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Abstract: ZrO2 and Ce0.8Zr0.2O2 mixed oxides were prepared and tested in the oxidation of carbon soot
at different oxygen partial pressures and degrees of catalyst/soot contact to investigate their activity
under typical gasoline direct injection (GDI) operating conditions. Under reductive atmospheres,
generation of oxygen vacancies occurs in Ce0.8Zr0.2O2, while no reduction is observed on ZrO2.
Both materials can oxidize carbon under high oxygen partial pressures; however, at low oxygen
partial pressures, the presence of carbon can contribute to the reduction of the catalyst and formation
of oxygen vacancies, which can then be used for soot oxidation, increasing the overall performance.
This mechanism is more efficient in Ce0.8Zr0.2O2 than ZrO2, and depends heavily on the interaction
and the degree of contact between soot and catalyst. Thus, the ability to form oxygen vacancies at
lower temperatures is particularly helpful to oxidize soot at low oxygen partial pressures, and with
higher CO2 selectivity under conditions typically found in GDI engine exhaust gases.

Keywords: ceria–zirconia; zirconia ZrO2; oxygen storage capacity; particulate; oxidation; gasoline
particulate filters

1. Introduction

The gasoline engine market, based on direct injection (DI) technology is growing rapidly, especially
in relation to their better efficiency and lower CO2 emissions [1]. In addition, for 2020 the European
Union has imposed a limit on CO2 emissions for cars of 95 g/km; the GDI engines are able to increase
fuel economy, and consequently reduce these emissions [2]. On the other hand, however, these engines
produce a higher amount of soot than conventional gasoline engines. In particular, attention is focused
not only on particulate emissions (PM), but also on the particulate number (PN), and consequently it is
necessary to implement new emission control strategies [3]. As required for diesel engines, it is possible
to introduce a particulate filter to reduce emissions of soot: the so-called gasoline particulate filter
(GPF) [4–6]. However, due to the different operating conditions of a diesel engine and a GDI engine [3],
it is not possible to simply transfer the technologies optimized and developed in the last twenty years
for diesel particulate filters (DPF), but it is necessary to investigate in detail the mechanisms of soot
accumulation and oxidation under typical GDI operating conditions [7]. Exactly as it happens for
DPFs, the accumulation phase must necessarily be followed by a regeneration phase, in order to
oxidize the accumulated soot and prevent an increased pressure drop [8]. Since particulate oxidizes at
around 600 ◦C, in order to save fuel and to avoid filter damage, a catalyst impregnated on the filter,
which lowers the combustion temperature, can be used. To ensure regeneration, however, issues
arising from the different atmosphere of the exhaust gas of a GDI and a diesel engine must be taken
into consideration [3]. In the diesel engine, in fact, regeneration is favored by the high oxygen content
and by the presence of nitrogen oxides, NOx, which participate in the oxidation reaction. Consequently,
the catalyst formulations developed for the DPFs cannot be directly transferred to the GDI engines,
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in which the oxygen content is low with a lower NOx content [9]. In addition, due to the low oxygen
concentration, special attention should be paid to CO/CO2 selectivity in order to limit the formation of
CO. Studies on catalytic GPF systems are still in the initial stages. If a search is made on WoS using
“gasoline particulate filter” and “catalyst” as keywords, there are ca. 50 articles in the last five years,
while in the same timeframe the keywords “diesel particulate filter” and “catalyst” returns almost
260 items.

Since 2015, only few studies were focused on catalytic materials for GDI, and specifically the family
of perovskites and ceria-based oxide formulations have been primarily investigated. La/Sr-based [10,11]
and Cu-doped BaFeO3 perovskites [12] are suitable to oxidize soot at low oxygen partial pressures,
thanks to their redox properties and oxygen surface vacancies, by transporting bulk oxygen to the
catalyst–soot contact points. Surface lattice oxygen and oxygen adsorbed on vacancies are key factors
in soot oxidation under GPF conditions over α-Mn2O3, with more than 99% CO2 selectivity [13].
Ceria-based catalysts have been extensively studied in DPF systems [14–20], and could also be
promising for GPF thanks to their oxygen storage capacity (OSC) properties. Cerium oxide has the
ability to rapidly modify its oxidation state from Ce4+ to Ce3+, releasing oxygen and maintaining
structural integrity under a reducing atmosphere, while when the atmosphere is lean, oxygen uptake
and the reoxidation of Ce3+ to Ce4+ is observed [21–23]. The unique redox behavior of ceria is the key of
the success of ceria-based materials in catalysis, and more specifically it contributes to the mechanism
of soot oxidation by promoting the formation of oxygen vacancies at the interface between ceria and
carbon, which is the key point to obtain active surface oxygen species [24–26]. Silver on ceria has been
extensively investigated as a catalyst for diesel soot oxidation [27–30], and recently, several studies have
been related to its application under conditions typical of gasoline engines. Weng et al. [9,31–33] found
that Ag/Ce is a promising material for soot oxidation, due to the bulk-to-surface oxygen migration.
They also developed core-shell Ag/MxOy@CeO2 materials (with M = Fe or Co) with a tandem oxygen
delivery route (MxOy→CeO2→Ag), resulting in an efficient transfer of bulk oxygen to soot [33,34].
Ceria has also been found to deliver active oxygen to the surface and to silver nanoparticles in
Ag-CeO2 materials, and also act as an oxygen collector, improving soot oxidation under low oxygen
concentration [35]. A few studies on unsupported Ce-based oxides for soot oxidation in GPF conditions
are also reported, and are mainly focused on the relations between activity and OSC and redox
behavior [36–39]. Overall, it seems that OSC properties of ceria and its high oxygen mobility could
help in promoting the release of oxygen, and provide an additional mechanism route to oxidize carbon
particles when oxygen content is low. However, direct comparison of results in the literature is quite
difficult, due to the many parameters that are taken into consideration, and which influence activity,
such as the effect of type of soot and kind of soot/catalyst contact, the soot/catalyst ratio and the
oxygen concentration. Here we have investigated the soot combustion reaction over Ce0.8Zr0.2O2 and
ZrO2 (as an example of reducible and non-reducible materials, respectively), with a specific focus on
the influence of the atmosphere of reaction (from inert gas to air) and of the type of carbon/catalyst
interaction by varying the way soot and catalyst were put into contact. For this reason, three different
contact conditions were employed with varying degrees of carbon/catalyst interactions, which were
previously characterized at a nanoscale level [40,41]. This allowed us to monitor the oxidation ability
of modified ceria at low oxygen pressure, as a function of the degree of interaction between carbon
soot and surface ceria oxygens, and verify that this formulation could represent a good starting point
for the development of catalysts for GPF systems.

2. Results and Discussion

2.1. Textural, Structural and Redox Characterization of Soot/Catalyst Mixtures

Two types of mixing conditions have been employed to put into contact carbon soot and catalysts
to simulate different degrees of interactions. For loose contact, soot and catalyst have been mixed
in a vial for two minutes, which is representative of the weak degree of interaction that is found in
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real systems. Tight contact has been obtained by grinding the mixture in an agate mortar for ten
minutes. This is less representative of real conditions, but results are generally more reproducible,
and a much stronger interaction is observed [42]. A third type of mixing has only been employed in
the case of ceria–zirconia, and it is realized by milling powders for 8 h in a high-energy mill to obtained
a supertight contact [40]. This is not representative of the real application, but it is a good reference for
a high degree of redox interaction that can be obtained between carbon and catalyst, and is useful in
the understanding of the mechanism of reaction and on the intrinsic activity of reducible materials.
This contact is characterized by a different morphology, where a layer of soot forms a thin shell covering
ceria–zirconia crystallite cores promoting interactions at a nanoscale at the ceria–zirconia/carbon
interface [40,41]. The different contact modes are represented in Scheme 1.
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spatula, an agate mortar and a high-energy mill.

The composition and BET surface area of investigated materials are reported in Table 1.
Ceria-zirconia and zirconia show a surface area in the range of 60–80 m2/g. When soot is mixed with
the catalyst in a loose and tight contact mode, the surface area is not affected, while the surface area of
ceria-zirconia decreases by effect of milling from 79 to 29 m2/g. This is typically observed upon the
milling of high surface area powders, and is probably due to the adhesion of fine crystallites on the
surface of larger particles [40,43].

Table 1. Composition and textural characterization of investigated samples.

Sample Name Surface Area (m2/g)

Ce0.8Zr0.2O2 CZ 79
Ce0.8Zr0.2O2 + 5 wt. % soot (loose contact) CZL 79
Ce0.8Zr0.2O2 + 5 wt. % soot (tight contact) CZT 78

Ce0.8Zr0.2O2 + 5 wt. % soot (supertight contact) CZST 29
ZrO2 Zr 64

ZrO2 + 5 wt. % soot (loose contact) ZrL 64
ZrO2 + 5 wt. % soot (tight contact) ZrT 62

Soot a S 6

a: soot mixed with powder quartz in 1:20 proportions.

X-ray diffraction (XRD) profiles are shown in Figure 1A,B. ZrO2 shows the simultaneous presence
of tetragonal (space group P42/nmc; main reflection at 30.2◦) and monoclinic ZrO2 (space group P121/c1;
main reflection at 28.2◦) and milling with soot does not modify the XRD profile. Ceria–zirconia (CZ)
catalysts (Figure 1B) exhibit reflections characteristic of a pure fluorite phase. The soot/CZ mixture
in loose and tight contact do not evidence any difference with parent CZ. The XRD profiles do not
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show significant modification of the ceria–zirconia structure, and all samples are indexed in a fluorite
cubic cell. The CZST sample shows a sharpening of XRD signals due to an increase of the particle size.
In addition, a small signal appears at ca. 30.5 degrees, due to the main reflection of the (011) plane of
ZrO2, originating from abrasion during milling. Rietveld analysis also reveals a small decrease of the
lattice cell parameter due to insertion of ZrO2 into CZ, with a slight change in stoichiometry of solid
solution that goes from Ce0.8Zr0.2O2 to Ce0.78Zr0.22O2 in agreement with previous observations [40].
No signals of reaction between the oxide and carbon are revealed by XRD.
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tetragonal, H); and (B) ceria–zirconia-based materials (Ce0.8Zr0.2O2, •; ZrO2 tetragonal, H).

In order to characterize the reduction behavior of the materials and understand the role of
carbon in the removal of lattice oxygen, we have further investigated the redox and oxygen storage
properties of pure catalyst and catalyst soot mixtures under different contact conditions by H2-TPR
and OSC measurements; the results are summarized in Figures 2 and 3, respectively. For zirconia,
a temperature-programmed reduction (TPR) feature of a typical non-reducible support was found,
while CZ shows one broad hydrogen uptake peak centered at around 558 ◦C, due to the reduction of
surface and bulk Ce4+ cations [44]. In carbon-containing samples, the H2 consumption peak shifts to
progressively lower temperatures as the contact become more intimate. The reduction peak for bare CZ
centered at 558 ◦C progressively shifts to 530, 506 and 420 ◦C, respectively for loose, tight and supertight
contact, with an overall reduction degree, similar for all the investigated samples, of 45%. No evidence
for reduction is found in Zr samples. In bare CZ, the reduction peak is correlated to consumption of
H2 with the formation of H2O. With CZ/soot mixtures, the outlet gas composition has been followed
by MS/FTIR, indicating the production of H2O (see inset of Figure 2A), with no formation of CH4,
thus excluding the reduction of carbon by hydrogen. Figure 2C,D show CO formation profiles in TPR,
as followed by Fourier-transform infrared spectroscopy (FTIR). Pure CZ shows the development of a
very low amount of CO at around 600 ◦C, likely related to the desorption of residual carbonate species
adsorbed on the surface. When soot/catalyst mixtures are investigated, the amount of CO formed
during the reaction increases by increasing the contact with soot. No evidence for CO formation
is observed in Zr samples, regardless of the contact conditions. Overall, these results indicate that
deposited carbon promotes the reduction of ceria–zirconia as a function of the degree of interaction
with the surface; the more robust the carbon/ceria contact, the lower the reduction temperature.
This is particularly evident in CZST, where the morphology of carbon distributed as a thin envelope
on the surface of the catalyst acts as a booster for the reduction reaction, with a reduction profile
centered 140 ◦C lower than bare CZ. One possible mechanism is that carbon at the interface forms
C–O* adsorbed species that act as a driving force for the reduction of the material. This adsorbed
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oxygen then reacts more easily with hydrogen, forming H2O. In other words, carbon, when finely
dispersed over ceria-zirconia, can act as a catalyst for ceria-zirconia reduction reaction. Traces of CO
are also formed by direct oxidation of carbon with lattice oxygen; again, these are more evident in
CZST, where the carbon is finely dispersed over ceria-zirconia.
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does not show any measurable oxygen storage capacity, while OSC of ceria–zirconia increases from
1796 µg O2/g at 300 ◦C, to 2922 and 8762 µg O2/g, respectively, at 400 ◦C and 500 ◦C. For bare CZ and
CZL, removal of oxygen is similar in the temperature range investigated, while for tight and supertight
contact, a higher OSC has been found, confirming the enhanced “reducibility” of the material in the
presence of soot.

Carbon particles can act as an “activator” of the oxygen, moving it towards the surface and making
it more available for the hydrogen present in the gas phase, as depicted in Scheme 2. The higher the
contact between carbon and the catalyst, the higher the amount of oxygen that can be transferred at a
lower temperature.
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Scheme 2. Mechanism of reaction for oxygen transfer over soot/CZ mixtures.

2.2. Catalytic Activity

The catalytic activity has been investigated by means of thermogravimetric experiments and
temperature programmed oxidation under different oxygen concentration, with the objective to
understand whether a reducible CZ and a non-reducible Zr material can be used under oxygen
conditions, simulating those of gasoline exhaust gases, in which the amount of oxygen is typically
low. Representative weight loss profiles obtained for bare soot and CZ in loose contact under different
atmospheres (air, 1% O2/N2 and N2) are shown in Figure 4.
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Figure 4. Weight loss profiles obtained from TGA analysis of bare soot (A) and CZL (B) under different
atmospheres (air, 1% O2 in N2 and N2).

The non-catalytic reaction (Figure 4A) is strongly dependent on the amount of oxygen in the
gas phase. Under inert atmosphere a negligible weight loss is observed, while in the presence of
O2 a complete oxidation is reached with a T50 of 705 ◦C (1O2/N2) and 630 ◦C (air). When soot is
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mixed with CZ in loose contact mode (Figure 4B), a remarkable increase in the activity is achieved
independently of the O2 concentration. The oxidation of carbon in CZL in the absence of oxygen
is not quantitative, and is associated with the oxidation of the soot by the surface/bulk oxygens of
ceria–zirconia. The weight loss (2.7%) is due to the formation of CO/CO2 evolving from the system,
and it also accounts for the lattice oxygen of CZ used for oxidation during the reaction. Weight loss in
1% O2/N2 and in air shows very similar profiles, but when a lower amount of oxygen is used, a shift of
the oxidation curve profile to higher temperature is observed; in particular, T50 shifts from 515 ◦C for
reaction under air to 545 ◦C for reaction in 1% O2/N2.

Figure 5 shows the T50 for all the investigated catalysts as a function of the reaction atmosphere.
Under an inert atmosphere, weight loss is negligible in bare soot and in zirconia/soot mixtures regardless
of the contact type; this is consistent with the lack of lattice oxygen available for promotion of redox
reaction in zirconia and the lack of volatile matter in soot composition, which can be released during
thermal treatment. No oxidation is therefore observed in these samples under an inert atmosphere.
With the introduction of ceria in CZ, a higher activity can be observed already under inert atmosphere,
with a T50 for the loose contact of 775 ◦C, which progressively decreases to 546 and 420 ◦C for tight and
supertight contact, respectively. This is consistent with the fact that ceria–zirconia-based systems can
use the surface/bulk oxygen to oxidize soot even in the absence of oxygen in the gas phase, through
the oxidation of carbon at the carbon/CZ interface with the formation of an oxygen vacancy [24,45].
The oxidation reaction proceeds to consume available oxygen, and the activity is closely related to the
amount of reducible oxygen/OSC, and is progressively inhibited due to the lack of reoxidation of the
material when the inert gas phase is used [46,47]. The introduction of oxygen facilitates oxidation in all
formulations. If we focus on CZ, we can observe that the catalytic activity in 1% O2/N2 slightly differs
from that in air (∆T50 close to 25/35 ◦C), while for Zr materials the T50 in 1% O2/N2 is 70/80 ◦C, which is
higher compared to oxidation in air. In the case of zirconia, the change of oxygen concentration heavily
affects T50, as carbon reacts directly with O from the gas phase, while in CZ materials the dependence
on the amount of oxygen in the gas phase is less significant, and mediated by the available oxygen
from the CZ surface. Therefore, even when the oxygen concentration is very low, ceria-based materials
are able to release their surface/bulk oxygen to oxidize the soot with formation of vacancies that are
refilled through oxygen of the gas phase, promoting oxidation. It is therefore the oxygen from ceria
that sustains the catalytic activity through a mechanism that exploits both the available surface oxygen
and the bulk oxygen [47].
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The catalytic activity for the combustion of soot was also determined from peak-top
temperature (Tm) during temperature programmed oxidation (TPO) of catalyst/soot mixtures under
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10% O2/N2 or 1% O2/N2, mainly to verify gas composition after combustion and evaluate the selectivity
to CO2. Figure 6 compares CO and CO2 profiles of all samples.
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The results are in agreement with those obtained from TGA, with ceria–zirconia displaying a
lower oxidation temperature than zirconia for any contact conditions, and regardless of oxygen content.
Selectivity to CO2 is always higher than 97%@1% O2, compared to a value of 60–80% obtained with Zr.
The data are summarized in Table 2; it can be observed that selectivity to CO2 in ZrL at 1% oxygen is
comparable to selectivity in bare soot. Selectivity in ceria–zirconia systems is only negligibly affected
by the different oxygen concentration and contact conditions, while in bare soot and Zr-based samples,
the CO/CO2 ratio is strongly influenced by atmosphere and carbon catalyst contact. In particular,
zirconia at low oxygen concentration in loose conditions has negligible catalytic activity and selectivity
(Tm = 680 ◦C, Sel = 63%), which is increased under tight conditions, as well as 10% oxygen, to reach
97% with a Tm of 535 ◦C.

Table 2. CO2 selectivity from TPO experiments.

Sample 1% O2/N2 10% O2/N2

CZL 99 97
CZT 97 99

CZST 97 97
ZrL 63 80
ZrT 85 97

S 58 58
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The specific reaction rate for soot oxidation was also calculated to evaluate in more detail the ability
of ceria-based materials to help the transfer of lattice oxygen to carbon in oxygen-poor atmospheres.
The values at different temperatures are reported in Figure 7. While no oxidation is observed in
uncatalyzed reaction at 500 ◦C (S@500 in Figure 7), for zirconia, both in tight and loose contact,
in the 400–500 ◦C temperature range, the specific reaction rate is quite low, and does not exceed
300 µgsoot/gsoot*s*m2. For CZ, higher reaction rate values are observed regardless of the contact type,
and the rates increase as the contact become more intimate (CZST > CZT > CZL).
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In an oxygen-poor atmosphere, ceria–zirconia has a specific reaction rate from four (CZL) to seven
(CZT) times higher than the corresponding zirconia-based systems, confirming the importance of the
redox behavior for oxidation under low oxygen pressure.

We have previously reported that soot oxidation over ceria-based catalysts is driven by two different
coexisting phenomena, one influenced by the amount of surface active oxygens that predominates in
oxygen rich atmosphere, and another related to the OSC (bulk oxygen) of the material that prevails
when gas-phase oxygen is absent [47]. In particular, (i) oxygen withdrawn from ceria–zirconia oxidizes
carbon at the soot catalyst interface; and (ii) the resulting vacancy or other surface defects can be
the center for the activation of gas phase oxygen and the formation of active oxygen species that
contributes to oxidize soot on a parallel route. In the absence of gas phase oxygen, route (i) is the
only available way to oxidize carbon, while in the presence of oxygen, the two mechanisms may
coexist in proportions that depend on oxygen partial pressure and the degree of carbon catalyst contact.
The concurrence of the two mechanisms could therefore be important in GPF applications, where the
oxygen concentration is lower than in DPF.

Overall, the results obtained in this study highlight the characteristics of materials for use in the
catalytic oxidation of particulate matter under oxygen-poor conditions such as those found in GDI
engines. It is shown that the activation and transfer of lattice/surface oxygen are fundamental in order
to develop catalytic materials suitable for GPF. Ceria–zirconia compositions overtake ZrO2 in both
activity and selectivity under these conditions; several known strategies could then be accomplished
to increase the transfer of oxygen in these materials, like the engineering of the shape and size of ceria
particles (nanocubes, nanorods, etc.) or tailoring the composition of the materials, by lattice/surface
doping with rare earth, noble or transition metals elements.

3. Materials and Methods

3.1. Catalyst Preparation

The ceria–zirconia (Ce0.8Zr0.2O2, CZ80) sample was prepared by the co-precipitation of an acidic
solution of cerium and zirconium nitrate (Treibacher Industrie AG, Althofen, Austria) with NH4OH in
the presence of H2O2. The precipitate was dried overnight at 100 ◦C, and calcined in air at 500 ◦C for
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3 h. Zirconia was synthesized by the calcination of zirconium hydroxides (Mel Chemicals, Manchester,
UK) at 500 ◦C for 3 h. Conventional catalyst/soot mixtures were obtained in loose (L) and tight (T)
contact modes by mixing the appropriate amount of catalyst (CZ80 or ZrO2) with soot (Printex U by
Degussa, Esse, Germany, surface area of 100 m2/g), respectively, in a vial for 2 min or in an agate mortar
for 10 min. The catalyst/soot weight ratio of 20:1 was adopted in this study. For CZ80, improved
contact (supertight, ST) was achieved in a high-energy Spex mill equipped with a zirconia jar and
balls [40]. A reference sample, to obtain the non-catalytic combustion profile, was prepared diluting
soot with powder quartz (Carlo Erba Reagents S.r.l., Milan, Italy) in a weight ratio of 1:20.

3.2. Catalyst Characterization

Surface area of the materials has been measured by means of a Tristar 3000 gas adsorption analyzer
(Micromeritics, Norcross, GA, USA), according to the B.E.T. method by nitrogen adsorption at 77 K.
Structural features of the catalysts were investigated by XRD. Diffractograms were recorded on a
Philips X’Pert diffractometer (Ni-filtered Cu-Kα radiation) in the range 20◦–145◦ using a step size of
0.02◦ and a counting time of 40 s per angular abscissa (PANalytical B.V., Almelo, the Netherlands).
Phase identification has been performed by means of Philips X’Pert HighScore software (Version 1.0b,
PANalytical B.V., Almelo, the Netherlands).

In TPR experiments, the catalysts (50 mg) were heated at a constant rate (10 ◦C/min) in a
U-shaped quartz reactor from room temperature to 900 ◦C under a flowing hydrogen/nitrogen mixture
(35 mL/min, 4.5% H2 in N2). The hydrogen consumption was monitored using a thermal conductivity
detector (TCD). For ZrO2 and Ce0.8Zr0.2O2, pretreatment under air at 500 ◦C for 1 h was carried out.
The outlet gas composition was also followed by an online quadrupole mass-spectrometer (Omnistar,
Balzers Instruments, Balzers, Liechtenstein). In addition, H2-TPR experiments under 1.8% H2 in N2

(total flow 500 mL/min) in a tubular quartz reactor followed by FTIR gas analyzers (MultiGas 2030,
MKS Instrumentrs, Inc., Andover, MA, USA) have been performed.

The OSC of samples was investigated by carrying out TGA experiments (Q500, TA Instruments,
New Castle, DE) in 4.5% H2 in N2 mixture flow (100 mL/min). Each sample was treated in N2

atmosphere for 1 h at 150 ◦C, followed by heating at a constant rate (10 ◦C/min) up to a fixed
temperature (300, 400 and 500 ◦C), and finally the N2/H2 mixture was introduced while keeping that
temperature for 60 min. The observed weight loss is due to oxygen removal by H2 to form water, and it
can be associated with total oxygen storage capacity at that temperature.

3.3. Catalytic Activity

The soot oxidation activity was measured by running thermogravimetric analysis from r.t. to
800 ◦C (heating rate 10 ◦C/min) under a different atmosphere (N2, 1% O2/N2 and air) [48,49]. Before the
catalytic tests, the samples (soot + catalyst, ca. 20 mg) were subjected to a 1 h pre-treatment at 150 ◦C
under inert atmosphere (60 mL/min), in order to eliminate the adsorbed water. The activity was
measured by means of T50, the temperature at which 50% of the weight loss is observed. Catalytic
activity measurements have also been carried out by TPO experiments heating at a constant rate
(10 ◦C/min) 20 mg of sample under O2 gas flow (1% or 10% O2(v/v) balance N2; total flow 0.5 L/min).
The catalyst temperature was measured by a chromel–alumel thermocouple, located on the catalyst
bed. The outlet gas composition (i.e., CO, and CO2) was measured by FTIR gas analyzers (MultiGas
2030, MKS Instrumentrs, Inc., Andover, MA, USA). As a matter of fact, reproducibility of results was
verified by running several TGA/TPO experiments on similar samples, and the results, in terms of
T50/Tp, were always within ± 3 ◦C.

Reaction rate measurements were performed by TGA isothermal experiments after pretreatment of
ca. 20 mg of a catalyst–soot mixture under nitrogen atmosphere for 1 h at 150 ◦C. Then the temperature
has been increased at a constant rate (10 ◦C/min) up to the reaction temperature (300, 400 or 500 ◦C),
followed by switching to air. The reaction was followed for 1 h. A specific reaction rate has been
determined, according to Van Setten et al. [50], and normalized to the soot initially present in the
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reactor and to the catalyst surface area (µgsoot/(gsootinitial·s·m2) [51]. The reaction rate was calculated at
3% of conversion. A reaction rate in an inert atmosphere has also been performed.

4. Conclusions

Ceria-based materials has been widely studied as a catalyst in diesel particulate filters, but their
role and applicability in gasoline particulate filters, under oxygen-poor conditions, is still at the initial
stage, and this preliminary work investigates their potential in soot oxidation at low oxygen partial
pressure. The comparison of the behavior of ceria–zirconia and zirconia in soot oxidation shows that the
former is less influenced by the variation of the oxygen atmosphere, and is capable of carbon oxidation
at a lower temperature with almost full selectivity to CO2; in contrast, activity in ZrO2 is highly
influenced by the oxygen atmosphere, and lower CO2 selectivities are obtained. Lattice and surface
oxygen in ceria–zirconia can help with oxidation at low oxygen partial pressure. The mechanism
works through the interface between carbon and catalysts, and is therefore highly dependent on the
way carbon and catalysts are put into contact. The presence of soot over ceria–zirconia particles acts
as a driving force for the reduction of the material enhancing the oxygen removal rate, and its use in
oxidation reaction in the substitution of gas phase oxygen.
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