2 generate six independent directions in which this vector changes, implying that the
dimension of the orbit is six.

Let us now consider only the two-dimensional orbit generated by ZiIi+1 and IiZi+1. The orbit
forms a two-dimensional surface in a four-dimensional space spanned by b1, b2, b4 and b5, or

7
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equivalently by h2, h4, h5 and h7. Since two directions perpendicular to the surface correspond
to invariants under the actions, there should exist two invariant combinations made of h2, h4, h5

and h7. Thus, we identify the parameters h1, h3, h6, h8 and two combinations of the parameters
h2, h4, h5, h7 as independent invariants, for a total of six elements. Note that this time six is the
upper bound of the number of the independent invariants. These are invariants under the action
of only two of the generators of SL(2,C)⊗2. When considering the action of the full generators,
more constraints for the invariants may arise and the number could possibly decrease.

Combining this with the previous assertion that six is the lower bound of the number of
invariants, we conclude that there are precisely six SL(2,C)⊗2 invariants (3.4) that one can
construct out of the X-type operators. These six independent local invariants are spanned by
the single linear invariant (I1) and the five quadratic invariants (I2,4, I2,5, I2,8, I2,9, I2,10) of (3.3).
These can also be viewed as ‘coordinates’ which label the different orbits of R under the action
of SL(2,C)⊗2.

4. SL(2,C)⊗2 invariants for X-type YBOs

In this section we consider the invariants for X-type matrices (3.1) that are YBOs, i.e. invertible
solutions to the Yang–Baxter equation:

(R ⊗ 12)(12 ⊗ R)(R ⊗ 12) = (12 ⊗ R)(R ⊗ 12)(12 ⊗ R). (4.1)

In contrast to the additional SL(2,C)⊗2 invariants (different from the eigenvalues) found for
general X-type matrices in the previous section, we find by direct inspection that for these
operators here all the quadratic invariants depend only on the eigenvalues.

We list the YBOs (except the trivial one R ∝ 14) into the following twelve classes and
include the corresponding results for the quadratic invariants I2,4, I2,5, I2,8, I2,9, I2,10 with the
help of Mathematica:

• Class 1: h2 = h3 = h6 = h7 = 0
The eigenvalues are λ1+ = h1, λ1− = h8, λ2± = ±

√
h4h5 (≡ ±λ2) with the quadratic

invariants

I2,4 = I2,5 = −2λ2
2, I2,8 = 2(λ1+λ1− + λ2

2),

I2,9 = λ2
1+ + λ2

1−, I2,10 = 2λ1+λ1−. (4.2)

Note that I2,8 = I2,10 − I2,4 and hence there are only three independent local invariants.
This coincides with the number of independent eigenvalues: h1, h8 and

√
h4h5.

• Class 2: h1 = h4 = h5 = h8 = 0, h6 = h3

The eigenvalues are λ1± = ±
√

h2h7 (≡ ±λ1), λ2± = h3(≡ λ2) with the quadratic
invariants

I2,4 = I2,5 = −2λ2
1, I2,8 = 2(λ2

1 + λ2
2), I2,9 = I2,10 = 2λ2

2. (4.3)

In this case also we have the number of independent eigenvalues, namely h3,
√

h2h7, equal
to the number of independent local invariants: I2,4, I2,10 (note in fact that I2,8 = I2,10 − I2,4).

• Class 3: h2 = h3 = 0, h4 = −h1, h5 = h8, h6 = h1 + h8

The eigenvalues are λ1+ = λ2+ = h1(≡ λ+), λ1− = λ2− = h8(≡ λ−) with the
quadratic invariants

8
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I2,4 = 2λ+(λ+ + 2λ−), I2,5 = 2λ−(2λ+ + λ−), I2,8 = 0,

I2,9 = 2(λ2
+ + λ2

− + λ+λ−), I2,10 = 2(λ2
+ + λ2

− + 3λ+λ−). (4.4)

We have two independent eigenvalues in this case, h1 and h8, and two independent local
invariants as

λ+λ− =
I2,10 − I2,9

4
, 2λ2

+ = I2,4 − I2,10 + I2,9, 2λ2
− = I2,5 − I2,10 + I2,9, (4.5)

which helps solve for I2,10 − I2,9 in terms of I2,4 and I2,5 as

I2,10 − I2,9 =
2
3

[
I2,4 + I2,5 ±

√
(I2,4 + I2,5)2 − 3I2,4I2,5

]
. (4.6)

There are seven other solutions belonging to this class:

∗ h2 = h3 = 0, h4 = h1, h5 = −h8, h6 = h1 + h8

∗ h3 = h7 = 0, h4 = −h8, h5 = h1, h6 = h1 + h8

∗ h3 = h7 = 0, h4 = h8, h5 = −h1, h6 = h1 + h8

∗ h6 = h7 = 0, h4 = −h1, h5 = h8, h3 = h1 + h8

∗ h6 = h7 = 0, h4 = h1, h5 = −h8, h3 = h1 + h8

∗ h2 = h6 = 0, h4 = −h8, h5 = h1, h3 = h1 + h8

∗ h2 = h6 = 0, h4 = h8, h5 = −h1, h3 = h1 + h8

• Class 4: h2 = h3 = h7 = 0, h5 = h1
h4

(h1 − h6), h8 = h1

The eigenvalues areλ1± = λ2+ = h1(≡ λ1),λ2− = −h1 + h6(≡ λ2) with the quadratic
invariants

I2,4 = I2,5 = 2λ1(λ1 + 2λ2), I2,8 = 2λ1(λ1 − λ2),

I2,9 = 2λ1(2λ1 + λ2), I2,10 = 5λ2
1 + 4λ1λ2 + λ2

2. (4.7)

Here we have two independent eigenvalues, h1 and −h1 + h6. We can verify that only two
of the four local invariants are independent by the expressions

λ2
1 =

I2,8 + I2,9

6
, λ2

2 =
(I2,9 − 2I2,8)2

6(I2,8 + I2,9)
, (4.8)

implying that I2,4 and I2,10 depend on I2,8 and I2,9. Thus we again see that the number of
independent eigenvalues is the same as the number of independent local invariants.

Another solution h2 = h6 = h7 = 0, h8 = h1, h5 =
h1
h4

(h1 − h3) belongs to this class.
• Class 5: h2 = h3 = h7 = 0, h5 = h1

h4
(h1 − h6), h8 = −h1 + h6

The eigenvalues are λ1+ = λ2+ = h1(≡ λ+), λ1− = λ2− = −h1 + h6(≡ λ−) with the
quadratic invariants

I2,4 = 2λ+(λ+ + 2λ−), I2,5 = 2λ−(2λ+ + λ−), I2,8 = 0,

I2,9 = 2(λ2
+ + λ2

− + λ+λ−), I2,10 = 2(λ2
+ + λ2

− + 3λ+λ−). (4.9)

Once again we have two independent eigenvalues, h1 and −h1 + h6. We see that only two
of the four local invariants are independent from the expressions,

9
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λ+λ− =
I2,10 − I2,9

4
, λ2

+ =
I2,4 − I2,10 + I2,9

2
,

λ2
− =

I2,5 − I2,10 + I2,9

2
, (4.10)

where we can solve for I2,9 − I2,10 in terms of I2,4 and I2,5,

I2,9 − I2,10 =
−4(I2,4 + I2,5) ±

√
16(I2,4 + I2,5)2 − 48I2,4I2,5

6
, (4.11)

which in turn implies that the two eigenvalues, λ+ and λ− are functions of I2,4 and
I2,5. Thus we have the same number of independent local invariants and independent
eigenvalues.

Another solution h2 = h6 = h7 = 0, h5 =
h1
h4

(h1 − h3), h8 = −h1 + h3 belongs to this
class.

• Class 6: h3 = h6 = h1+h8
2 , h4 = h5 = −

√
h2

1+h2
8

2 , h7 = (h1+h8)2

4h2

The eigenvalues are λ1± = λ2± = 1
2

[
h1 + h8 ±

√
2(h2

1 + h2
8)

]
(≡ λ±) with the

quadratic invariants

I2,4 = I2,5 = 2λ+λ−, I2,8 = 2(λ+ + λ−)2,

I2,9 = 2(λ2
+ + λ2

− + λ+λ−), I2,10 = 2(λ2
+ + λ2

− + 3λ+λ−). (4.12)

We can show that only two of these four local invariants are independent, I2,4 and I2,8 as
can be seen from the expressions

λ+λ− =
I2,4

2
, λ2

+ + λ2
− =

I2,8

2
− I2,4, (4.13)

which helps solve for the independent eigenvalues, λ+ and λ− in terms of I2,4 and I2,8.

Another solution h3 = h6 =
h1+h8

2 , h4 = h5 =

√
h2

1+h2
8

2 , h7 =
(h1+h8)2

4h2
belongs to this

class.

• Class 7: h4 = h5 = −h1, h8 = h1, h6 = h3, h7 =
h2

3
h2

The eigenvalues are λ1+ = λ2+ = h1 + h3(≡ λ+), λ1− = −λ2− = h1 − h3(≡ λ−)
with the quadratic invariants

I2,4 = I2,5 = −2λ2
−, I2,8 = 2(λ2

+ + λ2
−), I2,9 = I2,10 = 2λ2

+. (4.14)

Clearly in this case we have two independent eigenvalues, h1 + h3 and h1 − h3 and two
independent local invariants, I2,4 and I2,9 as I2,8 = I2,9 − I2,4.

Another solution h4 = h5 = h1, h6 = h3, h8 = h1, h7 =
h2

3
h2

belongs to this class.

• Class 8: h3 = h5 = h6 = h8 = h1, h4 = −h1, h7 = − h2
1

h2
The eigenvalues are λ1± = λ2± = (1 ± i)h1(≡ λ±) with the quadratic invariants

I2,4 = I2,5 = I2,9 = I2,10 = 2(λ+ + λ−)2, I2,8 = 0. (4.15)

Here we only have one local invariant which is consistent with the number of independent
eigenvalues, depending on h1.

Another solution h3 = h4 = h6 = h8 = h1, h5 = −h1, h7 = − h2
1

h2
belongs to this class.

10
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• Class 9: h2 = h3 = h6 = 0, h8 = h1, h4 = h5 = −h1

The eigenvalues are λ1± = λ2+ = h1(≡ λ), λ2− = −h1(= −λ) with the quadratic
invariants

I2,4 = I2,5 = −2λ2, I2,8 = 4λ2, I2,9 = I2,10 = 2λ2. (4.16)

Once again we have a single local invariant and a single independent eigenvalue.
There are three other solutions belonging to this class:

∗ h3 = h6 = h7 = 0, h8 = h1, h4 = h5 = −h1

∗ h2 = h3 = h6 = 0, h4 = h5 = h8 = h1

∗ h3 = h6 = h7 = 0, h4 = h5 = h8 = h1

• Class 10: h2 = h3 = h6 = 0, h4 = h5 = h8 = −h1

The eigenvalues are λ1± = λ2± = ±h1(≡ ±λ) with the quadratic invariants

I2,4 = I2,5 = I2,10 = −2λ2, I2,8 = 0, I2,9 = 2λ2. (4.17)

There is a single local invariant and a single independent eigenvalue depending on h1.
There are three other solutions in this class:

∗ h3 = h6 = h7 = 0, h4 = h5 = h8 = −h1

∗ h2 = h3 = h6 = 0, h4 = h5 = h1, h8 = −h1

∗ h3 = h6 = h7 = 0, h4 = h5 = h1, h8 = −h1

• Class 11: h2 = h6 = 0, h1 = h5 = h8, h4 = −h8, h3 = 2h8

The eigenvalues are λ1± = λ2± = h8(≡ λ) with the quadratic invariants

I2,4 = I2,5 = I2,9 = 6λ2, I2,8 = 0, I2,10 = 10λ2. (4.18)

The number of local invariants coincides with the number of independent eigenvalues.
There are seven other solutions belonging to this class:

∗ h6 = h7 = 0, h1 = h5 = h8, h4 = −h8, h3 = 2h8

∗ h2 = h6 = 0, h1 = h4 = h8, h5 = −h8, h3 = 2h8

∗ h6 = h7 = 0, h1 = h4 = h8, h5 = −h8, h3 = 2h8

∗ h2 = h3 = 0, h5 = h8 = h1, h4 = −h1, h6 = 2h1

∗ h3 = h7 = 0, h5 = h8 = h1, h4 = −h1, h6 = 2h1

∗ h2 = h3 = 0, h4 = h8 = h1, h5 = −h1, h6 = 2h1

∗ h3 = h7 = 0, h4 = h8 = h1, h5 = −h1, h6 = 2h1

• Class 12: h4 = h5 = 0, h3 = h6 =
1−i

2 h1, h8 = −ih1, h7 = − i
2

h2
1

h2
.

The eigenvalues are λ1± = λ2± = 1−i
2 h1(≡ λ) with the quadratic invariants

I2,4 = I2,5 = 2λ2, I2,8 = 8λ2, I2,9 = 6λ2, I2,10 = 10λ2. (4.19)

The number of local invariants coincides with the number of independent eigenvalues.

Another solution h4 = h5 = 0, h3 = h6 =
1+i

2 h1, h8 = ih1, h7 =
i
2

h2
1

h2
belongs to this class.

This classification is based on the pattern of eigenvalues and quadratic invariants, which is
different from the criterium used by Hietarinta [24]. The relation between the two classifica-
tions is detailed in appendix A.
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5. Link invariants for X-type YBOs

A theorem due to Alexander [28] states that every knot/link embedded in S2 can be obtained
as a closure of a braid group element. In order for this to be valid, the braid group generators
must satisfy two additional moves, apart from the three usual Reidemeister moves9, called
the Markov moves. This leads to the enhancement procedure of Turaev and the subsequent
computation of knot/link polynomials [25], which we perform in the following.

Definition. An enhanced YBO is a quadruple (R, μ, x, y), with R : V ⊗ V → V ⊗ V (a braid
operator), μ : V → V and x, y ∈ C∗ such that the following conditions hold

(a) [R,μ⊗ μ] = 0, (5.1)

(b) tr2 [R(μ⊗ μ)] = xy μ, (5.2)

(c) tr2
[
R−1(μ⊗ μ)

]
= x−1y μ, (5.3)

where, as above, tr2 denotes the partial trace on the second qubit space. Let Bn be the n-strand
braid group generated by σ1, . . . , σn−1. Link polynomials for a braid group element ξ ∈ Bn are
then obtained as

LR (ξ) = x−w(ξ)y−n Tr
[
ρR (ξ)μ⊗n

]
, (5.4)

where w(ξ) = (the number of positive crossings) − (the number of negative crossings) is the
writhe of the link, and ρ is a representation of Bn constructed from the YBO R as

ρR(σi) = I⊗i−1 ⊗ Ri,i+1 ⊗ I⊗n−i+1. (5.5)

We take V =
(
C2
)⊗n

for qubit systems and n = 2 for two-qubit systems. I = 12 and Ri,i+1

denotes R acting on the ith and (i + 1)th qubits.

Note that the polynomials obtained from (5.4) are not always invariant under the local action
of SL(2,C)⊗n due to the presence of μ⊗n. In the case when μ = I, the link polynomials are local
invariants. As we explicitly see in (5.11) and (5.12), the link polynomials (5.4) with μ �= I are
not expected to be local invariants even if they are expressible only in terms of the eigenvalues.
We can say that any local invariant constructed from an X-type YBO is expressed as a function
depending only on eigenvalues of the YBO. However, the converse is not true in general.

We now enhance the twelve classes of X-type braid operators10 obtained in section 4 and
compute the associated link invariants for two- or three-strand cases as examples. All of these
are expressed solely in terms of the eigenvalues. Since it turns out that in each case the Skein
relation for the braid operators depends only on the eigenvalues, we can say that all the other
link invariants generated via the Skein relation are also functions only of the eigenvalues.
Enhancement of Hietarinta’s solutions [24] and associated link invariants are investigated
in [29]. Cases for unitary solutions are also discussed in [30]. Although our results overlap
with the results obtained there, we present them from our viewpoint in order to make this
paper self-contained.

9 Recall that the second and third Reidemeister moves represent the relations, σiσ
−1
i = σ−1

i σi = 1 and σiσi+1σi =
σi+1σiσi+1 respectively.
10 YBOs automatically become braid operators since the far-commutativity conditions σiσ j = σ jσi (|i − j| > 1) are
trivially satisfied.
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• Class 1: R1 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 h4 0
0 h5 0 0
0 0 0 h8

⎞
⎟⎟⎠

In this case we can enhance the braid operator when μ = I, μ = Z, μ = I ± Z.

∗ μ = I, x = ±h1, y = ±1 and h8 = h1. For example the link invariants corresponding
to a two-strand braid group element ξ = σk (k ∈ Z) are given by

LR

(
σk

1

)
=

⎧⎪⎨
⎪⎩

2 + 2

(√
h4h5

h1

)k

(k even)

±2 (k odd)

(5.6)

that distinguish links with even linking numbers. At h8 = h1 the braid operator
has three eigenvalues

{
λ1 = h1, ±λ2 = ±

√
h4h5

}
implying that a scaled version of

this braid operator, gi = ∓ i√
λ1λ2

R, realizes the Birman–Murakami–Wenzl (BMW)

algebra C n (l, m) [31, 32]:

ei =
1
m

(
gi + g−1

i

)
− 1, e2

i =

[
1
m

(
l +

1
l

)
− 1

]
ei, (5.7)

eigi±1ei = lei, eigi = giei = l−1ei, (5.8)

with l = ±i
√

λ1
λ2

and m = ∓i λ1−λ2√
λ1λ2

. From (5.7), we obtain

g2
i −

(
m +

1
l

)
gi +

(
1 +

m
l

)
· 1 − 1

l
g−1

i = 0. (5.9)

The Skein relation for the braid operator in this case can be read off from (5.9) as gi

and g−1
i can be thought of as positive and negative crossings respectively. This helps us

to obtain other link invariants in a combinatorial manner, which are also expressed in
terms of the eigenvalues. Although the BMW algebra underlies the Kauffman poly-
nomial of two variables [33] in general, we see that (5.9) with (5.6) generates link

invariants in the single variable
√

h4h5
h1

.
∗ μ = Z, x = ±h1, y = ±1 and h8 = −h1. The link invariants corresponding to a two-

strand braid group element ξ = σk
1 (k ∈ Z) become

LR

(
σk

1

)
=

[
1 −

(√
h4h5

h1

)k
] [

1 + (−1)k
]

, (5.10)

that distinguish links with even linking numbers. In this case, the braid operator
has four eigenvalues

{
±λ1 = ±h1, ±λ2 = ±

√
h4h5

}
and satisfies the identity R3

1 −
(h2

1 + h4h5)R1 + h2
1h4h5R−1

1 = 0. At a glance it seems to lead to nontrivial G2-link
invariants [34], but actually it does not as discussed in [29, 30].

Note that (5.10) is not a local invariant although it can be expressed in terms of the

eigenvalues. Actually, under the transformation (2.3) with Q j =

(
a j b j

c j d j

)
satisfying

13
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ajd j − bjc j = 1 ( j = 1, 2), (5.10) changes as

2

⎛
⎝ 2∏

j=1

(
a jd j + b jc j

)⎞⎠[
1 −

(√
h4h5

h1

)k
]

(5.11)

for k even, and

∓4
(h4h5)

k−1
2

hk
1

(a1c1b2d2h4 + b1d1a2c2h5) (5.12)

for k odd. R can be diagonalized as Ω diag(λ1,λ2,−λ2,−λ1)Ω−1, where Ω = 1 ⊕
1√
2

(√
h4

√
h4√

h5 −
√

h5

)
⊕ 1 depends on

√
h4/h5 besides the eigenvalue λ2. In gen-

eral, when μ �= I, such dependence in Ω will appear in the link invariants (5.4),
and the result will not be expressed only in terms of the eigenvalues. Here we see
that Ω−1(μ⊗ μ)Ω = diag(1,−1,−1, 1) and that the dependence in Ω accidentally
disappear. For this reason, the expression (5.10) is expressed only in terms of the
eigenvalues, which however does not mean the local invariance as seen in (5.11) and
(5.12).

∗ μ = I + Z, x = ±h1, y = ±2, there is no relation between h1 and h8 in this case. The
link invariants obtained in this case are just constants: LR

(
σk

1

)
= 1 for k even and ±1

for k odd.
∗ μ = I − Z, x = ±h8, y = ±2, there is no relation between h1 and h8 in this case. The

link invariants obtained in this case are the same constants as above.

For the third and fourth cases, the braid operators have four different eigenvalues, and
the identity R3

1 − (h1 + h8)R2
1 + (h1h8 − h4h5)R1 + (h1 + h8)h4h51 − h1h8h4h5R−1

1 = 0 holds.
Despite this relation, nontrivial G2-link invariants cannot be obtained. As discussed in [29],
any link invariant turns out to be 1 or −1 due to the property R±1

1 (μ⊗ μ) = h±1
1 (μ⊗ μ) for the

third and R±1
1 (μ⊗ μ) = h±1

8 (μ⊗ μ) for the fourth.

• Class 2: R2 =

⎛
⎜⎜⎝

0 0 0 h2

0 h3 0 0
0 0 h3 0
h7 0 0 0

⎞
⎟⎟⎠

In this case the braid operator can be enhanced using only μ = I. We then have x = ±h3,
y = ±1. The link invariants obtained are similar to the class 1 counterpart as seen for an element
of the two-strand braid group, ξ = σk

1 (k ∈ Z):

LR

(
σk

1

)
=

⎧⎪⎨
⎪⎩

2 + 2

(√
h2h7

h3

)k

(k even)

±2 (k odd),

(5.13)

that distinguish links with even linking numbers. The braid operator has three eigenval-
ues

{
λ2 = h3, ±λ1 = ±

√
h2h7

}
implying that a scaled version of this braid operator, gi =

∓ i√
λ1λ2

R2, realizes the BMW algebra C n (l, m) at l = ±i
√

λ2
λ1

and m = ∓ i(λ2−λ1)√
λ1λ2

.
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• Class 3: R3 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 h8 h1 + h8 0
h7 0 0 h8

⎞
⎟⎟⎠

Here enhancement occurs when μ = Z and μ = ∓
√

h8−h1
h7

I + X − iY ∓
√

h8−h1
h7

Z.

∗ μ = Z and x = ±i
√

h1h8, y = ∓i
√

h1
h8

. The link invariants LR

(
σk

1

)
vanish in this case.

∗ μ = −
√

h8−h1
h7

I + X − iY +
√

h8−h1
h7

Z, and x = ±h8, y = ∓2
√

h8−h1
h7

. The link invariants

are constants in this case: LR

(
σk

1

)
= (±1)k.

∗ μ =
√

h8−h1
h7

I + X − iY −
√

h8−h1
h7

Z, and x = ±h8, y = ±2
√

h8−h1
h7

. The link invariants

are the same constants as above.
As there are two distinct eigenvalues in these cases, {h1, h8}, each with multiplicity

two, we expect to realize the Hecke algebra, Hn(q), generated by invertible σi,

σ2
i = (q − 1)σi + q, σiσi+1σi = σi+1σiσi+1, (5.14)

using this braid operator [35]. This happens either for σi = − 1
h1

R3 at q = − h8
h1

or σi =

− 1
h8

R3 at q = − h1
h8

. The Skein relation is read off from the first equation of (5.14).

• Class 4: R4 =

⎛
⎜⎜⎜⎝

h1 0 0 0
0 0 h4 0

0
h1

h4
(h1 − h6) h6 0

0 0 0 h1

⎞
⎟⎟⎟⎠

In this case enhancement is possible when μ = I, μ = Z, μ = I ± Z and when μ =
I + h6

2h1−h6
Z.

∗ μ = I, x = ±h1, y = ±1 and h6 = 0. We obtain constant link invariants: LR

(
σk

1

)
= 4 for

k even and ±2 for k odd.
∗ μ = Z, x = ±ih1, y = ∓i and h6 = 2h1. The link invariants LR(σk

1) vanish.
∗ μ = I + Z, x = ±h1, y = ±2. We obtain constant link invariants LR

(
σk

1

)
= (±1)k.

∗ μ = I − Z, x = ±h1, y = ±2. We obtain the same constant link invariants as above.

∗ μ = I + h6
2h1−h6

Z and x = ± h
3
2
1√

h1−h6
, y = ± 2

√
h1

√
h1−h6

2h1−h6
. In this case we obtain non-trivial

link polynomials as seen in a two-strand braid group element ξ = σk
1 (k ∈ Z):

LR

(
σk

1

)
=

⎡
⎣ ±h

3
2
1√

h1 − h6

⎤
⎦
−k

−h1(−h1 + h6)1+k + hk
1

(
3h2

1 − 3h1h6 + h2
6

)
h1 (h1 − h6)

, (5.15)

and in a three-strand braid group element ξ = σk1
1 σk2

2 (k1, k2 ∈ Z):

LR

(
σk1

1 σk2
2

)
=

⎡
⎣ ±h

3
2
1√

h1 − h6

⎤
⎦
−k1−k2+1

1
h3

1

(
2h2

1 − 3h1h6 + h2
6

)

×
2∏

a=1

{
−h1(−h1 + h6)ka+1 + hka

1

(
3h2

1 − 3h1h6 + h2
6

)}
. (5.16)
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Since there are two distinct eigenvalues in these cases, {h1,−h1 + h6} with multiplicities
three and one respectively, we expect to realize the Hecke algebra (5.14), Hn(q), with this
braid operator and this indeed happens for either σi =

1
h1−h6

R4 at q = h1
h1−h6

or σi = − 1
h1

R4

at q = h1−h6
h1

. We can show that (5.15) and (5.16) depend on the eigenvalues only through
their ratio (−h1 + h6)/h1.

• Class 5: R5 =

⎛
⎜⎜⎜⎝

h1 0 0 0
0 0 h4 0

0
h1

h4
(h1 − h6) h6 0

0 0 0 −h1 + h6

⎞
⎟⎟⎟⎠

Here enhancement occurs for μ = Z and μ = I ± Z.
∗ μ = Z, x = ±

√
h1(h1 − h6), y = ±

√
h1

h1−h6
. In this case the two-strand braid group ele-

ments give vanishing link invariants. We can also see that elements of the three-strand
braid group vanish11: LR

(
σk

1σ
l
2

)
= LR

(
σk

1σ
l
2σ

m
1 σ

n
2

)
= 0 for k, l, m, n ∈ Z.

∗ μ = I + Z, and x = ±h1, y = ±2. In this case, we obtain constant link invariants:
LR

(
σk

1

)
= (±1)k.

∗ μ = I − Z, and x = ±(h1 − h6), y = ∓2. In this case we also obtain constant link
invariants: LR

(
σk

1

)
= (∓1)k.

For these cases, R5 has two different eigenvalues {h1,−h1 + h6} with multiplicity two for
each. We see that the Hecke algebra (5.14), Hn(q), is realized by σi = − 1

h1
R5 with q = h1−h6

h1

or σ = 1
h1−h6

R5 with q = h1
h1−h6

.

• Class 6: R6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 0 0 h2

0
h1 + h8

2
−
√

h2
1 + h2

8

2
0

0 −
√

h2
1 + h2

8

2
h1 + h8

2
0

(h1 + h8)2

4h2
0 0 h8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Enhancement is possible for the following five cases (λ± =

1
2

[
h1 + h8 ±

√
2(h2

1 + h2
8)

]
denote the eigenvalues of R):

∗ μ = Z, x = ± h1−h8
2 , y = ±1. The link invariants LR

(
σk

1

)
vanish.

∗ μ = I + i
2

h1+2h2+h8√
−2h2λ−

X + 1
2

h1−2h2+h8√
−2h2λ−

Y − 2λ+
h1−h8

Z, x = ±λ−, y = ±2.

∗ μ = I − i
2

h1+2h2+h8√
−2h2λ−

X − 1
2

h1−2h2+h8√
−2h2λ−

Y − 2λ+
h1−h8

Z, x = ±λ−, y = ±2.

∗ μ = I + i
2

h1−2h2+h8√
2h2λ+

X + 1
2

h1+2h2+h8√
2h2λ+

Y + 2λ−
h1−h8

Z, x = ±λ−, y = ±2.

∗ μ = I − i
2

h1−2h2+h8√
2h2λ+

X − 1
2

h1+2h2+h8√
2h2λ+

Y + 2λ−
h1−h8

Z, x = ±λ−, y = ±2.

For the last four cases, we obtain the same result for the link invariants: LR

(
σk

1

)
= (±1)k.

Each of the eigenvalues λ± has multiplicity two. The braid operator can be used to realize the
Hecke algebra by σ1 = − 1

λ+
R6 with q = − λ−

λ+
or σi = − 1

λ−
R6 with q = − λ+

λ−
.

11 Note that LR

(
σk

1σ
l
2σ

n
1

)
and LR

(
σk

2σ
l
1σ

n
2

)
reduce to LR

(
σk+n

1 σl
2

)
and LR

(
σl

1σ
k+n
2

)
respectively, because R commutes

with μ⊗ μ.
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• Class 7: R7 =

⎛
⎜⎜⎜⎜⎝

h1 0 0 h2

0 h3 −h1 0
0 −h1 h3 0
h2

3

h2
0 0 h1

⎞
⎟⎟⎟⎟⎠

The case μ = I alone enhances this operator when x = ±(h1 + h3), y = ±1. We obtain
non-trivial link invariants in this case as seen for two-strand and three-strand braid group
elements:

LR

(
σk

1

)
= (±1)k 2

[
1 +

1 + (−1)k

2

(
h1 − h3

h1 + h3

)k
]

, (5.17)

LR

(
σk

1σ
l
2

)
= (±1)k+l+1 2

[
1 +

1 + (−1)k

2

(
h1 − h3

h1 + h3

)k
]

×
[

1 +
1 + (−1)l

2

(
h1 − h3

h1 + h3

)l
]
. (5.18)

These distinguish only links with even linking numbers12. There are three distinct eigen-
values in this case, {h1 + h3, ±(h1 − h3)} with multiplicities two, one and one respec-
tively. The operator gi = ± i√

h2
1−h2

3

R7 realizes the BMW algebra (5.7) and (5.8) at l =

∓i
√

h1+h3
h1−h3

and m = ±i 2h1√
h2

1−h2
3

.

• Class 8: R8 =

⎛
⎜⎜⎜⎜⎝

h1 0 0 h2

0 h1 −h1 0
0 h1 h1 0

−h2
1

h2
0 0 h1

⎞
⎟⎟⎟⎟⎠

Enhancement occurs for μ = I at x = ±
√

2h1, y = ±
√

2. We obtain just constant link invari-
ants: LR

(
σk

1

)
= (±1)k2 cos

(
π
4 k
)
. There are two distinct eigenvalues, (1 ± i)h1 leading to a

realization of the Hecke algebra either when σi = − 1−i
2h1

R8 at q = i or when σi = − 1+i
2h1

R8 at
q = −i.

• Class 9: R9 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 −h1 0 0
h7 0 0 h1

⎞
⎟⎟⎠

In this case enhancement is only possible with μ = I and x = ±h1, y = ±1. The link invariants
obtained are just constant: LR

(
σk

1

)
= 4 for k even and ±2 for k odd. There are two distinct

eigenvalues in this case, {h1,−h1} with multiplicities of three and one respectively. The Jordan
decomposition of R9 leads to the identity R2

9 − h1R9 − h2
11 + h3

1R−1
9 = 0 instead of the Hecke

algebra realization.

12 Since the linking number is well-defined for two-component links, this statement has a meaning for k even in LR(σk
1)

and for k/l even/odd or odd/even in LR(σk
1σ

l
2). Links obtained by taking closure of the braids have two components in

the cases. As other cases, they have one component for k odd in LR(σk
1) and for both k and l odd in LR(σk

1σ
l
2). Three

components for both k and l even in LR(σk
1σ

l
2).
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• Class 10: R10 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 −h1 0 0
h7 0 0 −h1

⎞
⎟⎟⎠

We can enhance this braid operator when μ = Z and μ = ∓i
√

2h1
h7

I + X − iY ±

i
√

2h1
h7

Z.

∗ μ = Z and x = ±h1, y = ±1. The link invariants LR

(
σk

1

)
vanish.

∗ μ = −i
√

2h1
h7

I + X − iY + i
√

2h1
h7

Z and x = ±h1, y = ±2i
√

2h1
h7

. The link invariants are

constant: LR

(
σk

1

)
= 1 for k even and ∓1 for k odd.

∗ μ = i
√

2h1
h7

I + X − iY − i
√

2h1
h7

Z and x = ±h1, y = ∓2i
√

2h1
h7

. The link invariants give

the same constants as above.

In each of these three cases the braid operator has two distinct eigenvalues, ±h1, each with
multiplicity two. The Hecke algebra (5.14) is realized by σi = ± 1

h1
R10 with q = 1. Then, the

relation reduces to σ2
i = 1 13.

• Class 11: R11 =

⎛
⎜⎜⎝

h8 0 0 0
0 2h8 −h8 0
0 h8 0 0
h7 0 0 h8

⎞
⎟⎟⎠

In this case enhancement is only possible forμ = Z at x = ±ih8, y = ±i. The link invariants
LR

(
σk

1

)
vanish. The braid operator has a single eigenvalue, h8 with multiplicity four and the

braid operator can be used to realize the Hecke algebra after scaling it with a factor − 1
h8

at

q = −1. Then, the relation reduces to (σi + 1)2 = 0.

• Class 12: R12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1 0 0 h2

0
1 − i

2
h1 0 0

0 0
1 − i

2
h1 0

− ih2
1

2h2
0 0 −ih1

⎞
⎟⎟⎟⎟⎟⎟⎠

Enhancement is possible for the following five cases:

∗ μ = Z, x = ± 1+i
2 h1, y = ±1. The link invariants LR

(
σk

1

)
vanish.

∗ μ = I − h1+(1+i)h2√
2(1+i)h1h2

X + i h1−(1+i)h2√
2(1+i)h1h2

Y + iZ, x = ± 1−i
2 h1, y = ±2.

∗ μ = I + h1+(1+i)h2√
2(1+i)h1h2

X − i h1−(1+i)h2√
2(1+i)h1h2

Y + iZ, x = ± 1−i
2 h1, y = ±2.

∗ μ = I − i h1−(1+i)h2√
2(1+i)h1h2

X − i h1+(1+i)h2√
2(1+i)h1h2

Y − iZ, x = ± 1−i
2 h1, y = ±2.

∗ μ = I + i h1−(1+i)h2√
2(1+i)h1h2

X + i h1+(1+i)h2√
2(1+i)h1h2

Y − iZ, x = ± 1−i
2 h1, y = ±2.

For the last four cases, we obtain the same result for the link invariants: LR

(
σk

1

)
= (±1)k.

The braid operator has a single eigenvalue, 1−i
2 h1, of multiplicity four, and can be used to realize

13 However, σi is not equivalent to the permutation operator (see (A.3) for its matrix form), because patterns of the
eigenvalues are different. The permutation operator has the eigenvalues 1 and −1 with multiplicities three and one,
respectively.
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the Hecke algebra at q = −1 after scaling it with a factor, − 1+i
h1

. Again, the relation reduces to

(σi + 1)2 = 0.
For all the cases, link invariants directly computed or generated via the Skein relations are

functions of a single variable that is a combination of the eigenvalues of the braid operator.
This seems to match the claim in [29]—the best invariant of links obtained from the enhanced
YBOs is the Jones polynomial.

6. Entangling power

We have seen in section 4 that the independent local invariants for the X-type YBOs are func-
tions of just their independent eigenvalues, implying that in these systems the quantum entan-
glement and its non-local properties are obtained in terms of the eigenvalues of the ‘entanglers’.
A subtle feature, as we observed, is that this is not true for an entangler that is not a YBO. As
a further check of this, we compute here the entangling powers [26] of the X-type YBOs and
compare it with the entangling power of an arbitrary X-type entangler.

The entangling power for an operator U is defined as

eP(U) = E
(
U |ψ1〉 ⊗ |ψ2〉

)
, (6.1)

where the overline denotes an average over some distribution of the product states, |ψ1〉 ⊗ |ψ2〉
and E denotes an entanglement measure for two-qubit states. To determine the entanglement
measure in a two-qubit space, we look for independent local invariants under the action of
SL(2,C)⊗2. The entanglement measure we choose to compute the entangling power is expected
to be a function of only these local invariants.

6.1. Invariant of two-qubit states under SL(2,C)⊗2

A two-qubit state

|ψ〉 =
1∑

i1,i2=0

ti1 i2 |i1 i2〉 (6.2)

with coefficients ti1 i2 is changed by an ILO Q = Q1 ⊗ Q2 ∈ SL(2,C)⊗2 as

Q |ψ〉 =
1∑

i1,i2, j1, j2=0

ti1 i2 (Q1)i1 j1 (Q2)i2 j2 | j1 j2〉 , (6.3)

which amounts to the change of the coefficients:

ti1 i2 →
1∑

j1, j2=0

t j1 j2 (Q1) j1 i1 (Q2) j2 i2 . (6.4)

Invariant quantities under the change (6.4) can be constructed by contracting indices of the
coefficients by invariant tensors εia ja (a = 1, 2) for SL(2,C) at the ath qubit. The invariant of
the lowest order is quadratic in t:

J2 = ti1 i2 t j1 j2εi1 j1εi2 j2 = 2 det t. (6.5)
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One can show that there is no independent invariant at higher orders in t as follows. It is
easy to see that we cannot construct invariants of odd orders in t. Any invariant of the 2Nth
order in t can be expressed as

J2N = ti1 i2 t j1 j2εi1 j1 (K2N−2)i2 j2 , (6.6)

where (K2N−2)i2 j2 denotes a polynomial of the (2N − 2)th order in t with indices other than i2
and j2 contracted. We assume that invariants up to the order less than 2N are functions of J2.
Due to the identity

ti1 i2 t j1 j2εi1 j1 = (det t)εi2 j2 =
1
2

J2 εi2 j2 , (6.7)

we obtain

J2N =
1
2

J2εi2 j2 (K2N−2)i2 j2 . (6.8)

Note that εi2 j2 (K2N−2)i2 j2 is an invariant of the (2N − 2)th order and thus a function of J2 by
the assumption. Hence, J2N is also a function of J2, which completes a proof by the induction.

As another proof, we show that there is just a single local invariant for a two-qubit state,
by considering the infinitesimal action of SL(2,C)⊗2 on an arbitrary two-qubit state, as we
mentioned below (3.6). This is obtained from the expressions

XiIi+1

⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α3

α4

α1

α2

⎞
⎟⎟⎠ , YiIi+1

⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−iα3

−iα4

iα1

iα2

⎞
⎟⎟⎠ ,

ZiIi+1

⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

α1

α2

−α3

−α4

⎞
⎟⎟⎠ , (6.9)

and

IiXi+1

⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α2

α1

α4

α3

⎞
⎟⎟⎠ , IiYi+1

⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−iα2

iα1

−iα4

iα3

⎞
⎟⎟⎠ ,

IiZi+1

⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

α1

−α2

α3

−α4

⎞
⎟⎟⎠ , (6.10)

with i and i + 1 denoting the first and second qubits respectively. It can be checked that
only three of these six vectors are linearly independent. The three vectors generate a three-
dimensional hypersurface in the four dimensions spanned by α1, . . . ,α4. A single direction
perpendicular to the hypersurface corresponds to a single local invariant.

Note that a general ILO belongs to C∗ · SL(2,C)⊗2 rather than SL(2,C)⊗2. Due to the overall
factorC∗ (multiplication by a nonzero complex number), only the value of J2 being zero or non-
zero has an SLOCC-invariant meaning and labels SLOCC classes. For instance, J2 �= 0(= 0)
indicates the Bell-state class (the product-state class).
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6.2. Entangling power for a general X-type two-qubit operator

Consider a general two-qubit product state |P〉 =
(
a1 |0〉+ b1 |1〉

)
⊗
(
a2 |0〉+ b2 |1〉

)
with

unit norm. The X-type two-qubit operator in (3.1) acts on |P〉 to give

R |P〉 = (a1a2h1 + b1b2h2) |00〉+ (a1b2h3 + b1a2h4) |01〉
+ (a1b2h5 + b1a2h6) |10〉+ (a1a2h7 + b1b2h8) |11〉 . (6.11)

The local invariant under SL(2,C)⊗2 for this state is given by

det t = h1h7a2
1a2

2 + h2h8b2
1b2

2 − h3h5a2
1b2

2 − h4h6b2
1a2

2

+ (h1h8 + h2h7 − h3h6 − h4h5) a1a2b1b2. (6.12)

We choose |det t|2 as our entanglement measure14, and use the parametrization

a1 = eiφ1 cos θ1, b1 = e−iφ1 sin θ1,

a2 = eiφ2 cos θ2, b2 = e−iφ2 sin θ2, (6.13)

which fixes the overall phase of each of the one-qubit states ai |0〉+ bi |1〉 (i = 1, 2). Each one
qubit corresponds to a point on the unit sphere (Bloch sphere) as

r(i)
x ≡

(
a∗

i 〈0|+ b∗
i 〈1|

)
X
(
ai |0〉+ bi |1〉

)
= sin(2θi) cos(−2φi),

r(i)
y ≡

(
a∗

i 〈0|+ b∗
i 〈1|

)
Y
(
ai |0〉+ bi |1〉

)
= sin(2θi) sin(−2φi),

r(i)
z ≡

(
a∗

i 〈0|+ b∗
i 〈1|

)
Z
(
ai |0〉+ bi |1〉

)
= cos(2θi), (6.14)

where we see that (2θi,−2φi) parametrizes the unit sphere for each i = 1, 2. Under a uniform
distribution on the Bloch spheres, namely averaging as

x ≡ 4
π2

∫ 0

−π

dφ1

∫ 0

−π

dφ2

∫ π/2

0
dθ1 sin θ1 cos θ1

×
∫ π/2

0
dθ2 sin θ2 cos θ2x(φ1,φ2, θ1, θ2), (6.15)

we find the entangling power as

eP(R) =
1
9

[
|h1h7|2 + |h2h8|2 + |h3h5|2 + |h4h6|2

]
+

1
6
|h1h8 + h2h7 − h3h6 − h4h5|2. (6.16)

Whereas the term on the second line consists only of SL(2,C)⊗2 invariant combinations (3.4),
the terms on the first line do not.

14 In [26], the linear entropy 1 − tr1 ρ
2 with ρ being the reduced density matrix of a two-qubit pure state ρ ≡

1
〈Ψ|Ψ〉 tr2 |Ψ〉 〈Ψ| is used as entanglement measure. The linear entropy of |Ψ〉 =

∑1
i1 ,i2=0 ti1 i2 |i1i2〉 is computed as

2 |det t|2

[Tr(tt†)]2 . When the state |Ψ〉 is normalized, the denominator is 1 and the expression coincides with |det t|2 up to the

numerical factor 2.
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R in (3.1) becomes unitary when

h1 = r1 eiϕ1 , h2 =
√

1 − r2
1 eiϕ2 , h3 = r3 eiϕ3 ,

h4 =
√

1 − r2
3 eiϕ4 , h5 = −

√
1 − r2

3 ei(ϕ3+ϕ6−ϕ4),

h6 = r3 eiϕ6 , h7 = −
√

1 − r2
1 ei(ϕ1+ϕ8−ϕ2), h8 = r1 eiϕ8 ,

with r1, r2, r3 ∈ [0, 1] and ϕ1, ϕ2, ϕ3, ϕ4, ϕ6, ϕ8 ∈ [0, 2π]. Corresponding to (3.4), we see that

r1, r3,ϕ1,ϕ3,ϕ6,ϕ8 (6.18)

are SL(2,C)⊗2-invariant parameters. Then it is easy to verify that eP(R) depends only on such
local invariants. This is consistent with known results about the entangling power of unitary
quantum gates [36].

6.3. Entangling power of X-type YBOs

We discuss the entangling power of the twelve classes of X-type YBOs separately. We see that
although the entangling power is not always a function only of eigenvalues for general YBOs,
it is always so for unitary YBOs.

• Class 1:
The YBO R1 has four free parameters, h1, h4, h5, h8, and its eigenvalues are λ1+ = h1,

λ1− = h8, ±λ2 = ±
√

h4h5. The entangling power (6.16) reads

eP(R1) =
1
6
|h1h8 − h4h5|2 =

1
6

∣∣λ1+λ1− − λ2
2

∣∣2, (6.19)

which is a function of only the local invariants, as expected, and can be expressed only
by the eigenvalues. The enhancement procedure possibly imposes a relation h1 = h8 or
h1 = −h8, which however does not affect the above properties. The unitary YBO with
|h1| = |h4| = |h5| = |h8| = 1 also preserves the properties.

• Class 2:
Free parameters of the YBO R2 are h2, h3, h7, and its eigenvalues are ±λ1 = ±

√
h2h7,

λ2 = h3. The entangling power

eP(R2) =
1
6

∣∣h2h7 − h2
3

∣∣2 =
1
6

∣∣λ2
1 − λ2

2

∣∣2, (6.20)

is a function of only the local invariants, expressed only in terms of the eigenvalues. These
properties are not changed by enhancement or by imposing the unitary condition |h2| =
|h3| = |h7| = 1.

• Class 3:
The YBO R3 is a function of h1, h7, h8, and its eigenvalues are λ+ = h1, λ− = h8,

which are not changed by the enhancement. The entangling power is computed to be

eP(R3) =
1
9

[
|h1h7|2 + |h1(h1 + h8)|2

]
+

2
3
|h1h8|2

=
1
9

[
|λ+h7|2 + |λ+(λ+ + λ−)|2

]
+

2
3
|λ+λ−|2, (6.21)
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which is now dependent on h7, a parameter that changes under the local action of
SL(2,C)⊗2. R3 is unitary for h1 = −h8 = eiϕ1 and h7 = 0, turning it into a special case of
class 1. Then (6.21) becomes a constant 2

3 , which is a trivial function of the eigenvalues.
• Class 4:

The YBO R4 has three parameters h1, h4 and h6, with its eigenvalues λ1 = h1 and λ2 =
−h1 + h6, which is kept intact by enhancement. The entangling power is computed to be

eP(R4) =
1
9
|h4h6|2 +

1
6
|h1h6|2 =

1
9
|(λ1 + λ2)h4|2 +

1
6
|λ1(λ1 + λ2)|2, (6.22)

which depends on h4, a parameter that changes under the local action of SL(2,C)⊗2. R4

becomes unitary when |h1| = |h4| = 1 and h6 = 0. Then the entangling power vanishes,
which implies that the unitary R4 is not an entangler.

• Class 5:
The YBO R5 is again a function of h1, h4 and h6, with its eigenvalues λ+ = h1 and

λ− = −h1 + h6, before and after enhancement. The entangling power becomes

eP(R5) =
1
9
|h4h6|2 +

2
3
|h1(h1 − h6)|2 = 1

9
|(λ+ + λ−)h4|2 +

2
3
|λ+λ−|2, (6.23)

which contains h4, a parameter that changes under the SL(2,C)⊗2. R5 becomes unitary
when |h1| = |h4| = 1 and h6 = 0, making it a special case of class 1. Then, the entangling
power becomes the constant 2

3 .
• Class 6:

The YBO R6 has three parameters h1, h2, h8, and its eigenvalues are given by λ± =

1
2

[
h1 + h8 ±

√
2(h2

1 + h2
8)

]
, before and after the enhancement. The entangling power

becomes

eP(R6) =
1
9

[
|h2h8|2 +

1
16

∣∣∣∣h1

h2
(h1 + h8)2

∣∣∣∣
2

+
1
4

∣∣∣∣(h1 + h8)
√

h2
1 + h2

8

∣∣∣∣
2
]
+

1
24

|h1 − h8|4,

(6.24)

which is now dependent on h2, a parameter that changes under the SL(2,C)⊗2. h1 and h8 are
expressed by the eigenvalues as h1 =

λ++λ−
2 ±

√
−λ+λ− and h8 =

λ++λ−
2 ∓

√
−λ+λ−.

In this case R6 cannot be unitary for any choice of the parameters.
• Class 7:

The YBO R7 is a function of h1, h2 and h3, with its eigenvalues λ+ = h1 + h3 and
±λ− = ±(h1 − h3), which is not changed by enhancement. The entangling power is
computed to be

eP(R7) =
1
9

[
|h1h2|2 +

|h1h2
3|2

|h2|2
+ 2|h1h3|2

]
, (6.25)

where h2 changes under the local action of SL(2,C)⊗2. h1 and h3 are expressed by the
eigenvalues: h1 = 1

2 (λ+ + λ−) and h3 =
1
2 (λ+ − λ−). Note that the SL(2,C)⊗2-invariant

part of the second line in (6.16) vanishes in this case.

R7 is unitary when h1 = r1 eiϕ1 , h2 =
√

1 − r2
1 eiϕ2 and h3 = −i

√
1 − r2

1 eiϕ1 . Then
(6.25) is dependent on just r1 that is a local invariant from (6.18), and can be written
in terms of the eigenvalues.
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• Class 8:
This time R8 is a function of h1 and h2 with its eigenvalues (1 ± i)h1, which is preserved

by enhancement. The entangling power becomes

eP(R8) =
1
9

[
|h1h2|2 +

|h3
1|2

|h2|2
+ 2|h4

1|2
]

, (6.26)

where h2 changes under the SL(2,C)⊗2. Note that the SL(2,C)⊗2-invariant part of the
second line in (6.16) vanishes.

R8 is unitary for h1 =
1√
2

eiϕ1 and h2 =
1√
2

eiϕ2 . Then the entangling power (6.26)

becomes a constant 1
9 , which is a trivial function of the eigenvalues.

• Class 9:
R9 is a function of h1 and h7 with its eigenvalues ±h1, which is not changed by

enhancement. The entangling power is computed to be

eP(R9) =
1
9
|h1h7|2, (6.27)

which is now dependent on h7, a parameter that changes under the local action of
SL(2,C)⊗2. Again the second line in (6.16) vanishes.

R9 becomes unitary when h1 = eiϕ1 and h7 = 0, making it a special case of class 1.
Then the entangling power vanishes, implying that the unitary R9 is not an entangler.

• Class 10:
Again, R10 is a function of just h1 and h7, with its eigenvalues ±h1, before and after

enhancement. The entangling power is given by

eP(R10) =
1
9
|h1h7|2 +

2
3
|h1|4, (6.28)

where h7 changes under the SL(2,C)⊗2.
R10 is unitary for h1 = eiϕ1 and h7 = 0, making it a special case of class 1. Then

eP(R10) = 2
3 , a trivial function of the eigenvalues.

• Class 11:
R11 has free parameters h7 and h8, and its eigenvalue is h8, which is not affected by

enhancement. The entangling power is

eP(R11) =
1
9
|h7h8|2 +

10
9
|h8|4, (6.29)

where h7 changes under the SL(2,C)⊗2. In this case R11 cannot be unitary.
• Class 12:

R12 is a function of h1 and h2, with its eigenvalue 1−i
2 h1, before and after the

enhancement. The entangling power is

eP(R12) =
1
9

[
|h1h2|2 +

|h1|6
4|h2|2

]
+

1
6
|h1|4, (6.30)

where h2 changes under the SL(2,C)⊗2. R12 cannot be unitary.

The Bell matrix (3.1) with h1 = h2 = h3 = h4 = h6 = h8 =
1√
2

and h5 = h7 = − 1√
2

gives

the entangling power 1
9 that is not the largest in a two-qubit system. For the unitary case, classes

1, 2, 3, 5 and 10 can give the maximum value 2
3 . The Bell matrix gives the largest entanglement

when it acts to |00〉, |01〉, |10〉 and |11〉. But, it does not when it acts to a general product state.
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7. Outlook

Quantum gates realized using braid operators are expected to create a robust entangled state
from a product state. The entangled states thus obtained depend on parameters forming local
invariants and are insensitive to local perturbations. Such parameters should characterize non-
local properties of quantum entanglement. This criterion can be used to exclude braid operators
that do not possess this property. To achieve this, it is essential to identify the complete set of
parameters of local invariants for a braiding quantum gate that would determine the quantum
entanglement of these systems. For the twelve classes of the X-type two-qubit braid operators
considered in this paper, we found that the complete set is fixed by the independent eigen-
values of these operators. This is in marked contrast with the case of a generic two-qubit
operator, whose eigenvalues alone are not sufficient to determine the entanglement measures
of the system.

One of possible future directions would be to analyze robustness of entanglement [37]
for braiding quantum gates and to understand how topological properties coming from the
braid contribute to the robustness of the quantum entanglement. In addition, it would be
crucial to check these features for multi-qubit braid operators that can be constructed using
the generalized Yang–Baxter equation [38, 39] for which several solutions have been found
[40–44].
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Appendix A. Relation to the classification by Hietarinta

This rather technical appendix is devoted to a comparison between our results and the ones
obtained by Hietarinta in [24].

A.1. Classification by Hietarinta

We start by summarizing Hietarinta’s classification. In [24], all solutions to the constant
algebraic Yang–Baxter equation:

R j1 j2, k1 k2Rk1 j3, l1 k3 Rk2 k3, l2 l3 = R j2 j3, k2 k3 R j1 k3, k1 l3Rk1 k2, l1 l2 (A.1)
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are presented. All the indices of R take value 0 or 1. Here we represent R in 4 × 4-matrix form
as15

R =

⎛
⎜⎜⎝

R00, 00 R00, 01 R00, 10 R00, 11

R01, 00 R01, 01 R01, 10 R01, 11

R10, 00 R10, 01 R10, 10 R10, 11

R11, 00 R11,01 R11, 10 R11, 11

⎞
⎟⎟⎠ . (A.2)

Via the replacement R → PR with P being the permutation matrix

P =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , (A.3)

(A.1) is transcribed as the braided Yang–Baxter equation:

Ri1 i2, j1 j2R j2 i3, k2 l3R j1 k2, l1 l2 = Ri2 i3, j2 j3Ri1 j2, l1 k2 Rk2 j3, l2 l3 (A.4)

that is identical to (4.1).
Relevant results in [24] are summarized for solutions to (A.4) as follows. The continuous

transformations

R → κ(Q ⊗ Q)R(Q ⊗ Q)−1, (A.5)

with κ a complex factor and Q an invertible 2 × 2 matrix, map a solution to a solution. Each
of the following discrete transformations

Ri j, k l → Rk l, i j, (A.6)

Ri j, k l → R̄i j̄, k̄ l̄ , (A.7)

Ri j, k l → R j i, l k (A.8)

also maps a solution to a solution, where (A.6) means the matrix transpose taken in (A.2), and
ī is the negation of i, i.e., 0̄ ≡ 1 and 1̄ ≡ 0 in (A.7). Up to the transformations (A.5)–(A.8),
all the invertible solutions to (A.4), except the trivial solution R ∝ 1, are classified by the ten
matrices:

RH3,1 =

⎛
⎜⎜⎝

k 0 0 0
0 0 p 0
0 q 0 0
0 0 0 s

⎞
⎟⎟⎠ , RH2,1 =

⎛
⎜⎜⎝

k2 0 0 0
0 k2 − pq kp 0
0 kq 0 0
0 0 0 k2

⎞
⎟⎟⎠ ,

RH2,2 =

⎛
⎜⎜⎝

k2 0 0 0
0 k2 − pq kp 0
0 kq 0 0
0 0 0 −pq

⎞
⎟⎟⎠ ,

15 Note that, to identify the matrix (A.2) with the expression in [24] [see equation (4) there], the indices 0 and 1 here
should be identified with 1 and 2 in [24], respectively. Pairs of indices 01 and 10 are swapped in [24].
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RH2,3 =

⎛
⎜⎜⎝

k p q s
0 0 k p
0 k 0 q
0 0 0 k

⎞
⎟⎟⎠ ,

RH1,1 =

⎛
⎜⎜⎝

p2 + 2pq − q2 0 0 p2 − q2

0 p2 − q2 p2 + q2 0
0 p2 + q2 p2 − q2 0

p2 − q2 0 0 p2 − 2pq − q2

⎞
⎟⎟⎠ ,

RH1,2 =

⎛
⎜⎜⎝

p 0 0 k
0 p− q p 0
0 q 0 0
0 0 0 −q

⎞
⎟⎟⎠ , RH1,3 =

⎛
⎜⎜⎝

k2 −kp kp pq
0 0 k2 kq
0 k2 0 −kq
0 0 0 k2

⎞
⎟⎟⎠ ,

RH1,4 =

⎛
⎜⎜⎝

0 0 0 p
0 k 0 0
0 0 k 0
q 0 0 0

⎞
⎟⎟⎠ ,

RH0,1 =

⎛
⎜⎜⎝

1 0 0 1
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠ , RH0,2 =

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

⎞
⎟⎟⎠ . (A.9)

For X-type solutions that we consider in the text, the classification is valid with removing RH1,3

and setting p = q = 0 in RH2,3:

R′
H2,3 =

⎛
⎜⎜⎝

k 0 0 s
0 0 k 0
0 k 0 0
0 0 0 k

⎞
⎟⎟⎠ . (A.10)

A.2. Our solutions

Our solutions in classes 1–12 presented in section 4 are classified by eigenvalues and quadratic
invariants. Here we classify all the nontrivial solutions in section 4 to the nine families (RH3,1,
RH2,1, RH2,2, R′

H2,3, RH1,1, RH1,2, RH1,4, RH0,1, RH0,2).

• Class 1: R1 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 h4 0
0 h5 0 0
0 0 0 h8

⎞
⎟⎟⎠

This falls into RH3,1 with k = h1, p = h4, q = h5 and s = h8.

• Class 2: R2 =

⎛
⎜⎜⎝

0 0 0 h2

0 h3 0 0
0 0 h3 0
h7 0 0 0

⎞
⎟⎟⎠

This falls into RH1,4 with k = h3, p = h2 and q = h7.
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• Class 3: R3 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 h8 h1 + h8 0
h7 0 0 h8

⎞
⎟⎟⎠

This falls into RH1,2 with k = h7, p = h8 and q = −h1 by the transformation (A.7).

The seven other solutions given in the text are equivalent to the representative as

∗ R3–1 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 h1 0
0 −h8 h1 + h8 0
h7 0 0 h8

⎞
⎟⎟⎠ becomes R3 after the transformations (A.7), (A.8) and

(A.6) with the redefinition h1 ↔ h8.

∗ R3–2 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 −h8 0
0 h1 h1 + h8 0
0 0 0 h8

⎞
⎟⎟⎠ becomes R3 after the transformations (A.7) and (A.8)

with the redefinition h1 ↔ h8 and h2 → h7.

∗ R3–3 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 h8 0
0 −h1 h1 + h8 0
0 0 0 h8

⎞
⎟⎟⎠ becomes R3 after (A.6) with h2 → h7.

∗ R3–4 =

⎛
⎜⎜⎝

h1 0 0 h2

0 h1 + h8 −h1 0
0 h8 h1 + h8 0
0 0 0 h8

⎞
⎟⎟⎠ becomes R3–3 after (A.7).

∗ R3–5 =

⎛
⎜⎜⎝

h1 0 0 h2

0 h1 + h8 h1 0
0 −h8 0 0
0 0 0 h8

⎞
⎟⎟⎠ becomes R3–1 after (A.6) and (A.8) with h2 → h7.

∗ R3–6 =

⎛
⎜⎜⎝

h1 0 0 0
0 h1 + h8 −h8 0
0 h1 0 0
h7 0 0 h8

⎞
⎟⎟⎠ becomes R3–1 after (A.8).

∗ R3–7 =

⎛
⎜⎜⎝

h1 0 0 0
0 h1 + h8 h8 0
0 −h1 0 0
h7 0 0 h8

⎞
⎟⎟⎠ becomes R3 after (A.8).

• Class 4: R4 =

⎛
⎜⎜⎜⎝

h1 0 0 0
0 0 h4 0

0
h1

h4
(h1 − h6) h6 0

0 0 0 h1

⎞
⎟⎟⎟⎠
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This falls into RH2,1 with k =
√

h1, p =

√
h1

h4
(h1 − h6) and q = h4√

h1
by the transforma-

tion (A.8).

The other solution R4–1 =

⎛
⎜⎜⎜⎝

h1 0 0 0
0 h3 h4 0

0
h1

h4
(h1 − h6) 0 0

0 0 0 h1

⎞
⎟⎟⎟⎠ becomes R4 after (A.6) and

(A.8) with h3 → h6.

• Class 5: R5 =

⎛
⎜⎜⎜⎝

h1 0 0 0
0 0 h4 0

0
h1

h4
(h1 − h6) h6 0

0 0 0 −h1 + h6

⎞
⎟⎟⎟⎠

This falls into RH2,2 with k =
√

h1, p =

√
h1

h4
(h1 − h6) and q = h4√

h1
by the transforma-

tion (A.8).

The other solution R5−1 =

⎛
⎜⎜⎜⎝

h1 0 0 0
0 h3 h4 0

0
h1

h4
(h1 − h6) 0 0

0 0 0 −h1 + h3

⎞
⎟⎟⎟⎠ becomes R5 after

(A.6) and (A.8) with h3 → h6.

• Class 6: R6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 0 0 h2

0
h1 + h8

2
−
√

h2
1 + h2

8

2
0

0 −
√

h2
1 + h2

8

2
h1 + h8

2
0

(h1 + h8)2

4h2
0 0 h8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This falls into RH1,1 with p = h1+h8
2 and q = − 1

2

[
h1 + h8 +

√
2(h2

1 + h2
8)

]
= −λ+

by the transformation (A.5). It can be seen that κ(Q ⊗ Q)RH1,1(Q ⊗ Q)−1 = R6 with

κ = − 1
2λ+

and Q =

(√
2h2 0
0

√
h1 + h8

)
.

The other solution R6–1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 0 0 h2

0
h1 + h8

2

√
h2

1 + h2
8

2
0

0

√
h2

1 + h2
8

2
h1 + h8

2
0

(h1 + h8)2

4h2
0 0 h8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

becomes

−R6 with the redefinition ha →−ha (a = 1, 2, 8).

• Class 7: R7 =

⎛
⎜⎜⎜⎜⎝

h1 0 0 h2

0 h3 −h1 0
0 −h1 h3 0
h2

3

h2
0 0 h1

⎞
⎟⎟⎟⎟⎠
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This falls into RH1,4 with k = h1 + h3 and p = q = h1 − h3 by the transformation (A.5):

κ(Q ⊗ Q)RH1,4(Q ⊗ Q)−1 = R7 with κ = 1 and Q =

(
i
√

h2 −i
√

h2√
h3

√
h3

)
.

The other solution R7–1 =

⎛
⎜⎜⎜⎜⎝

h1 0 0 h2

0 h3 h1 0
0 h1 h3 0
h2

3

h2
0 0 h1

⎞
⎟⎟⎟⎟⎠ is not equivalent to R7. Actually,

we can see that R7–1 falls into RH3,1 with p = q = h1 − h3 and k = s = h1 + h3 by

κ(Q ⊗ Q)RH3,1(Q ⊗ Q)−1 = R7–1 with κ = 1 and Q =

(√
h2 −

√
h2√

h3

√
h3

)
. However, R7

and R7–1 belong to the same class in our classification, since they have the same eigen-
values and quadratic invariants. We explicitly see that they are SL(2,C)⊗2-equivalent:
(Q1 ⊗ Q2)R7(Q1 ⊗ Q2)−1 = R7–1 with

Q1 =

(
1 0
0 −i

)
, Q2 =

(
1 0
0 i

)
. (A.11)

• Class 8: R8 =

⎛
⎜⎜⎜⎜⎝

h1 0 0 h2

0 h1 −h1 0
0 h1 h1 0

−h2
1

h2
0 0 h1

⎞
⎟⎟⎟⎟⎠

This falls into RH0,2 by the transformation (A.5): κ(Q ⊗ Q)RH0,2(Q ⊗ Q)−1 = R8 with

κ = h1 and Q =

(
0 i

√
h2√

h1 0

)
.

The other solution R8–1 =

⎛
⎜⎜⎜⎜⎝

h1 0 0 h2

0 h1 h1 0
0 −h1 h1 0

−h2
1

h2
0 0 h1

⎞
⎟⎟⎟⎟⎠ becomes R8 by (A.8).

• Class 9: R9 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 −h1 0 0
h7 0 0 h1

⎞
⎟⎟⎠

This falls into RH0,1 by the successive transformations (A.5) and (A.6): κ(Q ⊗

Q)RH0,1(Q ⊗ Q)−1 with κ = h1 and Q =

(√
h7 0

0
√

h1

)
followed by (A.6) gives R9.

Among the other three solutions

R9–1 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 −h1 0
0 −h1 0 0
0 0 0 h1

⎞
⎟⎟⎠ ,
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R9–2 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 h1 0
0 h1 0 0
h7 0 0 h1

⎞
⎟⎟⎠ , R9–3 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 h1 0
0 h1 0 0
0 0 0 h1

⎞
⎟⎟⎠ ,

R9–1 becomes R9 by (A.6) with h2 → h7, whereas R9–2 and R9–3 are not equivalent to the
representative R9. Actually, R9–2 falls into R′

H2,3 with k = h1 and s = h7 by the transfor-
mation (A.6), and R9–3 becomes R9–2 by (A.6) with h2 → h7. However, these two groups
are SL(2,C)⊗2 equivalent: (Q1 ⊗ Q2)R9(Q1 ⊗ Q2)−1 = R9–2 with (A.11).

• Class 10: R10 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 −h1 0 0
h7 0 0 −h1

⎞
⎟⎟⎠

This falls into RH1,2 with k = h7 and p = q = −h1 by the transformation (A.7).
The other three solutions are equivalent to the representative R10 as

∗ R10–1 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 −h1 0
0 −h1 0 0
0 0 0 −h1

⎞
⎟⎟⎠ becomes R10 by (A.6) with h2 → h7.

∗ R10–2 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 h1 0
0 h1 0 0
h7 0 0 −h1

⎞
⎟⎟⎠ becomes R10 by (A.7) and (A.6) with h1 →−h1.

∗ R10–3 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 h1 0
0 h1 0 0
0 0 0 −h1

⎞
⎟⎟⎠ becomes R10−2 by (A.6) with h2 → h7.

• Class 11: R11 =

⎛
⎜⎜⎝

h8 0 0 0
0 2h8 −h8 0
0 h8 0 0
h7 0 0 h8

⎞
⎟⎟⎠

This falls into RH1,2 with k = h7, p = h8 and q = −h8 by the transformation (A.6).
The other seven solutions are equivalent to the representative R11 as

∗ R11–1 =

⎛
⎜⎜⎝

h8 0 0 h2

0 2h8 −h8 0
0 h8 0 0
0 0 0 h8

⎞
⎟⎟⎠ becomes R11 by (A.7) and (A.8) with h2 → h7.

∗ R11–2 =

⎛
⎜⎜⎝

h8 0 0 0
0 2h8 h8 0
0 −h8 0 0
h7 0 0 h8

⎞
⎟⎟⎠ becomes R11–1 by (A.6) with h7 → h2.
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∗ R11–3 =

⎛
⎜⎜⎝

h8 0 0 h2

0 2h8 h8 0
0 −h8 0 0
0 0 0 h8

⎞
⎟⎟⎠ becomes R11 by (A.6) with h2 → h7.

∗ R11–4 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 −h1 0
0 h1 2h1 0
h7 0 0 h1

⎞
⎟⎟⎠ becomes R11−2 by (A.8) with h1 → h8.

∗ R11–5 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 −h1 0
0 h1 2h1 0
0 0 0 h1

⎞
⎟⎟⎠ becomes R11−3 by (A.8) with h1 → h8.

∗ R11–6 =

⎛
⎜⎜⎝

h1 0 0 0
0 0 h1 0
0 −h1 2h1 0
h7 0 0 h1

⎞
⎟⎟⎠ becomes R11 by (A.8) with h1 → h8.

∗ R11–7 =

⎛
⎜⎜⎝

h1 0 0 h2

0 0 h1 0
0 −h1 2h1 0
0 0 0 h1

⎞
⎟⎟⎠ becomes R11–1 by (A.8) with h1 → h8.

• Class 12: R12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1 0 0 h2

0
1 − i

2
h1 0 0

0 0
1 − i

2
h1 0

− ih2
1

2h2
0 (4, 3) (4, 4)

⎞
⎟⎟⎟⎟⎟⎟⎠

This falls into RH1,1 with p = 1 and q = i by the transformation (A.5): κ(Q ⊗ Q)RH1,1(Q ⊗

Q)−1 = R with κ = h1
2(1+i) and Q =

(√
(1 + i)h2 0

0 −
√

h1

)
.

The other solution R12–1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1 0 0 h2

0
1 + i

2
h1 0 0

0 0
1 + i

2
h1 0

ih2
1

2h2
0 0 ih1

⎞
⎟⎟⎟⎟⎟⎟⎠

becomes R12 by (A.6) and

(A.7) with h1 →−ih1.

Appendix B. Local invariants, link polynomials and entangling power of RH1,3

and RH2,3

Among all the two-qubit braid operators in (A.9), the X-type braid operators analyzed in this
paper do not fully capture solutions of the form RH1,3 and RH2,3. For completeness we analyze
those cases here.
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RH1,3: the local invariants presented in section 2 are computed for RH1,3 to give I1 = 2k2,
I2,4 = I2,5 = −2k4, I2,8 = 4k4, and I2,9 = I2,10 = 2k4. RH1,3 has the eigenvalues k2 and −k2

with multiplicities three and one, respectively.
The enhancement discussed in section 5 is possible with μ = I − p+q

2k (X + iY), x = ±k2

and y = ±1. Link invariants for a two-strand braid word ξ = σn
1 are LR(σn

1) = 4 for n even,
and ±2 for n odd. Scaling the enhanced R by 1

k2 realizes the Hecke algebra (5.14) with
q = 1.

Following the steps in section 6, RH1,3 acts on the product state |P〉 =
(
a1 |0〉+ b1 |1〉

)
⊗(

a2 |0〉+ b2 |1〉
)

to give the local invariant det t = k2(p+ q)
(
−ka1b1b2

2 + ka2b2
1b2 + qb2

1b2
2

)
.

The entangling power is obtained as eP(RH1,3) = 1
9 |k|4|p+ q|2

(
|k|2 + |q|2

)
. The unitary solu-

tions are found at p = q = 0 and |k| = 1, and they do not generate entanglement.
RH2,3: the local invariants for RH2,3 are I1 = 2k, I2,4 = I2,5 = −2k2, I2,8 = 4k2, and I2,9 =

I2,10 = 2k2. RH2,3 has the eigenvalues k and −k of multiplicities three and one, respectively.
The enhancement is possible only when q = −p with μ = I, x = ±k and y = ±1. Link

invariants are LR(σn
1) = 4 for n even and ±2 for n odd. The Skein relation is read from the

identity R2
H2,3 − kRH2,3 − k21 + k3R−1

H2,3 = 0.

The entangling power is computed as eP(RH2,3) = 1
9 |ks − pq|2. The unitary solutions are

found at p = q = s = 0 and |k| = 1, in which case the operator is no longer an entangler.
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