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Abstract 

III 

Gastrointestinal Stromal Tumor (GIST) is the most common mesenchymal tumor that occurs 

throughout the digestive tract and is thought to arise from the gastrointestinal (GI) pacemakers, 

the Interstitial Cells of Cajal (ICC). 

Different from most sarcomas for which premalignant lesions are not known, premalignant 

GIST counterparts have been identified. These entities, named miniGIST, share with overt GIST 

histological and molecular features, namely the presence of oncogenic mutations affecting the 

tyrosine kinases KIT or PDGFRA. MiniGISTs are remarkably common (about 1/3 of unselected 

elderly subjects carry miniGIST in their GI tract) whilst GIST are quite rare, indicating that a very 

minute fraction of miniGIST actually progress to clinically relevant tumors. This indicates that 

KIT/PDGFRA oncogenic mutations are insufficient to convey malignancy. 

The aim of this work was to address the molecular mechanisms that sustain miniGIST to overt 

GIST malignant evolution, focusing in particular on the role of miRNAs. By performing combined 

miRNA and mRNA NGS profiling on a large set of miniGISTs and overt GISTs, we identified a set of 

miRNAs potentially involved in the transcriptional perturbation during GIST progression. We made 

a step ahead by in vitro validating the role of hsa-miR-485-5p loss in determining the BIRC5 gene 

upregulation in overt GIST. 

Overall, our work laid down the bases for the elucidation of the role of miRNA:mRNA 

interaction in the malignant evolution of GIST. 
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1.1. Soft tissue tumors: overview and molecular pathogenesis 
 

Sarcomas are rare neoplasms of mesenchymal nature with an estimated incidence of about 

60/million and representing about 1% of all malignant tumors. They are more common in children 

than adults and may affect bone (BS) or soft tissues (STS) at various anatomical sites (head and 

neck, extremities, mediastinum, abdominal cavity, retroperitoneum and pelvic cavity) (Fletcher et 

al., 2013). 

Sarcomas are aggressive tumors, with an overall 5-year survival rate of less than 65%. The 

term sarcoma actually identifies a quite heterogeneous group of tumors (Fig. 1.1) (Taylor et al., 

2011) including over 60 different histotypes, as defined by the World of Health Organization 

(WHO) (Fletcher et al., 2013). 

The complexity of sarcomas makes their diagnosis challenging, and besides parameters such 

as morphology and immunoprofile, molecular and genetics investigations are often required. 

Conventionally, sarcomas are divided into two major genetic subgroups: complex karyotype and 

simple karyotype tumors.  

Complex karyotype sarcomas, which include for instance osteosarcomas, leiomyosarcomas, 

myxofibrosarcoma, and undifferentiated pleomorfic sarcomas, feature heavily unbalanced 

genotypes, with numerous non-recurrent alterations, including complex rearrangements and copy 

number changes (Mariño-Enríquez and Bovée, 2016). This group of tumors has a higher frequency 

of gene mutations compared to simple karyotype sarcomas and this relatively high mutation load 

makes them potentially eligible for immunotherapies targeting neoantigens.  

Simple karyotype sarcomas account for about 1/3 of all sarcomas (Mitelman et al., 2007). 

These tumors commonly feature recurrent and pathognomonic genetic defects in the context of a 

near-diploid karyotype. Since these genetic alterations are often histotype-specific, their detection 

may be of help in the diagnosis and in particular in the differential diagnosis of highly similar 

pathological entities. As such, they are defined pathognomonic alterations. Pathognomonic 

molecular aberrations affecting simple karyotype sarcomas include chromosomal rearrangements, 

as in the case of Ewing’s sarcomas, myxoid liposarcomas, synovial sarcomas and alveolar 

rhabdomyosarcomas, all featuring chromosome translocations that give rise to the generation of 

fusion genes. In other cases, the pathognomonic molecular alteration is represented by a selective 

chromosome amplification, as in the case of dedifferentiated liposarcomas that are characterized 

by a 12q13-15 amplification involving HMGA2, MDM2, and CDK4 genes. Specific gene mutations 

may also be a genetic hallmark for certain subtypes of simple karyotype sarcomas. Gastrointestinal 

stromal tumors, with their KIT or PDGFRA oncogenic mutations, or epithelioid sarcomas, typified 

by inactivating SMARCB1 mutations, typically fall into this category of sarcomas.  
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Figure 1.1 Unrooted phylogeny of Soft Tissue Sarcoma (STS). This taxonomy tree shows the ~60 sarcoma 

subtypes defined by the WHO 2013. The classification is based on lineage of differentiation, prognosis and gene driver 

alteration represented as primary, secondary and tertiary branches, respectively. From Taylor et al., 2011.  

 
1.2. Gastrointestinal Stromal Tumors 

 

Gastrointestinal Stromal Tumors (GISTs) are simple karyotype sarcomas. They account for 

approximately 20% of the soft tissue tumors, with an annual incidence of about 10 per million 

population (Von Mehren and Joensuu, 2018).  
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GISTs, which are the most common mesenchymal tumor of the digestive tract, occur 

throughout the GI region, mainly in the stomach, followed by small bowel, rectum, esophagus and 

other sites (omentum, mesentery, and retroperitoneum) (Casella et al., 2012; Miettinen et al., 

2002).  

GISTs were identified as tumor entities only in 1995 by Miettinen and coworkers who 

described these tumors as separate from mimics such as typical leiomyomas, leiomyosarcomas or 

schwannomas (Miettinen et al., 1995). In their study, Miettinen and colleagues demonstrated that 

these atypical tumors were almost immunonegative for conventional muscle cell markers (desmin, 

alpha-smooth muscle actin), s-100 protein and epithelial marker (CD31) but were positive for 

CD34, the myeloid progenitor cell antigen. Some years later, Kindblom and coworkers reported 

that the so-called GISTs expressed the c-KIT tyrosine kinase (CD117) (Kindblom et al., 1998).  

Since then, GISTs are overall defined as KIT-expressing mesenchymal tumors and the 

immunohistochemistry evaluation of c-KIT (CD117) has become a gold standard for GIST diagnosis, 

although a small percentage of GIST (about 5%) is c-KIT negative (Tzen, 2005). 

The current immunohistochemical panel for GIST diagnosis includes CD117 (c-KIT), CD34 

(myeloid progenitor cell antigen), DOG1 (anoctamin-1), VIM (vimentin), SMA (smooth muscle 

actin) and desmin, which are typical muscle cell markers, and S-100 (neural marker). Staining for 

PDGFRA (platelet-derived growth factor receptor A) and PKCΘ (protein kinase C theta) may be of 

some utility, especially in the CD117-negative fraction of GIST (González-Cámpora et al., 2011).  

 
1.2.1. Clinical and pathological features 

 

Gastrointestinal stromal tumors can occur throughout the digestive tract. Most often, they 

arise in the stomach (60%), followed by small intestine (30-35%), rectum (4%), colon and appendix 

(1-2%), esophagus (<1%) and more rarely in extra GI sites (Miettinen and Lasota, 2006). The vast 

majority of intestinal GISTs arise in the jejunum and in the ileum (30%), whereas a smaller fraction 

emerges in the duodenum and in the colon (4-5%). Rectal GISTs are infrequent, accounting for less 

than 5% of all GISTs (Fletcher et al., 2013; Miettinen and Lasota, 2006).  

Gastric GISTs tend to arise earlier respect to intestinal GISTs, which have a peak at seventies. 

There is no sex predominance for adult tumors. A minute fraction of GISTs occurs in childhood, 

with a slight prevalence in females, and often in the context of syndromic conditions (Fletcher et 

al., 2013).  

The symptoms of GISTs vary from vague abdominal pain, bleeding, hemorrhage, anemia, or 

bowel obstruction. Tumor rupture may also occur causing tumor spreading in the abdominal cavity 

and neighbor organs (Fletcher et al., 2013).  

GISTs are heterogeneous in size, from tiny intramural lesions to bulky mass, and may be found 

as single or multiple lesions. In the stomach they are usually nodular, well-confined, sometimes 

bosselated, but not truly encapsulated. Larger tumors become necrotic, hemorrhagic, or cystic-

degenerated. In the intestine, they may cause adhesion between bowel loops (Fletcher et al., 

2013). 

Microscopically, GISTs appear typically as spindle-cell tumors. Cells look elongated, with ovoid 

nuclei and fibrillary eosinophilic cytoplasm sometimes vacuolated. If GISTs are predominantly 
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spindle-shaped, GISTs with epithelioid features may also be detected especially in the stomach 

(Fletcher et al., 2013; Miettinen and Lasota, 2006).  

The stroma may be sclerosed, hyalinized, or even calcified, sometimes with rich-hyaluronic 

acid or myxoid connective tissue components. The degree of cellularity changes greatly within and 

between tumors (Cooper et al., 1992; Fletcher et al., 2013).  

Noteworthy, correlations between morphological and molecular features have been identified 

and the morphological pattern could be predictive of GIST genetics (Fig. 1.2) (Chetty and Serra, 

2016). More in detail, the majority of GISTs with spindle-cell morphology are KIT-mutant or harbor 

alterations in RAS pathway genes. Conversely, the majority of GISTs with epithelioid morphology 

carry mutations in PDGFRA or are defective for the mitochondrial succinate dehydrogenase 

complex (SDH). Mutations affecting any components of the SDH complex (SDH-A, -B, -C or -D 

genes) result in complex destabilization and degradation. Thus, a negative immunohistochemical 

staining for any SDH protein (most commonly SDHB) is used as a readout for SDH complex 

deficiency (Casali et al., 2018).  

 

 
 

Figure 1.2 Correlations between molecular and morphological features in GIST. From Chetty and Serra, 2016  

 
GISTs enter into differential diagnosis with diverse malignancies with myogenic and neuronal 

features: true smooth muscle and nerve sheath tumors predominantly, but also inflammatory 

fibroid polyps and spindle cells proliferation, such as inflammatory myofibroblastic tumors, solitary 

fibrous tumors and desmoids fibromatosis (Fletcher et al., 2013; Hirota, 2018). Moreover, 

epithelial GISTs should be distinguished from other epithelioid cell tumors such as perivascular 

epithelioid cell tumors (PEComas) and neuroendocrine tumors (NETs) (Fig. 1.3) (Hirota, 2018).  
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Figure 1.3 Workflow of differential diagnosis of GIST. ALK: anaplastic lymphoma kinase; STAT: signal transducer 

and activator of transcription; α-SMA: α-smooth muscle actin; SDHB: succinate dehydrogenase complex iron sulfur 

subunit B. Adapted from Hirota, 2018.  

 
Immunohistochemistry and morphology are the most helpful instrument for a correct 

diagnosis: even if other tumors in the digestive tract could be positive for c-KIT, the concomitant 

expression of CD34 and DOG1 reveal the true nature of the lesion (Fig. 1.3) (Fletcher et al., 2013). 

Additional molecular analysis supports clinicians in treatment management and may contribute to 

risk stratification (Rossi et al., 2015).  
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The vast majority of GIST is sporadic. However, syndromic conditions may include GIST as 

manifestation. First of all, rare familial GIST due to hereditary KIT or PDGFRA mutations have been 

reported (Postow and Robson, 2012). About 30 cases of familial GIST have been reported so far. 

Familial GISTs tend to be smaller in size and multiple in number. Moreover, familial GIST 

patients tend to develop cutaneous hyperpigmentation and abnormalities in the mast cells (also 

KIT positive cells), such as urticaria pigmentosa or systemic disease (Antonescu, 2006). Other GIST 

predisposing conditions include Carney’s triad (GISTs, extra-adrenal paragangliomas, pulmonary 

chondroma), and Carney-Stratakis dyad (GISTs, paragangliomas), both associated to defect in the 

SDH complex genes (Corless et al., 2011). Neurofibromatosis type 1, due to NF1 mutations, is also 

a GIST predisposing condition (Miettinen et al., 2005).  

 
1.2.2. Molecular oncology 

 

Gastrointestinal stromal tumors are simple karyotype sarcoma, best characterized as receptor 

tyrosine kinase-driven tumors. Activating mutations in c-KIT oncogene were first reported in 1998 

by Hirota and colleagues, sanctioning the beginning of the “molecular era” of GIST (Hirota, 1998). 

Some years later, Heinrich and coworker identified activating PDGFRA (platelet-derived growth 

factor receptor alpha) mutations in GIST landscape (Heinrich et al., 2003a).  

KIT and PDGFRA belong to the type III of the receptor tyrosine kinase (RTK) family, which also 

includes platelet-derived growth factor receptor beta (PDGFRB), colony-stimulating factor 1 

receptor (CSF1R) and FMS-like tyrosine kinase 3 (FLT3). Given the close similarity between KIT and 

PDGFRA, the downstream signaling pathways are bona fide shared by the two RTK. Indeed, KIT 

and PDGFRA mutations, which account for about 80-85% of all mutations in GISTs, are essentially 

mutually exclusive in these tumors (Heinrich et al., 2003a; Schaefer et al., 2017). While KIT 

mutations are detected both in the gastric and in the intestinal lesions, PDGFRA mutations are 

essentially confined to the gastric site (Lasota et al., 2008). 

Physiologically, upon the binding to the natural ligand (SCF, stem cell factor), c-KIT 

homodimerizes, undergoes phosphorylation and hence triggers the activation of the downstream 

signaling (Corless et al., 2011). Oncogenic mutations in the RTKs result in the constitutive 

activation of the kinase.  

The most common KIT mutations (Fig. 1.4) detected in GIST involve the juxtamembrane 

domain (encoded by exon 11) and cause the disruption of the auto-inhibition of the kinase, 

leading to its activation in the absence of the ligand (Li K. et al., 2017). KIT exon 11 mutations 

occur in approximately 70% of cases. They can be point mutations, in-frame deletions or 

insertions. Deletions involving codons 557 and/or 558 are reported to convey worse prognosis 

than the KIT exon 11 point mutations, as patients have a higher rate of recurrence (Corless et al., 

2011; Lasota et al., 1999). 

Mutations in the extracellular domain encoded by exon 9 in KIT are also common (about 10%) 

and favor receptor dimerization (Bannon et al., 2017; Corless et al., 2011). The major type of 

change in KIT exon 9 is the duplication of amino acids 502 and 503. Mutations in exon 9 are 

predominantly reported in intestinal GISTs, whereas only a small fraction of gastric tumors is KIT 

exon 9 mutant (Corless et al., 2011).  



Introduction 

8 

Other primary alterations occurring in the KIT gene involve exon 13, 17 and extremely rarely 

exon 8 (Li K. et al., 2017). Exon 13 encodes for the ATP-binding pocket. The K642E substitution is 

the principal alteration found in this genomic region. Exon 17 encodes the kinase activation loop 

and point mutations in codons 820, 822, 823 are the most commonly reported ones. Alterations in 

exon 13 are most frequently found in gastric GISTs with spindle-cell morphology, but occasionally 

also in epithelioid or mixed-shaped tumors, whereas mutations affecting exon 17 are reported 

mainly in the small bowel GISTs that have spindle-cell histology. Exon 8 encodes part of the 

extracellular domain and mutations at this site are quite rare and detected so far in the small 

bowel or in extragastrointestinal GISTs that frequently metastasize (Ito et al., 2014; Lasota et al., 

2008).  

 

 
 

Figure 1.4 KIT and PDGFRA tyrosine kinase receptors share topology and type of mutations. A) Mutations in KIT 

and PDGFRA are essentially mutually exclusive in GIST and affect the juxtamembrane domain (KIT exon 11; PDGFRA 

exon 12), the ATP-binding domain (KIT exon 13; PDGFRA exon 14) and the activation loop (KIT exon 17; PDGFRA exon 

18). B) Primary and secondary KIT mutations and their sensitivity to the RTK inhibitors Imatinib and Sunitinib. Adapted 

from Li et al., 2017a. 
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PDGFRA alterations, typically detected in gastric GIST (Lasota et al., 2008), account for about 

8% of all GIST mutations. They commonly involve exon 18, encoding for the activation loop. The 

D842V point mutation accounts for the vast majority of alterations in exon 18 (Lasota et al., 2008). 

Other mutations involve exon 12 (encoding the juxtamembrane domain), and exon 14 (encoding 

the ATP-binding domain) (Bannon et al., 2017).  

About 15% of GISTs are devoid of canonical KIT or PDGFRA mutations and are therefore 

considered RTK wild type tumors. They are essentially indistinguishable from KIT- or PDGFRA- 

mutant GISTs, displaying the same morphology and immunohistochemical profile. In particular, 

about 5% of RTK wild type GIST harbors mutations in BRAF, HRAS/NRAS (Rossi et al., 2015; 

Schaefer et al., 2017) or in the SDH complex genes. The V600E BRAF mutation, common in 

papillary thyroid carcinoma and melanoma, is the only BRAF alteration detected in GIST (Agaimy et 

al., 2009).  

Defects in the Succinate Dehydrogenase (SDH) genes complex are also reported in GISTs and 

are associated with syndromic conditions (Carney’s triad and Carney-Stratakis). SDH acts as a 

tumor suppressor and its defects include inactivating mutations as well as promoter methylation 

(Killian et al., 2013, 2014). SDH is one of the five complexes belonging to the mitochondrial 

respiratory chain and takes part in the Krebs cycle and electron transport of the oxidative 

phosphorylation. The complex has a tetrameric structure, in which the two hydrophilic subunits 

that have catalytic activity (SDHA and SDHB) are anchored to the mitochondrial membrane thanks 

to the SDHC and SDHD hydrophobic subunits. Alterations in any of the components of the SDH 

complex result in complex subunits instability that can be detected by immunohistochemistry as 

loss of staining.  

The mechanism whereby SDH inactivation leads to GIST development is poorly understood. It 

seems that the elevated concentration of succinate, an SDH metabolite, inactivates the prolyl 

hydroxylase that regulates the levels of HIF1α. This results in the activation of HIF1α downstream 

targets VEGF and IGF2, which sustain GIST growth (Corless et al., 2011).  

We have recently reported that about 60% of all RTK-wild type GIST harbor NF1 inactivating 

mutations (Gasparotto et al., 2017; Rossi et al., 2017). NF1 (Neurofibromin-1) is considered a 

tumor suppressor gene that controls the conversion of GTP-bound active state to the GDP-bound 

inactive state of Ras. Thus, the inactivation of NF1 causes the hyperactivation of Ras signaling 

cascade (Niinuma et al., 2018). NF1 is involved in the Neurofibromatosis type I disorder, a 

syndromic condition with extreme variability in symptoms, ranging from mild signs (cafè-au-lait 

spots, freckles and Lisch nodules in eyes), to more severe manifestations including disfiguring 

neurofibromas, optical gliomas and bone defects. Noteworthy, this autosomal dominant disease 

predisposes patients to diverse malignancies, including GISTs (Jett and Friedman, 2010).  

NF1-mutant GISTs arise mainly in the intestine, frequently as multiple lesions. These GISTs 

may be sporadic, due to somatic NF1 mutations, or syndromic, due to constitutional NF1 

alterations of which the patient may be unaware. Thus, we suggested that in the presence of an 

RTK-wild type GIST a syndromic condition should always be considered as often underdiagnosed 

(Gasparotto et al., 2017). 

Recently, few GIST cases were reported to carry NTRK3 activation as a result of an ETV6-

NTRK3 gene fusion. The presence of this fusion in GIST was first described by Brenca et al. (Brenca 
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et al., 2016). The fusion retains the SAM domain of the ETV6 transcription factor and the tyrosine 

kinase domain of the NTRK3 receptor (Brenca et al., 2016; Shi et al., 2016). The discovery of the 

ETV6-NTRK3 alteration in GIST disclosed new therapeutic opportunities for patients harboring this 

fusion (Drilon et al., 2018). Other fusion products reported in GISTs include FGFR1 with various 

partners, and PRKAR1B-BRAF (Charo et al., 2018; Shi et al., 2016). 

In the end, less than 5% of wild type GISTs is currently considered “driver gene unknown”. The 

different types of mutations impact on clinicopathological features, prognosis and treatment (see 

1.2.7 section).  

 
1.2.3. Cell of origin 

 

Gastrointestinal Stromal Tumors are thought to arise from the Interstitial Cells of Cajal (ICCs), 

the gut pacemaker cells responsible for peristaltic contractions (Robinson et al., 2000). ICCs were 

first described by the neuroanatomist Santiago Ramon Y Cajal in 1911 as intestinal ganglionic cells 

that he named intestinal ganglia (Cajal, 1911). These cells were defined as nerve cells, dispersed 

within the circular smooth muscle layer of the intestine. Subsequently, intestinal ganglion cells 

have been identified also in the stomach and in a variety of other organs, as pancreas, mammary 

gland, heart, blood vessel wall, urinary and genital tracts (Pasternak et al., 2016). 

ICCs show some common features with neural crest-derived cells (neurons and ganglia) as 

well as with cells of mesenchymal origin (i.e. fibroblasts, smooth muscle cells). Lecoin and 

colleagues demonstrated that ICCs derive from the embryonic mesenchyme and that their growth 

is independent of neuroectoderm and enteric neurons, with which ICCs later establish an intricate 

network (Lecoin et al., 1996). 

Morphologically, Cajal cells are elongated, with a fusiform body and processes sprouting and 

branching from it. They have a very large, oval nucleus with one or more nucleoli, and peripherally 

arranged heterochromatin. The cytoplasm contains numerous mitochondria, well-developed Golgi 

apparatus, lysosomes and a network of intermediate filaments made of microtubules, vimentin, 

thin filaments and caveolae (Sanders et al., 2014).  

Electrophysiology studies have shown that ICCs create slow waves of peristalsis by inducing a 

depolarization potential. This spontaneous generation of depolarization in ICCs is made possible 

by the periodic release of calcium (Ca2+) from the endoplasmic reticulum. This, in turn, regulates 

the concentration of inositol 1,4,5 triphosphate (IP3) that activates mitochondrial Ca2+ intake. This 

cyclic process generates potential energy responsible for the transmission of the excitation to the 

neighbor smooth muscle cells (Pasternak et al., 2016). As previously described, Cajal cells establish 

a thick network with the neighbor enteric neurons and smooth muscle cells. In order to keep the 

connections with neural cells, ICCs have several receptors for tachykinins (NK1R) on their surface 

(Vannucchi, 1999). Moreover, ICCs have their own nitric oxide (NO) synthase, which induces the 

production of NO. The presence of NO, a gas that easily diffuses across biological membranes, may 

play a dual role both in the relaxation of the gut smooth muscle cells and in the amplification of 

the nitrergic neurotransmission sustained by enteric neurons (Sanders, 1996; Ward et al., 1998).  
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Several studies have highlighted that ICCs show specialized features depending on location. 

Specifically, ICCs can be divided into four groups (Komuro, 2006; Sanders et al., 1999): 
 

 ICC-SM, located along the submucosal (SM) surface of the circular muscle bundles in 

the colon; 

 ICC-MY, located within the intramuscular space between the circular and the 

longitudinal muscle layers, the myenteric region, of the stomach (ICC-MYST), small 

intestine (ICC-MYSI) and colon (ICC-MYC); 

 ICC-IM, the intramuscular ICCs of the esophagus sphincter (ICC-IMES), stomach (ICC-

IMST) and colon (ICC-IMC); 

 ICC-DMP, located within the deep muscular plexus (DMP) region of the small intestine.  

 

The four ICCs subtypes do not differ simply for localization and macroscopic features, but also 

for gene expression pattern. In their work, Chen et al. demonstrated that murine small intestine 

ICC-MY and ICC-DMP have different gene expression signature that underlined different functions, 

with enrichment in metabolic and Ca2+ transport genes in ICC-MY, and neurotransmission-related 

genes in ICC-DMP (Chen et al., 2007).  

As mentioned above, ICCs are c-KIT immunopositive cells and rely on the c-KIT signaling 

pathway for their growth (Hulzinga et al., 1995). The natural c-KIT ligand is the Steel Factor (Kit 

Ligand- KL- or Stem Cell Factor –SCF), a glycoprotein of 30 kDa. The binding between KL and c-KIT 

receptor causes the dimerization of two neighbor RTKs, cross phosphorylation of tyrosines and 

recruitment of downstream signaling molecules. The blockage of c-KIT signaling is disruptive for 

ICCs, as it induces transdifferentiation of ICCs into smooth muscle cells, impairing their 

development (Torihashi et al., 1999). Homozygous null mutant mice for c-KIT die in utero from 

anemia, while heterozygous null mice have an impaired GI motility (Ward et al., 1994). 

ICCs are considered the precursor of GIST due to common morphology and 

immunophenotype, as cytoplasm with abundant mitochondria, tubular cisternae of smooth 

endoplasmic reticulum, abundant Golgi apparatus, filaments and microtubules. Moreover, ICCs 

are the only cells in the digestive tract that show as GIST CD117 (c-KIT) and CD34 dual positivity 

(Hirota, 1998; Kindblom et al., 1998). Finally, mouse models for a KIT mutation typically detected 

in GIST (V558) show hyperplasia of ICCs and eventually die for a condition that mimics human 

GIST (Chen et al., 2002; Kwon et al., 2009; Sommer et al., 2003).  

 
1.2.4. Risk classification 

 

The revised Union for International Cancer Control for tumor, node and metastasis 

classification of malignant tumors (UICC TNM 8) defines the main prognostic criteria in GISTs 

(Casali et al., 2018). In details, tumor size, site and mitotic activity, defined as the number of 

mitosis per 50 High Power Field (HPF, 40x), are the main parameters for the assessment of GIST 

risk (Fig. 1.5), that has been originally proposed by the Armed Force Institute of Pathology (AFIP) in 

2006 (Miettinen and Lasota, 2006).  
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Figure 1.5 Prognostic factors for GIST risk assessment. HPF: HIGH Power Field. †Category with small numbers of 

cases. ‡Groups 3a and 3b or 6a and 6b are pooled in duodenal and rectal GISTs due to small number of cases. §No 

tumors with these features were present in the study. From Miettinen and Lasota, 2006.  

 
These criteria take into account that GISTs of the same size and mitotic index (MI) if located in 

the stomach follow a more indolent clinical course compared to intestinal GISTs. Tumor rupture is 

considered an additional prognostic factor associated with poor outcome, both happening during 

or after surgery (Casali et al., 2018). 

Mutational status has not been formally incorporated in any standardized risk classification, 

even if several reports indicate that different genotypes have a distinct natural history and 

peculiar clinical course. In their report, Rossi and colleagues proposed that the stratification of 

patients based on molecular profiling may complement the canonical AFIP risk assessment, 

especially for those GIST with intermediate-risk (Rossi et al., 2015). In particular, the authors 

described three different prognostic groups of naïve tumors according to mutation status: the first 

one includes PDGFRA exon 12, BRAF and KIT exon 13, with best overall survival; the second group, 

including KIT/PDGFRA/BRAF wild type GISTs, KIT exon 17, PDGFRA exon 14, PDGFRA exon 18 

D842V, with intermediate-risk; the latter group had the worst prognosis and included KIT exon 9, 

KIT exon 11, PDGFRA exon 18 non-D842V (Fig. 1.6). 

 

 
 

Figure 1.6 Stratification of patients according to molecular characterization. A) Kaplan-Meier curves of overall 

survival (OS), calculated by multivariable Cox regression statistics. B) Molecular signature-based OS stratification of 

patients who were classified as low-moderate risk according to AFIP criteria. C) Molecular signature-based OS 

stratification of patients who were classified as high risk accordingly to AFIP criteria. Group I: BRAF exon 15, KIT exon 

13, PDGFRA exon 12 GISTs; Group II: KIT/PDGFRA/BRAF wild type, KIT exon 17, PDGFRA exon 14, PDGFRA exon 18- 

D842V; Group III: KIT exon 9, KIT exon 11, PDGFRA exon 18 non-D842V. From Rossi et al., 2015. 
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Other genomic-based methods for GIST risk assessment have been proposed. The CINSARC 

score is a predictor of metastasis, that can be applied to GIST as well as to other types of sarcomas 

(Chibon et al., 2010). This CINSARC score relies on the signature of 67 genes, involved in the 

maintenance of chromosomal integrity and mitotic checkpoints (Chibon et al., 2010). Also the 

expression of AURKA, one of the top-ranked genes in the CINSARC signature, seems to provide a 

reliable prognostic assessment (Lagarde et al., 2012).  

Finally, a measurement of aneuploidy as assessed by the Genomic Index (GI), could be 

another valuable prognostic factor for the stratification of intermediate GIST patients (Lartigue et 

al., 2015; Rudolph et al., 1998).  

 
1.2.5. GIST of small size: miniGIST 

 

In the AFIP risk criteria, GISTs smaller than 2 cm in diameter are considered no risk lesions. 

Besides being small, these lesions are mitotically inactive, which accounts for their limited 

tumorigenic potential.  

MiniGISTs are common lesions being detected in about 1/3 of elderly individuals (Agaimy et 

al., 2007). They are usually found incidentally during surgical or endoscopic procedures and are 

most commonly recorded in the stomach than in the small intestine (Fletcher et al., 2013; Rossi et 

al., 2010). 

MiniGISTs share with overt GISTs the canonical driver mutations (Rossi et al., 2010) indicating 

that KIT or PDGFRA alterations are not per sé sufficient to trigger GIST development. MiniGIST is 

considered the premalignant counterpart of an overt GIST, a malignant evolution occurring in less 

than 0.1% of miniGIST (Schaefer et al., 2017). Thus, other molecular aberrations must co-occur 

with driver mutations for a miniGIST to progress (Agaimy et al., 2007).  

 
1.2.6. Chromosomal alterations during GIST progression 

 

Increasing evidence suggests that chromosome changes play an important role in GIST 

malignant evolution. It has been estimated that GISTs have an average of 2.6 to 7.5 chromosome 

aberrations/case depending on their grading (El-Rifai et al., 2000). In particular, El-Rifai and 

colleagues demonstrated that about 2/3 of GISTs have total or partial monosomy of chromosome 

14q, and about 50% display losses in 22q. Alterations in 1p and 15q are also frequent in GISTs and 

often coexist, especially in high-grade GISTs.  

Debiec-Rychter et al. confirmed that losses of 14q and 22q were detected both in low mitotic 

index-GISTs and malignant GISTs, suggesting that these are early events in ICC transformation. 

Losses of chromosomes 1, 7, 9 and 15 were instead likely gained during progression (Debiec-

Rychter et al., 2001).  

Loss of 14q seems more common in gastric GISTs than in intestinal GIST where chromosome 

22q loss seems to prevail. Moreover, intestinal tumors tend to undergo 1p and 15q losses (Chen et 

al., 2004; Gunawan et al., 2004; Wozniak et al., 2007).  
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What are the molecular targets of these chromosome imbalances is still largely unknown. 

Protein coding genes, e.g. MAX (MYC associated factor X) mapping to 14q23.3, have been 

suggested to act as tumor suppressors in GIST pathogenesis. The role of miRNA located in these 

regions is poorly defined.  

To summarize (Fig. 1.7), chromosomal instability is a frequent event in GIST development and 

progression. Losses are the most common alteration detected in low-grade GIST, whereas gains 

are typically correlated with higher risk GISTs. Loss in 14q is an early event in the tumorigenesis 

and is more frequently observed in the gastric tumors, which are often associated with a better 

outcome. Losses of chromosomes 1p and 15q are features of intestinal GISTs that have more 

aggressive behavior. Moreover, chromosomes 7 and 9 losses emerge as genomic aberration in 

GIST with higher malignant potential (Yang et al., 2008).  

 

 
 

Figure 1.7 Major genomic alterations during GIST progression. Primary mutation in KIT/PDGFRA/BRAF/SDH/NF1 

is considered a trigger oncogenic event, responsible for ICC hyperplasia and development of miniGIST. Chromosome 

losses in 14q and 22q are reported as early events in low-risk GIST. Accumulation of additional genomic imbalances 

(gain and loss) characterizes the progression of GIST. MAX: Myc associated factor X (14q23.3); DMD: dystrophin 

(Xp21.2-p21.1). Adapted from Li et al 2017a., and Schaefer et.al. 2017.  
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1.2.7. Treatment approaches to GIST 
 

The standard approach for localized but clinically overt GIST is surgery, with no dissection of 

clinically negative lymph nodes (Casali et al., 2018). Vice versa given the low probability of 

evolution for most miniGIST endoscopic assessment and follow-up are chosen (Casali et al., 2018). 

An exception is represented by rectal tumors, that are removed after endorectal ultrasound 

assessment or pelvic magnetic resonance regardless of tumor size and mitotic rate, as lesions in 

this site have a higher progression risk and a worse prognosis compared to tumors with other 

locations (Casali et al., 2018).  

Until year 2000, few treatment options were available for advanced GIST patients that could 

not undergo surgery, with a response rate to conventional chemotherapy of less than 5% and a 

median survival of 18 months (Corless et al., 2011). The “molecular era” of GIST began in 1998 

when Hirota et al. demonstrated that KIT mutation participated in GIST oncogenesis (Hirota, 

1998). In the same years, Imatinib was developed as a receptor tyrosine kinase inhibitor (TKI) for 

the treatment of BCR-ABL positive chronic myeloid leukemia (CML) (Druker et al., 1996). Based on 

the structural similarity between ABL and c-KIT RTKs, Imatinib was probed on a patient with 

advanced GISTs (Demetri et al., 2002; Heinrich et al., 2000; Joensuu et al., 2001). The drug showed 

an impressive efficacy toward the disease, which within few weeks of treatment became 

metabolically inactive as revealed by [18F]fluorodeoxyglucose PET (positron emission tomography) 

loss of uptake (Fig. 1.8). This result unveiled a new therapeutic avenue for GIST. 

Imatinib inhibits KIT directly by acting as an ATP competitive antagonist for the ATP-binding 

pocket (Druker et al., 1996). The advent of Imatinib in the clinical arena set the ground of the so-

called targeted therapy and GIST become the paradigm of targeted therapy-treated solid tumors 

and one of the most encouraging examples. As Imatinib was introduced in the clinical practice for 

treating GIST, the median overall survival for advanced GIST patients increased from 18 to over 50 

months (standard dose: 400mg/day) (Casali et al., 2018).  

In the case of relapse, nowadays clinicians may rely on a portfolio of different TKIs. Second-

line Sunitinib and third-line Regorafenib, as well as additional TKIs as Dasatinib, Nilotinib and 

Pazopanib, are now used for patients that become resistant to first-line Imatinib or that are 

insensitive to the treatment (Casali et al., 2018).  

Primary resistance to Imatinib is observed in about 10-15% of primary GISTs and is most often 

associated with PDGFRA D842V mutation. This mutation favors the active conformation of the 

kinase preventing the correct and full binding of the inhibitor to the site of action. Also non-

KIT/non-PDGFRA mutant GIST (23%) are poorly responsive to Imatinib (Corless et al., 2011; 

Heinrich et al., 2003b). The KIT exon 9 mutations (16%) are less Imatinib sensitive compared to KIT 

exon 11 mutations but dose escalation (800mg/daily instead of 400mg/daily) has proven to 

circumvent this resistance (Corless et al., 2011; Gastrointestinal Stromal Tumor Meta-Analysis 

Group (MetaGIST), 2010).  
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Figure 1.8 F18-fluoro-deoxyglucose positron emission tomography (F18-FDG-PET) response during Imatinib 

treatment. Images are from the same GIST patient A) before, B) after 1 month and C) after 16 months of continuous 

treatment with Imatinib. Images of every time point represent a PET scan of the body (top), an axial PET scan of the 

tumor slice (middle) and the corresponding CT scan at the same level (bottom). From Demetri et al., 2002.  

 
Secondary resistance occurs after initial response to Imatinib. Most patients develop 

secondary resistance as a result of the gain of resistant mutations. These mutations occur mainly 

in KIT exon 13-14, encoding the ATP-binding domain, and/or exon 17-18, encoding for the 

activation loop. These mutations interfere with drug binding and with the stabilization of the 

active conformation of the kinase (Corless et al., 2011). Another mechanism of resistance is 

represented by the loss of KIT expression that underlines the loss of KIT dependency (Debiec-

Rychter et al., 2005).  

Several clinical trials are currently ongoing to circumvent TKI resistance (Fig. 1.9) 

(https://clinicaltrials.gov) (October 1, 2019). One of the most promising TKI is Avapritinib (also 

known as BLU-285), a highly selective TKI with particular activity against resistant mutations, 

including the PDGFRA D842V. A clinical benefit rate of 40-70% in heavily treated GIST patients was 

observed with a tumor reduction in 60% of cases, as reported in the phase I NAVIGATOR and in 

the phase III VOYAGER trials (Bauer et al., 2018; Heinrich et al., 2018). 

 

https://clinicaltrials.gov/


Introduction 

17 

 
 

Figure 1.9 Schematic representation of active/open clinical trials for GIST. TKI: tyrosine kinase inhibitor, alone 

as monotherapy; Combination: TKI and other non-TKI agents; Other: clinical trials with non-TKI molecules (e.g. 

immunotherapy) (October 1, 2019).  

 
Other promising approaches for the treatment of GIST included the use of humanized 

monoclonal antibodies (mAbs) that display various mechanism of action, among which the direct 

inhibition of the target or the mediation of immune response with the regulation of T-cell function 

(Sankhala, 2017; Scott et al., 2012). Unfortunately, despite initial encouraging results (Wagner et 

al., 2017), the anti-PDGFRA mAb Olaratumab, failed to reach the primary endpoints in phase III 

study (American Association for Cancer Research, 2019) and has been therefore withdrawn (ASCO 

Annual Meeting, 2019).  

The vast majority of RTK-wild type GISTs rely on a hyperactive MAPK pathway due to 

mutations in BRAF, HRAS or NF1. These patients could benefit from MAPK or MEK inhibitors 

(Jessen et al., 2013).  

Finally, the detection of the ETV6-NTRK3 fusion product in GISTs (Brenca et al., 2016) has 

disclosed unprecedented therapeutic opportunities for GIST with this genotype. In fact, the ETV6-

NTRK3 fusion protein is particularly sensitive to an NTRK inhibitor, Larotrectinib, which has 

demonstrated impressive activity in NTRK fusion-positive tumors, including GISTs (Drilon et al., 

2018). Interestingly, Larotrectinib is the first FDA approved drug that has been designated “tumor-

agnostic”, as it can be prescribed just based on tumor genetics, irrespective of histology (Huang 

and Feng, 2019).  
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1.3. The role of miRNAs in human cancer 
 

miRNAs (also known as microRNAs) are small non-coding RNA molecules, 20-25 nucleotides 

(nt) long, that have an important role in gene regulation. The RNA interference (RNAi) was first 

discovered in the Nineties by Lee and colleagues, who reported that the lin-4 RNA from 

Caenorhabditis Elegans, although non-coding, was able to regulate gene expression during 

developmental timing (Lee et al., 1993). Some years later, exogenous double-strand RNAs 

(dsRNAs) were shown to be able to dampen gene expression in a target-specific manner through a 

mechanism called RNA interference (Fire et al., 1998; Mello and Conte, 2004). 

In general, non-coding RNAs (ncRNAs) can be distinguished by length (small: 18-200 nt; long: 

>200 nt) or by function (housekeeping or regulatory). Housekeeping ncRNAs include transfer-RNA 

(tRNAs) and ribosomal-RNA (rRNAs). Regulatory ncRNAs include miRNA, which exert mainly 

transcriptional and post-transcriptional inhibition on target protein-coding genes; small-

interference RNAs (siRNAs), which act as the defenders of genome integrity in response to foreign 

or invasive nucleic acids as viruses, transposons and transgenes; PIWI-interacting RNAs (piRNAs), 

which can induce silencing of germline transposons; small nucleolar RNAs and their partner small 

nucleolar ribonucleoprotein (snoRNAs and snoRNPs), which are implicated in chemical 

modifications of rRNA; finally, the recently discovered transfer RNA-derived RNA fragments (tRFs), 

which can act in a miRNA-like fashion (Romano et al., 2017). These functional classes of ncRNAs 

are distinguished predominantly per size (Romano et al., 2017) and represent less than 1% of total 

RNA by mass (Fig. 1.10) (Palazzo and Lee, 2015).  

 

 
 

Figure 1.10 Estimation of the different RNA species in a typical mammalian cell by A) total mass or B) the 

absolute number of molecules. From Palazzo and Lee, 2015.  

 
In the present work, we focused on the miRNA class of non-coding RNAs. miRNAs are highly 

conserved small ncRNAs in eukaryotes. The official reference database of miRNAs is miRBase and 

includes 38589 entries in its latest version (October 2018, version 22.1), with 1917 stem-loop 
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sequences annotated as human miRNAs precursors, a number that increases over time (Kozomara 

et al., 2019). 

 
1.3.1. miRNA biogenesis and mechanism of interference 

 

The biogenesis of a mature, functionally active miRNA (Fig. 1.11) begins in the nucleus, where 

a miRNA locus either as separate units or embedded within the introns of protein-coding genes is 

transcribed by the RNA polymerase II as a primary double-stranded hairpin transcript (at least 

1000nt long) called pri-miRNA (Bartel, 2004; Ruby et al., 2007). The pri-miRNA is then cleaved to a 

65-70nt long molecule, called pre-miRNA, by the microprocessor complex formed by the RNase 

enzyme DROSHA and the dsRNA binding protein DGCR8 (DiGeorge syndrome Critical Region 8). 

Once DROSHA trims the transcript and releases the pre-miRNA, the pre-miRNA is subsequently 

exported by the transport facilitators, Exportin-5 (XPO5) and RanGTP in the cytoplasm (Bohnsack, 

2004; Ha and Kim, 2014). Here the pre-miRNA is cut down to an RNA duplex of appropriate size 

(22-30 nt) by the endoribonuclease DICER (Bernstein et al., 2001). The small RNA duplex originated 

from DICER cleavage is subsequently loaded onto Argonaute protein (AGO) to form the effector 

complex called RISC (RNA-Induced Silencing Complex). Therefore the minimal RISC loading 

complex (RLC) includes dsRNA, DICER, AGO and proteins that facilitate the complex formation, the 

double-stranded RNA binding proteins (dsRBPs, such as TRBP) (Carthew and Sontheimer, 2009).  

The RISC loading coincides with the strand selection of the mature miRNA: one strand of the 

duplex maintains the binding to AGO to direct silencing (miRNA guide strand) whereas the other 

strand is discarded (miRNA passenger strand). The selection of the guide strand is mainly 

determined by thermodynamic stability and to the presence of mismatches (U-bias and C-bias) in 

the position 9 and 10 of the strands (Meijer et al., 2014; Okamura et al., 2009). 

Once the guide strand selection has occurred and the passenger strand dissociated from the 

complex, the silencing machinery is ready. To perform cellular surveillance, the guide strand 

miRNA binds those single-stranded mRNAs that have near-perfect or perfect complementarity in 

their sequence with the miRNA seed sequence. The seed sequence of the guide strand miRNA is 

the region of the mature miRNA that is involved in the binding and comprises nucleotides in 

positions 2-8 of the mature miRNA (Carthew and Sontheimer, 2009).  

Noteworthy, even if the vast majority of miRNAs have been observed to exert inhibitory 

function on gene expression by interfering with the stability or/and translation of the target 

mRNA, phenomena of gene expression enhancement have also been reported (Catalanotto et al., 

2016; Valinezhad Orang et al., 2014). 

Canonically, miRNA genes are located inside the introns of protein-coding genes, or in non-

coding regions, but some miRNA genes have been found in exons. miRNA transcripts may be 

monocistronic or polycistronic, depending on the presence of multiple miRNA duplexes in the pri-

miRNA (Saini et al., 2007). In many species, including Homo Sapiens, several miRNA loci arose from 

gene duplication. miRNAs encoded by the same locus are considered a cluster of miRNAs and the 

pri-miRNA is generally polycistronic (Saini et al., 2007). Moreover, miRNAs that share the seed 

sequence form a miRNA family (Ha and Kim, 2014).  
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miRNAs represent a redundant and highly interconnected mechanism of gene regulation, as 

multiple miRNAs may target the same mRNA and different mRNAs could be targeted by the same 

miRNA. For at least 60% of cellular mRNA, a miRNA-mediated regulation has been documented 

(Jansson and Lund, 2012).  

This general observation implies that miRNAs orchestrate a fine-tuning of cellular 

transcriptome and any deregulation in miRNA expression is likely to result in a domino effect.  

 

 
 

Figure 1.11 The biogenesis of a mature miRNA and the mRNA silencing. miRNA biogenesis starts in the nucleus 

with the transcription of the miRNA gene by the RNA polymerase II enzyme, which generates the pri-miRNA hairpin. 

The pri-miRNA is then cleaved by the DROSHA in a 65-70 nt long fragment, the pre-miRNA, that is subsequently 

exported into the cytoplasm by Exportin5 (XPO5) and RanGTP. The pre-miRNA is processed by DICER to form a shorter 

duplex (22-30 nt) that is subsequently loaded into the RISC complex formed by the duplex, DICER, Argonaute and 

TRBP. Here the selection of the miRNA guide strand occurs, and the passenger strand is discarded from the RISC. At 

the same time, coding gene transcript with perfect/near-perfect complementarity to the seed of the miRNA guide 

strand is incorporated in the RISC and bound by the miRNA, leading to the translational repression or mRNA 

degradation. Adapted from Ruby et al., 2007. 

 
1.3.2. miRNAs in cancer 

 

As previously described, miRNAs are implicated in a variety of biological processes, including 

proliferation, cell cycle, apoptosis, differentiation, migration and metabolism, central processes in 

cancer development (Alvarez-Garcia, 2005). Moreover, as single miRNA may target up to hundred 

mRNAs, aberrant miRNAs expression may affect a multitude of transcripts and profoundly 

influence cancer-related signaling pathways.  
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miRNAs are classified as oncomiRs if they target tumor suppressor mRNAs, and tumor 

suppressor miRNAs if they bind predominantly oncogene transcripts. However, miRNA function 

may be tissue-dependent and vary in relation to the genetic context (Guo et al., 2015). For 

example, miR-29 behaves as an oncomiR in breast cancer and as a tumor suppressor in lung cancer 

(Fabbri et al., 2007; Gebeshuber et al., 2009).  

Most cancer-related miRNAs described so far are thought to act as tumor suppressor. Both 

intrinsic and extrinsic mechanisms of miRNA failure exist (Fig. 1.12). Genetic and epigenetic 

alterations at miRNA loci seem to be the most prevalent mechanisms of miRNA inactivation as 

about 50% of miRNAs is located at fragile sites and cancer susceptible loci (Fig. 1.13) (Calin et al., 

2004; Lujambio et al., 2007; Weber et al., 2007). Mutations that alter the seed sequence ablate 

target repression by tumor-suppressive miRNAs. It should be pointed out that mutations may also 

contribute to the tumorigenic properties of oncomiRs by conferring new target specificity (Mayr et 

al., 2007; Mishra et al., 2008).  

Defects in genes involved in miRNA biogenesis represent the extrinsic mechanisms of 

variation in miRNA expression level. Deregulation of the key enzymes DROSHA and DICER have 

been reported in several tumors (Dedes et al., 2011; Kumar et al., 2009; Merritt et al., 2008; Torres 

et al., 2011).  

Another mechanism of miRNA failure is represented by alterations of the mRNA target. 

Mutations of the target mRNA affecting the seed consensus sequence result in the alleviation of 

miRNA control. On the other hand, mutations anywhere in the mRNA sequence may alter its 

folding thus preventing mRNA:miRNA duplex formation (Jansson and Lund, 2012; Mayr et al., 

2007). Finally, the use of alternative splicing or the reduced 3’ UTR commonly detected in 

transformed cells (Mayr and Bartel, 2009), may also alter miRNA targeting. 

Another important mechanism of the escape from miRNA regulation is the presence of 

ncRNAs as decoy. This class of ncRNAs is characterized by miRNA recognition elements (MREs) 

that make them compete with canonical targets for miRNA binding, hence the name competitive 

endogenous RNAs (ceRNAs). Moreover, some pseudogenes and genes have been shown to work 

as sponges towards miRNAs (Poliseno et al., 2010). 
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Figure 1.12 Mechanisms for miRNA deregulation in cancer. Schematic representation of the major genetic, 

epigenetic and transcriptional mechanisms responsible for miRNA altered activity in cancer. From Jansson and Lund, 

2012.  

 
The first evidence that miRNA could be important players in the tumorigenesis was provided 

by Calin and colleagues (Calin et al., 2002). In searching for tumor suppressor genes in 13q14, a 

chromosome region frequently deleted in B-cell chronic lymphocytic leukemia (B-CLL), they found 

that this region did not harbor protein-coding genes but short non-coding RNAs. Their functional 

characterization led the identification of the first two miRNAs, miR-15 and miR-16, which act as 

tumor suppressor miRNAs. Lately, Costinean and coworkers in 2006 found that miR-155 and its 
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host gene BIC are involved in B cell lymphoma disease (Costinean et al., 2006). Since then, many 

efforts have been made in order to elucidate the role of miRNA in cancer as they are valuable 

molecules that can even distinguish between tumor and normal cells and between different 

cancer subtypes and stages (Iorio and Croce, 2012). Furthermore, due to their small size and 

permanence in tissue and biofluids, they should be considered in diagnostics and prognostics.  

 

 
 

Figure 1.13 miRNA located in minimal deleted regions, minimal amplified regions and translocated regions 

involved in human cancer. OG: oncogene; TS: tumor suppressor; D: deleted region; A: amplified region; NSCLC: non-

small-cell lung cancer; HCC: hepatocellular carcinoma. Adapted from Calin et al., 2004. 

 
An extensive bulk of literature reports that the miRNA repertoire is a stable and unique 

feature of diseases, and the use of miRNAs as non-invasive and bioavailable markers could enter 

clinical practice. miRNAs could give a lot of information about the type of disease, the stage and 

even the response to surgery and pharmacological treatments (Sabarimurugan et al., 2019). 

Novel drug delivery strategies are under investigation in order to ensure to small, chemical-

modified, miRNA-like molecules the properly achievement of tumor site, for anticancer therapy. At 

present, many clinical trials that test miRNAs as therapeutic options have been launched 

(http://clinicaltrials.gov), but many of them have to face toxicity and adverse effects. Despite that, 

they seem to be promising in cancer gene-targeted therapy (Simonson and Das, 2015). 

 
1.3.3. miRNAs in Gastrointestinal Stromal Tumors 

 

Since the discovery of their involvement in cancer, miRNAs grabbed the attention of 

researchers also in the sarcoma and GIST field, with the majority of study being performed by 

using microarray (Haller et al., 2010; Kelly et al., 2013; Pantaleo et al., 2016).  

One of the first studies that analyzed the miRNA signature in GIST was performed by 

Subramanian and colleagues in 2008. In this study, authors compared miRNA expression in GIST 

vs. four other sarcoma subtypes and observed in the former the overrepresentation of 15 miRNAs 

(among which: miR-140, miR-143, miR-145, miR-125a, miR-29b, miR-29c and miR-30c) and the 

http://clinicaltrials.gov/


Introduction 

24 

downregulation of 9 miRNAs (as miR-368, miR-133b, miR-133a and other) thus suggesting a GIST-

specific signature (Subramanian et al., 2008).  

A GIST-specific miRNA signature was also reported by Gyvyte and coworkers by comparing 

the miRNome of GIST vs. adjacent normal tissue (Gyvyte et al., 2017). They found 110 differentially 

expressed miRNAs in GIST vs. adjacent normal tissue; on these, 34 were up and 76 were 

downregulated, in line with previous reports indicating that miRNAs are more often lost in cancer 

(Calin et al., 2004; Jansson and Lund, 2012). These miRNAs were reported to be implicated in 

cytokine-cytokine interaction, cell cycle, ERBB, p53, MAPK, mTOR, JAK/STAT and Insulin signaling 

pathways and included miR-200 family members, miR-192/215, miR-133a-3p, miR-133b, miR-375, 

miR-483-5p, miR-509-3p and miR-675-3p (Gyvyte et al., 2017).  

Haller and colleagues reported that the miRNA signature of GIST is affected by primary 

tumor location, with miR-504 and miR-598 more expressed in gastric tumors and miR-210, miR-

220c, miR-329, miR-370 and miR-409-3p more expressed in intestinal GISTs. Moreover, they 

reported that miR-330 was overexpressed in KIT-mutant tumors, whilst miR-629, miR-652 and 

miR-766 were found to be overexpressed in PDGFRA mutant GISTs (Haller et al., 2010).  

Choi and colleagues identified 4 distinct patterns of miRNA expression in GIST, according to 

site, tumor grade and chromosome imbalances. Intriguingly, 14q loss represented one separate 

cluster containing miRNA downregulated in high-risk tumors. These miRNAs are mainly involved in 

the control of genes belonging to mitogen-activated protein kinase (MAPK) and cell cycle 

pathways, thus accounting for their implication in aggressive tumors (Choi et al., 2010).  

The implication of 14q loss in miRNA expression was further investigated by Kelly and 

coworkers (Kelly et al., 2013). The 14q region is typically paternally imprinted. Thus, the loss of 

chromosome material in 14q showed a different impact on miRNA expression depending on 

whether the maternal (active) or the paternal (inactive) region is lost during GIST progression. 

Furthermore, authors reported that gene targets of the miRNAs mapping to 14q included genes 

with key function in GIST pathogenesis, such as KIT, PDGFRA IGF1R, MAPK1, KRAS BCL6, CCND2, 

HDAC6, NF-YBs (Kelly et al., 2013).  
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In the present work, we wanted to shed light on the role of miRNA:mRNA interplay in the 

malignant evolution of miniGIST to overt GIST. 

As previously mentioned, miniGISTs are bona fide considered benign precursors of GISTs, with 

which they share location, cytology, immunophenotype and most of all, canonical driver gene 

mutations. The working hypothesis of this thesis is that miRNA expression plays a role in the 

conversion of a miniGIST into a malignant lesion.  

To this end, we sought to provide a comprehensive transcriptional profiling (miRNA and 

mRNA) of a set of miniGISTs and overt GISTs and to identify and eventually validate miRNA:mRNA 

regulatory networks involved in miniGISTs to overt GISTs evolution.  
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3.1. Tumor series 
 

A cohort of 88 primary untreated tumors was the ground for this study. The series included 32 

miniGISTs and 56 overt GISTs. The most relevant clinicopathological features are reported in Table 

3.1. The series included 54 cases with mutations in KIT, 17 in PDGFRA, 3 in BRAF, 8 in NF1 and 6 

tumors that were negative for known GIST-related mutations and were therefore considered 

“driver unknown”. As a side note, the identification of NF1 as a driver gene in GIST has been also 

the object of study during my Ph.D. course and has yielded two publications (attachment) 

(Gasparotto et al., 2017; Rossi et al., 2017).  

 
Table 3.1: Clinicopathological features of the 88 cases included in this study.  
 

Cohort:88 cases 

Overt GIST 
≥ 2cm 

MiniGIST 
<2 cm  

56 32 

    
Site       

  Gastric   30* 19 

  Intestinal 26 13 

Mutation      

  KIT 37 17 

  PDGFRA 9 8 

  BRAF 2 1 

  NF1 6 2 

  Unknown 2 4 

Mitotic Index     

  ≤ 5 HPF 29 32 

  > 5HPF 24 - 

  NA 3 - 
 

*: includes 1 esophageal GIST; HPF: High Power Field (40x); NA: Not Assessed.  

 
In order to identify miRNAs that could account for gene deregulation during miniGIST to overt 

GIST evolution, we performed RNA-Seq and miRNA-Seq profiling on 77 (25 miniGISTs; 52 overt 

GISTs) and 68 cases (31 miniGISTs; 37 overt GISTs), respectively. The two series overlapped for 57 

cases (24 miniGISTs; 33 overt GISTs), while for 20 and 11 cases data were available for RNA-Seq or 

miRNA-Seq only. The profiled cohorts were representative of the major tumor variables impacting 

on GIST pathobiology, namely size, site, type of driver mutations and mitotic index (Tab. 3.2). 
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Table 3.2: Clinicopathological features of cases profiled by RNA-Seq (left) and miRNA-Seq (right).  
 

RNA profiling 
77 cases 

Overt 
GIST 

≥ 2cm 

Mini 
GIST 

<2 cm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

miRNA profiling 
68 cases 

Overt 
GIST 

≥ 2cm 

Mini 
GIST 

<2 cm  

52 25 37 31 

                Site        Site       

  Gastric    28* 15   Gastric 20 19 

  Intestinal 24 10   Intestinal 17 12 

                Mutation       Mutation        

  KIT 34 13   KIT 24 16 

  PDGFRA 9 6   PDGFRA 7 8 

  BRAF 2 1   BRAF 2 1 

  NF1 5 2   NF1 4 2 

  Unknown 2 3   Unknown  - 4 

             Mitotic 
Index 

      Mitotic 
Index 

      

  ≤ 5 HPF 28 25   ≤ 5 HPF 21 31 

  > 5HPF 23 -   > 5HPF 13  - 

  NA 1 -   NA 3  - 
 

*: includes 1 esophageal GIST; HPF: High Power Field (40x); NA: Not Assessed. 

 
3.2. Whole series: transcriptome and miRNome profiling 

 

The transcriptome profiling (RNA-seq) was carried out on 77 cases, 25 miniGISTs and 52 overt 

GISTs. The median number of reads was 64 million (range 25-280). 

Principal Component Analysis (PCA) of the whole series clearly indicated a net separation 

according to tumor site, for both overt and miniGIST (Fig. 3.1A-B). No clear separation was instead 

observed for tumor class (miniGIST vs. overt GIST), even when gastric and intestinal sites were 

analyzed separately (Fig. 3.1C-D). Interestingly, the type of driver mutation represented an 

element of separation along PC1 for both miniGIST and overt GIST of the gastric site (Fig 3.1E) (KIT 

vs. PDGFRA). A similar trend was observed also in the intestine where non-KIT mutant tumors 

tended to co-cluster (Fig. 3.1F). The comparison of the transcriptome of overt GISTs vs. miniGISTs 

identified 2296 genes as differentially expressed (DEG), 1382 overexpressed and 914 

underexpressed (cutoffs: abs.log2FC≥0.6; p-value≤0.05). For about half of these genes, the p-adj 

was less than 0.1.  
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Figure 3.1 Principal component analysis (PCA) of the transcriptome. PCA of 77 cases profiled by RNA-

Sequencing labeled by A) condition (blue: overt GIST; red: miniGIST) or B) site (green: stomach; yellow: intestine). PCA 

of gastric (C, E) and intestinal (D, F) cohorts labeled by condition; the different shape points represent the mutated 

gene. The group of cases with KIT or non-KIT mutations are indicated by purple and salmon ellipses, respectively. PCAs 

were built on the top 500 genes with higher variance. K/P neg: tumors devoid of KIT or PDGFRA mutations. 
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Functional enrichment analyses of DEGs (overt GIST vs. miniGIST comparison) were performed 

by using Ingenuity Pathways Analysis (IPA) and Gene Set Enrichment Analysis (GSEA).  

Several statistically enriched pathways were identified by both IPA and GSEA (Fig. 3.2), with an 

important involvement of the immune system and metabolism among positive enriched pathways 

(enriched in overt GIST), and axon guidance and terms related to muscle contraction among 

negative enriched pathways (enriched in miniGIST).  

 

 
 

Figure 3.2: GSEA results showing the most relevant KEGG terms enriched in overt GIST vs. miniGIST (whole 

cohort). Each plot represents positive enrichments (ES >0, left panels) and negative enrichments (ES <0, right panels) 

in the DEGs of overt GIST vs. miniGIST contrast. Enrichment Score (ES) is indicated on the left.  

 
A subset of 68 cases was then profiled for miRNA expression. Sample reads ranged from 0.6 to 

3.8 million reads (median 2.1). Differently from transcriptome, the miRNome better captured 

differences between miniGISTs and overt GISTs, especially in the gastric site (Fig. 3.3A, C-D). 

Moreover, as observed for the transcriptome, tumor location, as well as mutation driver, had an 

important impact on miRNome profile (Fig. 3.3B, E-F). Specifically, in the gastric cohort KIT- and 

PDGFRA-mutant tumors separated along PC2 and a trend of separation along PC2 was also 

observed in the intestinal cohort for KIT vs. non-KIT tumors (Fig 3.3E, F).  

In the differential expression analysis, over a hundred (109) of differentially expressed miRNAs 

(DEmiRs) were detected in the overt GIST vs. miniGIST contrast, 82 over- and 27 under-expressed 

(cutoffs: abs.log2FC≥0.6; p-value≤0.05).  
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Figure 3.3 Principal component analysis (PCA) of the miRNome. PCA of the 68 cases profiled by miRNA-

Sequencing labeled by A) condition (blue: overt GIST; red: miniGIST) and B) site (green: stomach; yellow: intestine). 

PCA of gastric (C, E) and intestinal (D, F) cohorts labeled by condition; the different shape points represent the 

mutated gene. miniGIST and GIST group of cases are indicated by red and blue ellipses, respectively (C-D); the group 

of cases with KIT or non-KIT mutations are indicated by purple and salmon ellipses, respectively (E-F). PCAs were built 

on the top 100 miRNAs with higher variance. K/P neg: tumors devoid of KIT or PDGFRA mutations.  
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Functional enrichment analyses of DEmiRs, performed with miRPath v.3 and PathDIP, 

highlighted that the miRNAs possibly implicated in the miniGIST to overt GIST transition are 

predicted to target genes related to many cancer-related pathways (Tab. 3.3).  

 
Table 3.3 DEmiRs of the whole cohort: top 10 most significantly enriched KEGG pathways. 
 

KEGG pathway p-value #Predicted genes #DEmiRs 

Fatty acid biosynthesis 6.85E-13 6 4 

Mucin type O-Glycan biosynthesis 7.68E-13 16 11 

Proteoglycans in cancer 1.14E-08 147 69 

Renal cell carcinoma 1.29E-06 57 58 

Pancreatic cancer 1.35E-06 38 16 

Glioma 1.47E-06 35 16 

TGF-beta signaling pathway 1.19E-05 61 54 

Axon guidance 1.19E-05 92 54 

N-Glycan biosynthesis 1.40E-05 38 44 

Neurotrophin signaling pathway 1.40E-05 95 67 
 

#Predicted genes: number of genes predicted to be targeted by DEmiRs according to the DIANA tool (microT-CDS 

v 5.0). #DEmiRs: number of DEmiRs associated with the indicated pathway. The enrichment was performed by using 

the union genes method.  

 
By interrogating the chromosomal position dataset for the DEmiRs, we observed that several 

of the DEmiRs enriched in the overt GIST mapped to chromosome 1 and chromosome X, whereas 

many of the underexpressed DEmiRs in the same contrast mapped to chromosome 14 and 

chromosome 6 (Tab. 3.4).  

 
Table 3.4 DEmiRs of the whole cohort: chromosome enrichment results 
 

Chromosomal location Enrichment p-value # Observed DEmiRs 

Chromosome 1 enriched 0.0493 7 

Chromosome 14 depleted 0.0001 8 

Chromosome 6 depleted 0.0448 4 

Chromosome X enriched 2.40E-06 27 
 

Results of chromosomal mapping enrichment of the DEmiRs identified as differentially expressed in overt GIST 

vs. miniGIST of the whole cohort. Enriched: chromosomal location enriched in the overt GIST category; depleted: 

chromosomal location enriched in the miniGIST category. 

 
Although clearly GIST share common pathways of transformation irrespective of tumor 

location, as indicated by the involvement of the same gene drivers (e.g. KIT mutations) or 

chromosome alterations (e.g. 14q loss) in both sites, our data suggest that GIST pathogenesis 

possibly relies also on site-specific molecular routes.  

Based on these results, we sought to address the mechanisms of malignant evolution of GIST 

both as a whole (site-shared alterations) as well as per site. 
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3.3. Gastric GISTs: transcriptome and miRNome profiling 
 

The transcriptome of overt GISTs compared to that of miniGISTs of the stomach identified 

1905 DEGs, 1055 up and 850 down (cutoffs: abs.log2FC≥0.6; p-value≤0.05) For about half of these 

genes the p-adj was ≤0.1. 

Functional enrichment analyses corroborated the important involvement of the immune 

system during the transition from miniGIST to overt GISTs. The Hedgehog pathway, typically 

provided of immune exclusion activity, was instead called as overrepresented in miniGIST (Fig. 

3.4).  

 

 
 

Figure 3.4 GSEA results showing the most relevant KEGG terms enriched in overt GIST vs. miniGIST (gastric 

cohort). Each plot represents positive enrichments (ES >0, upper panel) and negative enrichments (ES <0, bottom 

panel) of the gastric DEGs of overt GIST vs. miniGIST contrast. Enrichment Score (ES) is indicated on the left.  

 
The comparison of the miRNome of the overt GISTs vs. miniGISTs identified 70 DEmiRs, 49 up 

and 21 down in overt GIST.  

Functional enrichment analysis results are similar in the miRPath v.3 and PathDIP tools. 45 

most statistically significant (p-value<0.01) enriched pathways were found by miRPath tool (Tab. 

3.5).  
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Table 3.5 Gastric GIST DEmiRs: top 10 most significantly enriched KEGG pathways  
 

KEGG pathway p-value #Predicted Genes #DEmiRs 

Proteoglycans in cancer 9.80E-12 149 59 

Adherens junction 5.25E-08 60 53 

ErbB signaling pathway 7.11E-07 71 54 

Axon guidance 7.87E-07 90 50 

Hippo signaling pathway 1.94E-06 108 50 

TGF-beta signaling pathway 2.08E-06 60 46 

Rap1 signaling pathway 1.81E-05 149 57 

Renal cell carcinoma 1.91E-05 54 47 

Fatty acid biosynthesis 2.11E-05 8 16 

Pancreatic cancer 2.11E-05 51 46 
 

#Predicted genes: number of genes predicted to be targeted by DEmiRs according to the DIANA tool (microT-

CDS). #DEmiRs: number of DEmiRs associated with the indicated pathway. The enrichment was performed by using 

the union genes method.  

 
Chromosomal enrichment of DEmiRs of the gastric cohort was performed by using MIEAA 

(miRNA Enrichment Analysis and Annotation). A positive enrichment of chromosomes 1 and X and 

a negative enrichment of chromosome 14 were observed for overt GIST vs. miniGIST among over- 

and underexpressed miRNAs, respectively (Tab. 3.6).  

 
Table 3.6 Gastric GIST DEmiRs: chromosome enrichment results  
 

Chromosomal location Enrichment p-value # Observed DEmiRs 

Chromosome 1 enriched 0.0144 5 

Chromosome 14 depleted 0.0072 5 

Chromosome X enriched 3.50E-07 21 
 

Results of chromosomal mapping enrichment of the DEmiRs identified as differentially expressed in overt GIST 

vs. miniGIST of the gastric cohort. Enriched: chromosomal location enriched in the overt GIST category; depleted: 

chromosomal location enriched in the miniGIST category.  

 
3.4. Intestinal GISTs: transcriptome and miRNome profiling 
 

As for the gastric subset, transcriptome and miRNome profiling of the intestinal cohort were 

analyzed. The transcriptome of overt GISTs compared to that of miniGISTs yielded the 

identification of 2125 DEGs, of which 1140 up and 985 down in the overt tumors (cutoffs: 

abs.log2FC≥0.6, p≤0.05). For about 1/3 of these genes, the p-adj was ≤0.1.  

IPA and GSEA functional enrichment analyses highlighted immune response and cell cycle-

related pathways as particularly enriched in the overt GIST category (Fig. 3.5). 
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Figure 3.5 GSEA results showing the most relevant KEGG terms enriched in overt GIST vs. miniGIST (intestinal 

cohort). Each plot represents positive enrichments (ES >0, left panels) and negative enrichments (ES <0, right panels) 

of intestinal DEGs in the overt GIST vs. miniGIST contrast. Enrichment Score (ES) is indicated on the left.  

 
By the same token of the gastric subset, the comparison of overt GISTs vs. miniGISTs 

miRNome identified 74 DEmiRs (49 up and 25 down in overt GISTs). Functional enrichment 

analysis results are reported in Table 3.7.  

 
Table 3.7 Intestinal GIST DEmiRs: top 10 most significantly enriched KEGG pathways  
 

KEGG pathway p-value #Predicted genes #DEmiRs 

Proteoglycans in cancer 1.57E-12 149 65 

Mucin type O-Glycan biosynthesis 1.86E-09 22 29 

ErbB signaling pathway 2.34E-08 73 63 

Hippo signaling pathway 9.69E-08 114 58 

Pathways in cancer 1.86E-07 274 69 

Fatty acid biosynthesis 1.87E-07 11 20 

Axon guidance 4.77E-07 93 56 

Signaling pathways regulating pluripotency of stem cells 5.61E-07 106 62 

Glioma 1.08E-06 51 52 

Pancreatic cancer 2.82E-06 53 54 
 

#Predicted genes: number of genes predicted to be targeted by DEmiRs according to the DIANA tool (microT-

CDS). #DEmiRs: number of DEmiRs associated with the indicated pathway. The enrichment was performed by using 

the union genes method.  

 
By interrogating chromosomal position datasets in MIEAA, beside a positive enrichment of 

chromosome 11 among overexpressed DEmiRs in overt GIST, there was a negative enrichment of 

chromosomes 14 and 7 among underexpressed DEmiRs in overt GIST vs. miniGIST comparison 

(Tab. 3.8).  
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Table 3.8 Intestinal GIST DEmiRs: chromosome enrichment results. 
 

Chromosomal location Enrichment p-value # Observed DEmiRs 

Chromosome 11 enriched 0.0423 9 

Chromosome 14 depleted 0.0025 3 

Chromosome 7 depleted 0.0065 4 
 

Results of chromosomal mapping enrichment of the DEmiRs identified as differentially expressed in overt GIST 

vs. miniGIST of the intestinal cohort. Enriched: chromosomal location enriched in the overt GIST category; depleted: 

chromosomal location enriched in the miniGIST category.  

 
3.5. miRNA validation on NanoString platform 

 

To strengthen our miRNA-Seq profiling data we sought to orthogonally validate the results 

obtained with NGS by using a digital hybridization-based method. To this end, a subset of cases 

was profiled on the NanoString platform. Twenty-three samples for which we had enough material 

were analyzed along with the control cell line SK-BR-3 for which miRNA-Seq data were publicly 

available (see material and methods section for additional information).  

 
3.5.1. Setting of the NanoString validation system 

 

In contrast to NGS profiling, which covers the whole dataset of annotated miRNAs (1917 

miRNAs), the NanoString Human v3 panel allows the analysis of only 773 uniquely identified 

miRNAs. In house NanoString profiling of the SK-BR-3 cell line identified 267/773 miRNAs as 

expressed above the threshold. These miRNAs were compared to the publicly available SK-BR-3 

NGS miRNome. To this end, the FastQ file of the SK-BR-3 cell line was downloaded from the 

European Nucleotide Archive repository (SRX273666) and processed with GX. Reads were trimmed 

and aligned to mature miRNA reference sequences (miRBase v.22.1). 793 miRNAs were detected 

by NGS as having a number of counts per miRNA sequence greater than 5. Of these, 191 miRNAs 

were detected positive also by the NanoString platform (72% of NanoString positive hits).  

Overall, there was a very good agreement in the detection and in the quantification of 

positive miRNAs in the SK-BR-3 sample by the two platforms (rho: 0.62; p-value: 8.56E-22) (Fig. 3.6). 
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Figure 3.6 Scatter plot representing the Spearman’s correlation between NanoString and NGS counts of the 

miRNAs scoring positive with both platforms.  

 
3.5.2. NanoString validation of DEmiRs  

 

The validation cohort for gastric miRNAs was composed of 12 cases (6 miniGISTs and 6 overt 

GISTs), 7 KIT and 5 PDGFRA mutated samples. The RCC files obtained from the Digital Analyzer 

were evaluated by the nSolver 4.0 software for quality controls.  

As a first step, a correlation analysis of the counts obtained by the two platforms was 

performed using the same criteria as used for the control SK-BR-3 cell line. 208 positive miRNAs 

were recognized by the two platforms, accounting for 60.8% of the 342 positive miRNAs identified 

by NGS and 65.8% of the 316 positive miRNA identified by NanoString. Spearman’s correlation of 

the 208 positive miRNAs was 0.63 (range per sample 0.53-0.82) (p<0.0001).  

The validation cohort for intestinal miRNAs was composed of 11 cases (5 miniGISTs and 6 

overt GISTs), 6 KIT and 5 non-KIT samples (of these, one overt GIST sample was excluded from the 

analysis as it failed the ligation check). In this subset, 210 positive miRNAs were identified, 

accounting for 63.6% of the 330 positive miRNAs in the NGS system and for 54.0% of the 389 

positive miRNAs in the NanoString platform. Spearman’s correlation of the positive miRNA counts 

obtained by the two platforms yielded a rho value of 0.61 (range 0.53-0.80) with statistically 

significance (p-value<0.0001). 

Given the different biochemistries and dynamic ranges of the two approaches, the outcomes 

of NGS and NanoString cannot be compared in a linear manner. Yet, 59% (34/58) miRNAs with a 

number of counts >5, identified as DE by the NGS approach and included also in the NanoString 

dataset were coherently identified as DE also by Nanostring (14/20 in the gastric site and 20/38 in 

the intestinal site) (Tab. 3.9).  
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Table 3.9 List of the DEmiRs identified in the gastric (left) and in the intestinal (right) sites by NGS and 

confirmed with NanoString.  
 

DEmiRs Log2FC Chr Other 
 

DEmiRs Log2FC Chr Other 

hsa-miR-10b-5p ↑ 2q31.1 
  

hsa-miR-194-5p ↑ 1q41 
 

hsa-miR-196b-5p ↑ 7p15.2 
  

hsa-miR-31-5p ↑ 9p21.3 
 

hsa-miR-675-5p ↑ 11p15.5 
  

hsa-miR-146b-5p ↑ 10q24.32 
 

hsa-miR-148b-3p ↑ 12q13.13 
  

hsa-miR-210-3p ↑ 11p15.5 
 

hsa-miR-3613-5p ↑ 13q14.2 
  

hsa-miR-483-3p ↑ 11p15.5 
 

hsa-miR-451a ↑ 17q11.2 
  

hsa-miR-675-5p ↑ 11p15.5 
 

hsa-miR-301a-3p ↑ 17q22 
  

hsa-miR-192-5p ↑ 11q13.1 
 

hsa-miR-424-5p ↑ Xq26.3 
  

hsa-miR-21-5p ↑ 17q23.1 
 

hsa-miR-509-3-5p ↑ Xq27.3 
  

hsa-miR-221-3p ↑ Xp11.3 
 

hsa-miR-514a-3p ↑ Xq27.3 
  

hsa-miR-28-3p ↓ 3q28 
 

hsa-miR-891a-5p ↑ Xq27.3 
  

hsa-miR-1271-5p ↓ 5q35.2 
 

hsa-miR-382-5p ↓ 14q32.31 
  

hsa-miR-490-3p ↓ 7q33 
 

hsa-miR-485-5p ↓ 14q32.31 
  

hsa-miR-23b-3p ↓ 9q22.32 
 

hsa-miR-133a-3p ↓ 18q11.2 20q13.33 
 

hsa-miR-199b-5p ↓ 9q34.11 
 

     
hsa-miR-409-5p ↓ 14q32.31 

 

     
hsa-miR-324-3p ↓ 17p13.1 

 

     
hsa-miR-497-5p ↓ 17p13.1 

 

     
hsa-miR-133a-3p ↓ 18q11.2 20q13.33 

     
hsa-miR-99b-5p ↓ 19q13.41 

 

     
hsa-miR-99a-5p ↓ 21q21.1 

  

 

Chr: chromosomal location of miRNA gene; Other: miRNA gene location of other putative hairpin precursor that 

gives birth to the same mature miRNA. hsa-miR-514a-3p may be encoded by three distinct genes all mapping to 

Xq27.3. 

 
In summary, although compared to NGS the NanoString technology clearly has a more limited 

breath (some miRNAs of potential pathogenic significance in GIST were not covered by 

NanoString) and is known to perform poorly in the detection of low-abundance miRNA (Knutsen et 

al., 2013), the results obtained by this platform comparison allowed us to identify a robust set of 

miRNA validated by both approach. 
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Figure 3.7 mirDIP network analysis illustrating the predicted interactions between DEmiRs and DEGs in the 

whole cohort. The figure is meant at providing a glimpse of the degree of interconnection between differentially 

expressed miRNAs and differentially expressed genes. Network analysis of A) negative DEGs:positive DEmiRs 
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interactions (2271 interactions) and B) positive DEGs:negative DEmiRs interactions (664 interactions). Purple dots 

represent DEmiRs; orange and grey dots represent DEGs. The gray edge represent the interaction between the DEmiR 

and the target DEG. Color and size of the orange and gray dots reflects the degree of the connection between DEmiRs 

and DEGs and between DEGs and DEGs.  

 

3.6. miRNA target prediction analyses 
 

Target prediction analyses were performed by using the mirDIP 4.1 software, developed by 

Igor Jurisica, a collaborator of us (Tokar et al., 2018). This tool relies on 30 different sources for 

miRNAs target prediction databases and identifies the most reliable targets based on the 

calculation of an integrative score. In addition, mirDIP performs miRNA:mRNA bidirectional search 

by allowing the upload of both DEmiRs and DEGs of the series in analysis.  

Considering that miRNA are best known to affect mRNA biology by promoting their 

degradation, we sought to focus our attention on the “inverse pair” target predictions, namely 

genes whose direction in the DE analysis is opposite to that of the cognate miRNAs in the miRNA 

DE analysis. In other words, we searched for genes whose up/downregulation in overt GIST vs. 

miniGIST contrast could be justified by reduced/increased expression of a cognate miRNA. In order 

to get more confident results, we set as cutoffs “high” and “very high” scores of predictions and 

confirmation by at least two different databases.  

In the whole cohort, 2935 target:miRNA predicted interactions were found to satisfy these 

criteria, among which 664 interactions for gene up:miRNA down and 2271 for gene down:miRNA 

up (Fig. 3.7). Overall, these predictions covered 81% of DEmiRs (88/109) and, more interestingly, 

46% of DEGs (731/1592).  

Analyses performed per gastric and intestinal sites identified 1656 and 2449 target:miRNA 

interactions, respectively. Of these, 189 and 715 were predicted to be gene up:miRNA down, and 

1467 and 1734 gene down:miRNA up, respectively (Fig. 3.8 and 3.9).  

Overall, these predicted interactions covered over 75% of DEmiRs (54/70 of the stomach and 

66/74 of the intestine), and over 40% of DEGs (400/996 in the stomach and 572/836 in the 

intestine). 
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Figure 3.8 mirDIP network analysis illustrating the predicted interactions between DEmiRs and DEGs of the 

gastric cohort. Network analysis of A) negative DEGs:positive DEmiRs interactions (1467 interactions) and B) positive 

DEGs:negative DEmiRs interactions (189 interactions).  
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Figure 3.9: mirDIP network analysis illustrating the predicted interactions between DEmiRs and DEGs of the 

intestinal cohort. Network analysis of A) negative DEGs:positive DEmiRs interactions (1734 interactions) and B) 

positive DEGs:negative DEmiRs interactions (715 interactions).  
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3.7. Validation of the approach 

hsa-miR-485-5p is a site-shared tumor suppressor miRNA that targets BIRC5 
 

The gathering of all these data was the premise for the identification of miRNA:mRNA pairs 

involved in GIST malignant evolution. As a first step in this direction, we sought to focus on the 

DEmiRs located in chromosome regions notoriously involved in GIST pathogenesis and shared by 

both anatomical sites.  

Partial to complete loss of chromosome 14q is frequently detected in both gastric and 

intestinal GIST (El-Rifai et al., 2000). On these grounds, we focused on the miRNAs downregulated 

in the overt GIST vs. miniGIST contrast and located in this chromosome region. Seven miRNAs with 

such features were identified: hsa-miR-369-5p, hsa-miR-370-3p, hsa-miR-377-5p, hsa-miR-409-5p, 

hsa-miR-485-5p, hsa-miR-494-5p and hsa-miR-889-5p. With the exception of the last two miRNAs, 

the first five miRNAs were overall potentially responsible for the upregulation of 146 genes.  

Among these DEmiRs identified in 14q, hsa-miR-485-5p stand out as the most significantly 

downregulated in overt GISTs (Log2FC: -1.47; p-value: 0.0024) (Fig. 3.10A). hsa-miR-485-5p has 

been reported to act as a tumor suppressor in the progression of other cancers but its role in GIST 

is still undefined (Chen et al., 2015; Kang et al., 2015; Sun et al., 2015).  

hsa-miR-485-5p was predicted to target 95 genes identified as DE in our series. Among these 

genes, we sought to focus on BIRC5 (Survivin). This gene was not only overexpressed in overt GIST 

vs. miniGIST of our series (Fig. 3.10B), but it has been recently associated with GIST pathogenesis 

(Chen et al., 2011; Falkenhorst et al., 2016; Yun et al., 2018). In our cohort, the expression values 

of the hsa-miR-485-5p and the BIRC5 were inversely correlated with rho value of -0.26 (Fig. 3.10C).  

 

 
 

Figure 3.10 Inverse expression of hsa-miR-485-5p and BIRC5. Box plots showing the expression values of A) the 

miRNA and B) the gene in GIST and miniGIST groups. C) Correlation between the hsa-miR-485-5p and BIRC5 gene 

expression in the 57 cases that were profiled for both miRNome and transcriptome (matched data).  
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The predicted binding site of hsa-miR-485-5p lies on the 3’UTR of BIRC5 (pos: 2008-2017, 

NM_001168.2, BIRC5, transcript variant 1) (Fig. 3.11A). To investigate the effect of hsa-miR-485-5p 

on endogenous BIRC5, the human fibrosarcoma HT1080 cells were transiently transfected with the 

hsa-miR-485-5p mimic. Upon ectopic hsa-miR-485-5p expression, a significant reduction of BIRC5, 

both at the mRNA and the protein level, was observed (Fig. 3.11B-C).  

To understand if this effect was determined by the direct binding of miR-485-5p to the BIRC5 

3’UTR, we cloned the 3’UTR seed sequence of BIRC5 in a pMIR-eGFP reporter vector. This plasmid 

was derived from the pMIR-ReportTM plasmid by replacing the firefly Luciferase reporter gene with 

eGFP. This modification was necessary due to the fact that the Luciferase reporter sequence was 

targeted by our negative control miRNA. Both the 3’UTR wild type and a miR-485-5p binding-

defective mutant seed sequence were cloned. The mutant seed sequence was generated in a way 

to avoid nucleotide perfect complementarity and the G:U imperfect pairing. Cells were then stably 

transfected with pMIR-eGFP containing the wild type or mutant 3’UTR of BIRC5 and single-cell 

cloned, in order to ensure a homogeneous expression of the reporter gene. Engineered cells were 

then transiently transfected with hsa-miR-485-5p mimic and the expression of the eGFP reporter 

gene was measured by quantitative real-time PCR and Western Blot. hsa-miR-485-5p efficiently 

affected the expression of the wild type-seed reporter gene while had no relevant effect on the 

expression of the reporter gene containing mutant hsa-miR-485-5p seed (Fig. 3.11D-E). These 

findings corroborate the hypothesis of a direct targeting of BIRC5 by hsa-miR-485-5p and suggest 

that loss of chromosome 14q may contribute to BIRC5 upregulation during GIST progression via 

hsa-miR-485-5p loss of expression.  

 



Results 

46 

 
 

Figure 3.11 hsa-miR-485-5p negatively affects the expression of BIRC5 by binding the 3’UTR. A) Alignment of 

BIRC5 3’UTR with the hsa-miR-485-5p sequence as provided by microRNA.org. Nucleotides involved in the binding are 

highlighted in light blue. The sequence of miRNA:mRNA binding is underlined. Nucleotides that have been 

mutagenized to disrupt the seed between miRNA and 3’UTR are marked in red. B) Decrease of BIRC5 mRNA levels in 

HT1080 cell line upon ectopic delivery of increasing concentration (from 1 to 125 nM) of hsa-miR-485-5p mimic. hsa-

miR-542-3p mimic (25 nM) was included as a positive control, as its interaction with BIRC5 is reported in the literature 

(Althoff et al., 2015). An irrelevant miRNA-like synthetic sequence was used as negative control. C) Immunoblots 

showing the reduction of the BIRC5 protein in the hsa-miR-485-5p mimic transfected cells. TGX gel staining is shown 

to correct for protein loading. The numbers under the panel indicate BIRC5/(TGX lane) ratio. D-E) Reduction of the 

reporter gene (eGFP) expression (mRNA in D and protein in E) in cells stably expressing the wild type 3’UTR BIRC5 

plasmid after transfection with the has-miR-485-5p mimic (5 nM, 50 nM). No significant variation was observed in cells 

engineered to express the mutant 3’UTR BIRC5 plasmid. TGX gel staining is shown to correct for protein loading.The 

numbers under the panel indicate eGFP/(TGX lane) ratio. Untr: untransfected; Lipo: cells transfected with 

lipofectamine only; NegCtrl/”-“: Negative Control #1; PosCtrl/”+”: positive control (mirVana mimic hsa-miR-542-3p); 

wt: wild type; mut: mutant.  

 
.



 

 

 

 

 
 

4.Discussion 
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The work described in this thesis is the piece of a larger project aimed at defining the 

molecular pathways of transformation of gastrointestinal stromal tumors (GISTs). This project has 

yielded the identification of NF1 as a key driver tumor suppressor gene in the fraction of GIST 

devoid of canonical KIT/PDGFRA mutations. The results of this part of the project, to which I 

contributed, have been reported in these two papers: 

 

1) ”Quadruple-negative GIST is a sentinel for unrecognized Neurofibromatosis Type 1 

syndrome.” Gasparotto D
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12
. Clin Cancer Res. 2017 Jan 1;23(1):273-282. DOI: 10.1158/1078-0432.CCR-16-
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This thesis focuses essentially on the part of the project that deals with the definition of the 

molecular determinants of GIST malignant progression. The development of a GIST is thought to 

be preceded by the growth of a premalignant tumor lesion called miniGIST. While GISTs are 

typically rare, miniGISTs, which share with overt GIST the presence of canonical driver mutations 

(mostly KIT or PDGFRA), are quite common, being detectable in up to 1/3 of adult individuals 

(Agaimy et al., 2007). This suggests that these premalignant precursors evolve to GIST only in a 

minute fraction of cases.  

As a first step to clarify the molecular mechanisms that sustain miniGIST to overt GIST 

malignant evolution we sought to focus on the role of miRNA in transcriptional deregulation. To 

this end, we performed NGS profiling and compared miRNome and transcriptome profiles of a 

large set of cases representative of both conditions (miniGIST and overt GIST).  

 

As an introductory section of the discussion, I wish to highlight some technological aspects of 

this study that I consider represent an added value to our approach. Specifically, while NGS-based 

transcriptome profiling has become standard in the last years, miRNome profiling in GIST still 

heavily relies on microarray or qRT-PCR-based technologies (Haller et al., 2010; Kelly et al., 2013; 

Subramanian et al., 2008). Over these methods, NGS-based miRNA profiling offers a number of 

advantages. In particular, being a digital approach, NGS features a higher sensitivity and a wider 

linear range of detection over array-based assays; NGS is less prone to sequence bias and hence 

shows higher accuracy in distinguishing very similar miRNAs sequences (e.g. clustered miRNAs 

or isomiRs); finally, NGS allows for the identification of novel, un-annotated miRNAs (Pritchard 

et al., 2012).  

Also, the choice of validating positive hits through an orthogonal high-throughput digital 

approach (NanoString) I consider to be a plus, as it represents a sample and time-saving approach 

(compared to single hit validation) yielding at the same time an absolute quantification. 
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This study highlighted a relevant impact of tumor location and type of driver mutation on 

gene and miRNA expression profile, with a tendency for gastric vs. intestinal tumors and for KIT vs. 

non-KIT tumors to cluster separately. Previous reports have described the influence of these 

factors on GIST gene expression profile (Antonescu et al., 2004; Haller et al., 2007, 2010). Our 

work complements these observations by pinpointing that this dichotomy occurs very early, being 

detectable also in miniGIST. 

Surprisingly, compared to the site of origin and type of mutation driver, the nature of the 

lesion (benign vs. malignant) seems to affect the global transcriptome at a lesser degree. Instead, 

elements of separation for miniGIST and overt GIST, especially for the tumors of the gastric site, 

emerged from the analysis of the miRNome. Although preliminary, these results suggest that the 

deregulation of miRNAs could play a significant role as a trigger in the malignant progression of 

miniGIST. 

 

Differential expression analyses highlighted an important involvement of cell cycle, 

metabolism and immune system in overt GIST, suggesting that miniGIST evolution is paralleled by 

a metabolic rewiring and gain of immunogenicity of the tumor. Vice versa, KEGG terms related to 

axon guidance, myogenic differentiation, and Notch signaling turned out to be overrepresented in 

miniGIST, supporting a progressive loss of myogenic/neural features during GIST progression. 

The myogenic DMD (dystrophin) gene, recently claimed to play a tumor-suppressive function 

in GIST (Wang et al., 2014), was significantly downregulated in overt GIST vs. miniGIST contrast, 

supporting the notion that GIST evolution is paralleled by an attenuation of a myogenic 

differentiation program.  

The Notch signaling has been reported to provide either oncogenic or tumor-suppressive 

signals, depending on the context. Also in sarcomas, the Notch pathway seems to play a Janus-

faced role, with pro-tumorigenic or anti-tumorigenic activity in different sarcoma subtypes (Ban et 

al., 2014; Conti et al., 2016). In the context of neural cells, Notch loss has been shown to synergize 

with receptor tyrosine kinase signaling, namely PDGF (Giachino et al., 2015). The cell of origin of 

GIST, interstitial cells of Cajal, are a very peculiar cell type with pacemaker functions and mixed 

neuronal and myoid features (Sanders et al., 2014). Thus, it is tempting to speculate that inhibition 

of Notch signaling may sustain the malignant progression of receptor tyrosine kinase (KIT or 

PDGFRA)-driven miniGIST.  

Notch establishes a close connection with the Hedgehog (HH) pathway (Chatterjee and Sil, 

2019), which turned out to be overrepresented in the miniGIST of the stomach. HH signaling has 

been reported to induce immune exclusion (Hanna et al., 2019). Thus, the activation of this 

pathway might create a permissive, immune-tolerant milieu conductive to oncogenesis. Moreover, 

a recent work described a mouse model in which HH activation results in the induction of GIST-like 

tumors in which activation of PDGFRA signaling facilitates tumorigenesis (Pelczar et al., 2013). 

Thus, the activation of the HH pathway could represent an early trigger of the transformation of 

gastric Cajal cells.  

 

Focusing on the miRNome, differential expression and functional annotation analyses 

revealed that the miRNAs identified as correlated to miniGIST to overt GIST evolution were widely 
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involved in cancer-related pathways. More importantly, the integration of transcriptome and 

miRNome profiling allowed the identification of alleged miRNA:mRNA pairs. Intriguingly, over 40% 

of the transcripts detected as differentially expressed were putatively targeted by differentially 

expressed miRNAs. This result is in line with literature data according to which about half of the 

transcriptome is regulated by miRNAs (Bartel, 2009; Jansson and Lund, 2012).  

 

Several miRNAs detected as differentially expressed mapped to chromosome regions 

previously associated with GIST pathogenesis. Namely, about 1/3 of miRNA whose expression was 

reduced in overt GIST compared to miniGIST mapped to chromosome 14q, notoriously lost in GIST 

(El-Rifai et al., 2000). This result corroborates the relevance of this chromosome region in GIST 

progression and adds weight to the hypothesis that chromosome imbalances mirror the presence 

not only of coding genes but also miRNAs implicated in GIST malignant evolution. Intriguingly, 

some of the miRNAs mapping to this region and indentified by our study as differentially 

expressed in overt GIST vs. miniGIST comparison had been previously suggested to be potentially 

implicated in GIST pathogenesis. In particular, miRNA located in 14q and lost in miniGIST to overt 

GIST evolution, such as hsa-miR-369-5p, hsa-miR-409-5p and hsa-miR-494-5p, whose mRNA 

targets are involved in cell cycle and MAPK pathways (IGF1R, MAPK1, CDK6 and HDAC genes) had 

been shown to be negatively associated to high-risk tumors (Choi et al., 2010). Moreover, miRNAs 

that we identified as differentially expressed in overt GIST vs. miniGIST comparison, among which 

hsa-miR-133a-3p, hsa-miR-133b, hsa-miR-301a-3p, hsa-miR-483-5p and hsa-miR-490-3p, had been 

previously found as differentially expressed in GIST vs. GIST adjacent normal tissue contrast 

(Gyvyte et al., 2017).  

 

As a first step toward validation of the DEmiRs identified as possibly implicated in GIST 

progression and mapping to 14q, we focused on hsa-miR-485-5p (14q32.31). The differential 

expression of this miRNA was also corroborated by NanoString profiling. hsa-miR-485-5p has been 

predicted to target, among others, the BIRC5 gene, a member of the Inhibitor of Apoptosis (IAP) 

protein family. BIRC5 was among the genes that we identified as differentially expressed in overt 

GIST vs. miniGIST and a role for BIRC5 in KIT regulation has been recently suggested (Yun et al., 

2018). 

The BIRC5-encoded protein, aka survivin, is considered a multitasking factor implicated not 

only in cell survival but also in cell division and in microtubule assembly (Altieri, 2015; Wheatley 

and Altieri, 2019). Specifically, BIRC5 participates in the chromosome passage protein complex 

(CPC) involved in chromosome alignment and segregation during mitosis. BIRC5 is highly 

expressed during fetal development but is physiologically repressed in normal adult tissues. 

Augmented expression of BIRC5 is reported for a broad range of human malignancies, where it has 

been linked to tumor aggressiveness, chromosomal instability, angiogenesis and resistance to 

therapies (Altieri, 2015; Hingorani et al., 2013; Hirano et al., 2015; Li S. et al., 2017; Wang et al., 

2018; Zhou et al., 2018).  

Here, we report that BIRC5 overexpression in overt GIST is mediated, at least in part, by a miR-

485-5p-mediated regulation. Specifically, we provided evidence that ectopic expression of hsa-

miR-485-5p negatively affects BIRC5 mRNA levels in a dose-dependent manner. Moreover, 
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reporter assays indicated that this effect relies on an intact miR-485-5p binding site on BIRC5 

3’UTR, supporting a direct targeting of the messenger. Intriguingly, we observed a trend toward 

reduced cell survival after miR-485-5p delivery in HT-1080 human fibrosarcoma cells, although this 

result needs further experimental validations. Taken together, our data suggest that BIRC5 

overexpression may contribute to miniGIST to overt GIST evolution as a result of the loss of a 

chromosome region (14q) harboring a key epigenetic negative regulator (miR-485-5p).  

Clearly, the hsa-miR-485-5p:BIRC5 axis here described represents just the tip of an iceberg, i.e. 

a convoluted regulatory network that connects miRNAs and coding genes and that sustains tumor 

progression. Our integrated analysis of gene expression and miRNA-mediated epigenetic 

regulation just laid down the basis for unrevealing the role of miRNAs as triggering players of 

miniGIST to overt GIST evolution. The untangling of these networks will be the object of further 

investigations.  



 

 

 

 

 

 

5. Materials and 

methods 

 

  



Materials and methods 

53 

5.1 Case series 
 

Samples were retrieved from the Department of Pathology and Molecular Genetics of Treviso 

General Hospital (TV, Italy) and from the Centro di Riferimento Oncologico di Aviano (CRO IRCCS) 

(Aviano, PN Italy) biobanks. Specimens were collected between 1993 and 2018 and were almost 

all formalin-fixed paraffin-embedded (FFPE), with the exception of 13 cases that were fresh frozen 

(FF). Of 91 cases collected, five yielded poor quality RNA-Seq libraries and were then excluded 

from transcriptome analysis.  

 
5.2 RNA extraction 

 

FFPE tissues were dewaxed by using the Qiagen deparaffinization solution. Total RNA was 

then recovered by using the Ambion RecoverAll Nucleic Acid isolation kit, according to the 

manufacturer’s instructions (ThermoFisher Scientific). For FF tissues RNA extraction was 

performed by using EZ1 biorobot (Qiagen) and the EZ1 RNA Tissue Mini kit (Qiagen).  

RNA was quantified by a fluorimetric method on the Qubit instrument (Qubit RNA Assay Kit, 

Invitrogen). The RNA quality was assessed by Agilent 2200 TapeStation electrophoresis (RNA Assay 

Kit, Agilent Technologies).  

RNA from cell lines was extracted by using Qiagen miRNeasy Mini Kit (Qiagen), and the RNA 

yield was measured by using the NanoDrop1000D spectrophotometer (ThermoFisher Scientific).  

 
5.3 RNA profiling and data processing 

 

RNA (250 to 1000 ng) was used to prepare TruSeq stranded total RNA libraries, according to 

Illumina guidelines (https://emea.support.illumina.com/documentation.html) (Illumina). Briefly, 

RNA was treated with RiboZero Deplete and Fragment RNA reagents, then double-stranded cDNAs 

were synthesized. After adenylation of the 3’ end and adapter indices ligation, the libraries were 

then amplified and quality and quantity assessed. Next libraries were diluted to the same 

concentration and pooled, to a final overall concentration of 2 nM. Size, purity and concentration 

of the final pools were evaluated by using the Agilent 2200 TapeStation instrument with 

TapeStation High Sensitivity D1000 kit (Agilent Technologies) and Qubit fluorometer with the 

Qubit DNA High Sensitivity assay (Invitrogen). Validated pools were finally run on an Illumina HiSeq 

1500 instrument, by using the HiSeq Rapid PE Cluster kit v2 (50 cycles) (Illumina).  

FastQ files obtained from the sequencing were uploaded onto the Illumina BaseSpace Hub, 

trimmed, aligned and quantified by using STAR (Dobin et al., 2013) and Salmon (Patro et al., 2017) 

algorithms. DEseq2 pipeline (Love et al., 2014) on R (version 3.6) was used for the identification of 

differentially expressed genes. PCAs were built by using the top 500 genes with the highest 

variance. The reference genome used for all the analyses was the Genome Reference Consortium 

Human Built 37 (GRCh37, hg19).  

 

https://emea.support.illumina.com/documentation.html
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5.4 miRNA profiling and data processing 
 

miRNA profiling was performed by using two different technologies: Next Generation 

Sequencing (NGS) on an Illumina MiSeq platform for discovery and NanoString probe hybridization 

for validation. Only a subset of cases profiled with NGS was selected for NanoString validation.  

 
5.4.1 miRNA profiling by sequencing (NGS) 

 

RNA (300 to 1500 ng) was used as input for ribosomal RNA (rRNA) depletion performed with 

the RiboZero rRNA removal kit (Human/Mouse/Rat) (Illumina). The depleted RNA was then used 

for miRNA library preparation with the TruSeq smallRNA Library preparation kit (Illumina) 

(https://emea.support.illumina.com/documentation.html). according to the manufacturer’s 

instructions Briefly, adapters were ligated to the 3’ and 5’ end of rRNA-depleted RNA. Then 

libraries are reverse transcribed, indexed and amplified. Afterward, cDNA libraries with unique 

indexes were pooled, size-fractionated by gel electrophoresis on a 6% Novex TBE gel (Life 

technologies), and purified by gel excision (range 160-145bp corresponding to 22 nt and 30 nt long 

miRNAs). After ethanol precipitation and resuspension, size, purity and concentration of the final 

pools were evaluated by using the Agilent 2200 TapeStation instrument with TapeStation High 

Sensitivity D1000 kit (Agilent Technologies) and Qubit fluorometer with the Qubit DNA High 

Sensitivity assay (Invitrogen). Validated pooled libraries were sequenced on a MiSeq Illumina 

platform, by using the MiSeq Reagent kit v3 (150 cycles) (Illumina).  

Data obtained from miRNA sequencing were subsequently analyzed by using the CLC Genomic 

Workbench 12 (GX) tool from Qiagen Bioinformatics (http://www.qiagenbioinformatics.com). 

The standard workflow for smallRNA included adapter trimming, alignment to the reference 

(miRBase version 22.1) and differential expression analysis. PCAs for miRNA were built by using 

the top 100 miRNAs with the highest variance.  

miRNA expression profiling of the SK-BR-3 cell line was available on the European Nucleotide 

Archive repository of the European Bioinformatics Institute (accession number: SRX273666). These 

data were provided by Knutsen and colleagues (Knutsen et al., 2013). The corresponding FastQ 

was analyzed by using the CLC Biomedical Genomics Workbench tool. Reads were trimmed and 

aligned to mature miRNA reference sequence (miRBase version 22.1) for the comparison with the 

NanoString technology.  

 
5.4.2 miRNA profiling by hybridization (NanoString) 

 

A subset of samples of the discovery cohort was chosen for orthogonal validation with the 

NanoString assay. Cases were selected on the basis of availability and quality of RNA.  

For quality check, we assessed the RNA integrity (% of RNA>300 bp) with the Agilent 

TapeStation instrument; contamination from DNA and proteins (ratio of absorbance A260/A280 

https://emea.support.illumina.com/documentation.html
http://www.qiagenbioinformatics.com/
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and A260/A230) was determined with a NanoDrop1000D spectrophotometer (ThermoFisher 

Scientific).  

A small amount of total RNA (100 ng) of selected samples was processed for miRNA 

NanoString profiling on a nCounter instrument (Human v3 miRNA Expression Assay, NanoString 

Technologies). Shortly, 100ng of total RNA was ligated with a miRTag in order to elongate the RNA 

fragment and then hybridized overnight with miRNA sequence-specific probes. Afterward, 

magnetic-bead-based purification and electrophoresis steps were carried out on a Prep-Station. 

Finally, the Digital Analyzer instrument counted the number of probes and associates each 

detected barcode to the sequence-specific associated miRNA, thus providing an absolute miRNA 

quantification.  

NanoString data obtained from the Digital Analyzer were analyzed by using nSolver 4.0 

software (https://www.nanostring.com/products/analysis-software/nsolver) for runs quality 

control and quantification. The NanoStringDiff Bioconductor R package was used for differential 

expression analysis (Wang et al., 2016).  

 
5.5 Tertiary bioinformatics data analysis 

 

Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were 

interrogated for functional analyses and miRNA target prediction.  

Functional enrichment analyses of DEGs were performed by using Ingenuity Pathway Analysis 

(IPA®) (Qiagen Bioinformatics, www.qiagenbioinformatics.com), and Gene Set Enrichment Analysis 

(GSEA) from Broad Institute (pre-ranked analysis), using the KEGG (Kyoto Encyclopedia of Genes 

and Genome) dataset (Mootha et al., 2003; Subramanian et al., 2005). Analyses were performed 

by using genes with p-value≤0.05 (GSEA) and genes with abs.log2FC≥0.6 and p-value≤0.05 (IPA).  

miRNA functional enrichment analyses were performed by using mirPath v.3 (Vlachos et al., 

2015) and PathDIP (Rahmati et al., 2017) for KEGG pathways analyses. miRNA enrichment analysis 

and annotation (MIEAA) was interrogated for chromosomal enrichment (Backes et al., 2016) 

DEmiRs with abs.log2FC≥0.6 and p-value≤0.05 were used for these analyses. Target prediction of 

DEmiRs among DEGs (abs.log2FC≥0.6 and p-adj≤0.1) were performed using mirDIP version 4.1 

(Tokar et al., 2018). “High” and “very high” scores for prediction and call from at least 2 sources 

were set as cutoffs.  

NetworkAnalyst was used to build the network among DEmiRs and predicted targets among 

DEGs (Zhou et al., 2019). 

 
5.6 Cell cultures and reagents 

 

The human fibrosarcoma HT1080 (ATCC: CCL-121) cell line was cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Gibco, ThermoFisher Scientific) plus 10% Fetal Bovine Serum 

(FBS) (Gibco, ThermoFisher Scientific). The human breast cancer SK-BR-3 (ATCC: HTB-30) cell line 

http://www.qiagenbioinformatics.com/
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was cultured in Minimum Essential Medium-α (MEM-A) (Gibco, ThermoFisher Scientific) with 10% 

FBS. Cells were maintained at 37°C with 5% CO2.  

Transfection was carried out with Lipofectamine RNAiMax (Life Technologies), mirVana 

Mimics and Negative Control #1 (ThermoFisher Scientific) at scalar concentrations. Cells 

(lipofectamine only, negative control #1, miRNA mimics) were harvested 48 hours post 

transfection.  

The full sequence of wild type 3’ UTR of BIRC5 was cloned into the pMIR-Report system 

(primer sequences, forward: TCTATCGAACTAGTTTCAAATTAGATGTTCAACTGTGCTC;  reverse: 

TAGGATCTAAGCTTAGTGAAGTATCCATTTACAGACTGACAC).  

A mutant 3’UTR for the seed sequence of hsa-miR-485-5p was created by using the following 

primers: forward: GGTTTTTGTTAGCAGAAAATGCAATCAAGCGGCTGTACTCATCTAAGC; reverse: 

GCTTAGATGAGTACAGCCGCTTGATTGCATTTTCTGCTAACAAAAACC. The Luciferase reporter gene 

was excised with BamHI and XhoI restriction enzymes to be replaced by the eGFP sequence 

derived from pLPC-eGFP. All plasmid sequences were verified by Sanger sequencing. Stable 

expression of pMIR-eGFP reporter vectors (wild type and mutant) in HT1080 was achieved by 

using Puromicin antibiotic selection (0.5 μg/mL) (Sigma Aldrich). Single-cell clones were expanded 

and selected for having comparable eGFP expression levels. These cell models were transfected 

with mirVana Mimics and Negative Control #1 (ThermoFisher Scientific) at 5nM and 50nM and the 

reporter expression was assessed at 48 hours post transfection.  

 
5.7 Quantitative Real-Time PCR and Western Blot 
 

RNA was extracted from cells, and then 0.5-1 ug of RNA were retro-transcribed to cDNA using 

the Superscript III reverse transcriptase (Invitrogen), according to standard protocol. Real-Time 

PCR (qRT-PCR), carried out with the SsoFast EvaGreen Supermix (BioRad), was performed by using 

a 1:10 dilution of the cDNA. Primer sequences are listed in Table 5.1.  

Relative expression levels were normalized to the mean values of two housekeeping genes 

(B2M and GAPDH)  by using the comparative Ct (ΔΔCt) method and the Bio-Rad CFX manager 

software.  

 
Table 5.1: Primers used in qRT-PCR. 
 

  Forward Reverse 

BIRC5 CGGAGCGGATGGCCGA ATGGGGTCGTCATCTGGCTCC 

eGFP (used for 3’UTR reporter assays) CAAGGACGACGGCAACTACAA GTAGTTGTACTCCAGCTTGTGCC 

B2M TGCTGTCTCCATGGTTTGATGTAT TCTCTGCTCCCCACCTCTAAGT 

GAPDH GAAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTTC 
 

B2M: β-2 microglobulin, GAPDH: glyceraldehyde 3-phosphate dehydrogenase 
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For protein analyses, cells were lysed in RIPA Buffer (Santa Cruz), supplemented with 

complete protease inhibitors cocktails (Roche Diagnostic GmbH), pefabloc (Roche Diagnostics), 

sodium orthovanadate and sodium fluoride (Sigma Aldrich).  

Protein lysates were resolved by SDS-PAGE on TGX stain-free gels (BioRad) and were 

transferred onto nitrocellulose membranes (Sartorius Stedim Biotech GmbH). Membranes were 

incubated with primary antibodies overnight at 4°C; after washing in TBST (137 mM NaCl, 10 mM 

Tris HCl pH 7.5, Tween 0.1%), blots were incubated with the proper secondary antibody for 90 

minutes at room temperature. Antibodies used were the follows: anti-BIRC5 (1:1000) (Abcam), 

anti-eGFP (1:1000) (Covance), anti-Tubulin (1:10000) (Sigma Aldrich), anti-mouse (1:1000) 

(Abcam), anti-rabbit (1:1000) (Santa Cruz). 

Detection was carried out with the Western Lightning Plus-ECL reagent (Perkin Elmer). Protein 

expression analyses were performed with a Chemidoc Imaging System (BioRad) and the Image-Lab 

software was used for image analysis.  
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Abstract

Purpose: The majority of gastrointestinal stromal tumors

(GIST) are driven by KIT, PDGFRA, or, less commonly, BRAF

mutations, and SDH gene inactivation is involved in a limited

fraction of gastric lesions. However, about 10% of GISTs are

devoid of any of such alterations and are poorly responsive to

standard treatments. This study aims to shed light on the molec-

ular drivers of quadruple-negative GISTs.

Experimental Design: Twenty-two sporadic quadruple-nega-

tive GISTs with no prior association with Neurofibromatosis Type

1 syndrome were molecularly profiled for a panel of genes

belonging to tyrosine kinase pathways or previously implicated

in GISTs. For comparison purposes, 24 GISTs carrying KIT,

PDGFRA, or SDH gene mutations were also analyzed. Molecular

findings were correlated to clinicopathologic features.

Results: Most quadruple-negative GISTs featured intestinal

localization, with a female predilection. About 60% (13/22) of

quadruple-negative tumors carried NF1 pathogenic mutations,

often associatedwith biallelic inactivation. The analysis of normal

tissues, available in11 cases, indicated the constitutional nature of

the NF1 mutation in 7 of 11 cases, unveiling an unrecognized

Neurofibromatosis Type 1 syndromic condition. Multifocality

and a multinodular pattern of growth were common findings in

NF1-mutated quadruple-negative GISTs.

Conclusions: NF1 gene mutations are frequent in quadruple-

negative GISTs and are often constitutional, indicating that a

significant fraction of patients with apparently sporadic quadru-

ple-negative GISTs are affected by unrecognized Neurofibroma-

tosis Type 1 syndrome. Hence, a diagnosis of quadruple-negative

GIST, especially if multifocal or with a multinodular growth

pattern and a nongastric location, should alert the clinician to

a possible Neurofibromatosis Type 1 syndromic condition. Clin

Cancer Res; 23(1); 273–82. !2016 AACR.

Introduction

Gastrointestinal stromal tumors (GISTs) are the most frequent

mesenchymal neoplasmof thedigestive tract,with an incidence of

around 1.5 per 100,000/year. GISTs are thought to arise from the

interstitial Cajal cells and are typically considered to be KIT/

PDGFRA-driven tumors (1). In fact, about 85% of sporadic GISTs

are characterized by activatingmutations of eitherKIT or PDGFRA

tyrosine kinase receptor genes, which account for their sensitivity

to the kinase inhibitor imatinib. KIT and PDGFRA mutations

result in constitutive activation of the RAS–RAF–MAPK pathway.

In about 1% of KIT/PDGFRAwild-type cases, the same pathway is

activated as a result ofBRAFmutations (1, 2), andwehave recently

reported the involvement of the ETV6-NTRK3 gene fusion (3).

About 15% of sporadic GISTs are devoid of KIT/PDGFRA/BRAF

mutations and are sometimes referred to as triple-negative GISTs.

Triple-negative GISTs can be observed in the context of rare

hereditary syndromes, including succinate dehydrogenase (SDH)

protein complex-related syndromes (4), and, although not com-

prised in the diagnostic criteria, also in the context of Neurofi-

bromatosis Type 1 (NF-Type 1; refs. 5, 6). Recent studies indicate

that SDH-deficient GISTs represent about one third of triple-

negative GISTs (7). SDH-associated GISTs are typically gastric,

often multifocal, and affect young people, especially females (1,

7–9). They frequently arise in the context of the Carney–Stratakis

Syndrome (GIST and paraganglioma dyad), characterized by

germline inactivatingmutations in any of the four genes encoding

the SDH complex (SDHA-D; refs. 10, 11), or in the Carney Triad

(GIST, paraganglioma, chondroma), associated with SDHC pro-

moter hypermethylation (12, 13).
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In the remaining two third of triple-negative sporadic GISTs,

hereafter referred to as "quadruple-negative" GISTs (KIT/

PDGFRA/BRAFmutation-negative/SDH-proficient), no oncogen-

ic driver alteration has been yet identified. Quadruple-negative

GISTs represent an ill-defined and likely heterogeneous category

of tumors which overall respond poorly to standard treatments

(1). Hence, a better molecular characterization of these neo-

plasms, which account for about 10% of all GISTs, could pave

the way to novel therapeutic avenues.

To shed light on this issue,we sought to investigate a series of 22

quadruple-negative sporadic GISTs arisen in patients with no

prior association to NF-Type 1 (no diagnosis or recorded clinical

manifestations of NF-Type 1 nor familial history for the disease).

Themutational status of apanel of genes either belonging to the

receptor tyrosine kinase pathway or previously associated with

GIST or GIST-including syndromic conditions was analyzed. For

comparisonpurposes, 24 consecutiveGISTs carryingmutations in

either KIT, PDGFRA, or SDH (KIT/PDGFRA/SDHm) were also

profiled.

Intriguingly, 13 of 22 (59%) quadruple-negative GISTs ana-

lyzed turned out to carry pathogenic NF1 gene mutations; in 7

of the 11 cases for which normal matched DNA was available,

we were able to ascertain the constitutional nature of the

alteration. These results indicate that NF1 plays a relevant role

in the pathogenesis of quadruple-negative GISTs, and, more

importantly, a significant fraction of apparently "sporadic"

quadruple-negative GISTs actually arise in undiagnosed NF-

Type 1 patients.

Materials and Methods

Patients population and result communication

The series consisted of 22GISTnegative forKIT/PDGFRA/BRAF/

SDHmutations (quadruple-negative GIST) submitted as sporadic

cases by the referral clinicians. Fifteen of these tumors were

consultation cases of one of the authors (A.P. Dei Tos), who is

the reference pathologist for the Italian Sarcoma Group and for

the Italian Rare Cancer Network. For comparison purposes, 24

consecutive sporadic GISTs carrying mutations in KIT, PDGFRA,

or SDH were also analyzed (KIT/PDGFRA/SDHm group). The

study was approved by the Institutional Review Boards, and

informed consent was provided by all living patients.

GIST diagnosis was based on morphology and CD117 expres-

sion as assessed by immunohistochemistry (IHC). Site, size, and

mitotic count per 5 mm2 were recorded in most cases. Multi-

focality, tumor growth pattern (multinodular with fibromuscular

septa vs. a single expansive nodule), cell type, degree of cellularity,

and presence of skenoid fibers were recorded in all quadruple-

negative GISTs.

KIT, PDGFRA, BRAF mutational status was originally deter-

mined by Sanger sequencing. In KIT/PDGFRA/BRAF-negative

cases, SDH deficiency was assessed by IHC for SDHB, followed

by sequencing. Of the 24 GISTs of the KIT/PDGFRA/SDHm group,

16 cases harboredmutations inKIT, 3 inPDGFRA, 2 in SDHA, and

2 in SDHB; one case (# 46) had a concomitant KIT and SDHA

mutation. No tumor included in the study carried BRAF

mutations.

Demographic and pathologic features of the series are sum-

marized in Supplementary Table S1. Clinical data, including

indications of syndromic conditions, concurrence of other dis-

eases, familial history, and follow-up information, were obtained

from review of medical records and interview of referring physi-

cians. No patient with familial history or genetic diagnosis of NF-

Type1, or recorded clinical manifestations diagnostic of NF-Type

1 (6, 14), was included in the study. Pediatric GISTs were also

excluded from the study.

The results of the mutation screening were returned to the

referring clinician. In the presence of ascertained constitutional

mutations, namely NF1 constitutional mutations, living patients

were referred to a NF-Type 1 expert. The specialist, according to

international guidelines (14–16), integrated molecular data with

patient's clinical findings and family history, and informed the

patient about the characteristics of the disease and the probability

of transmission to the offspring. Further tests and checkups were

eventually prescribed, as appropriate.

Massive parallel sequencing and mutation validation

DNA from frozen or formalin-fixed paraffin-embedded (FFPE)

tumors andmatched normal samples was extracted using the EZ1

biorobot (QIAGEN) or the QIAamp DNA FFPE Tissue Kit (QIA-

GEN). Massive parallel sequencing (MPS) libraries were prepared

with a TruSeq Custom Amplicon v1.5 panel (Illumina) targeting

the coding sequence and a 5-nt flanking intronic region of the

following genes: KIT, PDGFRA, BRAF, SDHA, SDHB, SDHC,

SDHD, HRAS, KRAS, NRAS, NF1, NF2, HIF1A, PTEN, RAF1,

RUNX1, SMARCB1, VHL, CDKN2A, PIK3CA, RB1, SPRED1, and

TP53.

MPS libraries were sequenced on the MiSeq platform (Illu-

mina) using a v3 kit 2 ! 150 cycles. Data were analyzed with the

Miseq Reporter software v2.5, using the custom amplicon work-

flow and somatic variant caller. Mean amplicon coverage was

4367. Variants were analyzed with VariantStudio software (Illu-

mina) and filtered with 100x coverage threshold, and allelic

fraction was "20%. Neutral population polymorphisms, as well

as pseudogene sequences, were filtered out.

In the case of theNF1 gene, regions with low coveragewere also

PCR-amplified and sequenced on an ABI PRISM 3100 Genetic

Analyzer (Applied Biosystems). Mutations detected by MPS in

Translational Relevance

About 10% of gastrointestinal stromal tumors (GIST) are

devoid of canonical KIT, PDGFRA, BRAF, or SDH mutations.

These quadruple-negative GISTs, currently orphans of driver

alterations, are poorly responsive to standard treatments. The

lack of knowledge on their genetics prevents the implemen-

tation of targeted treatments. This work demonstrates that a

significant fraction of apparently sporadic quadruple-negative

GISTs arise in the context of unrecognized Neurofibromatosis

Type 1 (NF-Type 1) syndrome. About 60% of the quadruple-

negative GISTs analyzed bore pathogenic mutations of the

NF1 gene. A relevant proportion of these mutations were

constitutional. NF1-mutated GISTs featured distinctive clini-

copathologic characteristics. Thus, a diagnosis of a quadruple-

negative GIST, especially if multifocal or with a multinodular

growth pattern and a nongastric location, should alert the

clinician to a possible NF-Type 1 syndromic condition. These

patients should be referred to specialists for definitive indi-

vidual and familial risk assessment.
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tumor DNA were validated by PCR-sequencing; where available,

matched normalDNAwas also analyzed. PCRswere optimized to

avoid amplification of pseudogenes.

To assess NF1 copy-number variations, the MPS depth

obtained for a given amplicon was compared with the mean

sequencing depth obtained in the other samples of the run for the

same amplicon, normalized against the sequencing efficiency of

the test sample. Multiplex ligation-dependent probe amplifica-

tion (MLPA NF1 probemix P081 and P082; MRC Holland) was

used to validate thedeletions detected in cases #5 and19. In case #

5, carrying a large NF1 deletion, the copy-number loss was also

validatedbyqPCR. To this end,DNAs extracted fromFFPEnormal

specimens from 5 healthy individuals were used as reference.

Amplicons were centered on NF1 exon 14, comprised in the

deletion, and exon 53, external to the deletion. ADA, KIT, RET,

and IGF1R were used as internal normalization controls. Primers

and PCR conditions are provided in Supplementary Table S2.

Reactions were performed in triplicate with SsoFast EvaGreen

Supermix (BioRad) on a CFX96 Real-Time System (Bio-Rad).

Relative levels were normalized to the geometric average of the

four control genes by the comparative Ct (DDCt) method using

theBio-RadCFXmanager software. Reductionof the signal greater

than 80% was considered indicative of homozygous deletion;

reduction of the signal to about 50%was considered as suggestive

of loss of one allele.

The expression of NF1-mutated alleles was investigated on the

cDNAof 5GISTs forwhich RNAwas available (cases # 8, 9, 13, 28,

and 38). RNA extraction and cDNA synthesis were as previously

described (3).

The Human Gene Mutation Database (HGMD; http://www.

hgmd.cf.ac.uk) was interrogated to assess for previous association

with NF-Type 1 syndrome of the identified mutations. Moreover,

five different prediction algorithms, Provean (http://provean.jcvi.

org; ref. 17), SIFT (http://sift.bii.a-star.edu.sg; ref. 18), Polyphen2

(genetics.bwh.harvard.edu/pph2; ref. 19), MutationAssessor

(http://mutationassessor.org/; ref. 20), and PaPI (http://papi.

unipv.it; ref. 21), were used to predict the effect of coding non-

synonymous variants. The Human Splicing Finder software

(http://www.umd.be/HSF3/) was used to evaluate splice site

mutations (22).

Statistical analyses

Categorical variables were compared by the Fisher two-tailed

exact test. Continuous datawere compared between groups by the

unpaired Student t test.

Results

Molecular findings

The series of 46 sporadic GISTs analyzed in this study included

22quadruple-negative GISTs and 24 tumors belonging to theKIT/

PDGFRA/SDHm group. MPS analysis confirmed the mutations in

KIT, PDGFRA, or SDH genes previously identified by Sanger

sequencing (Supplementary Table S1). No mutation in BRAF,

SDHC, SDHD, RB1, HRAS, KRAS, NRAS, NF2, HIF1A, PTEN,

RAF1, RUNX1, SMARCB1, SPRED1, and VHLwas detected in any

of the cases analyzed. Three tumors carried missense nucleotide

changes in the coding sequence of CDKN2A, TP53, or PIK3CA,

respectively (Supplementary Table S3).

Intriguingly, 15 tumors turned out to carry NF1 mutations

(Table 1). These included 13 quadruple-negative GISTs (13/22;

59%) and 2 tumors of the KIT/PDGFRA/SDHm group (2/24;

8.3%).

NF1 mutations detected in the quadruple-negative group

consisted of small changes (missense mutations, nonsense,

frameshift-induced protein truncation, mutations in proximity

to splicing sites) as well as large deletions. Most of these

mutations had previously been associated with NF-Type 1

(HGMD database) and were predicted to be deleterious (Table

1). The mutation detected in case #17 (His1374Tyr) has been

previously reported as a germline mutation of uncertain sig-

nificance in a subject affected by a not otherwise specified

cancer-predisposing syndrome (SCV000215178.1 in ClinVar

database; http://www.ncbi.nlm.nih.gov/clinvar). Three of the

five prediction algorithms used in this study classified it as

damaging or possibly damaging. The NF1 missense variants

detected in the two KIT-mutated GISTs (case # 28, Ala456Val; #

38, Ala1676Thr) were classified as nonpathogenic by at least

four of five prediction tools.

Differently from the two NF1-mutated GISTs of the KIT/

PDGFRA/SDHm group, most quadruple-negative/NF1-mutated

tumors bore a second NF1 mutation (4 cases) or the mutation

was homo/hemizygous (6 cases), suggestive of biallelic NF1

inactivation (Table 1).

The actual expression ofNF1-mutated alleles was confirmed in

five GISTs for which RNA was available (cases # 8, 9, 13, 28, and

38).

Matched normal DNA was available for 12 of 15NF1-mutated

cases (11 quadruple-negative and 1 KIT-mutated GIST). The NF1

alteration detected in the tumor was also detected in the matched

normal tissue, indicative of its constitutional nature, in 7 of 11

(64%) quadruple-negative and in the KIT-mutated case analyzed

(Table 1). In case # 19, the NF1 alteration (a constitutional

intragenic deletion encompassing exon 3) was detected in histo-

logically tumor-free normal tissue adjacent to the tumor but was

absent in peripheral blood cells, suggesting a postzygotic

mosaicism.

Clinicopathologic correlations

Quadruple-negative versus KIT/PDGFRA/SDHm GISTs. Compari-

son of the clinical characteristics of quadruple-negative versus

KIT/PDGFRA/SDHm groups revealed a trend toward female pre-

dominance in the quadruple-negative group (male-to-female

ratio, 8:14 vs. 14:10; P ¼ 0.15; Fisher exact test). The two groups

did not significantly differ in terms of age (median, 60 vs. 64.5

years), history of other malignancies (3/22 vs. 3/24), mitotic

index (median 8 in both groups), and size (6.0 vs. 5.4 cm), but

were instead heterogeneous in terms of anatomical location. The

stomach was the prevalent site in the KIT/PDGFRA/SDHm group

(75%), in line with literature data (1, 8, 23), whereas was

uncommon in the quadruple-negative group (19%; P < 0.001,

Fisher exact test). In this latter group, the majority of the tumors

developed in the intestine (71%; 12 small intestine; 2 duodenum;

1 in the sigmoid colon) or other sites (1 peritoneum and 1

retroperitoneum).

In the quadruple-negative group, 8 patients were either met-

astatic at diagnosis (4 cases) or developed subsequent metastases

(4 cases); 5 patients were dead of disease at the last follow-up. In

the KIT/PDGFRA/SDHm group, 3 of 20 assessable cases developed

distant metastases (liver, peritoneum, bone) and 1 patient (SDH-

mutated) presented at diagnosis with lymph node invasion; only
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Table 1. NF1 gene mutations

Prediction of pathogenicity

Case

#

Group (mutated

gene)

NF1 gene

mutation

Mutant

variant

frequency

(%)

Biallelic

inactivation

Nature

of NF1

mutation

NF1 mutation

consequence

NF1 protein

change

HGMD

report of

NF-Type 1 Provean SIFT PolyPhen2

Mutation

assessor PaPI Human splicing finder

2 Quadruple-negative c.6855C>A 96 Yes U Stop gained p.Tyr2285Ter CM981382;

CM972796

Deleterious $ $ $ $ $

3 Quadruple-negative c.4725-2A>G 32 No U Splice acceptor

variant

? CS086424 $ $ $ $ $ Alteration of the wt acceptor site,

most probably affecting

splicing

5 Quadruple-negative exon 2-28 del >80 Yes C Deletion ? CG060178 $ $ $ $ $ $

7 Quadruple-negative c.1105C>T 51 Yes C Stop gained p.Gln369Ter $ Deleterious $ $ $ $ $

c.6380delT 35 S Frameshift variant,

truncation

p.Asn2128Ile

fsTer22

$ Deleterious $ $ $ $ $

8 Quadruple-negative c.4600C>T 89 Yes C Stop gained p.Arg1534Ter CM941093 Deleterious $ $ $ $ $

9 Quadruple-negative c.1658A>G 95 Yes C Missense variant p.His553Arg HM0703 Deleterious Damaging Probably

damaging

Medium Damaging $

11 Quadruple-negative c.2514delC 34 Yes S Frameshift variant,

truncation

p.Asn839Thr

fsTer2

$ Deleterious $ $ $ $ $

c.1641þ1G>T 36 S Splice donor variant ? CS000896 $ $ $ $ $ Alteration of the wt donor site,

most probably affecting

splicing

12 Quadruple-negative c.6148-1G>A 48 Yes S Splice acceptor

variant

? CS086428 $ $ $ $ $ Broken wt donor site, activation

of an intronic cryptic acceptor

site, potential alteration of

splicing

c.7869þ1G>T 48 S Splice donor

variant

? CS031796;

CS086439

$ $ $ $ $ Alteration of the wt donor site,

most probably affecting

splicing

13 Quadruple-negative c.2511G>A 50 No S Stop gained p.Trp837Ter CM076345 Deleterious $ $ $ $ $

17 Quadruple-negative c.4120C>T 50 No C Missense variant p.His1374Tyr $ Neutral Damaging Possibly

damaging

Low Damaging $

18 Quadruple-negative c.2272_2273delAG 89 Yes C Frameshift variant,

truncation

p.Arg758Ser

fsTer9

CD000965 Deleterious $ $ $ $ $

19 Quadruple-negative exon 3 del 42 Yes C Deletion ? $ $ $ $ $ $ $

c.1398_1399insA 34 S Frameshift variant,

truncation

p.Thr467Asn

fsTer3

CI031910 Deleterious $ $ $ $

21 Quadruple-negative c.5430_5431insA 72 Yes S Frameshift variant,

truncation

p.Thr1811AsnfsTer8 $ Deleterious $ $ $ $

28 KIT p.Val559_Glu561del c.1367C>T 48 No U Missense variant p.Ala456Val $ Neutral Tolerated Benign Low Tolerated $

38 KIT p.Val560Asp c.5026G>A 51 No C Missense variant p.Ala1676Thr $ Deleterious Tolerated Benign Low Tolerated $

NOTE: NF1 mutation. Reference gene sequence: NM_001042492.2; Reference protein sequence: NP_001035957.1.

Nature of NF1 mutation: U, undetermined; C, constitutional; S, somatic, detected in tumor only.

HGMD report of NF-Type 1 association: http://www.hgmd.cf.ac.uk/ac/gene.php?gene¼NF1.
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1patient (KIT-mutated gastricGIST)was deadof disease at the last

follow-up.

NF1-mutated versus NF1-wild-type quadruple-negative GISTs. To

understand whether the mutation of NF1 was associated with

distinctive biological features, NF1-mutated and NF1-wild-type

quadruple-negative tumors were compared for a number of

clinicopathologic characteristics (Tables 2 and 3).

Neither personal/familial history of NF-Type 1 nor dermato-

logical signs or neoplasias referable to NF-Type 1 were documen-

ted in the clinical records of any patient prior inclusion in this

study. Although we failed to retrieve complete clinical history of 1

patient (case # 2), this case was submitted for consultation as a

sporadic GIST.

No statistical difference between NF1-mutated and NF1-wild-

type quadruple-negative cases was observed in terms of sex (male-

to-female ratio, 5:8 vs. 3:6), age (median, 59 vs. 68 years), mitotic

index (median, 8 vs. 5), tumor size (median, 7 vs. 5.8 cm), and

distribution of tumor locations.

Although no other malignancies were reported in the NF1-

wild-type group, 3NF1-mutated patients had a concurrent malig-

nancy. Specifically, 2 patients with aNF1 constitutional mutation

(cases # 5 and 7) had a history of breast carcinoma; patient # 11,

with a somaticNF1mutation in the GIST, presented with 2 other

concomitant tumors (chromophobe renal cell carcinoma and

colon cancer).

Multifocality at diagnosis was observed only in theNF1-mutat-

ed group. Twopatients (# 3 and#19)presentedwith synchronous

small intestinal lesions. An unusual pattern of progression was

noticed in two other cases: patient # 7 developed two subsequent

GISTs within the small intestine wall seven years after first surgery

for a low-risk small intestinal GIST; patient # 9, with a primary

peritoneal GIST, relapsed twice with a predominant small intes-

tinal GIST associated with smaller peritoneal nodules. All these

cases carried a NF1 constitutional defect.

A multinodular growth pattern with fibromuscular septa, sim-

ilar to that described for SDH-deficient GISTs, was evident in four

cases, all with constitutional NF1 alterations (Fig. 1).

NF1-wild-type tumors exhibited spindle morphology in four

cases, mixed in two, and epithelioid in three.

The morphology in the NF1-mutated group was spindle in

seven cases, mixed in three, and epithelioid in two (Fig. 1).

Interestingly, six of seven NF1-mutated GISTs with spindle cell

morphology showed features typical of GISTs arising in the

context of NF-Type 1: they were hypocellular throughout and

featured abundant extracellular collagen with skenoid fibers.

Areas with such features were also found in one of the three

GISTs withmixedmorphology. Unusual features were detected in

Table 2. Clinical characteristics of quadruple-negative GIST patients

Case # Group

Nature

of NF1

mutation Sex Age

Disease

status at

diagnosis Other malignancies Relapse

Time to

relapse

(months)

GIST Medical

therapy

Status at

last follow-up

(months)

1 NF1 wild-type — F 58 NA NA NA NA NA

4 — F 69 Localized No Yes (liver) 67 Imatinib

(at relapse)

AWD (67)

6 — M 53 Localized NA No NA NA

10 — F 77 Localized No No No NED (15)

14 — F 68 Localized No No No NED (72)

15 — M 68 Localized No No No NED (72)

16 — F 70 Localized No Yes (liver þ

peritoneum)

38 Imatinib

(at relapse),

sunitinib

DOD (89)

20 — M 60 Localized No No No NED (26)

22 — F 30 Localized No No No NED (13)

2 NF1 mutated U M 35 NA NA NA NA NA NA

3 U F 76 Localized No NA NA NA NA

5 C F 73 Metastatic

(peritoneum)

Breast carcinoma Yes (liver) 25 No imatinib

(chemotherapy

for breast cancer)

DOD (39)

7 C F 60 Localized Breast carcinoma Yes (peritoneum) 122 Imatinib (at relapse) DOD (129)

8 C F 31 Metastatic

(peritoneum)

No Yes (liver) 12 Imatinib (ab initio) DOD (16)

9 C F 73 Localized No Yes (peritoneum) 15 Imatinib (at

relapse), sunitinib

DOD (39)

11 S M 59 Localized Chromophobe renal

cell carcinoma; colon

adenocarcinoma

No No NED (6)

12 S M 50 Localized No No No NED (24)

13 S F 86 Localized No No No NED (26)

17 C F 42 Metastatic

(peritoneum)

No Yes (peritoneum) 7 Imatinib (ab initio),

sunitinib,

regorafenib

AWD (59)

18 C M 56 Localized No No No NED (27)

19 C F 67 Localized No No No NED (3)

21 S M 36 Metastatic

(peritoneum)

No No No NED (12)

NOTE: Nature of NF1 mutation: U, undetermined; C, constitutional; S, somatic, detected in tumor only.

Clinical information: NA, not available; AWD, alive with disease; DOD, dead of disease; NED, no evidence of disease.
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the two NF1-mutated GISTs with epithelioid morphology: one

case displayed a striking plasmacytoid phenotype with eccentric

vesicular nuclei, evident nucleoli, and abundant eosinophilic

cytoplasm; the other was a small round cell tumor. Both these

cases featured a very high mitotic index (Fig. 1).

Disease status at diagnosis was known for 12 NF1-mutated

and 8 NF1-wild-type cases. All NF1-wild-type patients pre-

sented with localized disease; two of them developed metas-

tasis 38 and 67 months after surgery. Among NF1-mutated

patients, 4 had peritoneal metastases at diagnosis; progression

was reported in 2 cases localized at the diagnosis, at 15 and 122

months, respectively.

Data on the clinical therapy were available for 7NF1-wild-type

and 11 NF1-mutated cases (Table 2). Imatinib was administered

to 2 metastatic patients ab initio, both NF-1 mutated, and upon

relapse in 4 cases, 2NF1-wild-type and 2NF1-mutated. OneNF1-

wild-type and 2 NF1-mutated cases were shifted to second- and

third-line therapy. For NF1-mutated cases, median time to pro-

gression under imatinib was 9.5 months (range, 7–18 months).

Regarding patients' outcome, follow-up information was avail-

able for 7NF1-wild-type patients and11 caseswithNF1mutation.

Within the NF1-wild-type group, patient # 16 died of disease

(89 months); patient # 4 was alive with disease (67 months

after surgery); 5 patients were disease-free at the last follow-up.

Within the NF1-mutated group, 4 patients died of disease

(median time to death 39 months), 1 patient was alive with

disease 59 months after surgery, and 6 patients were disease-

free at the last follow-up.

NF-Type 1 expert re-evaluation of patients with constitutional NF1

mutation.Of the 7 patients with ascertained constitutional NF1

mutation, 4 were deceased and the 3 living patients agreed to be

referred to a NF-Type 1 expert. According to the specialist,

patient #17 failed to fulfill NIH diagnostic criteria for NF-Type

1 (6). A diagnosis of NF-Type 1 was instead eventually made for

patients # 18 and #19 who had a negative family history for NF-

Type 1. Patient # 18 presented with axillary/inguinal freckling,

several neurofibromas, and 14 caf!e-au-lait macules greater than

15 mm. The patient suffered also of severe vision impairment

attributed to Retinitis pigmentosa. In patient # 19, the medical

geneticist detected small cutaneous neurofibromas in the trunk,

2 caf!e-au-lait spots and skin-fold freckles, consistent with mild

Table 3. Pathologic features of quadruple-negative GISTs

Case

# Group

Nature

of NF1

mutation

Tumor

multifocality

Growth

pattern

Site of primary

GIST Size

Mitotic

index Morphology

Degree of

cellularity

Presence

of

skenoid

fibers

1 NF1 wild-

type

— No Single nodule Small intestine 6.0 2 Spindle Moderate No

4 — No NA Small intestine NA 21 Mixed High NA

6 — No Single nodule Retroperitoneum 8.0 20 Epithelioid High No

10 — No Single nodule Stomach 15.0 29 Spindle High No

14 — No Single nodule Stomach 5.5 5 Epithelioid NA No

15 — No Single nodule Duodenum 2.3 1 Spindle NA No

16 — No Single nodule Small intestine 11.5 87 Epithelioid High No

20 — No Single nodule Small intestine 4.5 3 Spindle Low Yes

22 — No Single nodule Small intestine 3.2 3 Mixed Moderate No

2 NF1

mutated

U NA NA NA NA NA NA NA NA

3 U Yes Single nodule Small intestine

(Ileum þ

Jejunum)

1.5þ2.5 1 Spindle Low Yes

5 C No Multinodular Duodenum 8.0 18 Mixed Moderate

(spindle cell

areas of low

cellularity)

Yes

7 C Yes

(metachronousa)

Multinodular Small intestine 6.0 2 Spindle Low Yes

8 C No Multinodular Small intestine 9.0 83 Mixed High No

9 C Yes

(metachronousb)

Single nodule Peritoneum 16.0 30 Epithelioid/

Plasmacytoid

High No

11 S No Single nodule Small intestine 1.5 0 Spindle Low Yes

12 S No Single nodule Small intestine 6.0 1 Spindle Low Yes

13 S No Single nodule Small intestine 8.0 8 Spindle Low Yes

17 C No NA Sigmoid colon 8.0 39 Epithelioid/

Small

round cell

High No

18 C No Single nodule Stomach 3.2 8 Mixed Moderate No

19 C Yes Multinodular Small intestine 3 þ otherc 2 Spindle Low Yes

21 S No Single nodule Stomach 11 10 Spindle High No

NOTE: Nature of NF1 mutation: U, undetermined; C, constitutional; S, somatic, detected in tumor only.

Abbreviation: NA, not available.
aThis patient developed two subsequent GISTs of small size and low mitotic index in the small intestinal wall, seven years after first surgery.
bThis patient relapsed twice, 15 and 30 months after first surgery, with a predominant small intestinal tumor and smaller peritoneal nodules.
cThis patient presented with a predominant tumor (3 cm) and 6 additional smaller subserosal nodules (size range, 0.2–1.2 cm).
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form of NF-Type 1. Intriguingly, the intragenic deletion encom-

passing NF1 exon 3 detected in the proband's tumor and in

adjacent, histologically tumor-free, normal tissue was absent in

peripheral blood cells, supporting a postzygotic mosaicism. No

hallmarks of NF-Type 1 were detected in the patient's daughter

(44 years).

Discussion

This study aimed at gaining insight into the genetics of qua-

druple-negative GISTs, representing a fraction of tumors currently

"orphan" of oncogenic driver alterations. To this end,we collected

22 quadruple-negative sporadic GISTs arisen in patients with no

A B

C D

E F

G H

T T

NN

Figure 1.

Pathologic and molecular features of

NF1-mutated GISTs. A and B,

Multinodular growthpatternwith thick

fibrous septa in cases # 8 (A) and # 5

(B). C, Spindle cell morphology with

abundant skenoid fibers,

hypocellularity, and low mitotic

activity in case # 3.D,Hypercellularity,

nuclear atypia, and high mitotic index

in case # 8. E, Plasmacytoid

morphology and high mitotic index in

case # 9. CD117 expression was

diffused with a membranous and dot-

like pattern of staining (inset). F, Small

round cell morphology and high

mitotic index in case # 17. CD117

expression was diffused with a

membranous and cytoplasmic pattern

of staining (inset). G, Case # 17 carried

a constitutional C to T transition,

resulting in a His to Tyr amino acid

substitution at codon 1374. Both tumor

(T) and normal tissue (N) were

heterozygous for the mutation. H,

Case # 9 carried a constitutional A toG

transition, resulting in a His to Arg

amino acid substitution at codon 553.

The wild-type allele was lost in the

tumor (T).
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prior association with NF-Type 1. For comparison purposes, 24

consecutive GISTs with KIT, PDGFRA, or SDH alterations were

also analyzed. The majority of the quadruple-negative GISTs

turned out to be nongastric tumors. Thisfindingmaybe explained

by the fact that a large fraction of wild-type gastric GISTs rely on

SDH inactivation as an alternative to KIT/PDGFRA oncogenic

mutation (8), thus leaving the driver alteration of nongastric

GISTs undetermined. This supports the notion that GISTs arising

in different sites feature different genetic backgrounds.

The molecular profiling of our GIST series revealed an unex-

pected high frequency of NF1 mutations, particularly in the

quadruple-negative group (13/22; 59%). NF1 encodes neurofi-

bromin, a GTPase-activating protein that binds to active GTP-

bound RAS, and works as an off signal for all members of the RAS

GTPase family. Similarly to KIT-, PDGFRA-, or BRAF-activating

mutations, loss of NF1 leads to the unleashing of the MAPK

cascade (5). The detection of a high frequency of pathogenicNF1

mutations in "sporadic" quadruple-negative GISTs indicates that

the triggering of the RAS/RAF/MAPK pathway by means of NF1

inactivation plays a relevant role in the pathogenesis of GIST

devoid of canonical tyrosine kinase receptor mutations.

Another and perhaps themost intriguing finding of our study is

that NF1 mutations in quadruple-negative GISTs were constitu-

tional in 7 of 11 cases tested, and often associated with biallelic

inactivation. We would like to emphasize that the design of our

study excluded a priori all patients with documented familial

history, genetic diagnosis, or recorded diagnostic stigmata of

NF-Type 1. Thus, our results demonstrate that a significant frac-

tion of patients presenting to surgical and medical oncology

clinics with quadruple-negative "sporadic" GIST are de facto

affected by unrecognized forms of the NF-Type 1 syndrome.

This is reminiscent of the SDH "saga," where SDH germline

mutations were originally described in the Carney–Stratakis syn-

drome (familial paraganglioma andGIST; refs. 10, 11, 24, 25) and

only subsequently acknowledged to contribute to a significant

fraction of apparently "sporadic" GISTs (8, 24–28). It is also in

line with recent reports that susceptibility to cancer due to

unsuspected syndromic conditions is more frequent than com-

monly believed (29).

The association between NF-Type 1 syndrome and cancer is

well known, butNF1mutation analysis has long been challenging

because of the large gene size (58 exons), multiple alternatively

spliced isoforms, and existence of multiple pseudogenes (5). The

recent advent of MPS technologies is not only facilitating the

molecular diagnosis of NF-Type 1 probands, but is also revealing

that somaticNF1mutations are involved in up to 12%of sporadic

tumors, including glioblastomas, lung, breast, ovarian, Merkel

cell carcinomas, melanomas, and sarcomas (5, 30–32). Our

report highlights that quadruple-negative "sporadic" GISTs often

arise in the context of unrecognized NF-Type 1 syndrome.

NF-Type 1 is the most common autosomally dominant inher-

ited disorder in humans, with an incidence of about 1:3,000 live

births in Western Countries (14, 15, 33). NF1 is one of the genes

with the highest mutation rates, and approximately 50% of

clinically diagnosed NF-Type 1 patients carry de-novo NF1 muta-

tions. Thesemutations can also occur late in embryo development

andmay therefore be present in amosaic state, accounting for the

segmental forms of the disease (33, 34).NF-Type 1 features a poor

genotype–phenotype correlation and an extremely variable

expression pattern, with the spectrum and extent of manifesta-

tions varying greatly among affected individuals within a single

family and even within a single person at different times of life

(16). NIH clinical diagnostic criteria comprise caf!e-au-lait

macules, multiple neurofibromas, axillary/groin freckling, iris

hamartomas (Lisch nodules), optic pathway glioma, and distinc-

tive osseous lesions (6). It should be kept in mind that these

criteria, established in 1988, were originally aimed at selecting

those individuals whose genetic profiling would have eventually

lead to the identification of the NF1 gene. They were therefore

purposely stringent, essentially based on visual inspection of the

subject and did not includemalignant tumors. As amatter of fact,

NF-Type1patients dohave an increased risk ofdeveloping tumors

of different types, primarily in nervous system (i.e., malignant

peripheral nerve sheat tumors, gliomas, plexiform neurofibro-

mas, ganglioneuromas) but also in other sites (33, 35–37). The

risk of GIST is also augmented in NF-Type 1 patients (36, 37),

although Miettinen and colleagues reported that only a minute

fraction (1.5%) of GISTs included in the AFIP files were arisen in

patients with a diagnosis of NF-Type 1 (38).

The remarkable frequency of NF1 constitutional mutation

detected in our series of quadruple-negative GISTs prompted a

clinical reassessment of the carriers. NF-Type 1 expert re-evalua-

tion of the 3 living patients carrying a constitutional mutation

(#17, 18, and 19) confirmed a negative familial history for the

disease. No clinical manifestations complying with the NIH

diagnostic criteria were identified by the specialist in patient

#17. The NF1 mutation detected in this individual, His1374Tyr,

has been previously identified in a subject affected by a not

otherwise specified cancer-predisposing condition (ClinVar).

Although originally classified as of uncertain significance, three

of the five prediction algorithms used in our study indicated a

damaging/possibly damaging effect. Overall, these findings are

compatible with either a segmental disease or with a low-expres-

sivity form. Interestingly, a 3-bp inframe deletion has been

recently reported to be associated with a forme fruste of NF-Type

1 that is portrayed, in some individuals, by no other sign but few

caf!e-au-lait macules (39). It is tempting to speculate that the

mutation detected in patient #17 may also convey a very atten-

uated phenotype. Intriguingly, this patient was diagnosed with a

GIST located in the colon, an exceedingly rare site, since the so-

called colorectal GISTs predominantly develop in the lower

rectum (23, 40). The link between His1374Tyr mutation and

GIST location in the colon is worth further investigation.

The clinical geneticistwas insteadable to identifypathognomonic

signs consistentwithNF-Type 1 in case #18 and, in amilder form, in

case #19, who is a carrier of a post-zygotic mosaicNF1mutation. It

is noteworthy that the syndromic condition of these patients was

essentially overlooked by all the doctors (general practitioner,

ophthalmologist, surgeon, oncologist, etc.), the patients have dealt

with during their life (67 and 56 years, respectively), and that only

the occurrence of a GIST with peculiar characteristics (quadruple

negative) brought these cases to the attention of the genetic coun-

selor, who eventually made the diagnosis of NF-Type 1.

The extreme variability of NF-Type 1 clinical presentations and

expressivity, the fact that GIST are not considered a common

finding in these patients, together with the complexity of the

molecular diagnosis of NF-Type 1, likely explain the underesti-

mation of the role ofNF1 in the pathogenesis of "sporadic" GISTs.

Currently, in the absence of family history or obvious clinical

stigmata, the presence of a quadruple-negative GIST is not con-

sidered suggestive of an NF-Type 1 syndromic condition. Never-

theless, besides being commonly devoid of KIT/PDGFRA/BRAF/
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SDH mutations, NF1-associated GISTs are reported to have dis-

tinctive clinicopathologic features, including multifocality and

hypocellularity, spindle cell morphology with skenoid fibers,

preferential location in the small bowel, and onset in the late

fifth decade (38, 41–44). These characteristics were also exhibited

by most NF1-mutated GISTs in our series. Moreover, a multi-

nodular growth pattern was observed in four cases. This pattern

has previously been deemed as typical of SDH-deficient GISTs (8,

25, 27), but our findings suggest that it likely reflects a more

general trait of GISTs arising in syndromic contexts. Finally,

although only fourNF1-mutated GISTs received imatinib, overall

the clinical benefit was unsatisfactory (median time to progres-

sion 9.5 months), adding support to the concept that NF1-

associated GISTs are poorly responsive to this drug (44).

In conclusion, this study unveiled the genetic bases of a

significant fraction of quadruple-negative GISTs, identifying the

inactivation of NF1 as a key driver alteration. Moreover, the

finding that theNF1mutation was constitutional in an important

fraction of these patients suggests a role for GIST as a sentinel

tumor for NF-Type 1. Hence, a diagnosis of quadruple-negative

GIST, especially if multifocal or with a multinodular growth

pattern and a nongastric location, should alert the clinician to

a possible NF-Type 1 syndromic condition. These patients should

be referred toNF-Type1 specialists for a thorough search for subtle

disease manifestations and to genetic counseling for definitive

individual and familial risk assessment.
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Neurofibromin C terminus-specific antibody
(clone NFC) is a valuable tool for the
identification of NF1-inactivated GISTs
Sabrina Rossi1,8, Daniela Gasparotto2,8, Matilde Cacciatore1, Marta Sbaraglia1,
Alessia Mondello2, Maurizio Polano2, Alessandra Mandolesi3, Alessandro Gronchi4,
David E Reuss5,6, Andreas von Deimling5,6, Roberta Maestro2,9 and
Angelo Paolo Dei Tos1,7,9

1Department of Pathology & Molecular Genetics, Treviso General Hospital, Treviso, Italy; 2Oncogenetics and
Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, Aviano, Italy; 3Department of Internal
Medicine, Ospedali Riuniti di Ancona, Ancona, Italy; 4Department of Surgery, Fondazione IRCCS Istituto
Nazionale dei Tumori di Milano, Milano, Italy; 5Department of Neuropathology, Institute of Pathology,
University of Heidelberg, Heidelberg, Germany; 6Clinical Cooperation Unit Neuropathology, German Cancer
Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany and 7Department of
Medicine, University of Padova School of Medicine, Padova, Italy

An increasing body of evidence supports the involvement of NF1 mutations, constitutional or somatic, in the

pathogenesis of gastrointestinal stromal tumors (GISTs). Due to the large size of the NF1 locus, the existence of

multiple pseudogenes and the wide spectrum of mechanisms of gene inactivation, the analysis of NF1 gene

status is still challenging for most laboratories. Here we sought to assess the efficacy of a recently developed

neurofibromin-specific antibody (NFC) in detecting NF1-inactivated GISTs. NFC reactivity was analyzed in a

series of 98 GISTs. Of these, 29 were ‘NF1-associated’ (17 with ascertained NF1 mutations and 12 arising in the

context of clinically diagnosed Neurofibromatosis type 1 syndrome and thus considered bona fine NF1

inactivated); 38 were ‘NF1-unrelated’ (either wild-type or carrying non-pathogenic variants of NF1). Thirty-one

additional GISTs with no available information on NF1 gene status or with NF1 gene variants of uncertain

pathogenic significance were also included in the analysis. Cases were scored as NFC negative when, in the

presence of NFC positive internal controls, no cytoplasmic staining was detected in the neoplastic cells. NFC

immunoreactivity was lost in 24/29 (83%) NF1-associated GISTs as opposed to only 2/38 (5%) NF1-unrelated

GISTs (P= 3e−11). NFC staining loss significantly correlated (P= 0.007) with the presence of biallelic NF1

inactivation, due essentially to large deletions or truncating mutations. NFC reactivity was instead retained in two

cases in which the NF1 alteration was heterozygous and in one case where the pathogenic NF1 variant, although

homo/hemizygous, was a missense mutation predicted not to affect neurofibromin half-life. Overall this study

provides evidence that NFC is a valuable tool for identifying NF1-inactivated GISTs, thus serving as a surrogate

for molecular analysis.
Modern Pathology advance online publication, 1 September 2017; doi:10.1038/modpathol.2017.105

Neurofibromin, encoded by the NF1 gene, is a
GTPase-activating protein with tumor suppressor
functions: neurofibromin binds and inhibits active

GTP-bound Ras, preventing the downstream trigger-
ing of Ras effector pathways (MAPK and PI3K/
Akt/mTOR). NF1 gene inactivation is typically
involved in the pathogenesis of tumors arising in
the context of Neurofibromatosis type 1, most
notably malignant peripheral nerve sheath tumors,
neurofibromas, and optic pathway gliomas. How-
ever, recent evidence has broadened the spectrum of
NF1-driven tumors and NF1 mutations have been
shown to contribute to the pathogenesis of over 10%
sporadic tumors, including melanomas, glioblasto-
mas, breast, ovarian and lung carcinomas, and
sarcomas.1–4
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We have recently reported that NF1 is a driver
mutation in a significant fraction of gastrointestinal
stromal tumors (GISTs).5 GIST is the most frequent
mesenchymal neoplasm of the digestive tract. The
vast majority of GISTs (about 85%) are typically
driven by activating mutations of receptor tyrosine
kinases, namely KIT and PDGFRA. BRAF or HRAS
mutations have been reported in a few cases.6,7 All
these alterations result in the constitutive activation
of MAPK and PI3K/Akt/mTOR pathways. About
5% of GISTs feature inactivation of components of
the mitochondrial succinate dehydrogenase complex
(SDH) and are typically associated with syndromic
conditions (Carney Stratakis and Carney Triad). The
remaining fraction of GISTs (a.k.a. quadruple-nega-
tive GISTs, about 10%) were essentially considered
to be ‘driver mutation unknown’ until very recent
literature highlighted that NF1 mutations play a
greater role in GIST pathogenesis than commonly
thought.4,5,8 NF1 mutations were historically con-
sidered to be confined to GISTs arising in the context
of Neurofibromatosis type 1.7,9 We instead demon-
strated that NF1 mutations, be they constitutional or
somatic, occur in a large proportion of ‘apparently
sporadic’ quadruple-negative GISTs.5 The presence
of NF1 mutations in GISTs has important diagnostic
and predictive implications for patient management.
Detection of an NF1-mutated GIST may be the
sentinel of an unrecognized Neurofibromatosis
type 1 condition, with obvious implications for the
patient and his/her family. On the other hand, unlike
receptor tyrosine kinase-mutated GISTs, which
generally respond to kinase inhibitors, NF1-mutated
GISTs are imatinib resistant.9,10 Hence, the detection
of NF1 inactivation is crucial for proper clinical
management of GIST patients.

The analysis of NF1 gene status is problematic for
most laboratories and the diagnosis of Neurofibro-
matosis type 1 is still essentially based on clinical
findings. The large size of the NF1 locus (58 exons
and very large introns), the existence of multiple
pseudogenes and the wide spectrum of mechanisms
of gene inactivation (from missense mutations to
large deletions, translocations and possibly epige-
netic silencing), has long prevented comprehensive
molecular testing of NF1 and this investigation is
still limited to a few laboratories equipped with
massive parallel sequencing (next generation), com-
parative genomic hybridization technologies and
multiplex ligation-dependent probe amplification
approaches.1,11

Antibodies have proven to be reliable surrogates
for gene alteration analysis in different contexts.
For instance, HER2 staining is used to identify HER2-
amplified breast cancers; anti-MDM2 antibodies
are used to identify MDM2-amplified liposarcomas;
ALK immunoreactivity is indicative of ALK rearran-
gements;12 loss of SDHB staining is considered indi-
cative of SDHx gene inactivation,13 and VE1 anti-
body is a good surrogate for BRAF V600E mutation
detection, also in the context of GISTs.14–16

We recently generated an antibody, NFC, directed
against the last 281 amino acids of neurofibromin.17

This region is commonly lost in NF1-inactivated
tumors, as the vast majority of NF1 mutations are
deletions or give rise to truncated proteins.1 NFC
has demonstrated high sensitivity and specificity
in distinguishing NF1-associated malignant peri-
pheral nerve sheath tumors from other spindle cell
neoplasms.17,18

Here we sought to explore the reliability of NFC
staining in identifying NF1-associated GISTs. To this
end, we screened a well-characterized series of
GISTs and correlated NFC reactivity with NF1
mutation data.

Materials and methods

Tumor Samples

Clinicopathological and molecular features of the
analyzed tumor series are summarized in Table 1.
The study was carried out on 98 formalin-fixed
paraffin-embedded tumors retrieved from the patho-
logical files of the collaborating institutions or
submitted for consultation to one of the authors
(APDT). The tumors—93 GISTs and 5 microGISTs
(mGISTs, size ≤ 1 cm)—were from 89 patients (multi-
ple tumors were analyzed for six patients). Twelve of
these patients had a clinical diagnosis of Neurofi-
bromatosis type 1. Informed consent was obtained
from all living individuals.

Paraffin block age ranged from 6 to 254 months
(median 48 months). All samples were freshly cut
prior to staining.

All 98 cases included in the study were profiled
for KIT, PDGFRA, BRAF, or SDH gene status; one
quadruple-negative GIST carried an ETV6–NTRK3
gene fusion.19 The NF1 gene status was ascertained
in 56 samples: NF1 pathogenic mutations were
detected in 17 tumors, all of them quadruple-
negative; three cases—two KIT-mutated tumors
(#38, 39) and one quadruple-negative GIST (# 98)—
bore non-pathogenic mutations and a genetic variant
of uncertain pathogenic significance, respectively;
36 tumors were NF1 wild-type.

The nature of the NF1 mutations was assessed in
19/20 cases: the mutation was somatic in 4 GISTs
(#5, #8, #10, #17) and constitutional in 15 (13 patho-
genic, 1 non-pathogenic, and 1 variant of uncertain
significance).

The five mGISTs included in the study were
from patients with a diagnosis of Neurofibromatosis
type 1.

The remaining 42 cases were not analyzed for NF1
status. These included 30 sporadic GISTs and 12
GISTs that were considered bona fide NF1 inacti-
vated, having arisen in the context of clinically
diagnosed Neurofibromatosis type 1.

Overall, from a molecular standpoint, our series
was composed of three major groups: ‘NF1-associated’
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Table 1 Clinicopathological and molecular characteristics of the series

Abbreviations: CL, complete loss; Duod, duodenum; Esoph, esophagus; Lg Int, large intestine; M, moderate staining intensity; N, No; ND, NF1
mutation analysis not done; non-path, non-pathogenic NF1 variants; Perit, peritoneum; PL, partial loss; R, retained; Rect, rectum; RetroP,
retroperituneum; S, strong staining intensity; Sm Int, small intestine; Stom, stomach; Th Wall, thoracic wall; U, unspecified; unc-sign, NF1 variant
of uncertain pathogenic significance; W, weak staining intensity; Y, Yes.
Brackets indicate multiple tumors of the same patients.
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tumors (29 cases), including the 17 tumors carrying
NF1 pathogenic mutations, together with the 12
GISTs arising in the context of clinically diagnosed
Neurofibromatosis type 1; ‘NF1-unrelated’ tumors,
consisting of the 38 cases with no or non-pathogenic
NF1 mutations; ‘NF1-undetermined’ cases (31 cases),
including the sporadic GISTs with no available
information on NF1 status and the GIST (# 98)
carrying an NF1 variant of uncertain pathogenic
significance (Table 2).

Irrespective of whether the origin of NF1 mutation
was constitutional or somatic, the small intestine was
the prevalent site in NF1-associated GISTs (20/29
cases), as different from the NF1-unrelated tumors
(16/38 cases) (P=0.047), where gastric lesions were
instead more common (19/38) (P=3e−5) (Table 1), in
agreement with previous reports.5,20,21

Immunohistochemistry

The NFC monoclonal antibody was used to assess
neurofibromin protein expression by immunohisto-
chemistry. This antibody was raised in mice by
immunization with a recombinant protein correspond-
ing to the C terminus of human neurofibromin (last 281
amino acids), a region commonly lost in NF1-inacti-
vated tumors.17 NFC demonstrated high sensitivity and
specificity in the identification of NF1-associated
malignant peripheral nerve sheath tumors.17

NFC immunostaining was performed on whole
sections of the 29 NF1-associated tumors listed in
Table 2 plus the case carrying an NF1 variant of
uncertain significance. Tissue microarrays were
implemented for the remaining cases. Each tumor
was represented by three 2-mm cores.

Freshly cut 4 μm sections were first dried at 60 °C
for 30min and then stained using an automated
immunostainer (Dako AutostainerLink 48). The

staining was preceded by heat-induced antigen
retrieval (98 °C, waterbath) carried out in citrate
buffer, pH 6.1 for 40min (EnVision FLEX Target
Retrieval Solution, low pH). The DAKO staining
procedure included 5min’ incubation with FLEX
Peroxidase Block, 1 h of incubation with 1:4 diluted
NFC hybridoma supernatant, 15min incubation with
EnVision FLEX+ Mouse LINKER (Dako), 20min
incubation with the labeled polymer (HT/HRP),
and 10min incubation with a substrate chromogen
(FLEX DAB+Sub Chromo). All staining steps were
carried out at room temperature.

NFC expression was considered lost when no
cytoplasmic staining was seen in the neoplastic cells
but appropriate internal controls (fibroblasts, ganglion
cells, plasma cells, endothelium, smooth muscle)
reacted positively. NFC loss was regarded as complete
when the neoplastic cells were homogeneously nega-
tive, and partial when the staining was heterogeneous
with limited tumor areas retaining NFC expression.
NFC expression was considered to be maintained when
tumor cells were homogeneously positive. Staining
intensity (weak, moderate, strong) was recorded.

Molecular Analysis

For the purposes of molecular analysis, areas
enriched in tumor cells were marked by the
pathologist on tissue slides. DNA was extracted with
the EZ1 biorobot (Qiagen) or QIAamp DNA FFPE
Tissue kit (Qiagen). Massive parallel sequencing
libraries were prepared with a TruSeq Custom
Amplicon v1.5 panel (Illumina), run on MiSeq
(Illumina), and analyzed as previously described.5

NF1 mutations were validated by Sanger sequencing
(Reference NF1 gene sequence: NM_001042492.2;
Reference neurofibromin protein sequence:
NP_001035957.1). Regions with low coverage at
massive parallel sequencing analysis were also

Table 2 NFC reactivity according to NF1 association

NF1 association
Driver mutation
(number of samples) Evidence NFC reactivity NFC pattern of loss

Number
of cases

NF1-associated Bona fide NF1 (12) Clinical diagnosis of neurofibromatosis
type 1

10 Loss 6 Complete, 4 partial 29

2 Retention No loss
NF1 (17) Constitutional NF1 pathogenic

mutations (13 cases)
11 Loss 8 Complete, 3 partial

2 Retention No loss
Somatic NF1 pathogenic mutations
(4 cases)

3 Loss 3 Complete

1 Retention No loss
NF1-unrelated KIT (26) NF1 wild-type or with non-pathogenic

NF1 variants
No clinical evidence of
neurofibromatosis type 1

2 Loss 2 Complete 38
PDGFRA (5)
BRAF (3)
ETV6-NTRK3 (1) 36 Retention No loss
Unknown (3)

Undetermined KIT (21) No information on NF1 gene status or
NF1 variants of uncertain pathogenic
significance
No clinical evidence of
neurofibromatosis type 1

31 Retention No loss 31
PDGFRA (9)
Unknown (1)
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double checked by Sanger sequencing on an ABI
PRISM 3100 Genetic Analyzer (Applied Biosystems).
Only variants with frequencies 420% were
considered.

Mutations were considered heterozygous when
the frequency was in the 20–60% range; homo/hemi-
zygous when it was 470%. NF1 biallelic inactiva-
tion was defined by the presence of a homo/
hemizygous mutation or by two distinct hetero-
zygous NF1 mutations in the same tumor. Where
available, matched normal DNA was analyzed to
determine whether the mutation detected in the
tumor was constitutional or somatic.

The Human Gene Mutation Database (http://www.
hgmd.cf.ac.uk) and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar) were interrogated to search for
published associations with the Neurofibromatosis
type 1 syndrome of the identified mutations. In
addition, Provean (http://provean.jcvi.org), SIFT
(http://sift.bii.a-star.edu.sg), PolyPhen2 (genetics.bwh.
harvard.edu/pph2), MutationAssessor (http://mutation
assessor.org/), and PaPI (http://papi.unipv.it) tools
were used to predict the effect of non-synonymous
variants. The Human Splicing Finder software (www.
umd.be/HSF3) was used to evaluate splice site
mutations. The ExPASy ProtParam tool (http://web.
expasy.org/protparam/) was implemented to assess
the impact of single amino-acid variations on protein
half-life.

Statistical Analysis

Fisher’s exact test (two-tailed) was used to compare
categorical variables.

Results

The results of NFC immunostaining are summarized
in Tables 1 and 2. Representative samples are shown
in Figure 1. Clear-cut positive internal controls were
always present in all analyzed cases.

NFC staining was cytoplasmic and granular in
quality in both neoplastic and non-neoplastic/positive
control cells. Ganglion cells and nerves, followed by
plasma cells and fibroblasts, displayed the strongest
reactivity. Endothelial cells showed highly variable
staining intensity (from moderate to weak). Regarding
the gastric mucosa, NFC reactivity was positive in the
glands, usually with moderate intensity; the foveolae
were instead negative. NFC stained the intestinal
mucosa homogeneously but with variable intensity.
NFC reactivity in the smooth muscle cells of the
muscularis propria was usually weak.

Loss of NFC immunostaining was observed in 26
of the 98 analyzed tumors, specifically in 24/29
(83%) NF1-associated and 2/38 (5%) NF1-unrelated
GISTs (P=3e− 11). Among the 24 NF1-associated
tumors displaying loss of NFC reactivity (20 GISTs
and 4 mGISTs), 17 samples showed complete loss
(16 GISTs and 1 mGISTs) and 7 partial loss (4 GISTs

and 3 mGISTs) (Figures 1a–d). Specifically, NFC
deficiency was detected in 11/13 tumors with
constitutional pathogenic NF1 mutations; 10/12
tumors arising in clinically diagnosed Neurofibro-
matosis type 1 patients; and 3/4 tumors with somatic
pathogenic NF1 mutations.

Of the NF1-unrelated tumors, loss of NFC reacti-
vity (complete loss) was observed in only 2/38
GISTs (#30 and #32 in Table 1; Figure 1e). Both these
tumors were positive for CD117 and DOG1. One was a
low-risk GIST with mixed morphology arising in the
small intestine; the other was a localized high-risk
GIST with spindle morphology occurring in the
stomach. These patients (a 31-year-old woman and a
77-year-old lady), who presented no diagnostic signs
of Neurofibromatosis type 1, did not receive any
adjuvant therapy and were disease free at the last
follow-up (13 and 25 months, respectively). Due
to the absence of mutations in KIT, PDGFRA, RAS
(H/K/N), BRAF, SDH, andNF1 genes, these two GISTs
were classified as ‘driver mutation unknown’.

Loss of NFC reactivity correlated with biallelic
inactivation of NF1 (P=0.007), due to either large
deletions or truncating mutations.

NF1 gene status was known for three of the five
NF1-associated tumors retaining NFC reactivity:
sample #6 was a GIST with weak NFC staining inten-
sity carrying a homo/hemizygous missense mutation
(His553Arg) (Figure 1f). According to the ExPASy
ProtParam tool, this variation does not significantly
impact on protein turnover. The other two samples,
featuring weak (#17) or moderate (#19) NFC reactiv-
ity, were both small tumors (size o1.5 cm) that
retained a wild-type NF1 allele besides the one
carrying a truncating mutation.

Another GIST (#98) carried the heterozygous NF1
mutation His1374Tyr. This missense variant was
classified by ClinVar to be of uncertain pathogenic
significance, which is why this GIST was included in
the group of tumors with an unknown driver gene
and undetermined NF1 association. In this case, too,
the tumor retained a wild-type allele and maintained
NFC reactivity.

The NFC reactivity retained in 36/38 NF1 wild-
type tumors was strong (12 samples) or moderate (15
samples) in most cases (Figures 1g and h). Weak
staining was detected in 9 samples that were rela-
tively old (≥4 years), indicating that pre-analytical
factors can influence NFC performance, as pre-
viously described.17

No information on NF1 gene status was available
in 30 samples. This set included 21 KIT- and 9
PDGFRA-driven GISTs. All these tumors retained
NFC reactivity (strong in 17 samples, moderate in 11
and weak in 2).

Discussion

We have recently demonstrated that NF1 mutations
play a prominent role in the pathogenesis of
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apparently ‘sporadic’ GISTs.5 Specifically, we have
reported that about 60% of so-called quadruple-
negative GISTs (GISTs lacking KIT, PDGFRA, BRAF,
and SDH mutations; 10% of all GISTs) carry
NF1 mutations that are constitutional in most cases.
Our work has thus demonstrated that a significant
fraction of quadruple-negative GISTs arise in the
context of unrecognized Neurofibromatosis type 1
syndrome. The identification of NF1-driven GISTs
has important clinical implications, both in terms of
patient and family surveillance, due to their cancer-
prone condition; and in terms of treatment strategies,
considering the poor sensitivity to imatinib of
NF1-related tumors.9,10 In this regard, the promising
results recently obtained with MEK inhibitors in the
treatment of unresectable NF1-associated plexiform
neurofibromas22 open novel therapeutic opportu-
nities for NF1-associated GISTs.

Unfortunately, the detection of NF1 mutations, be
they constitutional or somatic, is challenging due to
the large size of the gene and the numerous
mechanisms of inactivation.1,11

On these grounds, we sought to explore the effi-
cacy of an immunohistochemical approach to iden-
tifying NF1-mutated GISTs. To this end, we collected
a series of NF1-associated GISTs (including both
GISTs and mGISTs arising in the context of clinically
diagnosed Neurofibromatosis type 1 and NF1-
mutated tumors submitted to the pathologist as
‘sporadic’) and NF1-unrelated tumors, and interro-
gated the cohort with the NFC antibody, a custom-
raised antibody directed against the C terminus of
neurofibromin. This antibody has previously been
shown to differentiate malignant peripheral nerve
sheath tumors, typically NF1-associated neoplasms,
from other NF1-unrelated mimics.17,18

The results of our analysis can be summarized
as follows: the vast majority (83%) of the tested
NF1-associated GISTs/mGISTs displayed complete
or partial loss of NFC reactivity. Staining success-
fully identified 12 of the 13 tumors carrying homo/
hemizygous NF1 gene inactivation due to large
deletions or truncating mutations, irrespective of
whether the alteration was of somatic or constitu-
tional origin. There was one exception: a case (#6)
bearing a homo/hemizygous N-terminal His553Arg
pathogenic missense mutation. Said mutation was
predicted by ProtParam to not significantly impact
on neurofibromin turnover. This finding corrobo-
rates previous observations that NFC reactivity is
likely preserved by stable neurofibromin variants.17

The inability to reveal missense mutations is an
intrinsic drawback of antibodies designed to distin-
guish full length vs truncated proteins (eg, antibodies
against X-linked alpha-thalassemia/mental retarda-
tion syndrome, ATRX).23,24 However, o10% of NF1
pathogenic mutations reported in the ClinVar data-
base are missense mutations.25

NFC staining was retained not only in the two
GISTs carrying non-pathogenic missense mutations
(#38 and #39), but also in the two tumors (#17, #19)
that retained a wild-type NF1 allele, while carrying
truncating mutations. This suggests that the amount
of neurofibromin encoded by a single wild-type
allele is sufficient to yield NFC reactivity.

In NF1-unrelated GISTs, NFC reactivity was
retained in all but two tumors (95%). Notably, these
two tumors were also negative for canonical KIT,
PDGFRA, BRAF, and SDHx mutations. Despite the
lack of NF1 mutations, their negativity for NFC may
underlie the existence of alternative mechanisms of
NF1 inactivation. For instance, it has been demon-
strated that enhanced proteasomal destruction
accounts for NF1 loss in glioblastomas.26,27 Thus,
NF1 could play an even greater role in the patho-
genesis of GISTs than inferred by gene mutation
analysis.5

As regards the pattern of staining, NFC loss was
complete in most cases (17 cases). Partial loss was
observed in seven NF1-associated tumors in which
NFC reactivity was retained in focal areas. Partial
loss has previously been reported to occur in
malignant peripheral nerve sheath tumors17 and
could be ascribed to tumor heterogeneity. Intrigu-
ingly, partial loss was more common among micro-
GISTs—considered to be bona fide GIST pre-
cursors6,28 - than among overt GISTs. This suggests
that full inactivation of NF1 contributes to micro-
GIST progression to overt GIST.

From a technical standpoint, although our
series consisted of archival material, a clear-cut
diffuse staining pattern of remarkable intensity was
observed in the majority of NFC-positive cases, while
weak reactivity was essentially observed in older
samples (≥ 4 years).

As previously discussed,17 similarly to other
tumor suppressors, the interpretation of neurofibro-
min staining also relies on robust internal positive
controls. Loss of staining for INI1, ATRX, SDHB, and
SDHA, which are ubiquitously expressed, is not
usually an issue as internal positive controls are easy
to find.12,13,23,24,29 Neurofibromin has been reported

Figure 1 (a) Case #9: NF1-associated GIST showing complete NFC loss. Fibroblasts were used as internal positive controls (magnification
×20). (b) Case #1: NF1-associated GIST showing complete NFC loss. Inflammatory cells served as internal positive controls (magnification
×40). (c) Case # 22: NF1-associated GIST showing complete NFC loss. Weak reactivity is present in the endothelium (positive control)
(magnification ×40). (d) Case #28: NF1-associated microGIST showing partial loss of NFC (magnification ×10). (e) Case #30: complete NFC
loss in an NF1 wild-type GIST. This case was considered as ‘driver gene unknown’, being wild-type not only for NF1 but also for KIT,
PDGFRA, RAS (H/K/N), BRAF, and SDHx. Normal vessels served as internal positive controls (magnification ×20). (f) Case #6: NF1-
associated GIST showing weak NFC reactivity. This case carried a homo/hemizygous missense mutation at the N terminus (His553Arg)
(magnification ×40). (g, h) Two NF1 ‘wild-type’/KIT-driven GISTs (#46, #57) showing strong NFC reactivity (magnification ×40).
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to be expressed at high levels in all fetal rat tissues,
but is essentially confined to the central and
peripheral nervous systems postnatally.30,31 Accord-
ingly, we observed strong NFC reactivity in ganglion
cells and in the myenteric plexus; fibroblasts
and inflammatory cells could also be positive, thus
serving as additional internal controls. By contrast,
the endothelium tended to display weak NFC
staining, which could be overlooked at low power.

Overall our results provide evidence that NFC
staining is a simple, rapid, and cost effective strategy
for identifying NF1-inactivated GISTs, thus consti-
tuting a surrogate for molecular analysis. In addition,
this study adds further support to the relevance of
NF1 in the inception and progression of GISTs.
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