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ABSTRACT
Novice programmers should develop program comprehension skills
as they learn to code so that they are able both to read and reason
about code created by others, and to reflect on their code when
writing, debugging or extending it. This work takes a little-explored
perspective on the comprehension of small programs by asking
students to decide if two code segments are equivalent or not in
terms of carrying out the same computation.

A variation of Euclid’s algorithm, that extends the greatest com-
mon divisor calculation to more than two numbers, was chosen for
this work, as it has an adequate level of complexity and its seman-
tics are not obvious. Four program transformations of the original
code were developed: two transformations were equivalent and
two were not. 73.5% of students were able to identify correctly the
four options and 75.5% provided good insights on the equivalent
program flow to justify their choices. The overall task has a SOLO
mean of 3.19, which indicates code equivalence is a suitable and
approachable task to analyse program execution at novice level.

In addition, the data analysis suggests that students’ code-reading
abilities beyond basic tracing may be generally underestimated and
we should investigate how to bridge the potential gap between
reasoning about program execution and extracting its purpose.
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1 INTRODUCTION
Most CS1 courses teach programming by introducing one language
construct at a time, providing examples, and asking students to
implement simple algorithms that required that new construct.
Once each construct is well understood, it is simpler to compose
longer programs by combining multiple constructs in sequential
or nested ways. However, previous work, e.g. [2, 4, 11, 15], shows
some students have a superficial understanding of the notional
machine that causes misconceptions, which may appear later on
the course as program complexity increases.
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Amajor objective of this study is to investigate on novices’ ability
to construct mental abstractions of the overall behaviour of small
program chunks when executed on a notional machine. In terms of
the Block Model framework [24], this amounts to trying to analyse
to which extent — and how — learners are able to move from the
atomic level (AP) to the relational or macro levels (RP, MP) within
the program dimension (P) represented in the related matrix.

The tracing tasks of widespread use are not satisfactory enough
to this aim, as pointed out by Izu et al. [9], since they can be achieved
by reasoning mostly at the atomic level. On the other hand, “Explain
in plain English” (EiPE) tasks [5, 22] focus only on the program’s
purpose and not on its execution. In conventional writing tasks,
such as those asking to complete ormodify code, program behaviour
and functional purpose are so strictly entangled with each other,
that it may not be clear if failures to achieve the task are to be
ascribed to poor abstraction relative to the operation of the notional
machine rather than to problem-solving issues. A study by Lister
et al. [15], for instance, appear to suggest that weaknesses in the
former are often at the very root of the latter.

To quote Luxton-Reilly et al., as a consequence of using assess-
ments that “combine numerous heterogeneous concepts [...] teach-
ers may not be able to diagnose the actual difficulties faced by
students and students are not provided with accurate feedback
about their achievements” [18], thus the need for new comprehen-
sion tasks that facilitate identification of misconceptions at the
macro level [24].

Recent work to address the operational dimension of program
comprehension independently from other dimensions proposes
the use of reversibility tasks [8, 21]. However, such tasks require
students to write tiny (reversing) programs, whereas we are looking
for tasks that test only their reading comprehension.

Asking to decide on equivalence between short programs may
fill this gap: in order to understand if two code fragments are equiv-
alent in terms of state transformation, it is necessary not only to
read/trace the code but to construct a viable abstraction of the over-
all computation (without the need of formulating it in words) while
reasoning at the program behaviour level.

A new task is proposed in which students are asked to assess
the functional equivalence of a short program with four structural
transformations of it. Each transformation changes the program
flow by editing the order of conditions to be tested and/or the nested
constructs (if vs. while) inside an enclosing loop. Thus, the focus of
the analysis should be on the overall program flow.

This task was presented to students at the end of a full year CS1
course. We should note these students were not exposed to this type
of task before, but they have experience tracing small programs. In
other words, the endeavour was new to them, aiming to assess their
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higher order skills instead of simple recall. The analysis of their
answers provides an interesting peek into their current abstraction
abilities. In particular, this study addresses two research questions:

RQ1. Are students able to compare two similar small programs and
decide if they are functionally equivalent?

RQ2. What level of abstraction is reflected in their justifications for
equivalence?

This study provides new insights into novice programmers’ abil-
ity to analyse code in a comprehensive way. We will use the SOLO
taxonomy to classify how well students complete the task and the
Block Model framework as a reference to measure their level of
abstraction.

In addition, comparing small programs for equivalence should
help to strengthen their design skills by requiring them to consider
alternative implementations for a given task, as well as by provid-
ing their first exposure to equivalence transformations for code
refactoring.

The rest of the paper is organised as follows: after outlining some
background in Section 2, Section 3 describes how the empirical data
was collected and analysed; Section 4 presents the quantitative and
qualitative results, which are further discussed in Section 5 and
summarised in Section 6

2 BACKGROUND
Program comprehension by novices has been the subject of studies
flourished in the 80s, e.g. [7, 27], and since then has been explored
from a variety of perspectives, addressing the interconnections be-
tween code tracing, reading and “chunking” abilities [6, 14, 16, 17];
the mental models of program behaviour [2, 23]; the understand-
ing of loops and nested loops [3]; the issues connected with basic
concepts of language notation and operational semantics [18].

That even simple programming constructs may be challeng-
ing emerged, in particular, from the analysis of a huge dataset by
Cherenkova et al., who reported that “a significant number [of stu-
dents . . . ] exhibit the common errors of failing to check the border
condition or reversing the conditional” [4].

In this general context, the focus of our present work is on
reading comprehension, as demonstrated through the ability of
comparing programs to establish or disprove their equivalence.
Some emphasis on program comparison has been previously put by
Thompson et al. [28], who have analysed students’ ways of classify-
ing code fragments based on perceived similarities and differences;
however, to the best of our knowledge the task presented here
has not been proposed before. As to the importance of the reading
skills, in their recent survey on introductory programming Luxton-
Reilly et al. report that “the relationship between code reading and
other skills, notably code writing, has also been widely studied,
leading to the conclusion that code-reading skills are prerequisite
for problem-solving activities including code writing” [19].

The reference frameworks for the core part of our analysis are
the SOLO taxonomy [1] and the Block Model [24]. SOLO is an in-
strument of widespread use to assess code reading andwriting tasks,
e.g. [17, 26, 29]: from this perspective, the learners’ achievements
are classified in terms of complexity and quality of the interrela-
tionships between parts they can master. The Block Model, on the

Figure 1: Equivalence task.

other hand, is precisely meant to analyse key aspects of program
comprehension, whose merits have been recognised, e.g. [30], in
particular for the accuracy of the resulting categorisation.

3 METHODOLOGY
In this section we describe the equivalence task used in our inves-
tigation. Then, we outline the data collection process. Finally, we
present the criteria of our analysis, based on the SOLO taxonomy
and the Block Model framework.

The task examined in this paper is shown in Figure 1. This task
combines two formats of measuring higher order thinking skills:
selection and explanation [12]. For each of the four programs labeled
A–D, students had first to identify whether it is equivalent or not to
program P (selection); then theywere required to justify their choice
(explanation), by either explaining their reasoning or providing a
counterexample. The reasons of our interest in exploring students’
ability to approach a similar task lie on the features mentioned in
the introduction.

Although the proposed task refer to an equivalence concept in
terms of input-output relationship, it is worth observing that the
equivalent programs (P, B and C in Figure 1) give rise to exactly
the same sequence of state transitions, via assignment statements,
the only difference being the flow — number and/or order — of
conditions tested. This ensures that in order to realise that they are



equivalent it is not necessary to figure out the underlying purpose
or to reason about number properties.

This task was presented at the start of the exam paper when stu-
dents were fresh and active. The task shown in Figure 1 was worth
25% of the paper’s marks and appeared also in a second version,
where the programs were slightly modified and the order of the
corresponding items was different. Note the equivalent transfor-
mations, which we will call Y1/Y2 in the analysis, correspond to
items C and B, while the non-equivalent ones, which we call N1/N2
correspond to items A and D in Figure 1.

3.1 Data collection
We collected exam answers from a CS1 exam in June 2019 at the
University of ZZ. Each exam paper was anonymised and digitised
prior to analysis.

Students had received one semester instruction in Scheme, fol-
lowed by another semester of Java Programming. The sample (151)
includes students from two programs: a standard Computer Science
program (77 students), and a new computing program focusing on
some specific present-day technologies (74 students).

3.2 Data Coding Methodology
After measuring the percentages of students who had chosen cor-
rect options, we applied the SOLO taxonomy to conduct a qualita-
tive analysis of the explanations or counterexamples provided to
justify each choice.

SOLO coding. To develop the criteria, the two researchers indepen-
dently performed a deductive content analysis [20] to rate a sample
of 20 students’ answers. Initially, we tried to rate each individual
answer, however some insights were sometimes implicit or said
before (and assumed each answer relies on previous explanations
to avoid repetition). Thus, after two iterations we decided to rate
the four items as a unique, comprehensive task (in terms of SOLO).

Following one more revision of the equivalent (Y1/Y2) and non-
equivalent (N1/N2) codes, we discussed and summarised the ex-
pected insights into the list shown in Table 1 and applied them
to establish the SOLO classification guidelines reported in Table 2.
Once the criteria were set, both researchers rated all test papers,
marked the insights found, and used Table 2 to classify each an-
swer. Borderline cases between SOLO levels in connection with
implicit insights or minor errors were discussed to determine the
final classification.

Table 1: Equivalence task’s insights.

Insight Description

1
No update statements are added, removed, or run in a
different order relative to P. Only the condition flow may
change

2
If index i’s update is preceded by the equality condition, its
location is not important. If is preceded by else, needs to
make sure it only reaches when v[i] == v[j].

3
Vector updates are equally managed by the original
“while-if" combination from P or the edited
“while-while" combinations in B/C/D.

Table 2: SOLO Classification guidelines.

SOLO Level Options
correct insights given

Empty (0) — No justifications made
Prestructural (1) ≤ 2 No meaningful insight provided

Unistructural (2) 2-3 At least one correct insight

Multistructural (3) 3-4 Two correct insights (without errors
or contradictions).

Relational (4) 4 All three insights provided.

Block Model coding. Although our SOLO classification indirectly
captures the abstraction level student used to express each insight, it
focuses mostly on the correctness and completeness of their answer.
Thus, we used the Block Model’s abstraction levels (atomic, block,
relation or macro [24]) to better capture the reasoning depth of
their justifications.

As expected, most students’ answers pertain to the Program
Execution dimension, which is concerned with program flow and
data flow. However, we did also find a few answers falling into
the function dimension. To make the paper self-contained we will
briefly describe the elements of the Block Model matrix found in
our coding:
AP : show step-by-step execution (tracing) or output for a specific

input.
BP : analyse execution of a block, for example discuss the alter-

native paths of a nested if statement.
RP : analyse the interactions between blocks that are linked se-

quentially or nested.
RF : identify the function of a (partial) computation resulting

from interactions between code segments.
MF : figure out the main purpose of the whole program.
For full details of the Block Model matrix, please refer to its

source [24]. As the negative answers asked for an example, while
the positive answers asked for an explanation, it makes sense to
code Y1/Y2 and N1/N2 separately. The examples in Subsection 4.3
will clarify further the coding.

4 RESULTS
In this section we present first a quantitative analysis of the rates of
correct options, followed by a qualitative analysis of students’ ex-
planations, using the SOLO taxonomy to measure the depth of their
explanations and the Block Model to identify at what abstraction
level they are reasoning about programs.

4.1 Correct options
As shown in the summary of Table 3 (see last column), around 3/4
of students selected all 4 correct options, and less than 10% made
two or more mistakes.

If we look at individual program transformations values range
from 89% for N1 and Y1 to 93% for Y2, as shown by the “Overall”
line in Figure 2. We also split the percentage of success for students
that made 4, 3, or 2 correct choices in order to detect any patterns
or assumptions that weaker students had made.

Of the 24 students who made one incorrect choice, 9 were wrong
on N2, 8 on Y1, 4 on Y2 and 3 on N1. It then appears that programs



Table 3: Insights (SOLO level) vs. number of correct options.

correct relational justifications
options 4 3 2 1 0 total

4 52.3% 17.9% 2.6% 0.7% — 73.5%
3 5.3% 9.9% 1.9% — 17.2%
2 3.9% 3.3% 0.7% 7.9%
1 1.3% — 1.3%

total 52.3% 23.2% 16.5% 7.3 0.7% 100%

Figure 2: Percentages of correct choices for each program
transformation.

N2 (C) and Y1 (D) have been harder to them. Besides, of the 38
students who selected at least one wrong option, 26 made the same
choice, both Yes or both No, for N2 and Y1 (and in only one case
both were wrong). A possible interpretation of these observations
is connected with the structural similarity of N2 and Y1, whose
only difference is a swap of the two nested constructs: a number
of students probably failed to realise that the implicit condition
corresponding to the else branch depends crucially on the order
of the constructs.

4.2 SOLO analysis
We next move to the SOLO analysis. Table 3 reports the percent-
age of answers classified at each SOLO level. A related aggregate
indicator is the SOLO mean, customarily determined by averaging
over the weights assigned to each level, see e.g. [25]: 4=relational,
3=multistructural, 2=unistructural, 1=prestructural, and 0=no jus-
tification. Performance on this task resulted in a SOLO mean of
3.19, with 75.5% of the subjects working at the multistructural or
relational level.

Besides presenting a few additional figures, in this subsection
we will briefly characterise each SOLO level, whereas the excerpts
in Table 4 illustrate the insights on which the analysis is based.

Relational answers. The justifications provided for the four correct
answers focused clearly on equivalent program flows. The fact the
task is focused in comparing two values, v[i] and v[j], may help
students to easily identify the implicit equality condition of the
else branch within the main loop of program P.

Insight 2 is the most often explicitly described one (see Figure 3),
while insight 1 is mainly referred to implicitly in the explanations
as well as in the examples. Overall, insights 2 and 3 are commonly
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Figure 3: Frequency of task insights (implicitly or explicitly)
in student’s answers.

repeated or elaborated in subsequent examples, as indicated by
their higher frequencies for two or more explicit sightings. Note
that in Figure 3 the sum of the percentages for an insight is over
100%, as it may be referred to both implicitly and explicitly, hence
counting twice.

Multistructural answers. Justifications at this level are characterised
by the following patterns:

• Students selected the correct options but didn’t provide any
reference to one of the insights in their justifications (6
missed insight 1, 5 insight 2, and 7 insight 3). It is unclear if
this can be ascribed to carelessness in articulating the expla-
nation or if they missed some more substantial features. The
fact all their choices are correct may support the former.

• Students selected the correct options and essentially ad-
dressed all insights, but committed tracing errors when pro-
viding the examples for N1/N2 (9 subjects).

• Although referring to all insights, students clearly missed a
factor or incorrectly traced the example they provided, and
the oversight caused them to incorrectly select one option.
There were 8 students in this group; half of them failed to
see that D was different to C.

Unistructural/Prestructural answers. At the Unistructural level most
students often chose 2 or 3 correct options but made multiple er-
rors when tracing cases that justified their wrong choices. Some
managed to articulate one or two insights but the tracing errors in-
dicated small contradictions between what they said and what they
traced. We should note also 4 students that have all correct options
were classified as unistructural because their explanations were
either very short or vague, relating mostly to one of the insights.

We found 11 prestructural answers, 3 of them having at least one
insight but also repeated errors and contradictions. Poor answers
appear to be due to a superficial analysis of the programs, by stating
that they do the same operations while ignoring any flow variations.
Others focused on irrelevant facts to make the decision, e.g. if any
vector value is set to 0, program P and its equivalent ones won’t
terminate. There was only one student that made no attempt to
analyse the code and was classified as empty.

4.3 Block model analysis
Table 4 shows examples of students answers in the program execu-
tion dimension at three levels: AP. BP and RP, and Figure 4 shows
the percentages of answers classified at each level.



Table 4: Students’ justifications examples relative to the program execution dimension (tagged with insights found)

non-equivalent (N1, N2) equivalent (Y1, Y2)
AP N1: “With input {1, 2, 3, 4}, P gives {1, 1, 1, 1}, whereas A gives {1, 1, 2, 1}”

(inisght 1)
Y1: “With input {1, 2, 3, 4}, both P and C return as output {1, 1, 1, 1}”
(inisght 1)

BP N2: “D is not equivalent to P because i = i+1 is executed when v[i] is
not less than v[j], whereas it should be executed only if v[i] == v[j].”
(insight 2)

Y2: [B and P are equivalent] “since the index is not incremented in every
case, but only if v[i] and v[j] have the same value, as with P.” (in-
sight 2)

N2: [In D] “he index is incremented before testing if v[i] > v[j]. Thus,
the check that index i = [j] is lacking.” (insights 2 and 3, the latter
being inplicit here)

Y2: [B] “gives the same result since program P, instead of using nested
whiles to decrement some value in the array, uses a single while, but the
result is the same.” (insight 3)

RP Y1: [With C] “i is incremented only when v[i] = v[j] since the inner
while loop ensures that v[i] ≤ v[j] so that the else is executed only
if v[i] = v[j].” (insight 2)

N2: “D is not equivalent to P. Indeed, [the transformation is] the same at
every iteration, except the first one. Indeed, we always arrive at the point
[if v[i] < v[j]] with v[i] <= v[j], hence i is incremented only if
v[i] == v[j] at every iteration but the first one.” (insights 1 and 2)

Y2: “P at each cycle decreases the higher value between v[i] and v[j]
and only if they are equal increases the index i. B at each cycle executes
more cycles where v[i] decreases if it is greater than v[j] and conversely;
only if v[i] is equal to v[j] then the index i increases.” (all insights,
insight 1 being implicit)

Table 5: Students’ justification examples relative to the pro-
gram function dimension.

equivalent (Y1, Y2)
RF Y1: [B is equivalent to P] “also because the program purpose is

to transform all the elements of the array [...] and to sort them
in decreasing order.”

MF Y2: [B is equivalent to P . . . ] “In particular, both P and B compute
the GCD of a list of numbers (v), which at the end of the compu-
tation will be found at v[v.length-1]. The other components
of v contain partial results of the computation.”

Figure 4: Distribution of YES/NO answers for relevant Block
model cell categories.

Functional dimension. Note the reference program P computed the
greatest common divisor of the integers stored in an array, but
its purpose was not mentioned in the task description. Thus, an
interesting question is whether students spontaneously look for
functional clues in their analysis. In fact, six students, 4 at the
relational level and 2 at the macro level, refer to the code purpose;
two sample answers are shown in Table 5.

RP – Relational level. Typical explanations of equivalence, as the
three listed in Table 4, looked at the block edited in the transforma-
tion and described how that changes impact on the block interaction
with the other program components.

BP – Block level. In this case the justifications are mostly based on
block behaviour. Note this can yield correct or incorrect outcomes,
depending on the block location. For instance, the first explanation
given for N2 in Table 4 would be in accordance with an incorrect
choice for Y1, where the if-else block is in a different location.

AP – Atomic level. Examples that provide an input and its output
for both programs are classified at this level in accordance with the
rationale discussed in [9]. Some students reported the full trace, but
many more showed the final result only.

Both RP- and BP-level justifications show that most of our novice
cohort decisions, either positive or negative, are based on some
abstract pattern of reasoning rather than relying on tracing in
order to get insights on program behaviour. As shown in Figure 4,
even to disprove equivalence a majority of students’ explanations
were built upon general block-level arguments, without the need of
comparing the outcomes for specific counterexamples. In the case of
Y1/Y2, on the other hand, 58% of the answers were given at RP level,
28% at BP, and only 8% at AP. The atomic level usually reflected a
superficial approach to the task, as showing an example in which
two programs produce the same output, what is no guarantee that
this should be the case also with other input instances.

5 DISCUSSION
We proceed now by revisiting the results presented in the previous
section in light of the research questions.

5.1 Research questions
RQ1 – Are students able to compare two similar small programs and
decide if they are functionally equivalent? Our SOLO analysis an-
swers RQ1 in the positive: both the option choices and correct
explanations exceed our expectations, as most complex CS1 assess-
ment tasks are usually around the 50% success range. The SOLO



mean of 3.19 is high compared to other CS1 reading and writing
tasks [25]. Furthermore, some of the errors seems to be oversights
or failing to list their assumptions.

Interestingly, CS1 students seem to be successful when analysing
complex program flows, whereas previous work with a CS1 cohort
reported failure to analyse the impact of a simple if statement [10].
We attribute the higher success rate, apart from the differences in
cohorts, to the fact that all possible path flows are explicit and this
guides students’ analysis.

RQ2 – What level of abstraction is reflected in their justifications for
equivalence? Both the SOLO and the Block Model analysis have
indicated that more that half of the CS1 cohort were confident to
analyse the code at the relational level and to clearly describe the
insights, as shown in Table 4.

Contrary to our expectations, tracing the code with an example
may not be students’ first choice to figure out program properties, as
also confirmed by the significant rate of students (58%) who tried to
approach the justifications relative to items N1/N2 in more general
terms, in spite of being asked to provide specific counterexamples.

In this respect, we should note that N1 (A) is tricky to trace
because at first glance the two “if" statements can be mistaken
to be mutually exclusive. Instead, once the first if statement is
executed the condition of the next one may become true, and this
subtle pattern seems to trip many students. Similarly, for N2 (D)
ignoring the while after i is incremented may indicate again the
preconception that only one condition can be true at each iteration.
This may explain why 52% of the 81 papers providing answers for
a specific input (AP level) at least one such outcome is incorrect.
Tracing errors may be due to carelessness or attempts to reason
at multiple levels while tracing, moving from BP down to AP and
back in an inconsistent manner.

In short, the equivalence task has engaged students to reason
above the atomic level and it is clear from this analysis that many of
them have the potential to grasp the macro level of small programs.

5.2 Other findings
Asking students to compare program behaviour seems to provide
better outcomes that asking them to “explain-in-words”. Although
poor performance in EiPE tasks has been ascribed to “not seeing
the forest for the trees” [16], it is conceivable that, for a fair amount
of students, weaknesses to explain program behaviour may be
due to not being able to articulate their reasoning in appropriate
and clear ways. Or that some scaffolding is needed to move from
the BP/RP levels of abstraction to the BF/RF. Given the limited
scope of our exploration, from our analysis we cannot of course
draw compelling conclusions regarding the students’ code reading
abilities. Nevertheless, there is a clear indication that it would be
important to test the alternative explanation that, in a significant
number of cases, major issues lie in their poor “verbalisation” skills,
rather than in their program understanding.

Implications for educators. This work has proposed a new type
of code comprehension task that engages students to work at
higher levels of abstraction compared with tracing tasks. Educators
should consider including similar tasks for multiple reasons. Firstly,

analysing a program’s execution flow is very useful when debug-
ging and testing code. As explained in [13], any improvement in
program comprehension would help novice programmers to de-
velop educated hypotheses about the bug they are trying to locate
and fix. In particular, the equivalence task chosen for this study
can support weaker students to evaluate the need and impact of
chained conditions. Choosing different program transformations
to the ones explored here could help novices to reason about other
aspects of program execution; for example, another task may direct
them to analyse the need to set/reset variables at the start of a
subsequent iteration cycle.

Secondly, looking at equivalent programs towards the end of CS1
could also provide opportunities to discuss code quality metrics
such as readability and efficiency. For example, once they have
identified three equivalent programs (in our sample task, programs
P, B and C) you could ask students: Which version is more readable?
Is any of the version more efficient than the others?

Limitations. The main limitation of this study is the fact we tested
the task with a single cohort, so it is unclear to which extent it
can be generalised to other contexts. As with many comprehension
tasks, a careful choice of examples that are neither trivial not overly
complex is critical to trigger meaningful reading comprehension.
Hence, testing the task with a medium size CS1 class is sufficient
to demonstrate its potential merits.

6 CONCLUSIONS
While most CS1 students are usually exposed to tracing, which
helps them build a correct mental model of the notional machine,
such tasks do not force them to consider program execution beyond
the atomic level of each command. However, chunking from state-
ment into blocks and their relationships is important when writing,
testing and debugging. In this study we have proposed a new code
comprehension task with the aim of developing such level of code
comprehension.

We devised a new type of task engaging students to reason about
equivalence between small programs. The equivalence task was
used in a CS1 exam, in which 74% of students succeeded to select
the correct equivalent pairs. A thorough analysis, using both SOLO
and the Block Model to classify the answers has shown 62% of
student are consistently reasoning at the relational level. Hence,
this equivalence task is approachable for non-experts, in this case
CS1 students which are still novice programmers. It has also proven
to be appropriate for our goals of forcing students to think about
program execution at the block or relational level. Their reasoning
skills turned out to be better than expected: 3 out of 4 students were
able to provide at least two insights into the program execution
and 53% provided in their own words the three key insights that
explain why or why not the program flows are equivalent.

Open lines from this study include (1) further testing of this task
with different cohorts and (2) the development of equivalence tasks
that explore additional aspects of code transformations, such as
when to initialise a variable, or equivalence of iteration constructs.
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