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Abstract

Most current deep learning based single image super-

resolution (SISR) methods focus on designing deeper /

wider models to learn the non-linear mapping between low-

resolution (LR) inputs and the high-resolution (HR) outputs

from a large number of paired (LR/HR) training data. They

usually take as assumption that the LR image is a bicu-

bic down-sampled version of the HR image. However, such

degradation process is not available in real-world settings

i.e. inherent sensor noise, stochastic noise, compression ar-

tifacts, possible mismatch between image degradation pro-

cess and camera device. It reduces significantly the per-

formance of current SISR methods due to real-world image

corruptions. To address these problems, we propose a deep

Super-Resolution Residual Convolutional Generative Ad-

versarial Network (SRResCGAN1) to follow the real-world

degradation settings by adversarial training the model with

pixel-wise supervision in the HR domain from its generated

LR counterpart. The proposed network exploits the residual

learning by minimizing the energy-based objective function

with powerful image regularization and convex optimiza-

tion techniques. We demonstrate our proposed approach in

quantitative and qualitative experiments that generalize ro-

bustly to real input and it is easy to deploy for other down-

scaling operators and mobile/embedded devices.

1. Introduction

The goal of the single image super-resolution (SISR) is

to recover the high-resolution (HR) image from its low-

resolution (LR) counterpart. SISR problem is a funda-

mental low-level vision and image processing problem with

various practical applications in satellite imaging, medical

imaging, astronomy, microscopy imaging, seismology, re-

mote sensing, surveillance, biometric, image compression,

etc. In the last decade, most of the photos are taken using

1Our code and trained models are publicly available at https://

github.com/RaoUmer/SRResCGAN
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Figure 1: ×4 Super-resolution comparison of the pro-

posed SRResCGAN method with the ESRGAN [27] and

ESRGAN-FS [7] by the unknown artifacts for the ‘0815’

image (DIV2K validation-set). Our method has better re-

sults to handle sensor noise and other artifacts, while the

others have failed to remove these artifacts.

built-in smartphones cameras, where resulting LR image is

inevitable and undesirable due to their physical limitations.

It is of great interest to restore sharp HR images because

some captured moments are difficult to reproduce. On the

other hand, we are also interested to design low cost (lim-

ited memory and CPU power) camera devices, where the

deployment of our deep network would be possible in prac-

tice. Both are the ultimate goals to the end users.

Usually, SISR is described as a linear forward observa-

tion model by the following image degradation process:

Y = HX̃+ η, (1)

where Y ∈ R
N/s×N/s is an observed LR image (here

N × N is typically the total number of pixels in an im-

age), H ∈ R
N/s×N/s is a down-sampling operator (usu-

ally bicubic, circulant matrix) that resizes an HR image
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Figure 2: Visualizes the structure of the our proposed SR

approach setup. In the Domain Learning part, we learn

the domain distribution corruptions in the source domain

(x) by the network Gd (DSGAN structure), where our goal

is to map images from z to x, while preserving the image

content. Here B denotes the bicubic downscaling operator

which is applied on the clean HR target domain (y) images.

In the SR Learning part, we trained the network GSR in a

GAN framework by using generated LR (x̂) images from

the Gd network with their corresponding HR images.

X̃ ∈ R
N×N by a scaling factor s and η is considered as

an additive white Gaussian noise with standard deviation

σ. But in real-world settings, η also accounts for all possi-

ble errors during image acquisition process that include in-

herent sensor noise, stochastic noise, compression artifacts,

and the possible mismatch between the forward observation

model and the camera device. The operator H is usually

ill-conditioned or singular due to the presence of unknown

noises (η) that makes the SISR to highly ill-posed nature of

inverse problems. Since, due to ill-posed nature, there are

many possible solutions, regularization is required in order

to select the most plausible ones.

Since there are many visible corruptions in the real-

world images [20, 22], current state-of-art SISR methods

often fail to produce convincing SR results as shown in Fig-

ure 1. Most of the existing SR methods rely on the known

degradation operators such as bicubic with paired LR and

HR images in the supervised training, while other meth-

ods do not follow the image observation (physical) model

(refers to Eq. (1)). Three major problems arise in existing

SR methods: (1) the first is to train the deeper/wider (lots of

model’s parameters) networks from a huge volume of train-

ing data, (2) the second is not to generalize well for natu-

ral image characteristics due to follow the known bicubic

down-sampling degradation, and (3) it is not easy to deploy

to current generations of smartphone cameras due to lots of

network parameters and memory footprints. Therefore, we

focus on a robust SISR method that is useful to improve the

quality of images in such real-world settings.

In this work, we propose SR learning method (SRResC-

GAN) that strictly follows the image observation (physi-

cal) model (refers to Eq. (1)) to overcome the challenges of

real-world super-resolution and is inspired by powerful im-

age regularization and large-scale optimization techniques

to solve general inverse problems (i.e. easy to deployable

for other down-scaling operators). The visualization of our

proposed SISR approach setup is shown in Figure 2. Due

to the unavailability of paired (LR/HR) data, we train firstly

the down-sampling (DSGAN) [7] network (Gd) to gener-

ate LR images with same characteristics as the corrupted

source domain (x). We aim to learn the distribution (real-

world) mapping from bicubically down-sampled images (z)

of HR images (y) to the source domain images (x), while

preserving the image content. In the second part, the SR

network (GSR) is trained in a GAN framework [9] by us-

ing generated LR (x̂) images with their corresponding HR

images with pixel-wise supervision in the clean HR target

domain (y).

We evaluate our proposed SR method on multiple

datasets with synthetic and natural image corruptions. We

use the Real-World Super-resolution (RWSR) dataset [22]

to show the effectiveness of our method through quantita-

tive and qualitative experiments. Finally, we also partic-

ipated in the NTIRE2020 RWSR challenges (track-1 and

track-2) associated with the CVPR 2020 workshops. Ta-

ble 2 shows the final testset results of the track-1 of our

method (MLP-SR) with others, while we only provide the

visual comparison of the track-2 since no ground-truth (GT)

is available (refers to Fig. 5), and the quantitative results of

the track-2 are in the challenge report [22].

2. Related Work

2.1. Image Super­Resolution methods

Recently, the numerous works have addressed the task

of SISR using deep CNNs for their powerful feature rep-

resentation capabilities. A preliminary CNN-based method

to solve SISR is a super-resolution convolutional network

with three layers (SRCNN) [4]. Kim et al. [11] proposed

a very deep SR (VDSR) network with residual learning ap-

proach. The efficient sub-pixel convolutional network (ES-

PCNN) [24] was proposed to take bicubicly LR input and

introduced an efficient sub-pixel convolution layer to up-

scale the LR feature maps to HR images at the end of the

network. Lim et al. [18] proposed an enhanced deep SR

(EDSR) network by taking advantage of the residual learn-

ing. Zhang et al. [29] proposed iterative residual convo-

lutional network (IRCNN) to solve SISR problem by using

a plug-and-play framework. Zhang et al. [30] proposed

a deep CNN-based super-resolution with multiple degra-

dation (SRMD). Yaoman et al. [17] proposed a feedback

network (SRFBN) based on feedback connections and re-

current neural network like structure. In [26], the authors

proposed SRWDNet to solve the joint deblurring and super-

resolution task. These methods mostly rely on the PSNR-

based metric by optimizing the L1/L2 losses with blurry

results, while they do not preserve the visual quality with

respect to human perception. Moreover, the above men-



tioned methods are deeper or wider CNN networks to learn

non-linear mapping from LR to HR with a large number of

training samples, while neglecting the real-world settings.

2.2. Real­World Image Super­Resolution methods

For the perception SR task, a preliminary attempt was

made by Ledig et al. [27] who proposed the SRGAN

method to produce perceptually more pleasant results. To

further enhance the performance of the SRGAN, Wang et

al. [27] proposed the ESRGAN model to achieve the state-

of-art perceptual performance. Despite their success, the

previously mentioned methods are trained with HR/LR im-

age pairs on the bicubic down-sampling and thus limited

performance int real-world settings. More recently, Lug-

mayr et al. [20] proposed a benchmark protocol for the

real-wold image corruptions and introduced the real-world

challenge series [21] that described the effects of bicubic

downsampling and separate degradation learning for super-

resolution. Later on, Fritsche et al. [7] proposed the

DSGAN to learn degradation by training the network in

an unsupervised way, and also modified the ESRGAN as

ESRGAN-FS to further enhance it performance in the real-

world settings. However, the above methods still suffer un-

pleasant artifacts (see the Figures 1, 4 and 6, and the Ta-

ble 1). Our approach takes into account the real-world set-

tings by greatly increase its applicability.

3. Proposed Method

3.1. Problem Formulation

By referencing to the equation (1), the recovery of X

from Y mostly relies on the variational approach for com-

bining the observation and prior knowledge, and is given as

the following objective function:

Ê(X) = argmin
X

1

2
‖Y −HX‖22 + λRW (X), (2)

where 1
2‖Y−HX‖22 is the data fidelity (i.e. log-likelihood)

term that measures the proximity of the solution to the ob-

servations, RW (X) is regularization term that is associated

with image priors, and λ is the trade-off parameter that gov-

erns the compromise between data fidelity and regularizer

terms.

A generic form of the regularizers in the literature [3, 15]

is given as below:

RW (X) =

K∑

k=1

ρk(LkX), (3)

where L corresponds to the first or higher-order differential

linear operators such as gradient, while ρ(.) denotes a po-

tential functions such as ℓp vector or matrix norms that acts

on the filtered outputs [13]. Thanks to the recent advances

of deep learning, the regularizer (i.e. RW (X)) is employed

by deep convolutional neural networks (ConvNets), whose

parameters are denoted by W, that have the powerful image

priors capabilities.

Besides the proper selection of the regularizer and for-

mulation of the objective function, another important aspect

of the variational approach is the minimization strategy that

will be used to get the required solution. Interestingly, the

variational approach has direct link to Bayesian approach

and the derived solutions can be described by either as pe-

nalized maximum likelihood or as maximum a posteriori

(MAP) estimates [1, 6].

3.2. Objective Function Minimization Strategy

The proper optimization strategy is employed to find W

that minimizes the energy-based objective function to get

the required latent HR image. So, we want to recover the

underlying image X as the minimizer of the objective func-

tion in Eq. (2) as:

X̂ = argmin
X∈X̃

Ê(X), (4)

By referencing the Eqs. (2) and (3), we can write it as:

X̂ = argmin
X

1

2
‖Y −HX‖22 + λ

K∑

k=1

ρk(LkX), (5)

Since it is reasonable to require constraints on the image

intensities such as non-negativity values (i.e. α = 0, β =
+∞) that arise in the natural images, Eq. (5) can be rewrit-

ten in a constrained optimization form:

X̂ = argmin
α≤X≤β

1

2
‖Y −HX‖22 + λ

K∑

k=1

ρk(LkX), (6)

To solve the Eq. (6), there are several modern convex-

optimization schemes for large-scale machine learning

problems such as HQS method [8], ADMM [2], and Proxi-

mal methods [23]. In our work, we solve the under study

problem in (6) by using the Proximal Gradient Method

(PGM) [23], which is a generalization of the gradient de-

scent algorithm. PGM deals with the optimization of a func-

tion that is not fully differentiable, but it can be split into a

smooth and a non-smooth part. To do so, we rewrite the

problem in (6) as:

X̂ = argmin
X

1

2
‖Y −HX‖22 + λ

K∑

k=1

ρk(LkX)

︸ ︷︷ ︸

F(X)

+ιc(X),

(7)

where ιc is the indicator function on the convex set C ∈
{X ∈ R

N×N : ∀k, α 6 xk 6 β}. In [15], Lefkimmi-

atis proposed a trainable projection layer that computes the



proximal map for the indicator function as:

ιc(X, ε) =

{
0 , if ‖X‖2 6 ε

+∞ , otherwise

where ǫ = eασ
√
C ×H ×W − 1 is the parametrized

threshold, in which α is a trainable parameter, σ is the noise

level, and C ×H ×W is the total number of pixels in the

image.

Thus, the solution of the problem in (7) is given by the PGM

by the following update rule:

Xt = Proxγtιc

(

X(t−1) − γt∇XF(X(t−1))
)

, (8)

where γt is a step-size and Proxγtιc is the proximal opera-

tor [23], related to the indicator function ιc, that is defined

as:

PC(Z) = arg min
X∈C

1

2σ2
‖X− Z‖22 + ιc(X). (9)

The gradient of the F(X) is computed as:

∇XF(X) = HT (HX−Y) + λ

K∑

k=1

Lk
Tφk(LkX), (10)

where φk(.) is the gradient of the potential function (ρk).

By combining the Eqs. (8), (9) and (10), we have the final

form of our solution as:

Xt = PC

(

(1− γtHTH)X(t−1) + γtHTY−

λγt
K∑

k=1

Lk
Tφk(LkX

(t−1))
)

,
(11)

The formulation in (11) can be thought as performing one

proximal gradient descent inference step at starting points

Y and X(0) = 0, which is given by:

X = PC

(

HTY − α

K∑

k=1

Lk
Tφk(LkY)

)

, (12)

where α = λγ corresponds to the projection layer trainable

parameter, Lk
T is the adjoint filter of Lk, and HT repre-

sents the up-scaling operation.

Thus, we design the generator network (GSR, refers to

Fig. 3-(a)) according to Eq. (12), where φk(.) corresponds

to a point-wise non-linearity (i.e. PReLU) applied to convo-

lution feature maps. It can be noted that most of the param-

eters in Eq. (12) are derived from the prior term of Eq. (2),

which leads to the proposed generator network as repre-

senting the most of its parameters as image priors. In or-

der to learn valid weights of regularization parameters, the

weights should be zero-mean and fixed-scale constraints.

To tackle this, we use the same parametrization technique

proposed in [15]. Our generator network structure can also

be described as the generalization of one stage TNRD [3]

and UDNet [15] that have good reconstruction performance

for image denoising problem.

3.3. Domain Learning

To learn the domain distribution corruptions from the

source domain (x), we train the network Gd (see in the

Fig. 2) in a GAN framework [9] as done in DSGAN [7]

with the following loss function:

LGd
= Lcolor + 0.005 · Ltex + 0.01 · Lper (13)

where, Lcolor,Ltex,Lper denote the color loss (i.e. L1 loss

focus on the low frequencies of the image), texture/GAN

loss (i.e. focus on the high frequencies on the image), and

perceptual (VGG-based) loss, respectively.

Network architectures: The generator network (Gd) con-

sists of 8 Resnet blocks (two Conv layers and PReLU acti-

vations in between) that are sandwiched between two Conv

layers. All Conv layers have 3 × 3 kernel support with 64

feature maps. Finally, sigmoid non-linearity is applied on

the output of the Gd network. While, the discriminator net-

work (Dx) consists of a three-layer convolutional network

that operates on a patch level [10, 16]. All Conv layers have

5 × 5 kernel support with feature maps from 64 to 256 and

also applied Batch Norm and Leaky ReLU (LReLU) acti-

vations after each Conv layer except the last Conv layer that

maps 256 to 1 features.

Training description: We train the Gd network with image

patches 512×512, which are bicubically downsampled with

MATLAB imresize function. We randomly crop source do-

main images (x) by 128 × 128 as do in [7]. We train the

network for 300 epochs with a batch size of 16 using Adam

optimizer [12] with parameters β1 = 0.5, β2 = 0.999, and

ǫ = 10−8 without weight decay for both generator and dis-

criminator to minimize the loss in (13). The learning rate is

initially set to 2.10−4 for first 150 epochs and then linearly

decayed to zero after remaining (i.e. 150) epochs as do in

[7].

3.4. Super­Resolution Learning

3.4.1 Network Losses

To learn the super-resolution for the target domain, we train

the proposed (GSR) network in a GAN framework [9] with

the following loss functions:

LGSR
= Lper + LGAN + Ltv + 10 · L1 (14)

where, these loss functions are defined as follows:

Perceptual loss (Lper): It focuses on the perceptual quality

of the output image and is defined as:

Lper =
1

N

N∑

i

LVGG =
1

N

N∑

i

‖φ(GSR(x̂i))− φ(yi)‖1

(15)

where, φ is the feature extracted from the pretrained VGG-

19 network at the same depth as ESRGAN [27].
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Figure 3: The architectures of Generator and Discriminator networks. The k, c, s denotes kernel size, number of filters, and

stride size.

Texture loss (LGAN): It focuses on the high frequencies of

the output image and is defined as:

LGAN = LRaGAN =− Ey [log (1−Dy(y,GSR(x̂)))]

− Eŷ [log (Dy(GSR(x̂),y))]

(16)

where, Ey and Eŷ represent the operations of taking aver-

age for all real (y) and fake (ŷ) data in the mini-batches re-

spectively. We employed the relativistic discriminator used

in the ESRGAN [27] that provides the relative GAN score

of real HR and fake SR image patches and is defined as:

Dy(y, ŷ)(C) = σ(C(y)− E[C(ŷ)]) (17)

where, C is the raw discriminator output (see in the Fig. 3-

(b)) and σ is the sigmoid function.

Content loss (L1): It is defined as:

L1 =
1

N

N∑

i

‖GSR(x̂i)− yi‖1 (18)

where, N is represents the size of mini-batch.

TV (total-variation) loss (Ltv): It focuses to minimize the

gradient discrepancy and produce sharpness in the output

image and is defined as:

Ltv =
1

N

N∑

i

(‖∇hGSR (x̂i)−∇h (yi)‖1 +

‖∇vGSR (x̂i)−∇v (yi)‖1

(19)

where, ∇h and ∇v denote the horizontal and vertical gradi-

ents of the images.

3.4.2 Network Architectures

Figure 3 shows the network architectures of both Generator

(GSR) and Discriminator (Dy).

Generator (GSR): We design the generator network ac-

cording to the optimization update formula in (12). In the

GSR network (refers to Fig. 3-(a)), both Encoder (Conv,

refers to Lk filters) and Decoder (TConv, refers to Lk
T fil-

ters) layers have 64 feature maps of 5 × 5 kernel size with

C × H × W tensors, where C is the number of chan-

nels of the input image. Inside the Encoder, LR image

(Y) is upsampled by the Bilinear kernel with Upsample

layer (refers to the operation HTY), where the choice of

the upsampling kernel is arbitrary. Resnet consists of 5
residual blocks with two Pre-activation Conv layers, each

of 64 feature maps with kernels support 3 × 3. The pre-

activations (refers to the learnable non-linearity functions

φk(.)) are the parametrized rectified linear unit (PReLU)

with 64 out feature channels support. The trainable projec-

tion (Proj) layer [15] (refers to the proximal operator PC)

inside Decoder computes the proximal map with the esti-

mated noise standard deviation σ and handles the data fi-

delity and prior terms. Moreover, the Proj layer parameter

α is fine-tuned during the training via a back-propagation.

The noise realization is estimated in the intermediate Resnet

that is sandwiched between Encoder and Decoder. The es-

timated residual image after Decoder is subtracted from the

LR input image. Finally, the clipping layer incorporates our

prior knowledge about the valid range of image intensities

and enforces the pixel values of the reconstructed image to

lie in the range [0, 255]. Reflection padding is also used be-

fore all Conv layers to ensure slowly-varying changes at the

boundaries of the input images.



Dataset (HR/LR pairs) SR methods #Params PSNR↑ SSIM↑ LPIPS↓ Artifacts

Bicubic EDSR [18] 43M 24.48 0.53 0.6800 Sensor noise (σ = 8)

Bicubic EDSR [18] 43M 23.75 0.62 0.5400 JPEG compression (quality=30)

Bicubic ESRGAN [27] 16.7M 17.39 0.19 0.9400 Sensor noise (σ = 8)

Bicubic ESRGAN [27] 16.7M 22.43 0.58 0.5300 JPEG compression (quality=30)

CycleGAN [20] ESRGAN-FT [20] 16.7M 22.42 0.55 0.3645 Sensor noise (σ = 8)

CycleGAN [20] ESRGAN-FT [20] 16.7M 22.80 0.57 0.3729 JPEG compression (quality=30)

DSGAN [7] ESRGAN-FS [7] 16.7M 22.52 0.52 0.3300 Sensor noise (σ = 8)

DSGAN [7] ESRGAN-FS [7] 16.7M 20.39 0.50 0.4200 JPEG compression (quality=30)

DSGAN [7] SRResCGAN (ours) 380K 25.46 0.67 0.3604 Sensor noise (σ = 8)

DSGAN [7] SRResCGAN (ours) 380K 23.34 0.59 0.4431 JPEG compression (quality=30)

DSGAN [7] SRResCGAN+ (ours) 380K 26.01 0.71 0.3871 Sensor noise (σ = 8)

DSGAN [7] SRResCGAN+ (ours) 380K 23.69 0.62 0.4663 JPEG compression (quality=30)

DSGAN [7] SRResCGAN (ours) 380K 25.05 0.67 0.3357 unknown (validset) [22]

DSGAN [7] SRResCGAN+ (ours) 380K 25.96 0.71 0.3401 unknown (validset) [22]

DSGAN [7] ESRGAN-FS [7] 16.7M 20.72 0.52 0.4000 unknown (testset) [21]

DSGAN [7] SRResCGAN (ours) 380K 24.87 0.68 0.3250 unknown (testset) [22]

Table 1: Top section: ×4 SR quantitative results comparison of our method over the DIV2K validation-set (100 images) with

added two known degradation i.e. sensor noise (σ = 8) and JPEG compression (quality = 30) artifacts. Middle section:

×4 SR results with the unknown corruptions in the RWSR challenge track-1 (validation-set) [22]. Bottom section: ×4 SR

comparison with the unknown corruptions in the RWSR challenge series [21, 22]. The arrows indicate if high ↑ or low ↓
values are desired.

Discriminator (Dy): The Figure 3-(b) shows the architec-

ture of discriminator network that is trained to discriminate

real HR images from generated fake SR images. The raw

discriminator network contains 10 convolutional layers with

kernels support 3× 3 and 4× 4 of increasing feature maps

from 64 to 512 followed by Batch Norm (BN) and leaky

ReLU as do in SRGAN [14].

3.4.3 Training description

At the training time, we set the input LR patch size as 32×
32. We train the network for 51000 training iterations with a

batch size of 16 using Adam optimizer [12] with parameters

β1 = 0.9, β2 = 0.999, and ǫ = 10−8 without weight decay

for both generator and discriminator to minimize the loss

in (14). The learning rate is initially set to 10−4 and then

multiplies by 0.5 after 5K, 10K, 20K, and 30K iterations.

The projection layer parameter σ is estimated according to

[19] from the input LR image. We initialize the projection

layer parameter α on a log-scale values from αmax = 2 to

αmin = 1 and then further fine-tune during the training via

a back-propagation.

4. Experiments

4.1. Training data

We use the source domain data (x: 2650 HR images) that

are corrupted with unknown degradation e.g. sensor noise,

compression artifacts, etc. and target domain data (y: 800

clean HR images) provided in the NTIRE2020 Real-World

Super-resolution (RWSR) Challenge track1 [22]. We use

the source and target domain data for training the Gd net-

work to learn the domain corruptions, while due to unavail-

ability of paired LR/HR data, we train the GSR network

(refers to section-3.4) with generated LR data (x̂) from the

GT EDSR

'0829' original LR image from DIV2K val-set

ESRGAN

ESRGAN-FS SRResCGAN SRResCGAN+

GT EDSR

'0896' original LR image from DIV2K val-set

ESRGAN

ESRGAN-FS SRResCGAN SRResCGAN+

Figure 4: Visual comparison of our method with other state-

of-art methods on the NTIRE2020 RWSR (track-1) valida-

tion set [22] at the ×4 super-resolution.

Gd network (refers to section-3.3) with their corresponding

HR target (y) images.

4.2. Data augmentation

We take the input LR image patches as generated by the

domain learning Gd network (refers to section 3.3) with

their corresponding HR image patches. We augment the

training data with random vertical and horizontal flipping,

and 90◦ rotations. Moreover, we also consider another ef-

fective data augmentation technique, called MixUp [28]. In

Mixup, we take randomly two samples (xi,yi) and (xj ,yj)

in the training LR/HR set (X̃,Y) and then form a new sam-

ple (x̃,y) by interpolations of the pair samples by following

the same degradation model (1) as do in [5]. This simple

technique encourages our network to support linear behav-

ior among training samples.



4.3. Technical details

We implemented our method with Pytorch. The exper-

iments are performed under Windows 10 with i7-8750H

CPU with 16GB RAM and on NVIDIA RTX-2070 GPU

with 8GB memory. It takes about 28.57 hours to train the

model. The run time per image (on GPU) is 0.1289 seconds

at the testset. In order to further enhance the fidelity, we use

a self-ensemble strategy [25] (denoted as SRResCGAN+)

at the test time, where the LR inputs are flipped/rotated and

the SR results are aligned and averaged for enhanced pre-

diction.

4.4. Evaluation metrics

We evaluate the trained model under the Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity (SSIM), and

LPIPS [31] metrics. The PSNR and SSIM are distortion-

based measures that correlate poorly with actual perceived

similarity, while LPIPS better correlates with human per-

ception than the distortion-based/handcrafted measures. As

LPIPS is based on the features of pretrained neural net-

works, so we use it for the quantitative evaluation with fea-

tures of AlexNet [31]. The quantitative SR results are eval-

uated on the RGB color space.

4.5. Comparison with the state­of­art methods

We compare our method with other state-of-art SR

methods including EDSR [18], ESRGAN [27], ESRGAN-

FT [20], and ESRGAN-FS [7]. Table 1 shows the quanti-

tative results comparison of our method over the DIV2K

validation-set (100 images) with two known degradation

(i.e. sensor noise, JPEG compression) as well as unknown

degradation in the RWSR challenge series [21, 22]. Our

method results outperform in term of PSNR and SSIM com-

pared to other methods, while in case of LPIPS, we are

slightly behind the ESRGAN-FS ( i.e. sensor noise (σ = 8),

JPEG compression (quality = 30)), but ESRGAN-FS

has the worst PSNR and SSIM values. We have much

better LPIPS (+0.08) than the ESRGAN-FS (winner of

AIM2019 RWSR challenge [21]) with unknown artifacts.

The ESRGAN-FT has a good LPIPS value, but it achieved

the worst PSNR and SSIM scores. Despite that, the parame-

ters of the proposed GSR network are much less (i.e. ×44)

than the other state-of-art SISR networks, which makes it

suitable for deployment in mobile/embedded devices where

memory storage and CPU power are limited as well as good

image reconstruction quality.

Regarding the visual quality, Fig. 4 shows the qualitative

comparison of our method with other SR methods on the

×4 upscaling factor (validation-set). In contract to the exist-

ing state-of-art methods, our proposed method produce very

good SR results that is reflected in the PSNR/SSIM/LPIPS

values, as well as the visual quality of the reconstructed im-

ages with almost no visible corruptions.

EDSR

'00003' original LR image from
NTIRE2020 RWSR mobile test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

EDSR

'00080' original LR image from
NTIRE2020 RWSR mobile test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

Figure 5: Visual comparison of our method with other state-

of-art methods on the NTIRE2020 RWSR (track-2: Smart-

phone Images) test set [22] at the ×4 super-resolution.

4.5.1 Visual comparison on the Real-World smart-

phone images

We also evaluate our proposed method on the real-world im-

ages captured from the smartphone provided in the RWSR

challenge track-2 [22] (testset). We use the our pretrained

model (refers to section-3.4) without any fine-tuning from

the source domain data of the smartphone images for get-

ting the SR results. Since there are no GT images avail-

able, we only compare the visual comparison as shown in

the Fig. 5. ESRGAN still produces strong noise presence ar-

tifacts, while the EDSR produce less noisy, but more blurry

results due the PSNR-based metric. ESRGAN-FS produces

the sharp images and less amount of corruptions due to fine-

tuning of the source domain images (i.e. extra training ef-

forts). In contract, our method has still produced satisfying

results by reducing the visible corruptions without any extra

fine-tuning effort.

4.5.2 The NTIRE2020 RWSR Challenge

We also participated in the NTIRE2020 Real-World Super-

Resolution (RWSR) Challenge [22] associated with the

CVPR 2020 workshops. The goal of this challenge is to

super-resolve (×4) images from the Source Domain (cor-

rupted) to the Target Domain (clean). We train firstly the

domain learning model (Gd) on the corrupted source do-

main dataset to learn visible corruptions, and after that train

the SR learning model (GSR) on the clean target domain

dataset with their correspond generated LR pairs from the

(Gd) model (refers to the sections-3.3 and 3.4 for more de-

tails). Table 2 provides the final ×4 SR results for track-1

(testset) of our method (MLP-SR) with others. The final

ranking is based on the Mean Opinion Score (MOS) [22].

Our method remains among the top 7 best solutions. We

also provide the visual comparison of our method with oth-

ers on the track-1 testset in the Fig. 6. Our method produces



Team PSNR↑ SSIM↑ LPIPS↓ MOS↓
Impressionism 24.67 (16) 0.683 (13) 0.232 (1) 2.195

Samsung-SLSI-MSL 25.59 (12) 0.727 (9) 0.252 (2) 2.425

BOE-IOT-AIBD 26.71 (4) 0.761 (4) 0.280 (4) 2.495

MSMers 23.20 (18) 0.651 (17) 0.272 (3) 2.530

KU-ISPL 26.23 (6) 0.747 (7) 0.327 (8) 2.695

InnoPeak-SR 26.54 (5) 0.746 (8) 0.302 (5) 2.740

ITS425 27.08 (2) 0.779 (1) 0.325 (6) 2.770

MLP-SR 24.87 (15) 0.681 (14) 0.325 (7) 2.905

Webbzhou 26.10 (9) 0.764 (3) 0.341 (9) -

SR-DL 25.67 (11) 0.718 (10) 0.364 (10) -

TeamAY 27.09 (1) 0.773 (2) 0.369 (11) -

BIGFEATURE-CAMERA 26.18 (7) 0.750 (6) 0.372 (12) -

BMIPL-UNIST-YH-1 26.73 (3) 0.752 (5) 0.379 (13) -

SVNIT1-A 21.22 (19) 0.576 (19) 0.397 (14) -

KU-ISPL2 25.27 (14) 0.680 (15) 0.460 (15) -

SuperT 25.79 (10) 0.699 (12) 0.469 (16) -

GDUT-wp 26.11 (8) 0.706 (11) 0.496 (17) -

SVNIT1-B 24.21 (17) 0.617 (18) 0.562 (18) -

SVNIT2 25.39 (13) 0.674 (16) 0.615 (19) -

AITA-Noah-A 24.65 (-) 0.699 (-) 0.222 (-) 2.245

AITA-Noah-B 25.72 (-) 0.737 (-) 0.223 (-) 2.285

Bicubic 25.48 (-) 0.680 (-) 0.612 (-) 3.050

ESRGAN Supervised 24.74 (-) 0.695 (-) 0.207 (-) 2.300

Table 2: Final testset results for the RWSR challenge Track-

1. The top section in the table contains ours (MLP-SR) with

other methods that are ranked in the challenge. The mid-

dle section contains participating approaches that deviated

from the challenge rules, whose results are reported for ref-

erence but not ranked. The bottom section contains baseline

approaches. Participating methods are ranked according to

their Mean Opinion Score (MOS).

EDSR

'0907' original LR image from
NTIRE2020 RWSR test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

EDSR

'0924' original LR image from
NTIRE2020 RWSR test-set

ESRGAN ESRGAN-FS

SRResCGAN SRResCGAN+

Figure 6: Visual comparison of our method with other state-

of-art methods on the NTIRE2020 RWSR (track-1: Image

Processing Artifacts) testset [22] at the ×4 super-resolution.

sharp images without any visible corruptions, while the oth-

ers suffer image corruptions.

4.6. Ablation Study

For our ablation study, we compare the different combi-

nations of losses of the proposed SR learning model (GSR).

We consider the LPIPS measure for its better visual corre-

lation with the human perception. Table 3 shows the quan-

titative results of our method over the DIV2K validation-set

(track-1) [22] with unknown degradation. We first train the

SR model with combination of the losses (Lper,LGAN,L1)

similar to ESRGAN. After that, we add Ltv to the previous

combinations, and train the model again, we obtain little a

bit better LPIPS with sharp SR images. Finally, when we

apply the high-pass filter (wH ) weights to the output im-

age to compute the GAN loss (LGAN) focus on the high-

frequencies with the previous combinations during training

the network, we get the best LPIPS value (i.e. +0.01 im-

provement to the previous variants) with more realistic SR

images. Therefore, we opt the last one as the final combi-

nation of loss functions for our model (GSR) training and

also used for evaluation in the section 4.5.

unknown artifacts

SR method SR Generator Loss combinations (LGSR
) PSNR↑ SSIM↑ LPIPS↓

SRResCGAN Lper + LGAN + 10 · L1 25.48 0.69 0.3458

SRResCGAN Lper + LGAN + Ltv + 10 · L1 25.40 0.69 0.3452

SRResCGAN Lper + wH ∗ LGAN + Ltv + 10 · L1 25.05 0.67 0.3357

Table 3: This table reports the quantitative results of our

method over the DIV2K validation set (100 images) with

unknown degradation for our ablation study. The arrows

indicate if high ↑ or low ↓ values are desired.

5. Conclusion

We proposed a deep SRResCGAN method for the real-

world super-resolution task by following the image obser-

vation (physical / real-world settings) model. The pro-

posed method solves the SR problem in a GAN frame-

work by minimizing the energy-based objective function

with the discriminative and residual learning approaches.

The proposed method exploits the powerful image regular-

ization and large-scale optimization techniques for image

restoration. Our method achieves very good SR results in

terms of the PSNR/SSIM/LPIPS values as well as visual

quality compared to the existing state-of-art methods. The

proposed method follows the real-world settings for lim-

ited memory storage and CPU power requirements (i.e. 44
times less number of parameters than the others) for the mo-

bile/embedded deployment.
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