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Abstract—This work puts forward a supervised ML technique
to determine the Quality of Experience (QoE) of VoIP calls.
It takes its beginning from an investigation on VQmon®, an
enhanced E-model version that estimates the quality of IP-
based voice calls adopting an objective approach. The current
study demonstrates VQmon® shortcomings via a comparison
between the Mean Opinion Score (MOS) values this technique
predicts and the actual average ratings collected from a subjective
listening quality campaign. It proposes to deploy Ordinal Logistic
Regression (OLR) for speech quality assessment, and results
disclose that OLR outperforms popular ML algorithms, in
accuracy and confusion matrices.

Index Terms—Machine Learning (ML); Mean Opinion Score
(MOS); Quality of Experience (QoE); Voice over IP (VoIP);
Speech Quality Assessment.

I. INTRODUCTION

A. Rationale and Contribution

Quality of Experience (QoE) of VoIP calls is a relevant topic
in the realm of contemporary networks, given the widespread
adoption of VoIP in wired scenarios. It is even more signifi-
cant in cellular networks, where VoIP counterpart, VoIP over
LTE (VoLTE), combined with wideband and super-wideband
codecs, plays the leading role in ensuring high quality levels
for voice calls in a totally IP-based setting.

In a previous study [1], we assessed the end-to-end trans-
mission quality of several millions of VoLTE calls employing
VQmon® [2], an objective, non-intrusive tool, that enhances
the standardized E-Model [3]. Tools like VQmon® are quite
popular on the service assurance rim, as they can be easily in-
tegrated in proprietary software by mobile network operators.
Yet, they are quickly becoming obsolete, given the complexity
and heterogeneity of modern communication systems [4].

Taking the last remark as its foremost motivation, the aim
of this letter is two-fold: (i) first, to quantify VQmon® limits
in QoE assessment of VoIP calls that employ a wideband
voice codec; (ii) then, to overcome such limits proposing the
adoption of a supervised ML approach. With reference to the
latter point, the current study demonstrates to what extent OLR
performs better than other popular state-of-the art ML solu-
tions. Therefore, the work proves that the OLR algorithm is
well suited to model the human level of preferences expressed
on an ordinal rating scale.

In order to achieve the goals stated above, a subjective
listening campaign has been conducted in a controlled envi-

ronment; the transmission of wideband, high quality VoIP calls
has been repeatedly mimicked, collecting network metrics and
several categorical features of the volunteers participating in
the quality assessment test. Participants have been asked to rate
the listening quality of test calls and the test outcomes have
first of all disclosed VQmon® flaws. Most importantly, the test
results have allowed highlighting the benefits of the proposed
ML approach, which is fast like non-intrusive methods, as
it automates speech quality prediction, and trustable, being
built on a subjective basis that can be retrained several times
upon customer availability and network adjustments. Our
contributions therefore embrace the goals of mobile operators
and network monitoring companies, that not only mandate for
effective monitoring tools, but also for ease of deployment
on millions of VoIP calls. In future networks, the OLR
predictions could also help customer experience and service
quality managers to identify potential network issues, on the
basis of the estimated QoE values.

Finally, the study highlights that the conventional five score
scale for call quality classification is often perceived as exces-
sive by test participants. In the limiting case where ratings are
collapsed on a coarse binary scale, OLR and alternative ML
models are verified to guarantee a very high and comparable
accuracy level.

B. Related Work

In the past, a few solutions based on advanced statistics
and ML models such as Bayesian Classifier [5], Artificial
Neural Networks [6] and Random Neural Networks [7] have
been proposed to predict VoIP speech quality. As a recent
example belonging to this category, the study in [8] com-
pares the performance of different ML classifiers, considering
packet loss, narrow-band codec type, language and gender as
features. All the previously cited works assume as learning
basis (equivalently termed ground-truth) the quality ratings
that the Perceptual Evaluation of Speech Quality (PESQ)
technique [9] provides. PESQ is an algorithm for narrow-band
voice evaluation; it is objective, i.e., it automatically evaluates
speech quality with no involvement of human subjects, and
it is double-reference, as it compares the received voice
signal against the clean, original signal. However, one relevant
drawback inherent to the choice of employing PESQ outcomes
as ground truth is that the estimate error affecting the reference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/343616302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE I
MOST FREQUENTLY EMPLOYED ACRONYMS AND THEIR MEANING

Acronym Term in full
DT Decision Tree
LinReg Linear Regression
LogReg Logistic Regression
ML Machine Learning
MLR Multinomial Logistic Regression
OLR Ordinal Logistic Regression
RF Random Forest

technique propagates to the learning algorithm. Alternative
studies, like [10], considered as ground-truth the subjective
Mean Opinion Score (MOS), that the ITU defines as the
arithmetic mean of a collection of single user opinion scores
[11]. Yet, the arithmetic mean might represent a rough approx-
imation when judging the quality of VoIP calls: it inevitably
smooths out the quality score that a specific user assigns the
call under certain network conditions. Lastly, P. Charonyktakis
et al. [12] designed a modular algorithm that uses multiple
ML models, including Decision Trees and Support Vector
Regression, and relies on an optimized technique, termed
nested cross validation, to select the best classifier. This study
adopts both subjective tests and PESQ to rate the actual QoE
of narrow-band VoIP calls.

Partly in analogy to the contribution in [12], the present
letter concentrates on the subjective experience of single users
as ground truth. Differently from [12] and previous works,
our study proposes to handle the rating of the call quality
experienced by the single user as an intermediate problem
between regression and classification. It therefore suggests to
exploit a specific algorithm, the so-called Ordinal Logistic
Regression (OLR), and it benchmarks its performance against
some of the most popular ML methods already utilized in the
works cited above, highlighting its better accuracy. Further, our
contribution concentrates on wide-band, high definition voice,
which is of paramount importance in VoLTE, as well as in 5G
networks. To the best of our knowledge, all the investigations
on VoIP QoE presented so far in literature are centered on
the adoption of narrow-band codecs, that work on audio
frequencies in the 300-3400 Hz range. However, all modern
applications relying on telephony audio employ wideband and
super-wideband codecs, which extend the maximum operating
frequency to 7 and 22 KHz, respectively. We therefore choose
to concentrate on wideband codecs.

II. BACKGROUND AND SETTING

This section is intended to build a concise background
on the ML models employed in this investigation, and to
provide an overview of the experiment setting and design. An
extensive explanation of the selected algorithms and of their
implementation details can be found in [13] and [14]. The
list of the acronyms most frequently employed in this letter is
reported in Table I.

A. Prediction Models

The distinctive characteristic of supervised learning is that
the target label to predict is known (e.g., in this work we

know the QoE labels), and this information is explicitly used
in the learning process. Supervised learning approaches can be
further distinguished in classification and regression solutions.
We refer to classification when the target variable is a class,
as in the examined problem. In particular, the rating assigned
to call quality is organized on an ordered scale featuring five
score values (classes): 1 (bad), 2 (poor), 3 (fair), 4 (good) and 5
(excellent). Among ML classification algorithms, the Decision
Tree classifier (DT) is a solution that produces interpretable
models and it is widely employed for this distinctive feature:
its goal is to create a model that learns from simple if/else rules
inferred from data. To build a tree, the algorithm searches over
all possible paths and finds the one that is the most informative
about the target variable. An enhancement to DT is Random
Forest (RF), fitting a number of DT classifiers on various
subsets of the dataset. RF relies upon an ensemble of trees to
improve predictive accuracy. Trees are easily visualized and
interpreted, but their main drawback is that they neglect any
ordered trait of the target feature.

Differently from classification, regression predicts a con-
tinuous outcome. The reference model is Linear Regression
(LinReg), utilized to find the relation between two or more
continuous variables. Logistic Regression (LogReg) replaces
LinReg when the target is no longer continuous and is ex-
pressed as a dichotomous variable. Its generalization to more
than two classes is Multinomial Logistic Regression (MLR).

Lastly, OLR represents an intermediate approach between
classification and regression, and it is our belief that it can
successfully fit the present problem of predicting ordered
classes of QoE. As a matter of fact, OLR handles labels that
are both discrete as in classification, and ordered as in linear
regression. Its complex mathematical formulation is based on
the generalized linear model (GLM), well-detailed in [15] and
[16].

B. Experiment Setting and Design

Fig.1 portrays the end-to-end setting of our experiment.
Calls were generated by Hammer®, a proprietary platform
by Empirix [17] that emulates software agents initiating and
accepting VoIP calls and establishing an SIP/RTP session for
every call. One Hammer was installed on the Virtual Machine
(VM) of a Windows PC, acting as the caller (Hammer A),
a second Hammer was installed on the VM of a second PC,
representing the callee; a Linux-based, Ubuntu VM on a third
PC routed packets from the caller to the callee, and also acted
as a source of impairments through Netem [18], a network
simulator available in Linux kernels. All PCs belonged to the
same Gigabit Ethernet LAN.

We chose to deliver the short audio stream “You will
have to be very quiet”, encoded through Adaptive Multi Rate
WideBand (AMR-WB) [19] (mode 25.85 kb/s) and fully
compliant with ITU-T guidelines about subjective listening
tests [11]. Each call featured the same audio stream. Through
Netem [18], we intervened on the one-way delay and packet
loss to simulate the typical impairments of real networks. In
detail, given the ITU-T G.1010 document [20], that suggests



Fig. 1. End-to-end experiment workflow.

the tolerated values of one-way delay (lower than 400 ms)
and packet loss rate (lower than 1%) for conversational audio,
we combined four profiles of packet loss (random, uniformly
distributed losses with rates 0%, 0.5%, 1% and 2%) with three
profiles of one-way delay (Gaussian distributed with mean
and standard deviation equal to (0± 0)ms, (150± 25)ms and
(400± 25)ms), thus obtaining twelve scenarios. At the callee
side, the jitter buffer was instantiated to receive packets with
a fixed inter-packet delay. The received files were collected in
a Wireshark [21] compatible format, and sent to a proprietary
probe, where they were processed and then exported. Since
we operated in a virtual environment, we made use of ad-hoc
scripts1 to extract the audio trace in a listenable format.

We next conducted a subjective listening campaign, and
designed the listening experiments in accordance to ITU-
T guidelines [11]. Among the available quality assessment
methods, we adopted the popular Absolute Category Rating
(ACR) test, because of its reliability and fast implementation.
In ACR subjective tests, users are asked to evaluate calls,
presented only once, and have to rate the listening quality, i.e.,
their QoE, on the ordered scale with 5 possible score values.
For the experiment, a pool of 56 participants was recruited on
a voluntary basis in the first half of 2019. Every listener was
asked to evaluate the quality of 12 calls, corresponding to the
received audio streams in the 12 scenarios described above.
Before starting the survey, we additionally asked volunteers
to answer a few questions, namely, to indicate their gender,
age and the type of headset employed during the test. These
categorical features uniquely characterized each participant,
along with the rating she/he attributed to the quality of the
calls. In addition, we encouraged users to share their feedback.

At the end of the experiment, we collected a total of 672
evaluations. Because of the arbitrary property of subjective
tests, it is known that some ratings might have been assigned
in an inappropriate manner. Thus, we grouped call scores by
call identifier and applied the popular DBscan algorithm [22]
to detect outliers among the evaluations collected for each call.
DBscan found a total of 55 outliers, that were removed from
the initial set.

1https://github.com/Spinlogic/AMR-WB extractor

III. EXPERIMENTAL RESULTS

A. Data Set Preprocessing

Network side, the input features we gathered from the
testbed in Fig.1 included the actual network metrics associated
with each evaluated call, that is, the following numerical
features: average and maximum jitter, number of received
packets, packet loss rate, out-of-sequence packets and du-
plicated packets. The input features coming from the test
participants were the categorical features, that is, their age,
gender and type of headset. Most importantly, we collected
the rating each participant attributed to the quality of the calls,
i.e., their QoE scores.

To minimize the risk of injecting noise into the model, we
firstly determined the most informative features with respect
to the target label, i.e., the QoE score. This also serves as
a preliminary action to understand the impact they have on
QoE. According to Pearson’s correlation test [23], numerical
features exhibiting a p value greater than 0.01 were considered
insignificant. We therefore neglected the number of received
packets and the number of duplicated packets. Given the
relatively modest number of examined settings for the test, we
additionally “flagged” the packet loss rate as a binary variable:
we stated that it was present in any scenario where it took
on values greater than 10−2, otherwise it was interpreted as
absent (for the considered scenarios, this corresponds to values
lower than 10−3). Lastly, as the numerical features span quite
different ranges, we rescaled them, in order not to privilege
one over others (e.g., maximum jitter over out-of-sequence
packets). Because of the relatively low number of research
participants, we decided to include all the categorical features
in the present study, as it is not possible to firmly state that
QoE is independent of them.

B. Exploratory Investigation and Performance Assessment

Preliminarily, we investigated the reliability of VQmon®

when assessing the quality of wide-band VoIP calls; for doing
so, we compared the MOS values that VQmon® provides
against those determined from the actual subjective ratings;
adhering to MOS definition, we computed the latter value
as the average of the individual ratings that different users
assigned to the same call. Fig. 2 shows how far VQmon®

MOS values (red squared markers in the figure) are from their
experimental counterparts (blue circles) for the 12 synthetic
calls evaluated by the users. Vertical bars refer to the standard
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Fig. 2. VQmon® MOS and Users MOS per Call ID.



TABLE II
OLR AND DT CONFUSION MATRICES

Predicted by OLR

1 2 3 4 5

1 2 15 0 0 0

2 2 39 3 0 0

Observed 3 0 13 6 2 3

4 0 0 0 12 6

5 0 0 0 3 17

Predicted by DT

1 2 3 4 5

1 0 17 0 0 0

2 0 44 0 0 0

Observed 3 0 19 0 5 0

4 0 0 0 4 14

5 0 0 0 5 15

deviation of the users MOS. The results reported in this
figure clearly demonstrate that VQmon® cannot predict the
actual call quality, and further motivates us to explore the
effectiveness of a user-driven methodology that exploits ML
tools.

Given the presence of ordered classes, i.e., the five possible
QoE scores, we deliberately focused on OLR as a promising
candidate among the alternative ML algorithms. To validate
the goodness of such a choice, we considered a random split of
the QoE scores, employing 80% of them as the training set and
the remaining 20% as the test set and first benchmarked OLR
classification accuracy against that of the Random Classifier
(RC), DT, RF and MLR. We decided to exclude Neural
Networks from our investigation because of the relatively few
training data available [24]. Moreover, we did not consider
Support Vector Machines (SVM) models either, because they
do not perform well with unbalanced classes [25], as is the
case here.

Recalling that accuracy is defined as the percentage of
correct predictions to the total number of test samples, we
found that OLR outperforms all other algorithms. Its accuracy
is 61%, almost four times the RC accuracy, which is only
16%. The OLR accuracy is higher by ten percentage points
than DT (51%) and higher by 9% than MLR (52%), where
we emphasize that the latter two algorithms do not take into
account class ordering.

The confusion matrix generalizes the concept of accuracy:
every row represents the instances in an actual class and every
column represents the instances in a predicted class, so that the
ideal confusion matrix has zero elements everywhere except
for the main diagonal, meaning that all the predicted instances
coincide with the actual observations. Table II compares
OLR and DT confusion matrices, revealing that OLR better
captures intermediate opinions (3 and 4 QoE values), that are
more likely related to each test participant and her/his set
of unmeasurable characteristics (e.g., mood, tolerance level),
whereas DT limits its prediction to three out of five QoE
classes (2, 4 and 5). We decided not to include the detailed
results of RF in our analysis, as we verified that RF performs
worse than DT, its accuracy being 48%. This is explained by
the limited size of the data set (617).

For DT, Fig. 3 shows the importance of the three most
relevant features in our dataset, namely, maximum jitter,
out-of-sequence packets and average jitter. We derived this
indication for a classification tree algorithm that employs Gini

Fig. 3. Feature importance for DT (%).

impurity [26] to rule the split of the data samples down the
tree. Although not reported, the features statistically having the
major impact on QoE are the same when the OLR approach
is taken. In this regard, note that a supervised ML algorithm
builds the model by tuning its parameters on the training data;
these parameters weight the importance different features have
and how they are combined together in the model. For DT
(and RF as well), understanding the features that most affect
the target variable is inherently straightforward, due to the way
the tree is built. On the other hand, OLR fits both a coefficient
vector and a set of thresholds to the training dataset [15], and
therefore the feature interpretation is not as immediate.

To exclude that this study had to be approached as a
linear problem, we further considered LinReg as an alternative
baseline. We therefore extended the domain of the target label
QoE from integer to real, thus removing the concept of classes.
The subjective QoE scores (red squares) and the predicted
values (blue circles) are reported in Fig. 4(a) for LinReg and in
Fig.4(b) for OLR. They allow to compare the performance of
LinReg and OLR, disclosing that LinReg is unable to predict
intermediate results, whereas OLR can.

Lastly, it is interesting to outline that out of 56 research
participants, almost half of them pointed out that five classes
were too many to evaluate the QoE of the test calls, which
might more simply be rated as poor or good. Adhering to this
rationale, we remapped the five original classes into two, class
0 collecting the previous 1 and 2 classes, and class 1, merging
classes 3, 4 and 5, so as to reduce the problem to binary
classification. As such, the concept of ordering no longer
holds, and the binary counterpart of OLR is LogReg. When
taking this approach, both accuracy and confusion matrix
remarkably improve. As is to be expected, LogReg and DT

(a) LinReg (b) OLR

Fig. 4. LinReg and OLR performance.



TABLE III
DT AND LOGREG CONFUSION MATRICES (BINARY CLASSIFICATION)

Predicted (DT)

Observed
0 1

0 62 0
1 21 41

Predicted(LogReg)

Observed
0 1

0 60 2
1 18 44

exhibit similar performance. In detail, LogReg accuracy stands
at 83% and by inspecting LogReg and DT confusion matrices
reported in Table III, we observe the prevalence of correctly
predicted instances. Although not reported on the table, we
also tested the RF model for this reduced binary classification
problem. We coherently obtained the same accuracy and
confusion matrix as DT. This is not surprising, and it can
be explained by the reduction in the problem cardinality and
complexity. To complete our proposal, we devote a few words
to the network location where a monitoring tool based on
our approach could be deployed. With reference to LTE, the
Mb standard interface at the border between the Packet data
network GateWay (PGW) in the Evolved Packet Core (EPC)
and the IP Multimedia System (IMS) is the most proper
choice. This is the interface where probes are conventionally
placed to monitor VoLTE traffic, capturing relevant network
parameters for each voice flow. Once properly tuned, the new
tool would allow associating a QoE level estimate to every
flow in nearly real-time. Then, the automatic inspection of
voice traces and of the corresponding QoE values would serve
to identify, e.g., critical areas where the QoE guaranteed to
network subscribers is not adequate.

IV. CONCLUSIONS

This work has conducted a subjective campaign of quality
assessment on artificially generated VoIP calls, collecting the
values of network metrics associated with each test call,
some categorical features of the participants and their QoE
scores. The shortcomings of a conventional objective, no-
reference model when assessing speech quality of VoIP wide-
band calls was first demonstrated. It was next proposed to
adopt a customer-driven, ML approach to correlate network-
oriented features and human-related aspects to the levels of
QoE that listeners perceive. OLR has been proved to be the
best algorithm to model the examined problem. It guarantees
a high prediction accuracy, owing to its ability to capture
the ordinal behavior of subjective experience. The study has
additionally provided an insight into the difficulties of utilizing
a five level scale to evaluate VoIP QoE, often perceived and
described by test participants as poor or good. When handling
the quality assessment problem as binary instead of ordinal, it
has been shown that LogReg, the binary counterpart of OLR,
just like different algorithms (e.g., RF) guarantee reliable and
similar predictions.
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