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Abstract: Dairy cattle health, wellbeing and productivity are deeply affected by stress. Its influence on
metabolism and immune response is well known, but the underlying epigenetic mechanisms require
further investigation. In this study, we compared DNA methylation and gene expression signatures
between two dairy cattle populations falling in the high- and low-variant tails of the distribution of milk
cortisol concentration (MC), a neuroendocrine marker of stress in dairy cows. Reduced Representation
Bisulfite Sequencing was used to obtain a methylation map from blood samples of these animals.
The high and low groups exhibited similar amounts of methylated CpGs, while we found differences
among non-CpG sites. Significant methylation changes were detected in 248 genes. We also identified
significant fold differences in the expression of 324 genes. KEGG and Gene Ontology (GO) analysis
showed that genes of both groups act together in several pathways, such as nervous system activity,
immune regulatory functions and glucocorticoid metabolism. These preliminary results suggest that,
in livestock, cortisol secretion could act as a trigger for epigenetic regulation and that peripheral
changes in methylation can provide an insight into central nervous system functions.

Keywords: cortisol secretion; DNA methylation; bisulfite sequencing; gene expression; dairy cattle health

1. Introduction

Dairy animals experience a large variety of stressors that can modify normal behavior and growth,
leading to a decrease in productive performances. Normal physiological events such as calving,
onset of lactation, lactation, weaning and group rearrangement can cause metabolic and environmental
conditions which lead to stress, an impairment of animal wellbeing and a consequent decrease in
the quality of animal products. Under these stressful conditions, the hypothalamic–pituitary–adrenal
(HPA) axis, the autonomic nervous system, and the immune system are called into action to re-establish
homeostasis [1]. Stress modifies the secretion of various hormones, as glucocorticoids, which play
an important role in immunity [2–4]. A common feature of stress situations is an increase in cortisol
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secretion that produces a mobilization of energy reserves [5]. For example Bertulat et al. [6] showed
higher concentration of glucocorticoid metabolites in the feces of drying off cows with higher milk
yield while Horst and Jorgensen [7] reported an increase in plasma cortisol in cows with milk fever,
associated with immune suppression and an increased risk of clinical mastitis and high somatic cell
count in milk. To date, since blood sampling is often a source of stress, milk can be viewed as a viable
and non-invasive way to measure cortisol levels in lactating cows, as it can be measured without the
manipulation of animals.

Even though many methods of wellbeing evaluation are reported in the literature, cortisol is still
considered one of the gold standards to describe animal response to stress [8]. However, until now,
no systematic studies have investigated the epigenetic mechanisms related to cortisol secretion during
stress conditions in lactating cows.

Epigenetics are defined as heritable changes in gene activity and expression and consequently
in phenotype, which occur without alteration in the underlying DNA sequence [9]. At least four
molecular systems, including DNA methylation [10], histone post-translational modifications [11],
non-coding RNAs [12] and chromatin remodeling [13], control gene expression. The epigenome refers
to the entirety of the epigenetic features possessed by an organism’s genome. DNA methylation was
the first-recognized and is the most-studied epigenetic regulatory mechanism that plays a key role in
the control of gene expression. In mammalian cells, DNA methylation mostly occurs at the cytosine of
a CpG dinucleotide. CpG islands are genomic regions enriched in CpG dinucleotides. CpG islands
cluster most at the 5’ promoter regions of many housekeeping genes and are generally hypomethylated
to permit transcription, with the exception of genes involved in imprinting, X chromosome inactivation
and cancer process [14–16]. The hyper-methylation of DNA combined with histone H3-lysine 9 [17]
or histone H4-lysine 20 methylation [18] can result in inaccessible chromatin by recruiting chromatin
remodeling proteins and generally causes the inhibition of downstream gene expression by physically
blocking the binding of transcription factors [19]. Epigenetic modifications can be inherited from
one cell generation to the next (mitotic inheritance) and between generations of a species (meiotic
inheritance) and can be natural and essential for many developmental functions, but can also be
influenced by several factors including age, environment, lifestyle or a disease state [20]. In mammalian
cells, the changes in gene expression in response to external factors, such as viral infection, stress,
drug delivery, temperature changes, dietary components, may have long-lasting effects on development,
metabolism and health, sometimes even across generations. Epigenetics represent a link between the
environment and gene expression [21].

In this study, we investigated the potential regulatory roles of epigenome signatures in the blood
of dairy cows falling in the extreme category of the distribution of cortisol concentration in milk.
We focused on DNA methylation in blood cells since blood is quickly accessible and highly informative
of animal response to environmental challenges. Moreover, it was previously demonstrated that
methylation levels at CpG sites in leukocytes could serve as an accurate predictor of CpG site variability
in other tissues [22]. In parallel, we used transcriptome sequencing data to integrate the relationship
between DNA methylation and transcriptional regulation on a genome-wide scale to identify novel
genes involved in glucocorticoids secretion.

2. Material and Methods

2.1. Ethics Statement

The farms involved in the present study adhere to a high standard of veterinary care based on best
practice manual, under the supervision of the official veterinary service. All experimental procedures
and the care of animals complied to the Italian legislation on animal care (DL n.116, 27/1/1992) in
force at the time the study was carried out and adhered to the bioethical rules of the University of
Udine. The approval for conducting this study was also granted by the veterinarian responsible of
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animal welfare of the Department of Agricultural and Environmental Science of the University of
Udine (Prot. N. 2/2015, OPBA—Organismo Preposto al Benessere degli Animali).

2.2. Animals Treatment and Experimental Design

The study was carried out ona commercial farm of the Italian Simmental breed located in the
North East of Italy (Latitude: 45◦76′491 N; Longitude: 13◦10′466 E) in the month of May. From the herd,
126 lactating cows with days in milk (DIM) between 70 and 250, clinically healthy and with a parity
from 2 to 6 (mean 3.0 ± 1.1) were initially selected for the study. One hundred ml of milk was collected
from each cow at morning milking and an aliquot of 50 mL was transferred into a tube containing
preservative and used for protein, fat, lactose analyses and for somatic cell count (SCC) determinations
with FT-NIR (FOSS instrument, Hillerød, Denmark). The other aliquot of milk was transferred to a tube
without preservative, frozen within 2 hand stored at −20 ◦C for cortisol analyses [23]. Milk cortisol
was analyzed in skimmed milk, after centrifugation (1500 g, 4 ◦C, 15 min). Skim milk extracts were
assayed by a solid-phase microtiter RIA [24], using a Microscint 20 instrument (Perkin-Elmer Life
Sciences, Monza, Italy) and counted on the β-counter (Top-Count, Perkin-Elmer Life Sciences, Monza,
Italy). All samples were assayed in duplicate. The sensitivity of the assay was defined as the dose of
hormone at 90% binding (B/B0) and was 3.125 pg/well. The intra-assay and inter-assay coefficients of
variation in high and low cortisol pooled skim milk samples were 5.9% and 9.1% and 13.5% and 15.1%,
respectively. On the same day, after milking and before feeding, blood was sampled form the tail vein
in a tube with K3-EDTA (Venoject, Terumo Europe N.V., Leuven, Belgium) and in one PAXgene Blood
RNA System tube (Preanalytix, Hombrechtikon, Switzerland) for analysis. The K3-EDTA tubes were
centrifuged within 1 h at 755× g for 10 min at 20 ◦C and the blood cells stored at −20 ◦C for DNA
analysis. The PAX gene tubes were handled and stored following the manufacturer’s instructions for
RNA extraction. The body condition score (BCS) of each cow was also recorded using a scale from
1 (thin) to 5 (fat) with 0.25-point intervals [25] (Table 1). Cows were ranked on the basis of cortisol
in their milk and the 10 cows with the highest and the 10 cows with the lowest concentrations were
selected for transcriptome and epigenome analysis (Figure 1).
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Table 1. Body condition score (BCS), parity, days in milking (DIM) and milk yield and quality in the
10 cows with lowest and 10 cows with highest cortisol concentration in milk.

Item Low Cortisol High Cortisol

Mean Sd Mean Sd p Value

BCS Score 3.23 0.38 3.10 0.47 0.262
Parity n◦ 1.70 0.95 2.10 0.88 0.170
DIM Days 156.2 62.8 143.3 69.3 0.334
Milk Kg/d 26.20 6.54 30.38 6.23 0.080
Fat % 3.68 1.03 3.95 0.70 0.254

Protein % 3.61 0.25 3.59 0.39 0.441
Casein % 2.84 0.20 2.81 0.32 0.415
Urea mmol/L 21.39 5.12 21.01 6.13 0.442
SCC Number 133.50 89.09 153.40 110.02 0.331

Cortisol pg/mL 399.9 79.7 814.8 88.6 0.000

Before ranking, cows with somatic cell counts (SCC) higher than 200,000 cells/mL were excluded.

2.3. DNA Isolation, Library Preparation and RRBs Sequencing

Blood samples from these 20 animals were collected. Peripheral blood mononuclear cells
(PBMC) were isolated from heparinized blood samples with Ficoll-Paque. CD4+ lymphocyte cells
were isolated with the CD4 anti-bovine monoclonal antibody (VMRD, Pullman, WA, USA) and
positively selected with GAM microspheres using the MACS MiltenyiBiotec system (BergischGladbach,
Germany). DNA was extracted from CD4+ cells following the QIAamp DNA Blood Midi Kit (Qiagen)
procedures. gDNA concentration was measured with Quant-it Picogreen dsDNA assay and 1 µg
input was used in the MSP1 digest. Following overnight incubation at 37 ◦C, digestion reactions were
terminated by adding 0.5 M EDTA and purified on a GeneJET PCR purification column. Libraries were
prepared using the NEB Next Ultra DNA library preparation kit for Illumina and methylated adapters.
Subsequently, ligated products corresponding to DNA fragments 150–400-bp long were isolated and
purified using 2.5% agarose gel electrophoresis. The recovered DNA was bisulfite converted using
the EZ DNA Methylation Gold kit (Zymo Research). DNA with a known methylation level was
used as a spike control, and all conversion rates were >99%, ranging from 99.01 to 99.39% (Table S1
(Supplementary Material)). Fourteen cycles of PCR were performed, and the products were purified
using AMPureXP beads. Reduced Representation Bisulfite Sequencing (RRBS) libraries were used for
cluster generation and subsequent sequencing on Illumina HiSeq2500 PE 2 × 50 bp (NXT-Dx Ghent,
Belgium, http://www.nxt-dx.com/).

2.4. Data Analysis

Preliminary quality control of the raw reads was carried out with FASTQC v0.11.9 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). The FASTQ sequence reads were generated using
the Illumina Casava pipeline 1.8.2. The quality and adapter trimming of Illumina raw sequences
was performed with Trim Galore v0.6.1 (http://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/) using a two-step approach, which allowed us to remove two additional bases containing
a cytosine, which were artificially introduced in the end-repair step during the library preparation.
Bismark software (version 0.22.1) [26] was used to align each bisulfite-treated read to the bovine reference
genome (ARS-UCD1.2) with option-N 1 (maximum number of mismatches allowed). The reference
genome was first transformed into a bisulfite-converted version (C-to-T and G-to-A conversions)
and then indexed using bowtie2 software [27]. Sequence reads were also transformed into fully
bisulfite-converted versions (C-to-T and G-to-A conversions) before they were aligned to similarly
converted versions of the genome in a directional manner. Sequence reads that produced the best
unique alignment from the two alignment processes (original top and bottom strand) were then
compared to the normal genomic sequence, and the methylation state of all cytosine positions in the

http://www.nxt-dx.com/
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reads was inferred using the Bismark_methylation_extractor function. Read duplicates were marked and
removed using Picard Tools v2.2 (http://broadinstitute.github.io/picard).

2.5. Identification of DMRs and DMGs

Differentially methylated regions (DMRs) were identified within the statistical environment
R using the library methylKit [28], which applies a sliding-window approach. The window was
set to 1000 bp and the step size to 500 bp. In order to ensure the good quality of the data and
great confidence in the methylation percentage, we first filtered out bases with less than 10 reads
or more than the 99.9th percentile of coverage distribution. Coverage values were normalized by
default and bases were merged in order to retain the ones that were covered in all samples. A logistic
regressionwas then implemented to calculate p values, that were adjusted to q values using the
Sliding Linear Model (SLIM) method [29]. We excluded covariates and overdispersion correction
from the model since they showed not to provide significant changes to the results. DMRs regions
were defined those that had q value of less than 0.05 and a read coverage of greater than ten
in all samples. When a region where a DMR and a specific gene function element overlapped,
the corresponding gene was selected as the DMR-related gene, namely a differentially methylated
gene (DMG). Gene features within differential methylated genes (DMGs) were annotated by matching
information available in the General Feature Format (GFF) file downloaded from the Ensembl database,
release 99 (ftp://ftp.ensembl.org/pub/release-99/gff3/bos_taurus/Bos_taurus.ARS-UCD1.2.99.gff3.gz).
The promoter region was defined as an area 2-kb upstream of the transcription start sites.

2.6. Association Analysis

Correlations between DNA methylation levels and gene density, chromosome length and GC
percentage were measured using Pearson’s product–moment correlation coefficient. Correlations
between DNA methylation and gene expression were measured using Spearman’s rank correlation
coefficient because the relationship of DNA methylation with gene expression data was not necessarily
expected to be linear. All these analyses were performed with custom R scripts.

2.7. GO and KEGG Enrichment Analysis of DMR-Related Genes

Gene Ontology (GO) and KEGG pathway enrichment analysis of DMGs were performed by
clusterProfiler, an ontology-based R package able to automate the process of biological term classification
and enrichment analysis of gene clusters and to provide a visualization module for displaying analysis
results [30]. GO terms and KEGG with p values of less than 0.01 and q values of less than 0.2 were
considered significantly enriched by DMR-related genes. The DMGs involved in the GO pathways
related to development and metabolism were analyzed with the R package enrichplot [31] to highlight
links between genes and GO terms in a gene concept network.

2.8. Sample Preparation for RNA—Seq Analysis

Blood samples collected in the PAX gene Blood RNA Tubes (PreAnalytiX GmbH, Hombrechtikon,
Switzerland) were frozen 4 h after the collection and stored at −80 ◦C until the RNA isolation. Prior to
RNA isolation, blood samples were thawed at +4 ◦C for at least 12 h. RNA was isolated according to the
PAX gene Blood RNA Kit (PreAnalytiX GmbH, Hombrechtikon, Switzerland) protocol. The quantity
and quality of RNA were analyzed with Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) before sequencing and the RNA integrity number (RIN) score was ≥7 for all the samples.
Since the RNA-Seq is highly reproducible within a large dynamic range of detection and provides
an accurate estimation of RNA concentration in peripheral whole blood [32]; globin depletion was
avoided, as it could significantly reduce the amount and quality of isolated RNA. Sequencing was
performed with the Illumina pipeline.

http://broadinstitute.github.io/picard
ftp://ftp.ensembl.org/pub/release-99/gff3/bos_taurus/Bos_taurus.ARS-UCD1.2.99.gff3.gz


Genes 2020, 11, 850 6 of 19

2.9. Quantification of Gene Expression Levels and Differential Expression Analysis

After quality control and the filtering of raw data, clean reads were aligned to the bovine reference
genome (ARS-UCD1.2) using STAR v2.7.3 [33], a splice-aware aligner. featureCounts (Subread package
v1.6.5) [34] was used to count the read numbers mapped to each gene. Differential gene expression
between the high and low groups was performed using the DESeq2 R package (1.26.0) [35]. The p values
were adjusted using the Benjamini–Hochberg method [36]. A corrected p value of 0.05 was set as the
threshold for significantly different expression, while genes with extremely low expression (fold changes
(FC) values between +1 and −1) were filtered out.

3. Results

3.1. Global Mapping of DNA Methylation

In the present study, blood samples from 20 Italian Simmental dairy cows falling in the high
and low tails of the distribution of milk cortisol concentration (Figure 1) were used to investigate
genome-wide DNA methylation. A total of 278 and 262 million raw reads were generated from the
bisulfite sequencing of the high and low groups, respectively. After data filtering, 139 and 132 million
clean reads were generated; of these, approximately 48 and 46 million mapped to the reference
genome with a unique best fit. The mapping efficiency of high- and low-variant samples ranged
from 25.6% to 41.5% and from 30.9% to 42.8% of the cattle genome, respectively (Table 2 and Table S1
(Supplementary Material)).

Table 2. Data generated by genome-wide bisulfite sequencing. high- and low-variant tails of the
distribution of milk cortisolconcentration.

Samples Raw Reads Clean Reads Mapped Paired End Reads Average Mapping Rate (%)

High 278,881,124 139,639,195 36,779,144 35.15
Low 262,917,162 132,458,581 35,048,383 35.71

3.2. DNA Methylation Patterns

In the genome of each group, over 50% of the CpG sites were methylated, which is the primary
DNA sequence context of cytosine methylation. Specifically, we observed, on average, genome-wide
levels of 50.5% CG, 6.8% CHG, and 7.8% CHH (where H is A, C, or T) methylation in the high-variant
group and 53.6% CG,7.1% CHG, and 8.1% CHH methylation in the low-variant group. (Table 3).
Compared with the low group, among the methylated cytosines the relative proportion of CG in the
high group was greater (73.24% vs. 68.84%) and consequently that the proportion of methylated CHH
and CHG was lower (17.94% vs. 21.16% and 8.83% vs. 10% respectively; Figure 2).

Genes 2020, 11, x FOR PEER REVIEW 6 of 20 

 

gene expression between the high and low groups was performed using the DESeq2 R package 
(1.26.0) [35]. The p.values were adjusted using the Benjamini–Hochberg method [36]. A corrected 
p.value of 0.05 was set as the threshold for significantly different expression, while genes with 
extremely low expression (fold changes (FC) values between +1 and −1) were filtered out. 

3. Results 

3.1. Global Mapping of DNA Methylation 

In the present study, blood samples from 20 Italian Simmental dairy cows falling in the high and 
low tails of the distribution of milk cortisol concentration (Figure 1) were used to investigate 
genome-wide DNA methylation. A total of 278 and 262 million raw reads were generated from the 
bisulfite sequencing of the high and low groups, respectively. After data filtering, 139 and 132 million 
clean reads were generated; of these, approximately 48 and 46 million mapped to the reference 
genome with a unique best fit. The mapping efficiency of high- and low-variant samples ranged from 
25.6% to 41.5% and from 30.9% to 42.8% of the cattle genome, respectively (Table 2 and Table S1 
(Supplementary Material)). 

Table 2. Data generated by genome-wide bisulfite sequencing. high- and low-variant tails of the 
distribution of milk cortisolconcentration. 

Samples Raw Reads Clean Reads Mapped Paired 
End Reads 

Average Mapping Rate (%) 

High 278,881,124 139,639,195 36,779,144 35.15 
Low 262,917,162 132,458,581 35,048,383 35.71 

3.2. DNA Methylation Patterns 

In the genome of each group, over 50% of the CpG sites were methylated, which is the primary 
DNA sequence context of cytosine methylation. Specifically, we observed, on average, 
genome-wide levels of 50.5% CG, 6.8% CHG, and 7.8% CHH (where H is A, C, or T) methylation in 
the high-variant group and 53.6% CG,7.1% CHG, and 8.1% CHH methylation in the low-variant 
group. (Table3). Compared with the low group, among the methylated cytosines the relative 
proportion of CG in the high group was greater (73.24% vs. 68.84%) and consequently that the 
proportion of methylated CHH and CHG was lower (17.94% vs. 21.16% and 8.83% vs. 10% 
respectively; Figure 2). 

 
Figure 2.Comparison of DNA methylation patterns in the two high-and low-cortisol groups. 

We noted that a high cortisol concentration in milk resulted in a decrease in overall methylation 
at all sites in comparison to low cortisol concentrations, but in an increase in the methylation rate of 
CpG sites compared to non-CpG sites, especially in the CHH context. 

Figure 2. Comparison of DNA methylation patterns in the two high-and low-cortisol groups.



Genes 2020, 11, 850 7 of 19

Table 3. Genome-wide methylation levels of the two high- and low-cortisol groups for CpG and
non-CpG sites.

Samples mCpG(%) mCHG(%) mCHH (%)

High 50.48 6.82 7.82
Low 53.58 7.11 8.14

We noted that a high cortisol concentration in milk resulted in a decrease in overall methylation at
all sites in comparison to low cortisol concentrations, but in an increase in the methylation rate of CpG
sites compared to non-CpG sites, especially in the CHH context.

3.3. DNA Methylation Levels of Gene Features

To disentangle the differences identified in global DNA methylation profiles across high- and
low-cortisol dairy cows, we compared the average DNA methylation levels of different gene features
along the genome (Figure 3).
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A major proportion of CG methylated sites were present in the regions of 3’UTR followed by
intron regions, while the average methylation levels of promoters,5’UTR and exon regions were the
lowest. Conversely, all five regions exhibited a more balanced distribution of methylation at CHG and
CHH sites.

3.4. Differential Methylated Regions (DMR) and Genes (DMG)

A total of 897 DMRs were identified between the two groups (q value≤ 0.05), falling into 248 DMGs
(Table S2 (Supplementary Material)). Of these DMGs, 146 were up-methylated, and 102 genes were
down-methylated in the high group. Moreover, we also detected a negative correlation of methylation
levels with gene density (Pearson’s r = −0.712, p value < 0.001) and with chromosome length (Pearson’s
r = −0.754, p value < 0.001) and a positive correlation with the GC percentage (Pearson’s r = 0.958,
p value < 0.001). The differentially methylated regions were mainly located in introns, whose proportion
covers nearly half of the total percentage of methylation, followed by the exons and the promoter
regions (Figure 4).

3.5. Functional Enrichment Analysis of the DMGs

To investigate the potential biological functions of the DMGs, a GO enrichment analysis and a
KEGG pathway analysis were performed. All DMGs were annotated in three GO categories: biological
process; cellular component; and molecular function. Some of these DMGs were enriched in the
following biological process terms: cellular process (129; 52%); single-organism process (123; 49.6%);
and metabolic process (103; 41.5%). In addition, most of the top 10 significantly enriched pathways
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in GO analysis were strictly related to nervous system activity and metabolic responses to stress
(Figure 5 and Table S3 (Supplementary Material)).
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Figure 5. Gene Ontology (GO) circle plot for differentially methylated genes (DMGs). The inner ring
is a bar plot where the height of the bar indicates the significance of the term (q value), and color
corresponds to the z-score. The outer wheel shows a scatter plot of methylation difference for each
gene under the Gene Ontology(GO) terms. Red dots indicate hyper-methylated genes and blue dots
show hypo-methylated genes.

Several DMGs, such as IGF2, LIF, NR5A1, SRF, FOSB, PDE5A, TSC1, NRN1, WNT6 and HOXB1,
were involved in biological processes significant for stress response, inflammatory reactions and the
immune system. Furthermore, the gene–gene interaction network analysis showed that these DMGs
were highly correlated with each other (Figure 6).
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The KEGG enrichment analysis identified 62 pathways (top 20 in Figure 7 and Table S4
(Supplementary Material)).

Of these pathways, some were associated with immune system and glucocorticoid secretion,
such as the T cell receptor signaling pathway (q value = 0.051), the hedgehog signaling pathway
(q value = 0.032), axon guidance (q value = 0.041), the calcium signaling pathway (q value = 0.157) and
the GABAergic synapse pathway (q value = 0.188). Eleven differentially methylated genes participated
in these five pathways.

3.6. Differentially Expressed Genes (DEGs)

A total of 324 DEGs were also identified in the present study between the two groups (q value≤ 0.05).
Among these, 149 genes were over-expressed and 175 were under-expressed in the high group (Table S5
(Supplementary Materials)). We mapped these genes to the GO and KEGG pathway. Again, they were
annotated in three GO categories: biological process; cellular component; and molecular function. Some
of these DEGs were enriched in the following biological process terms: cellular process (104; 36.1%);
single-organism process (95; 33%); and metabolic process (75; 26%). For all the DEGs, only the GO
term “binding”, with 58 genes in the categories of molecular function, was significantly enriched
(q value < 0.05), implying that a broad range of genes experienced transcriptional regulation during the
activation process of cortisol secretion. A KEGG pathway analysis was also performed to investigate
pathways in which DEGs might be involved. In the top 20 list (Table S6 (Supplementary Materials)),
pathways implicated in inflammatory reactions (Inflammatory bowel disease (IBD), q value = 0.014),
and immune defense functions against viral disease (Influenza A, q value = 0.011, Hepatitis B,
q value = 0.109, Hepatitis C, q value = 0.103) are found. This confirms several studies that recently
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indicated a strong correlation between stressors and the progression and outcome of liver inflammatory
diseases, such as chronic viral hepatitis [37]. To examine the relationship between DNA methylation
and genome-wide gene expression, an association analysis was also performed between these DMGs
and differentially expressed genes (DEGs) obtained from transcriptome data from the same animals
(p value < 0.001). We found six overlapping genes, four were up-methylated, TRIM26, PAX2, SYNGR1
and SNCB, and two down-methylated, UPP1 and HTRA1 (Figure S1 (Supplementary Material)
and Table 4).Genes 2020, 11, x FOR PEER REVIEW 10 of 20 
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Table 4. Six DMGs that overlapped with differentially expressed genes (DEGs) (q value < 0.05 in both analyses).

Gene ID Gene Name DMRs Methylation Stat
(High vs. Low)

UP/DOWN Regulation
(High vs. Low)

ENSBTAG00000035744 TRIM26 exon Hyper Down
ENSBTAG00000021566 PAX2 exon, intron Hyper Up
ENSBTAG00000005765 SYNGR1 intron Hyper Up
ENSBTAG00000009803 SNCB utr3, exon, promoter Hyper Down
ENSBTAG00000008428 UPP1 intron Hypo Down
ENSBTAG00000008389 HTRA1 exon Hypo Up
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4. Discussion

There is a growing debate in the livestock industry about stress and its detrimental effects on
animal welfare and psychological and physiological responses of animals to traditional agriculture
procedures and new production technologies [38]. The measurement of corticosteroid hormones is
commonly used as an indicator of the animal’s response to stress. Blood sampling is a stressful factor, so,
in recent years, several efforts have beenmade in many species to find alternative and non-invasive ways
to measure cortisol level [39–41]. Moreover, the cortisol concentration in the blood of cattle can vary
due to circadian rhythmicity and several extrinsic factors, such as cold, heat, humidity and wind [42].
On the contrary, milk sampling can be achieved directly in a milking parlor without animal handling
and overcomes some of the problems associated with other sampling sites, such as blood, urine and
feces. Furthermore, several studies showed that free cortisol concentrations in milk aredirectly related
to free cortisol in the blood in cows, especially after adrenal stimulation [43,44]. These works suggest
that milk cortisol concentration can be considered a valid proxy of blood cortisol.The use of milk
cortisol as a biomarker of environmental stimuli in dairy cows was also reported by Tsukada et al.
(2008) [45], Waki et al. (1987) [46], Verkerk et al. (1998) [47] and Poscic et al. (2018) [20]. For this
reason, milk can be considered a preferential site of sampling in dairy cows to point out the short-term
stimulation of the HPA axis [48].

Blood is a peripheral tissue and is not necessarily related to changes in DNA methylation in the
central nervous system. Despite this, we focused on DNA methylation in blood cells since several
studies recently proved that peripheral tissues methylation can be informative for the neurobiological
mechanisms underlying high cortisol levels. First, cortisol is released into the periphery by the pituitary
and is known to affect multiple tissue types [49]. Second, HPA axis genes are highly expressed in
peripheral blood mononuclear cells [50]. Third, it was previously demonstrated that methylation
levels at CpG sites in leukocytes could serve as an accurate predictor of CpG site variability in other
tissues, especially the brain [22,51]. Peripheral changes in methylation may therefore at least partially
be considered as proxies of epigenetic processes in the brain and provide highly informative evidence
of animal responses to environmental challenges.

To the best of our knowledge, this work is the first attempt to investigate the underlying epigenetic
mechanism related to the expression of genes triggered by glucocorticoid secretion and compare the
genome-wide methylation profiles between two groups of dairy cattle with high and low levels of
milk cortisol. Usually, stressful factors lead to the adrenal secretion of glucocorticoids initiated by the
hypothalamic neuropeptide corticotropin-releasing hormone (CRH), which stimulates pituitary release
of the adrenocorticotropic hormone (ACTH). The activation of ACTH receptors in the adrenal cortex
stimulate glucocorticoid synthesis and secretion; glucocorticoids then act on a wide range of target
tissues [52]. Most of the diseases induced by an impaired stress response arise from primary defects in
the adrenal glands that are usually associated with significantly decreased neutrophils and natural
killers (NKs) [53].

It is well known that DNA methylation, especially in the promoter regions, can change gene
expression via different modes [54]. Our results indicated that only a small proportion of the DMRs
were located in the 5′UTR, 3′UTR, and promoter regions of the cattle genome, while nearly half of the
total percentage of methylation falls within intron regions (Figure 4).

4.1. Key Differentially Methylated Genes Associated with Cellular Defense and Stress Response

In the present study, we identified several DMGs associated with stress response as assessed by
cortisol level. Some of these, including PDE5A, IGF2, NR5A1, FOSB, NRN1 and WNT6 appear to be of
particular interest because of their functions with cattle immune system. Furthermore, these DMGs,
which are already known to be involved in adaptive responses to numerous stressors from human
studies, could participate to the same molecular mechanisms in cattle [55,56]. Genes that act as
regulators in immune mechanisms are strong candidates for differential methylation as DNA is isolated
from white blood cells. Heat stress is certainly one of the most problematic kinds of stress able to
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decrease the welfare and productive performance of dairy and beef cattle [57]. PDE5A, which encodes
for cGMP-binding, a cGMP-specific phosphodiesterase, besides having one of the top hypo-methylated
intronic regions, as shown in our experiment, has also been identified as hypo-methylated in the
liver and mammary gland tissues of bull calves and heifers exposed to heat stress during pregnancy,
again with the hypo-methylated window mainly located in an intronic region, as reported by Skibiel
et al. (2018) [58]. This gene is also known to be part of different pathways, biological functions,
and molecular processes such as cell signaling, protein binding, phosphorylation, cell activation
and cGMP binding [58]. Insulin-Like Growth Factor 2 (IGF2) belongs to the IGF signaling pathway,
a highly conserved evolutionarily network that regulates cell proliferation, differentiation, survival and
longevity [59–61]. Interestingly, there is evidence that this gene increases the expression of interleukin
(IL)-10 from specific B cells and plays a crucial role in inhibiting intestinal allergic inflammation,
as demonstrated by Geng XR et al. (2014) [62] in an experiment with a mouse model. It has also
previously been proven that IGF2 is one of the most complex and well-characterized imprinted
genes, both in mice and humans [63]. A paternally expressed quantitative trait loci (eQTL) affecting
muscle growth, fat deposition and the size of the heart in pigs maps to IGF2 and is caused by a
nucleotide substitution in intron 3 of this gene [64]. Normally, IGF2 is highly expressed during embryo
development and then its expression drops at weaning and becomes undetectable, but Barroca et al.
(2017) [65] also recently observed a significant gene activity in mice during adulthood for maintaining
tissue homeostasis. They also noted that reducing or slowing down the IGF2 level would represent a
means for stem cells to survive when faced with cellular stressors, resulting in increased cellular health.
Vangeel et al. (2015) [66] demonstrated in humans that maternal emotional stress during pregnancy,
as defined by cortisol measurements, is associated with fetal DNA methylation of IGF2.

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes for steroidogenic transcription
factor 1 (SF-1), a key regulator of adrenal function and reproductive development. It was suggested
that a normal dosage of SF-1is required for mounting an adequate stress response in mice since a
reduced expression of this transcription factor would lead to adrenal failure [67]. Another interesting
transcription factor that has been found to be differentially methylated in our gene list is FOSB. This gene
encodes for a protein implicated as a regulator of cell proliferation, differentiation, and transformation.
Previous studies carried out in human shave shed light on its role as regulator in stress response, since it
has been observed that, during repeated stress events, ∆FosB, an alternative splice product of the FOSB
gene, accumulates in several brain areas and start to induce a reduction in the deleterious effects of
chronic stress, such as depression-like behaviors and despair [68,69]. Interestingly, this transcription
factor activity seems to be strictly linked to CREB, another stimulus-induced transcription factor,
which acts together with FOSB in histone acetylation and deacetylation, mediating long-lasting forms
of synaptic plasticity [70]. Furthermore, the CREB gene has been previously identified as a differentially
methylated gene in pigs during a heat stress study by Hao et al. (2016) [71]. This evidence suggests
that FOSB and CREB could act together in an epigenetic mechanism involved in stress response.

We found two other interesting genes which exhibited hypomethylation following an increase
in cortisol level. They are also involved in all the top GO significant pathways linked to nervous
system development and neurogenesis. The first is NRN1, which encodes a member of the neuritin
family, an extracellular glycophosphatidylinositol-linked protein that promotes neuronal survival,
differentiation, function, and repair, even if the exact mechanism of this neuroprotective effect remains
unclear [72]. Recent studies demonstrated that the atrophy of neuronal processes contributes to
the negative effects of stress, but also that this process is reversible. Hyeon Son et al. (2012) [73]
suggested a connection between neuritin and the prevention of stress effects by protecting the brain
from the atrophy of dendrites and spines. The authors used a viral vector to increment neuritin
expression in the hippocampus of some rats, and those with an increase in neuritin mRNA levels
did not show adecrease in sucrose preference resulting from chronic stress and also did not display
the reduction in dendritic spine density that appears with chronic stress either. Besides being crucial
for the development, survival and function of neurons, this gene also promotes the maintenance of
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regulatory T cells (Tregs), a subpopulation of T cells that modulate the immune system, maintain
tolerance to self-antigens, and prevent autoimmune disease [74]. Barbi et al. (2016) [75] proved
that a knockout of the neuritin gene in Tregs could lead to the onset of inflammatory/autoimmune
diseases. The second gene that belongs to GO nervous system pathways is WNT6. It belongs to gene
family of structurally related genes that encode secreted signaling proteins. These proteins have been
implicated in oncogenesis and in several developmental processes, including the regulation of cell
fate and patterning during embryogenesis [76]. Most functional studies indicate that the Wnt family,
including WNT6, exerts pro-inflammatory functions on different cellular targets, including various
types of immune and non-immune cells [77]. This is consistent with recent studies about glucocorticoids,
since they can influence a broad range of both innate and acquired immune responses, while a variety of
regulatory proteins may also mediate the anti-inflammatory effects of glucocorticoids [78]. Apart from
IGF2, all of the above mentioned genes exhibited hypo-methylation within intronic regions. We also
found that homeobox genes were significantly overrepresented in the differentially methylated gene list.
This is not surprising, since the methylated activation or deactivation of these transcription regulators
starts a cascade reaction that targets different pathways, thus allowing the fast response of the organism
to the stressful situations. Furthermore, homeobox genes are reported to be differentially expressed in
leukocytes [79]. The homeobox genes are clearly better studied in embryonic development where they
orchestrate the body plan [80]. Recent evidence, however, points out the essential regulation role of the
homeobox genes in adulthood, both in normal and pathological physiological processes. We will now
provide a brief description of each of the differentially methylated homeobox genes, focusing on their
biological role in adult vertebrate, where known. Ceramide synthase 4 (CERS4) synthesizes ceramides
containing C18-22 fatty acids. Thanks to this participation in the sphingo lipid metabolism, it likely
plays a role in the control of body weight and food intake [81]. The function of the homeodomain in
this protein is unknown but its deletion in CerS5 does not affect activity [82]. The cut-like homeobox 1
protein (cux1) is a transcription factor that regulates a large number of genes and microRNAs involved
in multiple cellular processes [83]. CUX1 encodes two main isoforms with p200, which binds to DNA
with extremely fast kinetics (rapid “on” and “off” rates), while, usually, the classical transcription
factor binds stably to DNA [84]. The p100 CUX1 isoform shows normal slow DNA binding kinetics
and it functions as a transcriptional repressor or activator [85]. Distal-less homeobox 3 gene (DLX3)
is a transcriptional activator that regulates keratinocyte proliferation and differentiation, with the
assistance of the tumor suppressors p53 [86] and p63 [87]. A better knowledge of the biological
mechanism of keratinocyte growth and differentiation could produce important returns for bovine
production [88,89]. The transcriptional role of homeobox B1 (HOXB1) during embryonic development
involves the anterior bodily structures. A relatively high level of expression has been registered in the
brain stem of the adult brain, also in territories where HOX genes are detected during development.
For example, the developmental expression of HOXB1 is linked to a subpopulation of noradrenergic
neurons, a collection of neurons located in the central nervous system. Once activated, they are able to
decrease anxiety-like behavior and induce an active coping strategy in response to acute stressors [90].
The iroquois homeobox 6 gene (IRX6) is involved not only in lactation [91], but also in neuronal
development [92]. The LIM homeobox 5 gene (LHX5) is, again, involved in brain development, both of
the mammillary body [93] and the forebrain [94]. Its methylation level has been found altered in a
mouse model of neuro-developmental disorders [95].

4.2. Key Differentially Methylated Genes Associated with KEGG Pathways

The regulation of the stress response system is a complex biological process involving not only
different functional areas of the brain like the amygdala, hypothalamus and prefrontal cortex, but also
different tissues like the adipose tissue, bones, liver, muscles and pancreas. Therefore, examining
regulatory networks is the preferred method of analysis. In the present study, the DMGs were enriched
in several KEGG pathways, including the calcium signaling pathway, T cell receptor signaling pathway,
axon guidance and GABAergic synapse.
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Glucocorticoids can influence a broad range of both innate and acquired immune responses and it
is well known that they not only have anti-inflammatory effects, but also induce pro-inflammatory
responses [96]. Among the significant pathways, the T cell receptor signaling pathway has been studied
in cattle for its role in stress defense or stress-related diseases. For example, a variation in T-lymphocyte
levels following heat stress in two Bos taurus and Bos indicus crossbreeds was previously reported [97].
Interestingly, we found, within this pathway, two DMGs, PAK4 and LCK, related to the nervous system
both in normal and pathological physiological processes [53,56]. PAK4 regulates a wide range of
cellular functions, it is essential for embryonic brain development and has a neuroprotective function.
Lately, the transcription factor CREB has emerged as a novel effector of PAK4 [98]. As mentioned before,
this gene seems to also be involved with FOSB in a mechanism that modulates synaptic plasticity.
This finding has broad implications for the role of PAK4 in health and disease and suggests the presence
of a complex interaction between several genes that could play a role in stress response. Several studies
demonstrated that GABAergic synapse and axon guidance pathway activity undergo significant
changes in response to acute stress, which remodel the excitability of neurons and the activation of the
HPA axis [99–101]. In addition, increases in dexamethasone corticosteroids are also associated with a
decline in the Ca2+concentration within the endoplasmic reticulum lumen, likely an effect of increased
aldosterone secretion, which contributes to the imbalance of total cellular Ca2+ [102]. All this confirms
previous studies showing that changes in methylation obtained from peripheral blood mononuclear
cells were significantly enriched for central nervous system pathways [103]. Additional studies of the
translational and posttranslational effects together with the expression and function of the proteins
encoded by the genes identified here will be required to provide a global view of the methylation
mechanisms undergoing variations in cortisol secretion.

5. Conclusions

In summary, this is the first study to compare comprehensive DNA methylation profiles as well
as transcriptome data of dairy cattle populations in relation to cortisol secretion. Further studies
are also needed to explore the function of non-CpG methylation, which might help to improve our
knowledge about the biological significance of the non-CpG methylation changes that occur during
stress processes.

We identified DMRs and genes associated with these regions. Pathway and network analyses
of these differentially methylated genes revealed a number of candidate genes that might affect
different cortisol levels or at least could be activated as a consequence of glucocorticoid synthesis
and secretion. The results of this study might therefore provide additional insight into the epigenetic
genome mechanisms related to stress response and will likely contribute to the improvement of
animal welfare.
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