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Abstract—Reactive synthesis is a key technique for the design
of correct-by-construction systems and has been thoroughly
investigated in the last decades. It consists in the synthesis
of a controller that reacts to environment’s inputs satisfying
a given temporal logic specification. Common approaches are
based on the explicit construction of automata and on their
determinization, which limit their scalability.

In this paper, we introduce a new fragment of Linear Tem-
poral Logic, called Extended Bounded Response LTL (LTLEBR),
that allows one to combine bounded and universal unbounded
temporal operators (thus covering a large set of practical cases),
and we show that reactive synthesis from LTLEBR specifications
can be reduced to solving a safety game over a deterministic sym-
bolic automaton built directly from the specification. We prove
the correctness of the proposed approach and we successfully
evaluate it on various benchmarks.

I. INTRODUCTION

Since the dawn of computer science, synthesizing correct-
by-construction systems starting from a specification is an
important and difficult task. A practical algorithm to solve
this task would be a big improvement in declarative program-
ming, since it would allow the programmer to write only
the specification of the program, freeing her from possible
design or implementation errors, that, in many cases, are
due to an imperative style of programming. In the context of
formal verification and model-based design, the possibility of
synthesizing a controller able to comply with the specification
for all possible behaviors of the environment would be of great
importance as well: all the effort would be directed to improve
the quality of the specification for the controller.

Reactive synthesis was first proposed by Church [7] and
solved by Büchi and Landweber [5] for S1S specifications
with an algorithm of non-elementary complexity. For Linear
Temporal Logic (LTL) specifications, the problem has been
shown to be 2EXPTIME-complete [21], [22]. In the attempt
of making reactive synthesis a practical task, in spite of its
very high complexity, research mainly focused on two lines:
(i) finding good algorithms for the average case; (ii) restricting
the expressiveness of the specification language. Important
examples of the first line of research are the contribution
by Kupferman and Vardi [15], where the authors devise a
procedure to avoid Safra’s determinization of Büchi automata
(a known bottleneck in all the problems requiring a determiniz-
ation of a Büchi automaton), and the work by Finkbeiner and

Schewe [11], where the problem is reduced to a sequence of
smaller problems on safety automata, obtained by bounding the
number of visits to a rejecting state of a co-Büchi automaton. A
meaningful example of restrictions to the specification language
is the definition of the Generalized Reactivity(1) logic [20],
whose synthesis problem can be solved in O(N3) symbolic
steps, where N is the size of the arena. Finally, in [25] Zhu et
al. consider reactive synthesis from Safety LTL specifications.
Although the complexity remains doubly exponential, the
proposed restriction allows one to reason on finite words and
thus to exploit efficient tools for finite-state automata, like, for
instance, MONA [12].

In this paper, we propose a new fragment of LTL, called
Extended Bounded Response LTL (LTLEBR for short), which
supports bounded operators [18], such as G[a,b] and F[a,b], along
with universal unbounded temporal operators like G and R. We
show that formulas of LTLEBR can be turned into deterministic
symbolic automata over infinite words, with a translation carried
out in a completely symbolic way. Such a result is achieved
in two steps: (i) a pastification of the subformulas containing
only bounded operators by making use of techniques similar to
those exploited for MTL [17], [18], and (ii) the construction of
deterministic monitors for the unbounded temporal operators.
These two steps allow the entire procedure to be carried out
without ever producing any explicit automaton. Then, we use
existing algorithms for safety synthesis to solve the game on
the deterministic symbolic automaton. We implemented the
proposed solution in a tool, called ebr-ltl-synth, and compared
its performance against state-of-the-art synthesizers for full
LTL over a set of LTLEBR formulas. The outcomes of the
experimental evaluation are encouraging. For lack of space,
some of the proofs are reported in [8].

II. PRELIMINARIES

Linear Temporal Logic with Past (LTL+P) is a modal logic
interpreted over infinite state sequences. Let Σ be a set of pro-
positions. LTL+P formulas are inductively defined as follows:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1 U ϕ2 | Yϕ | ϕ1 S ϕ2

where p ∈ Σ. Temporal operators can be subdivided into the
future operators, next (X) and until (U), and past operators,
yesterday (Y) and since (S). We define the following common
abbreviations (where ⊤ stands for true): (i) Xiϕ is X(Xi−1ϕ)
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if i > 0 and X0ϕ is ϕ; (ii) release: ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2);
(iii) eventually: Fϕ1 ≡ ⊤ U ϕ1; (iv) globally: Gϕ1 ≡ ¬F¬ϕ1;
(v) trigger: ϕ1T ϕ2 ≡ ¬(¬ϕ1S¬ϕ2); (vi) once: Oϕ1 ≡ ⊤Sϕ1;
(vii) historically: Hϕ1 ≡ ¬O¬ϕ1.

LTL is obtained from LTL+P by allowing only the next and
the until operators. Conversely, Full Past LTL (LTLFP) is the
fragment of LTL+P that only admits past operators.

LTL can also be enriched with bounded temporal operators,
such as the bounded until (ϕ1U [a,b]ϕ2) and bounded eventually
(F[a,b]ϕ1 ≡ ⊤ U [a,b] ϕ1). Full Bounded LTL (LTLFB) is the
fragment of LTL that includes only the next, bounded until,
and bounded eventually operators.

Let us now give the semantics of the above logics. A state
sequence is an infinite sequence σ = ⟨σ0, σ1, . . .⟩ ∈ (2Σ)ω of
sets of propositions σi ∈ 2Σ, called states. Given a sequence
σ, a position i ≥ 0, and a formula ϕ, the satisfaction of ϕ by
σ at i, written σ, i |= ϕ, is inductively defined as follows:
σ, i |= p iff p ∈ σi
σ, i |= ¬ϕ iff σ, i ̸|= ϕ
σ, i |= ϕ1 ∨ ϕ2 iff either σ, i |= ϕ1 or σ, i |= ϕ2
σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2
σ, i |= Xϕ iff σ, i+ 1 |= ϕ
σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ
σ, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that

σ, j |= ϕ2 and σ, k |= ϕ1 for all
i ≤ k < j

σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that
σ, j |= ϕ2 and σ, k |= ϕ1 for all
j < k ≤ i

σ, i |= ϕ1 U [a,b] ϕ2 iff there exists j ∈ [i+ a, i+ b]
such that σ, j |= ϕ2 and
σ, k |= ϕ1 for all i ≤ k < j

We say that σ satisfies ϕ, written σ |= ϕ, if and only if
σ, 0 |= ϕ. We define the language L(ϕ) of a temporal formula
ϕ as L(ϕ) = {σ ∈ (2Σ)ω | σ |= ϕ}.

Symbolic safety automata and safety games

To begin with, we formally define the problems of realizab-
ility and reactive synthesis for temporal formulas.

As for realizability, it is convenient to view it as a two-
player game between Controller, whose aim is to satisfy the
specification, and Environment, who tries to violate it.

Definition 1 (Strategy): Let Σ = C ∪ U be an alphabet
partitioned into the set of controllable variables C and the set
of uncontrollable ones U , such that C ∩ U = ∅. A strategy
for Controller is a function g : (2U )+ → 2C that, given the
sequence U = ⟨U0, . . . ,Un⟩ of choices made by Environment
so far, determines the current choices Cn = g(U) of Controller.

Given a strategy g : (2U )+ → 2C and an infinite sequence of
uncontrollable choices U = ⟨U0,U1, . . .⟩ ∈ (2U )ω, with some
abuse of notation, we denote as g(U) = ⟨U0 ∪ g(⟨U0⟩),U1 ∪
g(⟨U0,U1⟩), . . .⟩ the state sequence resulting from reacting to
U according to g.

Definition 2 (Realizability and Synthesis): Let ϕ be a
temporal formula over the alphabet Σ = C∪U . We say that ϕ is
realizable if and only if there exists a strategy g : (2U )+ → 2C

such that, for any infinite sequence U = ⟨U0,U1, . . .⟩ ∈ (2U )ω ,
it holds that g(U) |= ϕ. If ϕ is realizable, the synthesis problem
is the problem of computing such a strategy g.

Temporal logic has an intimate relationship with automata
on infinite words [24], where different acceptance conditions
give rise to different classes of automata. For instance, the
acceptance condition of (non-deterministic) Büchi automata
allows them to recognize the class of ω-regular languages [4],
including all languages definable by LTL+P formulas.

Here, we focus on a restricted type of acceptance condition,
called safety condition, and we represent automata in a symbolic
way, as opposed to their common explicit representation.

Definition 3 (Symbolic Safety Automata): A symbolic
safety automaton (SSA) is a tuple A = (V, I, T, S), such
that (i) V = X ∪ Σ, where X is a set of state variables and
Σ is a set of input variables, and (ii) I(X), T (X,Σ, X ′), and
S(X), with X ′ = {x′ | x ∈ X}, are Boolean formulae which
define the set of initial states, the transition relation, and the
set of safe states, respectively.

In symbolic automata, states are identified by the values of
state variables, and both initial/final states and the transition
relation are represented as Boolean formulas. This allows
them to be, in many cases, exponentially more succinct than
equivalent explicitly represented automata. In particular, the
transition relation T (X,Σ, X ′) is built over state variables,
input variables, and a primed version of state variables that
represent the values of state variables at the next state. As
an example, if a variable x has to flip at every transition, the
transition relation would contain a clause of the form x⇔ ¬x′.

Definition 4 (Acceptance of SSA): Let A be an SSA. A
trace is a sequence τ = ⟨τ0, τ1, . . .⟩ ∈ (2V )ω of subsets τi
of V that satisfies the transition relation of A, that is, such
that for all i ≥ 0, T (X,Σ, X ′) is satisfied when τi is used to
interpret variables from X and Σ, and τi+1 is used to interpret
variables from X ′. We say that a trace τ is induced by a word
σ = ⟨σ0, σ1, . . .⟩ ∈ (2Σ)ω iff σi = τi∩Σ for all i ≥ 0. A trace
τ is accepting (or safe) iff τi satisfies S(X) for all i ≥ 0. The
language of A, denoted as L(A), is the set of all σ ∈ (2Σ)ω

such that there exists an accepting trace induced by σ in A.
For reactive synthesis, a crucial property of an automaton A

is determinism, since in order to check if σ ∈ L(A) it suffices
to check if the trace induced by σ in A is accepting.

Definition 5 (Deterministic SSA): An SSA A = (V, I, T, S)
is deterministic if:

1) the formula I has exactly one satisfying assignment;
2) the transition relation is of the form:

T (X,Σ, X ′) :=
⋀
x∈X

(x′ ⇔ βx(X ∪ Σ))

where each βx(X ∪ Σ) is a Boolean formula over X and Σ.
Note that Def. 5 implies that for each σ ∈ (2Σ)ω , there exists

exactly one trace induced by σ for any given deterministic SSA.
The realizability and the synthesis problems can be defined
over a deterministic automaton as well; this gives rise to a
safety game, which is defined as follows.
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Definition 6 (Safety Game): Let A be a deterministic
SSA over the alphabet Σ = C ∪ U . A safety game is a tuple
G = ⟨A, C,U⟩, where C and U are the sets of controllable and
uncontrollable variables, respectively. We say that Controller
wins the game if and only if there is a strategy g : (2U )+ → 2C

such that for all sequences U = ⟨U0,U1, . . .⟩ ∈ (2U)ω , the trace
τ induced by g(U) in A is accepting.

III. EXTENDED BOUNDED RESPONSE LTL

In this section, we define Extended Bounded Response
LTL, abbreviated LTLEBR. LTLEBR extends LTLFB (which only
features bounded operators) by admitting Boolean combinations
of the universal unbounded temporal operators release (R) and
globally (G).

Definition 7 (The logic LTLEBR): Let a, b ∈ N. An LTLEBR
formula χ is inductively defined as follows:

ψ := p | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 U [a,b] ψ2 Full Bounded Layer

ϕ := ψ | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | ψR ϕ Future Layer

χ := ϕ | χ1 ∨ χ2 | χ1 ∧ χ2 Boolean Layer

We refer to Sec. II for the semantics of LTLEBR operators. In
the next sections, we will show how to build, given an LTLEBR
formula ϕ, a deterministic symbolic safety automaton A(ϕ)
such that L(A(ϕ)) = L(ϕ).

A. Examples

We now give some simple examples of requirements that
can be expressed in the LTLEBR logic.

The first one is a typical bounded response requirement:
Controller has to answer a grant g at most k time units after
the request r of Environment is issued. It can be expressed by
the following LTLEBR formula:

G(r → F[0,k]g)

Another quite common requirement is mutual exclusion. As
an example, the case of an arbiter that has to grant a resource
to at most one client at once can be captured as follows (for
each i, gi means that the resource has been granted to client i):

G(
⋀

1≤i<j≤n

¬(gi ∧ gj))

When a set of clients with different priorities has to be
managed, it is possible to introduce a requirement stating that,
whenever two or more clients simultaneously send a request,
clients with a higher priority must be granted before those with
a lower one (i < j means that the priority of client i is higher
than that of client j):⋀

1≤i<j≤n

G((ri ∧ rj) → (¬gj) U [0,k] gi)

Finally, in many situations it is important to include require-
ments about the configuration of a system model. Consider the
case of a thermostat. One may ask that if the prog modality
is off, then the controller has to communicate the signal on
to the boiler for an indefinitely long amount of time, while,
in case the prog modality is on, it has to do that only for

a specific interval of time, say [h1, h2], after which it has to
stop the communication with the boiler. This can be expressed
in LTLEBR by the following formula:

(¬prog ∧ G(on)) ∨ (prog ∧ G[h1,h2](on) ∧ Xh2G(off))

B. Comparison with other temporal logics

Zhu et al. [25] studied the synthesis problem for Safety
LTL, which can be viewed as the until-free fragment of LTL
in negated normal form (NNF). Every formula ϕ of LTLEBR
can be turned into a Safety LTL one by (i) transforming ϕ
in NNF and (ii) expanding each bounded operator in terms
of conjunctions or disjunctions. As an example, the LTLEBR
formula ϕ := G(p → F[0,5]q) is equivalent to the Safety LTL
formula ϕ′ := G(p →

⋁5
i=0 X

iq). However, since constants
in LTLEBR are represented by using a logarithmic encoding,
LTLEBR formulas can be exponentially more succinct than
Safety LTL ones. Whether the converse holds as well, i.e.,
whether any formula of Safety LTL can be translated into
an equivalent LTLEBR one, is still an open question. As an
example, G(p∨Gq) is a Safety LTL formula but, syntactically,
is not an LTLEBR one.

Maler et al. [18] introduced Metric Temporal Logic with a
Bounded-Horizon (MTL−B for short) as the metric temporal
logic with only bounded operators interpreted over dense time.
They addressed the problem of reactive synthesis from MTL−B
specifications by showing that each MTL−B formula can be
transformed into a deterministic timed automaton. With respect
to this fragment, and ignoring the differences in the underlying
temporal structures (in our setting, time is discrete), LTLEBR
extends MTL−B with Boolean combinations of unbounded
universal temporal operators.

IV. FROM LTLEBR TO
DETERMINISTIC SYMBOLIC SAFETY AUTOMATA

This section focuses on the procedure to turn every LTLEBR
formula into a deterministic symbolic safety automaton on
infinite words (see Def. 5) that recognizes the same language.

In doing that, we apply a few transformation steps on the
formula, summarized in Fig. 1, to simplify its syntactic structure
and turn it into a form amenable to direct transformation into
a deterministic SSA. We define two syntactic restrictions of
LTLEBR that are the targets of the transformation steps.

Definition 8 (PastLTLEBR): An PastLTLEBR formula χ is
inductively defined as follows:

ψ := p | ¬ψ | ψ1 ∨ ψ2 | Yψ | ψ1 S ψ2

ϕ := ψ | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | (Xiψ)R ϕ

χ := ϕ | χ1 ∨ χ2 | χ1 ∧ χ2

Definition 9 (Canonical PastLTLEBR): The canonical form
of PastLTLEBR formulas is inductively defined as follows:

ψ := p | ¬ψ | ψ1 ∨ ψ2 | Yψ | ψ1 S ψ2

ϕ := ψ | Gψ | ψ1 R ψ2

λ := ϕ | Xλ
χ := λ | χ1 ∨ χ2 | χ1 ∧ χ2

85



LTLEBR ϕ

PastLTLEBR ϕ

· toPastLtlEbr

Canonical PastLTLEBR ϕ

· canonize

SSA A(ϕ)

· ltl2smv

AIGER

· fsmv2aig

result (real./unreal.)

· call to a safety synthesizer

Figure 1. The overall procedure.

Canonical PastLTLEBR formulas do not contain nested
occurrences of unbounded temporal operators, whose operands
can be only full-past formulas, and each of these is prefixed
by an arbitrary number of next operators.

The transformation of LTLEBR formulas into deterministic
SSAs consists of three steps: (i) a translation from LTLEBR
to PastLTLEBR; (ii) a translation from PastLTLEBR to its
canonical form; (iii) a transformation of canonical PastLTLEBR
formulas into deterministic SSAs. Once a deterministic SSA
A(ϕ) for the original LTLEBR formula ϕ over C ∪ U has been
obtained, to solve the safety game ⟨A(ϕ), C,U⟩, i.e., to decide
the existence of a strategy for Controller in the automaton, we
apply an existing safety synthesis algorithm (see Def. 6).

A. From LTLEBR to PastLTLEBR

Let ϕ be an LTLEBR formula. The first step consists in
translating each LTLFB subformula of ϕ into an equivalent one,
which is of the form Xdψ, with ψ ∈ LTLFP and d ∈ N. We
refer to this process as pastification [17], [18]. As we will see,
since “the past has already happened”, full-past formulas can
be represented by deterministic monitors.

In order to pastify each LTLFB subformula of ϕ, we adapt to
LTLEBR a technique developed by Maler et al. for MTL−B [17],
[18]. Intuitively, for each model of a full-bounded formula ϕ,
there exists a furthermost time point d (the temporal depth of
ϕ) such that the subsequent states cannot be constrained by ϕ
in any way. The pastification of ϕ is a formula that uses only
past operators and that is equivalent to ϕ when interpreted at
time point d instead of at the origin.

Definition 10 (Temporal Depth [18]): Let ϕ be an LTLFB
formula. The temporal depth of ϕ, denoted as D(ϕ), is
inductively defined as follows:

• D(p) = 0, for all p ∈ Σ
• D(¬ϕ1) = D(ϕ1)
• D(ϕ1 ∧ ϕ2) = max{D(ϕ1), D(ϕ2)}
• D(Xϕ1) = 1 +D(ϕ1)
• D(ϕ1 U [a,b] ϕ2) = b+max{D(ϕ1), D(ϕ2)}

Let Mϕ (only M if unambiguous) be the greatest constant in
ϕ, with Mϕ = 0 if ϕ has no constants. It can be observed that
D(ϕ) ≤M · n, where n = |ϕ|.

Definition 11 (Pastification [18]): Let ϕ be an LTLFB
formula and d ≥ D(ϕ). The pastification of ϕ is the formula
Π(ϕ, d) inductively defined as follows:

• Π(p, d) = Ydp

• Π(¬ϕ, d) = ¬Π(ϕ, d)

• Π(ϕ1 ∧ ϕ2, d) = Π(ϕ1, d) ∧Π(ϕ2, d)

• Π(Xϕ, d) = Π(ϕ, d− 1)

• Π(ϕ1 U [a,b] ϕ2, d) =⋁b−a
t=0 (Y

t(Π(ϕ2, d− b) ∧ Hb−t−1YΠ(ϕ1, d− b)))

Note that from Def. 11 we can derive that Π(F[a,b]ϕ, d) ≡
Π(⊤ U [a,b] ϕ, d) ≡

⋁b−a
t=0 Y

tΠ(ϕ, d − b), which can be suc-
cinctly written using the once operator, hence we can define
Π(F[a,b]ϕ, d) = O[0,b−a]Π(ϕ, d− b).

Proposition 1 (Soundness of pastification): Let φ be a
LTLFB formula. For all state sequences σ ∈ (2Σ)ω, all i ∈ N,
and all d ≥ D(ϕ), it holds that:

σ, i |= φ ⇔ σ, i |= XdΠ(φ, d)

From now on, let pastify(ϕ) be the formula
XD(ϕ)Π(ϕ,D(ϕ)). As an example, if ϕ := F[0,k1](q∧F[0,k2]p),
then pastify(ϕ) := Xk1+k2O[0,k1](Yk2q ∧ O[0,k2]p). We state
the following complexity result about pastification.

Proposition 2: Let ϕ be a LTLFB formula. Then, pastify(ϕ)
is a formula of size O(n2 ·M log2 n+1), where n = |ϕ| and M
is the greatest constant in ϕ.

Note that if ϕ has no constants, that is, M = 1, the size of
pastify(ϕ) is O(n2) . Given an LTLEBR formula ϕ, we pastify
each of its LTLFB subformulas with the pastify operator: we
call this step toPastLtlEbr. Once it has been completed, the
resulting formula belongs to PastLTLEBR.

The toPastLtlEbr algorithm can be improved by observing that
there are LTLFB formulas that already belong to PastLTLEBR.
One example is the formula p∧XXXq. Obviously, for this kind
of formulas there is no need for the algorithm to pastify them.
Consider the previous example. Without the proposed trick, the
algorithm would have produced the formula XXX(YYYp ∧ q),
while, by simply noticing that the formula already belongs to
PastLTLEBR, it does not need to pastify anything, returning
p ∧ XXXq.

Proposition 3: For each LTLEBR formula ϕ, there is an
equivalent PastLTLEBR formula ϕ′ of size O(n3 ·M log2 n+1),
where n = |ϕ| and M is the greatest constant in ϕ.

Proof: Let ϕ be an LTLEBR formula and let ϕ′ :=
toPastLtlEbr(ϕ). By Prop. 1, the toPastLtlEbr algorithm replaces
the LTLFB subformulas of ϕ with an equivalent formula, hence
ϕ ≡ ϕ′. Since in ϕ there are at most n = |ϕ| subformulas,
then, by Prop. 2, |ϕ′| = n · O(n2 · M log2 n+1), that is,
|ϕ′| = O(n3 ·M log2 n).
Note that if there are no constants in ϕ, that is, M = 1, then,
by Prop. 2, |toPastLtlEbr(ϕ)| = O(n3).
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B. From PastLTLEBR to Canonical PastLTLEBR
The second step is the canonization of the PastLTLEBR

formula obtained from the previous step, in order to produce
an equivalent formula in canonical form (Def. 9). Canonical
PastLTLEBR formulas are Boolean combinations of formulas of
the form Xiψ1, XiGψ1, and Xi(ψ1Rψ2), where ψ1 and ψ2 are
full past formulas. Compared to general PastLTLEBR formulas,
those in canonical form do not admit neither nested unbounded
operators nor next operators in front of the left-hand argument
of a release. The canonization of a PastLTLEBR formula is
obtained by applying a set of rewriting rules.

Definition 12 (Canonization): Given a PastLTLEBR formula
ϕ, canonize(ϕ) is the formula obtained by recursively applying
the R1-R7 rules to the subformulas of ϕ in a bottom-up fashion
followed by the application of the Rflat rule:

R1 : X(ψ1 ∧ ψ2)⇝ Xψ1 ∧ Xψ2

R2 : ψR (ψ1 ∧ ψ2)⇝ ψR ψ1 ∧ ψR ψ2

R3 : (Xiψ1)R (Xjψ2)⇝{
Xi(ψ1 R (Yi−jψ2)) if i > j

Xj((Yj−iψ1)R ψ2) otherwise

R4 : (Xiψ1)R (Xj(ψ2 R ψ3))⇝{
Xi(ψ1 R ((Yi−jψ2)R (Yi−jψ3))) if i > j

Xj((Yj−iψ1)R (ψ2 R ψ3)) otherwise

R5 : GXiGψ ⇝ XiGψ

R6 : GXi(ψ1 R ψ2)⇝ XiGψ2

R7 : (Xiψ1)R (XjGψ2)⇝{
XiGYi−jψ2 if i > j

XjGψ2 otherwise

Rflat : X
i(ψ1 R (ψ2 R (. . . (ψn−1 R ψn) . . . )))⇝

Xi((ψn−1 ∧ O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤) . . . ))R ψn)

for any n ≥ 3

where ψ, ψ1, ψ2, and ψ3 are full-past formulae.
It is worth noticing that, so far, we do not have rules

(preserving equivalence) to deal with the following cases:
(i) (ϕ1 ∧ ϕ2)R (ϕ), (ii) (Gϕ1)R (ϕ) or (iii) (ϕ1 R ϕ2)R (ϕ).
This is why, in Def. 7, we restricted the left-hand argument of
each release operator to be a full-bounded formula.

Lemma 1 (Soundness of canonize(·)): For any PastLTLEBR
formula ϕ, it holds that ϕ and canonize(ϕ) are equivalent and
canonize(ϕ) is a Canonical PastLTLEBR formula.

Proposition 4 (Complexity of canonize(·)): For any
PastLTLEBR formula ϕ, canonize(ϕ) can be built in O(n) time,
and the size of canonize(ϕ) is O(n), where n = |ϕ|.

C. From Canonical PastLTLEBR to deterministic SSA

The particular shape of canonical PastLTLEBR formulas
makes it possible to encode the specification into deterministic
SSAs. The key observation is that LTLFP formulas can be
encoded into deterministic automata: since these formulas talk
exclusively about the past, their truth can be evaluated at any

single step depending only on previous steps, without making
any guess about the future (“the past already happened”).
But LTLFP formulae are not the only ones that can be
encoded deterministically. Consider, for instance, the formula
ϕ ≡ Xp ∨ Xq. At a first glance, it may seem that ϕ needs a
non-deterministic automaton to be encoded, which at the first
state makes a choice about whether p or q will hold in the
next state. Nevertheless, this formula is equivalent to X(p∨ q)
and it corresponds to the deterministic automaton that, once
arrived in its second state by reading any proposition symbol,
proceeds to an accepting state by reading either p or q, or goes
to a sink (error) state otherwise.
PastLTLEBR in its canonical form combines full past formu-

las into a broader language that can still be turned into symbolic
deterministic automata, extending the above intuition and
exploiting the monitorability of universal temporal operators.

Monitoring is a technique coming from runtime verifica-
tion [16]. Consider the formula Gα. By observing a state
sequence, at each step we can decide if a violation has occurred;
indeed, if α is false at the current step, then the value of Gα is
certainly false for each of the previous steps. More generally,
universal temporal formulas, such as Gϕ and ϕ1 R ϕ2, are
monitorable, meaning that a violation of them can be decided
on the basis of the observation of a finite number of steps.
In particular, reporting an error in the next state can be done
by considering only the current values. This means that any
universal temporal operator can be monitored by adding a
Boolean error variable with a deterministic transition relation.

Therefore, despite not being able to evaluate the truth of
a formula such as Gα, as it can be done in the case of past
operators, we can nevertheless state in the accepting condition
that an error state can never be reached. In this way, if the
trace is accepting, that is, an error state can never be reached,
then we know that there are no violations, e.g., for Gα, we
have forced α to be true in every state. Otherwise, if the trace
is not accepting, that is, an error state is reachable, we know
that there is a (finite) violation and that the temporal formula
was falsified at some step. We therefore introduce an error
bit for each Xiψ1, XiGψ1, and Xi(ψ1 R ψ2) of a canonical
PastLTLEBR formula.

Let ϕ be a canonical PastLTLEBR formula over the alphabet
Σ = C ∪ U . We define the deterministic SSA A(ϕ) =
(V, I, T, S) as follows:

• Variables. The set of state variables of the automaton is
defined as X = XP ∪XF ∪XC , where:

XP = {vα | α is an LTLFP subformula of ϕ}

XF =

{
errorφ

⏐⏐⏐⏐⏐φ is subformula of ϕ of the form

Xiψ, XiGψ, or Xi(ψ1 R ψ2)

}

XC =

{
counteri

⏐⏐⏐⏐⏐ i ∈ {0, . . . , log2 d}
d max. among all Xdψ in ϕ.

}
Intuitively, variables in XP track the truth value of all
the full-past subformulas, variables in XF implement the
above-described monitoring mechanism, and variables in
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XC are used to encode a binary counter used to monitor
nested tomorrow operators. In particular, for n nested
tomorrow operators, a counter with log2(n) bits is needed.

• Initial state. All the state variables, including the counter
bits, are initially false, that is, I(X) =

⋀
x∈X ¬x.

• Transition relation. T (X,Σ, X ′) is the conjunction of the
transition functions of the binary counter and the monitors
of each subformula of ϕ, as will be defined later. Notice
that each conjunct is of the form x′ ⇔ β(X ∪ Σ), and
thus it is a deterministic transition relation.

• Safety condition. S(X) is a Boolean formula obtained
from ϕ by replacing each formula φ ∈ XF by ¬errorφ,
i.e., S(X) = ϕ[φ/¬errorφ].

We now define the monitors for the binary counter, used to
handle nested tomorrow operators, any formula ψ ∈ LTLFP, and
any canonical PastLTLEBR formula of one of the forms Xiψ1,
XiGψ1, and Xi(ψ1Rψ2). We give the definition of the monitors
using the SMV language [6], as it provides useful shorthands
(like the switch-case primitive). Each of the following SMV
statement corresponds to the Boolean formula that defines
transition functions of our monitors.

The monitor for the counter is defined as follows:
n e x t ( c o u n t e r 0 ) := ¬ c o u n t e r 0
n e x t ( c o u n t e r i ) := ( c o u n t e r i−1 ∨ c o u n t e r i ) ∧ ¬ c o u n t e r i

If ψ := α S β or Yα, its monitor is defined as follows:
n e x t (vYα ) := vα ∧ c o u n t e r> 0
DEFINE

vαSβ := vβ ∨ (vα ∧ vY(αSβ))

If ψ is a propositional atom, a negation, or a disjunction of
full-past formulas, we define its monitor as follows:
DEFINE

vp := p
v¬α := ¬vα
vα∨β := vα ∨ vβ

For each formula ϕ of type Xiψ, where ψ is a full-past
formula, we introduce a new error bit errorϕ. Its monitor is
defined as follows:
n e x t (errorXiψ ) := c a s e

errorXiψ : TRUE;
counter = i ∧ ¬vψ : TRUE;
TRUE : FALSE ;

e s a c

If ϕ := XiGψ, where ψ is a full-past formula, we introduce
a new error bit errorϕ, and we define its monitor as follows:
n e x t (errorXiGψ ) := c a s e

counter < i : FALSE ;
¬errorXiGψ ∧ vψ : FALSE ;
TRUE : TRUE;

e s a c

The same for ϕ := Xi(ψ1 R ψ2):
n e x t (errorXi(ψ1Rψ2) ) := c a s e

counter < i : FALSE ;
¬errorXi(ψ1Rψ2) ∧ vi

ψ
p
1

: FALSE ;

¬errorXi(ψ1Rψ2) ∧ vψ1
∧ vψ2

: FALSE ;
¬errorXi(ψ1Rψ2) ∧ vψ2

: FALSE ;
TRUE : TRUE;

e s a c

n e x t (vi
ψ
p
1

) := c a s e

counter < i : FALSE ;
vψp1

: TRUE;

vi
ψ
p
1

: TRUE;

TRUE : FALSE ;
e s a c

In Fig. 2, we describe the execution of all the steps described
so far on a simple formula.

G(u1 → XXc1) ∧ G(u2 → Xc2)

GXX(YYu1 → c1) ∧ GX(Yu2 → c2)

XXG(YYu1 → c1) ∧ XG(Yu2 → c2)

ASSIGN
init(error1) := ⊥
next(error1) := . . .

ASSIGN
init(error2) := ⊥
next(error2) := . . .

INVARSPEC
¬error1 ∧ ¬error2

pastify

canonize

to SSA

Figure 2. The execution of the sequence of steps: a simple example.

Proposition 5: Let ϕ be a canonical PastLTLEBR formula,
with |ϕ| = n. Then, there exists a deterministic SSA of size
O(n) that accepts the same language.

Theorem 1: Let ϕ be an LTLEBR formula, with |ϕ| = n,
and let M be the greatest constant in ϕ. Then, there exists a
deterministic SSA of size O(n3 ·M log2 n+1) that accepts the
same language.

Corollary 1: Let ϕ be an LTLEBR formula with no constants,
with |ϕ| = n. Then, there exists a deterministic SSA of size
O(n3) that accepts the same language.

V. SOLVING THE GAME ON THE
SYMBOLIC DETERMINISTIC AUTOMATON

Once we have obtained the deterministic SSA A(ϕ) for an
LTLEBR formula ϕ with the steps described in the previous
sections, we can use A(ϕ) as the arena of a two-player game
between Controller and Environment in order to solve the
realizability (and synthesis) problem for ϕ.

Let us focus on the safety game G = ⟨A(ϕ), C,U⟩ (recall
Def. 6). Safety games have been extensively studied, as
their reachability objective makes the problem simpler than
considering ω-regular objectives, such as, for instance, Büchi
and Rabin conditions.

The aim of Controller is to choose an infinite sequence of
controllable variables in such a way that, no matter what values
for the uncontrollable variables are chosen by Environment, the
trace induced by the play in A(ϕ) is safe, that is, it visits only
states s such that s |= S(X) (see Def. 6). Since in our case
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A(ϕ) recognizes exactly the language of ϕ, the play satisfies
ϕ, and thus Controller has a winning strategy for ϕ.

Since the organization of the SYNTCOMP [14], many
optimized tools have been proposed in the literature to solve
safety games. For this reason, we chose to use a safety
synthesizer as a black box. The majority of these tools accept
as input a symbolic arena described in terms of and-inverter
graphs (or AIGER format [1]), so we provide a simple utility to
obtain the AIGER representation of functional SMV modules,
that is, SMV modules with the transition relation expressed
only in terms of ASSIGN statements, such as the ones resulting
from our encoding. The AIGER model is then given as input to
the chosen safety synthesizer, completing the process outlined
in Fig. 1.

The next theorem states the complexity of the procedure.
Theorem 2: The realizability problem for LTLEBR belongs

to 2EXPTIME. If no constant is admitted, it belongs to
EXPTIME.

Proof: We first show that the proposed algorithm, as
described in Fig. 1, belongs to 2EXPTIME for generic LTLEBR
formulas. It is easy to see that the time complexity of all the
steps matches their space complexity. Therefore, we have an
algorithm to turn an LTLEBR formula ϕ into an equivalent
deterministic SSA A(ϕ) whose time complexity is O(n3 ·
M log2 n+1), where n = |ϕ| and M is the greatest constant in
ϕ. Since A(ϕ) is symbolically represented, it can be turned
into an explicit automaton A′(ϕ) of size at most exponential in
the size of A(ϕ), that is, | A′(ϕ)| ∈ O(2n

3·M log2 n+1

). Finally,
the time complexity of reachability games is linear in the size
of the arena [9], and thus the overall time complexity of the
realizability problem for LTLEBR is 2EXPTIME. If no constant
is admitted, then, by Corollary 1, | A′(ϕ)| ∈ O(2n

3

), and the
complexity becomes EXPTIME.

Comparison with Safety LTL

It is interesting to briefly compare the proposed procedure
for realizability to the one used by the Ssyft tool for Safety
LTL specifications [25]. In that tool, the negation of the initial
formula is first translated into first-order logic over finite words
and then transformed into deterministic automata using the
tool MONA [12], which uses the classical subset construction
to determinize automata over finite words. Finally, Ssyft uses
the classical backward fixpoint iteration to compute the set
of winning states over the DFA. It is worth to notice that
the way MONA represents automata is not fully symbolic: the
set of states is explicitly represented, while it uses a BDD
for each pair of states in order to represent symbolically the
transitions between the two corresponding states. In contrast of
subset construction, our solution performs the pastification of
full-bounded formulas. Most importantly, our construction of
deterministic monitors is carried out in a fully symbolic way.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed procedure (see Fig. 1) in a
tool called ebr-ltl-synth.1 The transformation from LTLEBR to

1http://users.dimi.uniud.it/∼luca.geatti/tools/ebrltlsynth.html

deterministic SSA together with the translation to AIGER has
been implemented inside the nuXmv model checker [6]. As
the backend for solving the safety game, we have chosen the
SAT-based tool demiurge [2].

We tested our tool on a set of scalable benchmarks divided
in four categories (the propositional atoms starting with the
letter c are controllable, while those starting with the letter u
are uncontrollable):

1) the first category is generated by the realizable formula:

G(c0 ∧ XG(c1 ∧ · · · ∧ XnG(cn ∨ u) . . . ))

2) the second category is generated by the realizable formula:

G((c0 ∨ u0) ∧ XG((c1 ∨ u1) ∧ · · · ∧ XnG((cn ∨ un)) . . . ))

3) the third category is generated by the unrealizable formula:

G(c) ∧
n⋁

i=1

G(
i⋀

j=0

ui)

4) the fourth category is generated by the unrealizable
formula:

c ∧
n⋀

i=1

Xi(ui ∨ ui+1)

Each category contains the respective scalable formula for
n ∈ [1, 200], for a total of 800 benchmarks, half of which is
realizable and the other half is unrealizable. We set a timeout
of 180 seconds for each benchmark. We compared ebr-ltl-synth
with ltlsynt [13], Strix [19] and Ssyft [25]. The first two tools
solve the realizability and synthesis problems for full LTL and
are based on a translation to parity games. ltlsynt uses SPOT
[10] for efficient translation and manipulation of automata. Strix
implements several optimizations like specification splitting,
that enables to split the initial formula in safety, co-safety,
Büchi, and co-Büchi subformulas and speeds up the process
of solving of the game. On the contrary, Ssyft solves the
realizability problem for specifications written in Safety LTL
(see Sec. V for a brief description of the Ssyft tool).

For realizability, we tested all the tools in their sequential
configurations. ltlsynt has two sequential configurations, which
differ on whether the split of actions into Controller’s and
Environment’s ones is performed before or after the determ-
inization. Strix has two sequential modes as well, depending
on the kind of search on the arena (depth-first for the first
configuration and with a priority queue for the second). Ssyft
and ebr-ltl-synth have only one configuration.

Fig. 3 shows the outcomes of the comparison between ebr-
ltl-synth and the best configuration of ltlsynt: it can be clearly
seen that, for both realizable and unrealizable formulas, ltlsynt
presents an exponential blow-up in the solving time that is
avoided by ebr-ltl-synth. Fig. 4 compares ebr-ltl-synth with the
best configuration of Strix: while for realizable formulas there
is an exponential blow up of Strix avoided by ebr-ltl-synth, it
is interesting to note that for the unrealizable benchmarks the
difference between the solving time of the two tools is linear,
mostly showing a 10x improvement in favor of ebr-ltl-synth.
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Figure 3. ebr-ltl-synth vs ltlsynt (first conf.) on all scalable benchmarks.

Figure 4. ebr-ltl-synth vs Strix on all scalable benchmarks.

The survival plots for the set of realizable and unrealizable
scalable benchmarks are shown in Figs. 5 and 6, respectively.

The outcomes of the comparison between ebr-ltl-synth
and Ssyft are shown in Fig. 7. The three lines near the
sides of the figure correspond to timeouts (the solid black
line), memouts for unrealizable benchmarks and memouts for
realizable benchmarks (the dotted lines). It can be noticed that
Ssyft reaches a memory out for the vast majority of benchmarks.
For instance, on both the realizable categories, Ssyft reaches the
first memout with n = 7. As for the unrealizable benchmarks,
on the third category, Ssyft reaches the first memout with
n = 36, while for the fourth category with n = 59. This is due
to MONA, which is not able to build the (explicit) DFA for the

Figure 5. Survival plot for realizable scalable benchmarks.

Figure 6. Survival plot for unrealizable scalable benchmarks.

(negation of the) initial specification2. This is an important hint
about the use of fully symbolic techniques for the representation
of automata, like the one of ebr-ltl-synth, as in many cases they
can avoid an exponential blowup of the automata’ state space.
The survival plot between ebr-ltl-synth and Ssyft is shown
in Fig. 83. The rest of the plots for realizability of scalable
benchmarks can be found in [8].

In addition to these scalable formulas, from the benchmarks
of SYNTCOMP [14], we filtered the formulas that belong to
LTLEBR: this resulted into a set of 29 formulas. The survival
plot showing the comparison with ltlsynt and Strix is shown in
Fig. 9, while the comparison with Ssyft is shown in Fig. 10. It
is interesting to see that, on the SYNTCOMP benchmarks, the
results of ebr-ltl-synth and Ssyft are comparable.

As for the synthesis problem, once a specification is found to
be realizable, all the tools except for Ssyft produce a strategy as
a witness: this strategy is in the form of an and-inverter graph
whose input bits are only the starting uncontrollable variables.
Often, such a strategy can be minimized by using logic

2We point out that in some cases, like in the fourth category for n ≥ 60,
MONA’s memouts are due to its parser.

3The reason why we do not have a single survival plot comparing all the
four tools is that Ssyft could not have been compiled for the same platform as
the others, due to issues with its source code.
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Figure 7. ebr-ltl-synth vs Ssyft on scalable benchmarks.

Figure 8. Survival plot for ebr-ltl-synth and Ssyft on scalable benchmarks.

synthesis tools (like ABC [3]) as black-box. In the particular
case of ebr-ltl-synth, ltlsynt and Strix, they all use a separate
logic synthesizer as black box, with different configurations
to minimize the strategy. Therefore, we do not compare the
size of the resulting strategies, since such a comparison would
add nothing about the methods implemented by the tools but
would rather compare their backends.

VII. CONCLUSIONS

In this paper, we introduce the logic LTLEBR, a fragment
of LTL that combines formulas with only bounded operators
and a particular combination of universal unbounded tem-
poral operators. We focus on the realizability and reactive
synthesis problems for this logic. The main contribution is
a fully symbolic translation from any LTLEBR formula to a
deterministic symbolic safety automaton on infinite words. The
process applies a pastification step and a set of rules to reach a
canonical form for LTLEBR formulas. The realizability is then
decided by solving a safety game on the arena represented by
the automaton. We first showed that realizability for LTLEBR

Figure 9. Survival plot for SYNTCOMP benchmarks.

Figure 10. Survival plot for ebr-ltl-synth and Ssyft on SYNTCOMP benchmarks.

belongs to 2EXPTIME, but drops to EXPTIME if no constants
are used. Then, we implemented the proposed procedure in
a tool, whose experimental evaluation revealed very good
performance against tools for realizability and synthesis of
full LTL and Safety LTL specifications.

As a future development of this line of work, we believe
that the translation from LTLEBR to deterministic SSA may
provide many benefits in the context of symbolic model
checking as well, since the search of the state space could
benefit from a deterministic representation of the automaton
for the formula [23]. On the automata construction side, an
interesting development would be to keep the symbolic bounds
during pastification and monitor construction, without, for
instance, expanding Xiα into i nested next operators. On
the expressiveness side, we want to study in which ways
assumptions can be integrated into LTLEBR. Last but not least,
we aim at checking whether the synthesis problem for more
expressive logics, like, for instance, LTL, can be reduced to the
synthesis problem for LTLEBR, for example checking whether
it is possible to use LTLEBR for solving the safety problems
originated from bounded synthesis techniques.

Acknowledgments: The authors want to thank all the
anonymous reviewers of FMCAD 2020 for the insightful
comments on a preliminary version of this paper.
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