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ABSTRACT 
 

Mitochondrion is an important organelle for cells survival being involved in many 

cellular processes such as energy metabolism and homeostasis, cell division and 

differentiation, regulation of apoptosis and autophagy, etc.  Mitochondrion, due to this role, 

is able to respond and adapt itself quickly to any perturbation and change of conditions in the 

different tissues of the human body including skeletal muscle. Thus, mitochondrial plasticity 

is one of the mechanisms that controls modification due to different physiological conditions 

such as weight loss or weight gain, exercise and physical inactivity/immobility in skeletal 

muscle; moreover it represents the capacity of a biologic system to respond to metabolic 

conditions in relation to the needs of the respective tissues. 

In this frame, this PhD Thesis investigated the role and adaptations of mitochondria in 

two different skeletal muscle pathophysiological models. Exercise is a fundamental tool 

known to trigger adaptations in mitochondria of skeletal muscle fibres in terms of both of 

exercise training and of reduced activity/immobility. The present PhD work evaluated the 

adaptations to exercise, or to the lack of exercise, at the level of mitochondrial oxidative 

phosphorylation in two conditions particularly relevant for the development of diseases. The 

first one investigated the effects of two different protocols of exercise training (moderate 

intensity continuous training and high intensity interval training) in obese patients and the 

second the effects of 10 days bed rest-induced microgravity and immobility in young healthy 

volunteers. In both studies, mitochondrial oxidative function was assayed ex vivo in skeletal 

muscle biopsies by high resolution respirometry using a substrate-uncoupler-inhibitor-

titration protocol with a substrate combination .   

In the first study, obese patients exhibited an increased maximal ADP-stimulated 

respiration and an increased maximal capacity of the electron transport system after both 

types of training protocol, confirming the beneficial effect of exercise.  

In the second study, no impairment on mitochondrial function in terms of maximal 

state III respiration and coupling was observed after ten days of bed rest. No alteration in 

ADP sensitivity was observed after the period of inactivity. 
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1.INTRODUCTION 
1.1 Mitochondrion 

 
Mitochondrion is a double-membrane organelle located in the cytoplasm of most 

eukaryotic cells. Mitochondria are involved in regulation of cellular bioenergetics, producing 

metabolic energy under the form of ATP in order to guarantee cell functions (Mitchell, 1961). 

Because of this main function are often called the “powerhouse” of the cell and are able to 

adapt their function in relation to cellular environmental changes receiving and transmitting 

several signals within cells. This eukaryotic organelle evolved from endosymbiont bacteria 

(Andersson Siv et al., 2002; Gray and Doolittle, 1982) and consequently has its own genome. 

The mitochondrial DNA (mtDNA) has a reduced coding capacity, being responsible in coding 

only a small part of mitochondrion’s proteome. The mtDNA codifies for 13 proteins which are 

components of the respiratory chain, for 22 transfer RNAs and for 2 subunits of ribosomal 

RNA. The remaining mitochondrial proteins are encoded by nuclear DNA and include 

components involved in different mitochondrial pathways as the tricarboxylic acid (TCA) 

cycle, protein import, fatty acid and amino acid oxidation, apoptosis. Mammalian 

mitochondrial proteome includes ~ 20000 mammalian proteins with different grade of 

abundance and expression during the developmental stages or in different cell types (Calvo 

and Mootha, 2010). Mitochondrial function and structure can change in relation to cell types, 

but basically these organelles have a double membrane (Fig.1.1): the outer mitochondrial 

membrane (OMM) separates the mitochondria from the resting cellular environment, while 

the inner mitochondrial membrane (IMM) evolves in invaginations which are also known as 

cristae and many mitochondrial proteins reside on it. Protein kinases and phosphatases are 

on the OMM to convey signals to and from mitochondria (Lucero et al., 2019).  The OMM is 

porous and it can be traversed by ions and uncharged molecules through porins as the 

voltage-dependent anion channel VDAC. The IMM acts as a diffusion barrier to ions and 

molecules that can traverse it only with specific membrane transport proteins. In IMM 

resides the oxidative phosphorylation (OXPHOS) process.  

Mitochondria have other essential functions such as  the production of NADH and GTP in the 

citric acid cycle, the biosynthesis of amino acids, heme groups and iron-sulfur clusters or the 

synthesis of phospholipids for membrane, calcium signalling, stress responses and  apoptosis 
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(Kuhlbrandt, 2015). Considering all these different functions, mitochondria are considered 

dynamic organelles.  

 

         

Fig.1.1. Mitochondrial structure of the double membrane-organelle. A) Representation of the mitochondrial components 
and their location respect to the double membrane. Image modified from Bishop et al., 2019. B) Electron microscopy 
images, revealing mitochondrial and cellular organizations from different tissues: a) Skeletal muscle (soleus), b) skeletal 
muscle (peroneus digitiquarti), c) heart, d)liver, e) kidney, f) brain. Modified from Benard et al., 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

100 nm 
=0.0001 mm 

A B 



 

5 
 

1.1.1 Mitochondrial Electron Transport Chain and ATP synthase 
 

Mitochondrion, the powerhouse of eukaryotic cells, is responsible for ATP production 

during oxidative phosphorylation (OXPHOS). This biological process takes place in the inner 

mitochondrial membrane and occurs only when there is the cooperation between the 

respiratory chain and ATP synthase (OXPHOS complex V). Mitochondria promote energy 

conversion processes in which the exergonic flow of electrons along electron transport chain 

(ETC) supports the endergonic pumping of protons from the matrix to the intermembrane 

space. This process develops the proton motive force that allows the rotation of the F0 sector 

of ATP synthase leading to the synthesis of ATP in the F1sector (Mitchell and Moyle, 1967). 

The OXPHOS system is composed of five inner mitochondrial membrane-embedded 

enzymes, 4 of the ETC and the ATP synthase. The respiratory chain is composed by four 

protein complexes: complex I or NADH-Q oxidoreductase, complex II or Succinate-Q 

reductase which directly connects the Krebs cycle to the respiratory chain, complex III or Q-

Cytochrome c oxidoreductase and  complex IV or citochrome C oxidase. The complexes I, III 

and IV are protonic pumps (Fig. 1.1.1). 

 

 

 

Fig.1.1.1. The OXPHOS system: The complexes of the mitochondrial electron transport chain (ETC) and ATP synthase 
(complex V). The electron transfer and proton pumping activity of respiratory complexes are shown. The complexes are 
reported in their atomic model and with different colour: CI (blue), CII (cyan and light green), CIII (green and yellow), CIV 
(magenta and red) and CV (yellow and red). The atomic structure of cytochrome c is shown in orange. The reactions 
catalyzed by the complexes are shown. Q, ubiquinone; QH2, ubiquinol. The light blue rectangle is approximate boundary of 
the membrane and separates mitochondrial matrix from intermembrane space (Letts and Sazanov, 2017).  
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Complex I is a large enzyme of ~  900 KDa and is formed by 46 subunits. It is as a typical L-

shaped molecule with the horizontal arm located in the inner mitochondrial membrane while 

the vertical one protrudes in the matrix. Starting from complex I, the electrons enter toward 

the respiratory chain. During biochemical catabolism NADH molecules are produced, 

representing a source of electrons. NADH molecule binds to complex I transferring two 

electrons to the prosthetic group of Flavin mononucleotide (FMN), which is thus reduced to 

FMNH2. Furtherly, electrons are transferred to Fe-S centres. This electron transfer makes 

possible the pumping of four hydrogen ions outside the mitochondrial matrix. In this way 

ubiquinol is formed since coenzyme Q is reduced acquiring two protons from the matrix, and 

thus it leaves complex I moving through the hydrophobic zone of the membrane (Kuhlbrand, 

2015; Chaban et al., 2013; Dudkina et al., 2008; Lenaz et al., 2006;). 

Complex II is both a part of Krebs cycle and than of ETC. During Krebs cycle electrons 

are produced through reduced Flavin Adenine Dinucleotide (FADH2). The electrons are first 

transferred to Fe-S centres and then to coenzyme Q to enter in the respiratory chain (Chaban 

et al., 2013; Oyedotun and Lemire, 2004,). Complex II is not a proton pump, thus transport of 

protons does not occur and, as a consequence, less ATP molecules are produced with respect 

to NADH oxidation. 

  Complex III is a functional dimer existing on the membrane which transfers two 

electrons from reduced ubiquinone to oxidize cytochrome C, pumping also two protons 

outside the mitochondrial matrix (Chaban et al., 2013; Kramer et al., 2004). Complex III has 

two types of cytochromes: b and c1. These cytochromes use heme as prosthetic group (two 

for b and one for c1). Complex III and the cytochromes have 2Fe-2S centre (Rieske centre), 

where the iron ions are coordinated by two hystidines in order to maximally develop the 

reduction potential and easily accept the electrons from the reduced ubiquinone (Kramer et 

al., 2004). Complex III pumps four protons into the intermembrane space following the 

oxidation of coenzyme Q and the reduction of cytochrome C, a small mobile electron carrier 

associated with the outer surface of the inner membrane.  

Complex IV is a transmembrane protein complex and it consists of 13 subunits. It has 

a molecular weight of 200 KDa. Complex IV represents the last enzyme of the respiratory 

chain. It catalyses the transfer of four electrons from cytochrome C to oxygen molecules, 

which are the final acceptors and are reduced to water (Kuhlbrandt, 2015; Chaban, et al., 
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2013; Dudkina et al., 2008). This complex makes a final contribution to the production of 

proton gradient across the inner membrane. In this way, all the protons are pumped from 

the matrix to the intermembrane space generating the proton motive force, which is used by 

ATP synthase (complex V) for ATP formation.  

ATP synthase is a complex enzyme of large dimension formed by 15-18 subunits with 

a total mass of 600 KDa (Chaban et al., 2013) (Fig.1.1.1.1). Two different domains constitute 

complex V: F0 domain, located in the inner mitochondrial membrane and F1 domain, directed 

towards the matrix. F0 domain contains the proton channel formed by subunits a, b, c8-10, d, 

f, g, CF6, A6L. The water-soluble F1 part is the catalytic portion of the enzyme and is 

constituted of α3, β3, γ, δ and ε subunits. Through several atomic structures is shown that F1 

comprises 3 copies of each of the nucleotide-binding subunits α and β (Rühle and Leister, 

2015; Wittig and Schägger, 2008). 

 

 

 
Fig. 1.1.1.1. ATP synthase structure and its subunits. Figure modified from Stock et al., 2000. 

 

 The α and β subunits constitute the majority of all complex to form a hexameric ring. Even if 

α and β subunits are similar, only the β subunit has catalytic nucleotide-binding sites and it 

catalyses the ATP synthesis/hydrolysis reaction (Gibbons et al., 2000; Boyer, 1993). F0 and F1 

domains are connected in a central (subunits γ, δ, ε) and a peripheral (subunits b, d, F6 and 

oligomycin sensitivity conferring protein OSCP) structure, known as rotor and stator. 

Therefore, the two parts are connected by a static peripheral stalk and a rotating central 

stalk. This link between the two parts generates a sequence of conformational changes from 

F1 

F0 
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the rotor unit in the membrane to the catalytic F1 head (Hahn et al., 2016; Davies et al., 

2011). The γ subunit contains an asymmetric coiled coil of α-helices coil that penetrates 

through the central axis of F1 domain (Cabezón et al., 2003).  

The ATP synthesis is an enzyme reaction that, depending on cell condition, may lead 

to the production or hydroxylation of ATP. This enzyme reaction uses the energy stored 

under the form of electrochemical proton gradient across the inner mitochondrial membrane 

in order to produce ATP from ADP and phosphate. The mitochondrial ATP synthase was 

shown to form monomers, dimers and higher oligomeric species. Wagner (Wagner, 1996) 

reports that the generation of normal, tubular cristae membranes depend on the oligomeric 

state of ATP synthase. In fact ATP synthase dimers can assemble into long filaments in the 

inner mitochondrial membrane. This geometrical arrangement can promote membrane 

bending and thus the formation of cristae tubules. Mechanisms like post-translational 

modification, ligand association and gene expression regulation control the function of ATP 

synthase. The most important physiological regulatory factor of the ATP Synthase is the 

Inhibitory Factor 1 (IF1). IF1, a nuclear-encoded small thermostable protein of 12 KDa, has 

been studied by several laboratories to understand its pathophysiological role in different 

tissues and illnesses (Pullman and Monroy, 1963). 

 

 1.1.2 Mitochondrial biogenesis and mitochondrial network remodelling 
 

Mitochondria take part to a large number of essential cellular functions and their 

genetic or epigenetic alterations can modify and affect their function, thereby contributing to 

the development of several pathological conditions. The biogenesis of mitochondria is a 

complex cellular event and it occurs following to the expression of two physically separated 

genomes (Martinez-Diez et al., 2006). This process is accompanied by variations in 

mitochondrial size, number, DNA (mtDNA) content, etc. It occurs after an environmental  

cellular change (i.e. cellular stress) or as a consequence of other factors such as exercise 

(Coffey and Hawley, 2007; Nisoli and Carruba, 2006), caloric restriction (Liu et al., 2009; 

Civitarese et al., 2007), cold exposure, oxidative stress, cell division, cell differentiation (Hock 

and Kralli, 2009; Ventura-Clapieret al., 2008) . 

Mitochondrial biogenesis is controlled by the coordinated transcription of nuclear and 

mitochondrial genes, which are regulated in large measure by the coactivator peroxisome 
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proliferator-activated receptor-coactivator 1-alpha (PGC-1α), its family members, and its 

isoforms (Erlich et al., 2016; Wilson et al., 2007). PGC-1α, known also as the “master 

regulator” of mitochondrial biogenesis, is involved in many metabolic processes, including 

liver gluconeogenesis, thermogenesis, and skeletal muscle fiber-type specialization (Erlich et 

al., 2016). PGC-1a is well known as key regulator of energy metabolism (Liang and Ward, 

2006).  

Mitochondria constantly undergo fission and fusion processes that exist in 

equilibrium, leading to a continuous remodelling of the mitochondrial network. 

Mitochondrial fusion is a process controlled by mitofusin 1 and 2 (MFN 1 and MFN 2) in the 

outer mitochondrial membrane and by optic atrophy type 1 (OPA 1) in the inner 

mitochondrial membrane. Instead, mitochondrial fission is mainly controlled by dynamin-

related protein 1 (Drp1) and its recruitment factors fission 1 (Fis1) and mitochondrial fission 

factor (MFF) in the outer membrane (Ljubicic et al., 2010). An increase in fusion or a decrease 

in fission can lead to elongated, interconnected mitochondria, whereas a decrease in fusion 

or an increase in fission can lead to fragmented mitochondria (Bo et al., 2010). Mitochondrial 

fission and fusion processes play critical roles in maintaining functional mitochondria when 

cells experience metabolic or environmental stresses. Fusion helps mitigate stress by mixing 

the contents of partially damaged mitochondria as a form of complementation. Fission is 

needed to create new mitochondria, but it also contributes to quality control by enabling the 

removal of damaged mitochondria and can facilitate apoptosis processes during high levels 

of cellular stress (Youle and van der Bliek, 2012).  

Protein aggregates, intracellular pathogens and damaged or excessive organelles, 

including mitochondria, can be removed via autophagy (Kim et al., 2007). Mitochondria are 

multifunctional cellular organelles and are the primary source of reactive oxygen species 

(ROS) (Simon et al., 2000; Yakes and Van Houte, 1997). ROS are generated endogenously as 

in the process of mitochondrial oxidative phosphorylation, or they may arise from 

interactions with exogenous sources such as xenobiotic compounds. When there is an 

increase in ROS levels or a decrease in the cellular antioxidant capacity, oxidative stress 

occurs. Oxidative stress results in direct or indirect ROS-mediated damage of nucleic acids, 

proteins, and lipids, and has been implicated in different conditions such as carcinogenesis 

(Trachootham et al., 2009), neurodegeneration (Shukla et al., 2011; Andersen, 2004), 

atherosclerosis, diabetes (Paravicini and Touyz, 2006), and aging  (Haigis and Yankner, 2010). 
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ROS involvement in the pathogenesis of disease states is not confined to macromolecular 

damage.  

Benefical roles of ROS are also quite significant. The beneficial aspects of ROS are related to 

their effects on the redox state of cells and to the important role that some ROS play in 

signalling cascades. Redox regulation is essential for the body to maintain proper signalling 

processes. These redox reactions usually entail ROS interacting with the amino acid cysteine 

on proteins. ROS modulates cell proliferation and apoptotic pathways to ensure proper 

regulation of the cell cycle and programmed cell death. ROS are also involved in the 

angiogenesis process, and indeed vascular smooth muscle cells require ROS for appropriate 

cell growth. ROS have also an important role in the immune system.  When there is a lack of 

ROS in the immune system, disease states may develop that impair an individual’s ability to 

defend against a foreign attack (Patel et al., 2018). 

The mass of mitochondria has to match the varying needs of the cell when 

bioenergetic and environmental changes occur (Kurihara et al., 2012). As a result, the 

removal of dysfunctional mitochondria and the preservation of an appropriate population of 

mitochondria are required for normal cellular function and cell survival (Kurihara et al., 2012; 

Scherz-Shouval and Elazar, 2007). Mitochondrial quantity is guaranteed via mitochondrial 

biogenesis and the selective clearance of damaged or excessive organelles. Damaged or 

unwanted mitochondria can be selectively removed by mitochondrial autophagy or 

mitophagy, a catabolic process of lysosome-dependent degradation, and the core 

mechanism of both mitochondrial quality and quantity control (Wei et al., 2015; Feng et al., 

2013). The mitochondrial processes cited above are important in physiological and 

pathophysiological conditions in order to respond to different stimuli and perform the 

metabolic adaptations when necessary. 

1.2. Skeletal muscle 
 

Skeletal muscle is a tissue with great plasticity and it represents about 40% of the 

total body weight (Frontera and Ochala, 2015; Yang, 2014). Skeletal muscle includes 50-70% 

of all body proteins, accounting for 30–50 % of whole-body protein turnover. Water is the 

main component of skeletal muscle (75%), and proteins constitute 20% of muscle while other 

substances such as inorganic salts, mineral, fat and carbohydrates cover 5%. Muscle mass is 

dependent by the balance between protein synthesis and degradation, which are two 
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biological processes dependent by nutritional status, hormonal balance, physical 

activity/exercise, and injury or disease. Muscle is able to convert chemical energy into 

mechanical energy to generate force and power, allowing the physiological functions of 

locomotion, posture, physical activity (Frontera and Ochala , 2015).  

The energy source during muscle contraction is provided by hydrolysis of ATP to ADP 

and Pi (Schiaffino and Reggiani, 2011; Westerbald et al., 2010). The intracellular ATP content 

is small (5–6 mM) and moreover, if the muscle is fully activated, ATP stores would be 

depleted within 2 s (Westerbald et al., 2010; Sahlin et al., 1998). Thus, during most of 

physical exercise ATP must be continuously re-synthetized, through the intervention of 

phosphocreatine (PCr) hydrolysis, anaerobic glycolysis, and oxidative metabolism (oxidative 

phosphorylation in mitochondria) of carbohydrate and lipid substrates. Oxidation of 

aminoacids can be, as a first approximation, neglected.   

In skeletal muscle during submaximal exercise, oxidative metabolism utilizes as substrates 

carbohydrate and lipids to produce ATP (Westerbald et al., 2010; Spriet and Watt, 2003). The 

choice of the mechanisms to be utilized for ATP resynthesis substantially depend on the 

intensity and on the duration of the exercise.  

The sarcolemma is the plasma membrane of muscle fiber, the cytoplasm is referred to 

as sarcoplasm, and the specialized smooth endoplasmic reticulum, which stores, releases, 

and retrieves calcium ions (Ca++) is called the sarcoplasmic reticulum (SR). The skeletal muscle 

fibers have a striated appearance, which is due to the arrangement of the myofilaments of 

actin and myosin in sequential order from one end of the muscle fiber to the other. These 

myofilaments and their regulatory proteins, troponin and tropomyosin (along with other 

proteins) form a sarcomere. The sarcomere is the functional unit of the muscle fiber; it is 

bundled within the myofibril that runs the entire length of the muscle fiber and attaches to 

the sarcolemma at its end. As myofibrils contract, the entire muscle cell contracts. Each 

sarcomere is approximately 2 μm in length with a three-dimensional cylinder-like 

arrangement and is bordered by structures called Z-discs, to which the actin myofilaments 

are anchored (Frontera and Ochala, 2015). 

Skeletal muscle is a heterogeneous tissue that comprises different type of fibers 

which have undergone, over the years, to various classifications. The most modern 

classification is substantially based on the presence of the myosin-heavy chain isoforms, and 

muscle fibers are classified in type 1, type 2A and type 2X (Bottinelli and Reggiani, 2000). 
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Type 1 (classically red in appearance) or slow twitch fibers are oxidative (use aerobic 

respiration, oxygen and glucose, to produce ATP) and are characterized by a high content of 

mitochondria and myoglobin, by a slow time to peak tension, by a lower force production. 

Type 1 fibers are surrounded by a high number of capillaries. Type 1 fibers provide ATP by 

oxidative metabolism and are fatigue resistant. Types 2A are oxidative and glycolytic fibers. 

Type 2X fibers are glycolytic fibers (white fibers in appearance), have low mitochondria 

content and a fast time to peak tension. In comparison to type 1 and type 2A fibers, type 2X 

fibers are less dependent on oxidative metabolism, providing ATP through anaerobic 

glycolysis and PCr breakdown, and therefore are powerful but fatigue rapidly (Bottinelli and 

Reggiani, 2000). The abundance of the oxygen transport protein myoglobin is reflected by 

the different colour of the muscle fibers, and is associated with the contribution of oxidative 

metabolism (Egan and Zierath, 2013); red fibers (type 1) in appearance have a high content 

of myoglobin, while white fibers (type 2X) have a low content of myoglobin. Myoglobin 

content in type 2A fibers is intermediate between those of type 1 and type 2X. In human 

muscles oxidative fibers contain 50% more myoglobin than glycolytic fibers (Jansson and 

Sylvén, 1983). 

 Because of its heterogeneity composition and considerable plasticity, skeletal muscle 

is able to adapt itself in different physiological conditions as weight loss, exercise and 

physical inactivity (Schiaffino and Reggiani, 2011; Maltin, 2008). This muscle plasticity is well 

shown by the adaptive changes occurring in response to various external stimuli (contractile 

activity, loading conditions, substrate supply, hormonal profile, and environmental factors) to 

match structural, functional, and metabolic demands (Bassel-Duby and Olson, 2006). Body 

size has a major role in determining the functional demands on skeletal muscles (Schiaffino 

and Reggiani, 2011). It is well documented that physical exercise is a potent stimulus for 

adaptation processes; physical exercise is known to remodel skeletal muscle to better 

respond to future challenges (Fluck, 2006; Hood et al., 2006). Skeletal muscle is able to 

rapidly adapt to exercise interventions and demonstrates remarkable malleability by 

changing its metabolic and contractile properties. Resistance exercise (generally 

encompasses short-duration activity at high or maximal exercise intensity; it increases the 

capacity to perform a single or relatively few repetitions of high-intensity exercise) stimulates 

muscle protein synthesis leading to growth of muscle fibers and hypertrophy. By contrast, 

endurance exercise (typically performed at submaximal intensity, with the main purpose of 
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progressively moving the anaerobic threshold, i.e. the beginning of anaerobic metabolism 

and lactate production, towards higher exercise intensity) determinates qualitative changes 

of muscle tissue by promoting phenotypic adaptations characterized mainly by fiber type 

transformation and increases in structures supporting oxygen delivery and consumption 

(mitochondrial biogenesis and angiogenesis), but no growth (Mounier et al., 2015).  

In skeletal muscle, mitochondria can be differentiated both functionally and 

biochemically: intermyofibrillar (IMF) and subsarcolemmal (SS) subfractions (Fig.1.2). IMF 

mitochondria are located among the myofibrils, whereas SS mitochondria are proximal to 

peripheral myonuclei below the muscle plasma membrane. These mitochondria differ in their 

adaptability to a common stimulus, meaning that their location within the cell makes them 

differentially sensitive to an intracellular signal. Exposures to perturbations as muscle use or 

disuse have shown that SS mitochondria consistently adapt more than IMF mitochondria; this 

can be due to the location of SS mitochondria proximal to the myonuclei and also to the 

differential capacity of mitochondrial subfractions for protein synthesis and import (from 

cytoplasm) (Ljubicic et al., 2010 and reference therein). 

 

 

 

 

 
Fig.1.2. Structure of a skeletal muscle fiber with two sub-populations of mitochondria. Subsarcolemmal mitochondria (SS) 
and intermyofibrillar mitochondria (IMF) are shown. In skeletal muscle fiber, mitochondria create a reticulum that connects 
SS and IMF mitochondria for optimal energy distribution. Image modified from Bishop et al., 2019. 
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Mitochondrial dynamic structure forming a reticulum allows the relocation of substrates and 

metabolites to bioenergetically active areas. These dynamic features of the organelle, the 

increases in mitochondrial mass and the changes in mitochondrial morphology via fusion and 

fission are significantly related to the onset of metabolism-related diseases (Lee and Song, 

2018).  

As mentioned above, skeletal muscle is able to adapt itself in response to 

physiological and pathophysiological conditions. Mitochondria are subjected to modifications 

in presence of exercise or chronic contractile activity (Erlich et al., 2016; Wilson et al., 2007). 

John Holloszy was the first in 1967 to publish a remarkable evidence that exercise training 

promotes mitochondrial biogenesis in skeletal muscle, by showing that a strenuous program 

of treadmill running in rats led to increase mitochondrial protein expression and activity in 

skeletal muscles (Drake et al., 2016). Changes in mitochondrial biogenesis due to exercise are 

a result of multiple molecular events involving both nuclear and mitochondrial genomes. 

These pathways primarily include the activation of signalling kinases to initiate biogenesis, 

the induction of coactivator proteins such as PGC-1α and NRF transcription factor proteins, 

the transactivation of target genes, the import of precursor proteins into mitochondria, and 

the coordinated incorporation of both mitochondrial and nuclear gene products into an 

expanding organelle reticulum (Ljubicic et al., 2010). Factors which are overexpressed in 

biogenesis process, such as PGC-1α can increase the proportion of type 1 muscle fibers, thus 

contributing to the augmented endurance and resistance to fatigue (Calvo et al., 2008). 

Overall mitochondrial biogenesis in skeletal muscle cells can increase during the 

differentiation of myoblast into mature myotubes (Wilson et al., 2007). 

Exercise is able to stimulate an increase in total mitochondrial protein (Scalzo et al., 2014), 

including enzymes involved in beta-oxidation, the tricarboxylic acid cycle and the electron 

transport system (Scalzo et al., 2014; Jacobs et al., 2013). Increases related to oxidative 

mitochondrial function as response to exercise intervention are reported (Jacobs et al., 

2013). 

If exercise can improve mitochondrial capacity, other physiological conditions as physical 

inactivity and aging can reduce mitochondrial capacity in muscle tissue.  
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1.3 Skeletal muscle/mitochondrial dysfunction in obesity  
 

Obesity is a common and widespread epidemic disorder, and it can be due to the 

intake of a hypercaloric diet associated with poor physical activity. Different risk factors are 

involved in this emerging problem, also accounting for genetic and environmental factors. 

Obesity, in turn, is a risk factor for the onset of pathological conditions such as cardiovascular 

and respiratory diseases, musculoskeletal disorders and some type of cancer and Type 2 

Diabetes Mellitus (De Mello et al., 2018; Dervashi et al., 2017; Williams et al., 2015; Thrush et 

al., 2013). In more general terms the obesity epidemics has a negative impact on human 

health through general pathophysiological mechanisms such as inflammation, oxidative 

stress, mitochondrial dysfunction and apoptosis (as in De Mello et al., and therein) (Fig.1.3). 

In this context, molecular processes and pathways that directly regulate energy metabolism 

or caloric intake appear to be possible targets for therapy. 

 

 

                                         Fig.1.3. Implications of obesity in human health (De Mello et al., 2018). 

 

Obesity is characterized by insulin resistance in major metabolic tissues such as skeletal 

muscle, liver and adipose tissue. The mitochondrial dysfunction in these pathological 

conditions is characterized by mechanisms that remain largely unknown. In obese patients 

the production of adipokines is altered, and this contributes the onset of metabolic 

syndrome and related complications such as the increased blood levels of cholesterol and 
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tryglicerides (Mirza, 2011).  Liesa and Shirihai (Liesa and Shirihai et al., 2013) have reported 

evidences related to the link between mitochondrial dysfunction and excessive consumption 

of nutrients (as De Mello et al., 2018 and reference therein). Numerous studies have 

demonstrated that skeletal muscle metabolism and mitochondrial content/function are 

impaired in obesity, even if there is not a general agreement about the issue (Fisher-Wellman 

et al., 2014; Bakkman et al., 2010).  

It is well documented that mitochondria in obese individuals have lower energy generation 

capacities, less defined internal membranes and decreased oxidation of fatty acids 

(Hernández-Aguilera et al., 2013), suggesting that the mitochondria of obese individuals are 

different from  those of lean individuals. In skeletal muscles of obese mice mitochondria 

were small and short and mitochondrial fission increased, supporting the association 

between altered mitochondrial fission and mitochondrial dysfunction (Jheng et al., 2012). 

Altered mitochondrial function in skeletal muscle can lead to reduced fatty acid oxidation 

and to the inhibition of glucose-transport, and insulin-stimulated glucose transport is 

reduced (Hernandez-Aguilera et al., 2013). The total activity of NADH oxidase is impaired in 

skeletal muscle of obese compared with lean individuals (Ritov et al., 2010). Mitochondrial 

content (Ritov et al., 2005, Larsen et al., 2011), the levels of mitochondrial proteins (Kras et 

al., 2018; Wijingaarden et al., 2013) and of their (predominantly nuclear) genes (Patti et al., 

2003, Mootha et al., 2003, Ritov et al., 2010, Hwang et al., 2010) have been shown to be 

reduced in the skeletal muscle of obese individuals, as well as in type 2 diabetes individuals, 

compared to lean controls. Mitochondrial dysfunction and impaired enzymatic activity of 

oxidative phosphorylation complexes have been confirmed more recently in obese skeletal 

muscle (de Mello et al., 2018; Formentini et al., 2017, Devarshi et al., 2017). In terms of 

oxidative mitochondrial capacity an impairment was observed in obese individuals compared 

to lean subjects (Vijgen et al., 2013; Bakkman et al., 2010) and this impairment is reversed 

when obese individuals are subjected to bariatric surgery (Coen et al., 2015; Vijgen et al., 

2013). Impairments in isolated mitochondria from obese patients were observed in terms of 

mitochondrial phosphorylation efficiency (Konopka et al., 2015). Elevations in H2O2 emission 

rates were observed in the same patients (Konopka et al., 2015; Fisher-wellman et al., 2014). 

Obesity-related impairments in fatty acid oxidation were reported, with a reduction in 

mitochondrial content (Holloway et al., 2007), incomplete fatty acid oxidation and 

accumulation of intracellular fatty acids (Paran et al., 2015; Bell et al., 2010).  
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In terms of mitochondrial dynamics and of the regulation of mitochondrial morphology and 

number in skeletal muscle of obese subjects, an altered expression of optic atrophy gene 1 

(OPA1) and a decreased expression of mitofusin 2 (Mfn2) (Putti et al., 2015; Zorzano et al., 

2009) have been described, while mitofusin-1 was reduced in the skeletal muscle of obese 

rodents and humans along with smaller mitochondria and fragmentation of the 

mitochondrial network (Bach et al., 2003).   

Liu and colleagues (Liu et al., 2014), have shown an altered mitochondrial respiratory 

function and a decreased ATP content in the muscle tissue of obese mice undergoing a high-

fat diet (HFD). Moreover the authors confirmed that MFN1 and MFN2 were decreased while 

proteins, as Fis1 and Drp1, involved in the fission process, increased when compared to 

normal-weight high-fat diet mice.  

Taking into account that, as already mentioned, skeletal muscle mitochondria are defined as  

subsarcolemmal (SS) and intermyofibrilar (IMF) based on their localisation, in obese patients 

Kras et al observed decreased amount of mitochondrial OXPHOS complexes mainly in IMF 

compared to lean controls (Kras et al., 2018). 

The skeletal muscle comprises ∼40% of body mass and serves as one of the major regulators 

of body energy homeostasis, as described above. Under severely obese conditions, however, 

skeletal muscle accounts for ∼25% of body mass only and remains metabolically active to a 

certain extent. 

Obesity leads to a sedentary lifestyle and it is reaching epidemic proportions in developed 

countries. This obesity condition is accompanied by increased fat and lean mass, but the fat 

mass increases at a larger scale, resulting in a smaller lean muscle to fat ratio. The increase of 

body mass in obese individuals also leads to skeletal muscle overload, resulting in greater leg 

and trunk muscle strength, whereas handgrip or arm strength are unchanged. Individuals 

who exercise regularly gains more muscle mass; have better muscle function, and lower risks 

of onset of obesity (Lafortuna et al., 2005). In contrast, physical inactivity is associated with a 

decrease in muscle mass, an increase of visceral adiposity, macrophage infiltration, chronic 

systemic inflammation, insulin resistance, obesity, and T2DM (Pedersen et al., 2012). As 

discussed in the previous paragraph, fiber type may affect skeletal muscle function and 

weight loss success in obesity. Type 2a fiber expression is positively correlated with the 

weight gain response to overfeeding (Sun et al., 2002). Since type 2 fibres have a reduced 

oxidative capacity, these fibers may also have a reduced capacity to control oxidative stress 
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(Anderson and Neufer, 2006). Mitochondrial dysfunction helps to explain a number of the 

common signs and symptoms of obesity: low energy expenditure, chronic food intake in 

excess of expenditure, and markers of low-grade systemic inflammation (Rogge, 2009). 

Investigations have demonstrated that the reduced muscle mitochondrial content and 

functional capacity in obesity is reversible with moderate weight loss combined with physical 

activity (Toledo et al., 2007, 2006; Menshikova et al., 2007, 2005; Goodpaster et al., 2003). 

Therefore, biological factors, metabolic and behavioural adaptations would contribute to 

changes in energy expenditure, leading to the weight loss success. This represents a possible 

therapeutic approach to adopt in this metabolic condition.  

The beneficial effects of exercise are known and are adopted in several diseases and 

physiological conditions. Exercise is a potent and non pharmaceutic intervention for 

management and treatment of a wide spectrum of lifestyle-related diseases (Lee and Song, 

2018) such as  pulmonary, cardiovascular, muscle, bone, joint diseases, cancer and 

depression (Vina et al., 2012). Exercise is a mean to improve physical performance and 

overall health, preventing multiple chronic diseases, to a large extent as a consequence of 

the adaptations occurring in skeletal muscle (Drake et al., 2016). Obesity, immobility and 

muscle atrophy are conditions that lead to mitochondrial dysfunction in skeletal muscle 

causing metabolic inflexibility. In this regard exercise training is well known to enhance 

mitochondrial function, leading to improvements in whole-body metabolic homeostasis. 

Exercise activates signalling networks that control coordinately mitochondrial remodelling, 

including mitochondrial biogenesis, dynamics and mitophagy (Gan et al., 2018) (Fig.1.3.1). In 

obese subjects exercise training (i.e. high intensity/high volume interval training) has 

determined improvements in aerobic capacity and exercise performance (Boyd et al., 2013). 

Sprint interval training improves circulatory function and increases VO2 max in sedentary, 

overweight/ obese women (Trilk et al., 2011). Exercise training leads, in obese patients, to 

enhanced rates of mitochondrial fatty acid oxidation and to glucose tolerance (Bruce et al., 

2006). Moreover, as showed by Gerritis and colleagues (Gerritis et al., 2010), different 

degrees of weight loss success reveal differences in skeletal muscle gene expression profiles,  

in structural and metabolic characteristic and in muscle fibers composition. Induction of 

weight loss by bariatric surgery also determines an improvement of mitochondrial functions, 

in terms of oxidative capacity (Vijgen et al., 2013). 
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Fig.1.3.1. Effects of obesity and exercise training on mitochondrial dysfunction. Exercise training protects against obesity-
induced mitochondrial dysfunction (e.g., O2 respiration, ATP production, ROS emission, β-oxidation, markers of TCA cycle, 
mtDNA mutation) in skeletal muscle (modified from Heo  et al., 2017). 

 

1.4 Skeletal muscle/mitochondrial dysfunction in 
microgravity/inactivity 
 

Skeletal muscle, as described previously, is a dynamic tissue able to support different 

conditions of training. Several pathological conditions as disuse and muscle atrophy can 

modify muscle in its molecular structure and function, impairing the overall quality of life. 

Specifically, disuse and muscle atrophy are common events occurring with prolonged bed 

rest, casting, spaceflight, aging, caloric restriction, physical inactivity. What actually occurs at 

the molecular level during a period of disuse/immobility has not yet been fully clarified and 

understood. For this reason bed rest studies are often utilized as experimental models and as 

attempt to understand consequent changes of prolonged muscle disuse and unloading 

occurring in skeletal muscle (Pavy-Le Traon et al., 2007). In this respect bed rest studies are 

Cell membrane 
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also of interest to space agencies, since they allow to simulate the effects of reduced gravity 

(“microgravity”) on different organs and physiological functions (Pavy-Le Traon et al., 2007). 

Physiological adaptations to microgravity comprehend, among others, loss of body weight, 

tissue fluid redistribution and cardiovascular adaptations, hormonal changes, muscle 

atrophy, loss of muscle strength and power, profound deconditioning, bone loss, alterations 

of the immune system, altered sensory inputs within the body (Hargens and Richardson, 

2009) (Fig.1.4). Pavy-Le Traon and colleagues (Pavy Le-Traon et al., 2007) describe in detail 

several physiological adaptations associated with bed rest, which are very similar to those 

occurring in space. Bed rest, ranging from several hours to several weeks or months, has 

been the model most frequently used to simulate the physiological effects of weightlessness, 

in particular on the cardiovascular system and body fluid regulation. Bed rest induces a fluid 

shift from the lower to the upper part of the body. This fluid shift results in a transient 

increase of plasma volume as more fluid moves into the vascular compartment from the 

lower body than that is filtered out of capillaries into the upper body (Atkov and Bednenko 

1992; Gharib et al., 1988; Greenleaf, 1984). This thoraco-cephalic fluid shift together with the 

plasma volume expansion stimulate central volume carotid, aortic and cardiac receptors 

inducing an increase in diuresis and natriuresis and a decrease in plasma volume (Pavy-Le 

Traon et al., 2007). The reduction in plasma volume leads to a set of cardiovascular changes 

including changes in cardiac performance and baroreflex sensitivity and reduced aerobic 

capacity. As it occurs in spaceflight, cardiovascular deconditioning characterised by 

orthostatic intolerance and reduced exercise capacity is observed at the end of bed rest. 

Calcium excretion is increased during the bed rest leading to a sustained negative calcium 

balance, while calcium absorption through the gut is reduced. Bodyweight, muscle mass, 

muscle strength are reduced during immobility and also bone density and bone architecture 

are altered. Some alterations can involve circadian rhythms. Bed rest can also reduce the 

production of erythropoietin, lowering red cell mass. Both in bed rest and spaceflight 

subjects complain of poor and disturbed sleep even though EEG records appear to be 

generally normal. On return from space or reambulating after bed rest period, subjects show 

a high incidence of orthostatic hypotension, balance problems, wider short steps and foot 

dragging occasionally, poor coordination. All changes described depend on neural, 

neurohumoral and humoral mechanisms that are affected likewise in both bed rest study and 

spaceflight (Pavy Le-Traon et al., 2007).  Furtherly, immobilization, as in bed rest, can modify 
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energy requirements, protein metabolism, insulin resistance, changes in the humoral 

regulating mechanisms and others. Indeed, during bed rest, energy requirements are 

reduced to the basal metabolic rate plus a small percentage of calories because of the energy 

expenditure generated by the residual small amount of movements. These activities include 

those of turning around in bed and being awake.  

 

 

Fig.1.4. Adaptations to microgravity. The adaptation to microgravity is a potential mechanism that includes loss of body 
weight, tissue fluid redistribution, loss of hydrostatic pressures and decreased sensory inputs within the body A) Astronaut 
models and B) horizontal bed rest (top) and 6 degrees nead-down-tilt bed rest (bottom) (Hargensen  and Vico , 2016). 

 

Generally, in healthy individuals bed rest or spaceflights induce skeletal muscle atrophy, 

characterized by reduced muscle strength, lower protein synthesis and higher protein 

degradation rate, protein carbonylation, shift in muscle fiber type from slow type 1 to fast 

type 2A and 2X increased oxidative stress, development of insulin resistance, and 

intramuscular fat deposits. During atrophy/disuse, skeletal muscles can be infiltrated by 

immune cells and adipose tissue.  

At molecular level, a decrease in protein synthesis and an accelerated proteolysis during 

periods of prolonged inactivity lead to muscle atrophy (Rennie et al., 2010; Sandri, 2008). 

Protein degradation process occurs in muscle fibers and allows to recycle and remove 

damaged proteins. Protein synthesis rates decrease as result of a decreased transcriptional 

activity, increased degradation of transcripts (e.g.mRNA stability), and decreased assembly of 

translational machinery (i.e., translation). The PI3K/Akt/mTOR pathway is a key regulatory 

pathway involved in processes as protein synthesis in skeletal muscle and it is a down-

regulated in skeletal muscle during prolonged periods of inactivity (Kelleher et al., 2015, 
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2013; Haddad et al., 2006). There are different proteolytic systems able to interact each 

other and to maintain proteostasis in the muscle by removing damaged structures. 

Autophagy, ubiquitine proteasome system (UPS), calpain, and the caspase-3 proteolytic 

systems contribute to protein degradation during disuse muscle atrophy (Romanello and 

Sandri, 2016; Powers et al., 2012; Jackman and Kandarian, 2004). Importantly, the UPS plays 

a large role in the protein degradation that occurs in skeletal muscle atrophy (Bilodeau et al., 

2016). Atrogin-1/MAFbx and muscle ring fingerprotein-1 (MuRF-1), are two muscle specific 

E3 ligases acting in UPS mediated protein degradation in skeletal muscle wasting (Rom and  

Reznick, 2016). The calpain and caspase-3 systems are allosterically regulated by Ca2+ and act 

as critical proteolytic enzymes required when it occurs a condition of inactivity induced 

atrophy (Talbert et al., 2013). Damaged and dysfunctional mitochondria can also release 

mitochondrial-specific signalling molecules as the mitochondrial proteins apoptosis inducing 

factor (AIF) and CytC into the cytosol, and this leads to the activation of proteolytic systems 

as caspase-3 which triggers myonuclear apoptosis, lowering the transcriptional capacity of 

myofibers (Adhihetty et al., 2005). An important transcriptional regulator playing a role in 

muscle wasting is Forkhead box O (FoxO) (Sandri et al., 2004; Gomes et al., 2001); it induces 

the transcription of UPS related genes (e.g. Atrogin-1 and MuRF-1) as well as autophagy 

related genes (e.g. microtubule-associated proteins 1A/1B light chain 3b (LC3), BCL2 

interacting protein 3 (Bnip3), and cathepsin L (Mammucari et al., 2007). The autophagic 

system can be considered a proteolytic system involved in inactivity-induced muscle atrophy 

(Smuder et al., 2018). During autophagy proteins can be degraded but also organelles; the 

autophagic process involves the formation of an autophagosome engulfing damaged protein 

structures and in order to do it, it needs the fusion of the autophagosome with lysosomes. 

 

The effects of a prolonged bed rest  were also described as decline of VO2 max (Ried-

Larsen et al., 2017), muscle mass loss and impairment of oxidative function (Salvadego et al., 

2018, 2016, 2011; Dirks et al., 2016; Porcelli et al. 2010, Bergouignan et al., 2011, 2009). 

Prolonged period of bed rest leads to impairments in oxidative function at several levels 

including pulmonary function and cardiovascular O2 delivery to peripheral O2 utilization (Ade 

et al., 2015). Bed rest studies, carried out on young subjects, observed a significant functional 

impairment of skeletal muscle oxidative metabolism evaluated in vivo following 10 days 
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(Salvadego et al., 2016), 21 days (Salvadego et al., 2018), and 35 days (Salvadego et al., 2011; 

Porcelli et al., 2010) of bed rest conditions. 

Mitochondrial function following immobilization is subjected to a downregulation including 

oxidative phosphorylation, TCA cycle, fatty acid metabolism, mitochondrial transcription and 

translation, and solute and protein transport (Abadi et al., 2009). Mechanisms and factors 

involved in mitochondrial impairment during muscle inactivity have not been fully clarified. 

Mitochondria undergo decreases of respiratory capacity and coupling, morphological 

changes and increased mitochondrial ROS emission (Picard et al., 2015, 2012; Abadi et al., 

2009; Kavazis et al., 2009; Muller et al., 2007) (Fig.1.4.1). 

Ten days of exposure to inactivity showed an impaired skeletal muscle oxidative function in 

vivo without affecting mitochondrial oxidative phosphorylation function (respiration) ex vivo 

and mitochondrial content (Salvadego et al., 2016), while a period of twenty days to 

exposure bed rest revealed changes of mitochondrial respiratory function and the degree of 

mitochondrial coupling (Salvadego et al., 2018). Furthermore, the decrease of mitochondrial 

respiration was seen in association with decreased insulin sensitivity and energy expenditure 

following 21 days of bed rest (Kenny et al., 2017). In individuals subjected to 14 days of bed-

rest a reduction key regulators of mitochondrial biogenesis/remodelling, namely PGC-1α and 

Sirt3 and also in single OXPHOS complexes protein content (Buso et al., 2019) was observed. 

Other investigations observed that one week of bed rest strongly reduced muscle mass, 

strength, and physical performance but also protein content of all complexes of OXPHOS 

(Dirks et al., 2016). Changes in mitochondrial proteins during immobilization-induced muscle 

atrophy/limb can induce a coordinate downregulation of mitochondrial pathways (Abadi et 

al., 2009). Moreover, pathways involved in mitochondrial biogenesis are downregulated 

during skeletal muscle inactivity (Brocca et al., 2012; Chen  et al., 2007). Peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a key regulator of 

mitochondrial biogenesis, is shown to be significantly decreased during prolonged muscle 

inactivity (Kang et al., 2013), negatively affecting mitochondrial function and structure 

(Fig.1.4.1). PGC-1α is able to regulate signalling and transcriptional events, also outside of 

mitochondria. For example TFAM is a downstream target of PGC-1α and it regulates the 

transcription of mitochondrial DNA (mtDNA) encoded genes. TFAM protects mtDNA from 

damage and degradation, and decreases in TFAM during muscle atrophy may expose mtDNA 
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to a possible damage, and, consequently, lead to mitochondrial signalling events that 

activate atrophic pathways (Theilen et al., 2017). 

The fission mitochondrial protein, dynamin related protein 1 (DRP1) is localized in the cytosol 

and in order to became active and translate to mitochondria is phosphorylated at specific-

serine sites, Ser616, thereby inducing mitochondrial fission during muscle atrophy (Chou et 

al., 2012; Chang et al., 2010; Taguchi et al., 2007). In regard to mitochondrial fusion, levels of 

MFN1, MFN2 and OPA1 protein content decrease during muscle inactivity (Cannavino et al., 

2015). A decrease in fusion process along with a concomitant increase in mitochondrial 

fission leads to a mitochondrial fragmentation during muscle inactivity (Fig.1.4.1).  

An important component of mitochondrial dysfunction-induced muscle atrophy is the role of 

mitochondrial ROS emissions during inactivity (Powers et al., 2012); high levels of ROS 

production can negatively affect the pathways involved in maintaining and controlling  

muscle mass, even if mitochondrial ROS emissions has a role of signalling molecules in 

homeostatic regulation of muscle fibers (Powers et al., 2016). 

As explained, several mitochondrial impairments during muscle inactivity were observed 

through different studies, revealing areas of research to investigate in order to establish the 

possible mechanisms of protection of skeletal muscle mitochondria against inactivity-induced 

dysfunction.  

The cytoprotective role of exercise against muscle atrophy is well recognized. More 

specifically, exercise increases skeletal muscle capacity to resist to stresses (Wiggs, 2015). 

Tunner and colleagues (Tunner et al., 2015) have shown that exercise rehabilitation restored 

bed rest-induced deficits in lean mass, strength, muscle protein synthesis in older adults. 

Furthermore, exercise rehabilitation improved mitochondrial pathways which were 

downregulated by the bed rest period (Buso et al., 2019). The recovery of muscle mass and 

function in obesity and immobility/atrophy depends on the exercise protocol. 
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Fig.1.4.1. Exercise and disuse effects on mitochondrial quality and quantity. (Wiggs, 2015) 
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2. AIM OF THE WORK 
 

As mentioned in the Introduction, skeletal muscle is highly dynamic tissue which, 

apart for force and movement production during exercise, is deeply involved in whole-body 

homeostatic adjustments to different physiological and pathological conditions. 

Mitochondria, the intracellular organelles responsible for ATP production by oxidative 

phosphorylation, are responsible for a significant portion of the muscle plasticity mentioned 

above. One of the main environmental stressors known to trigger adaptations in 

mitochondria and skeletal muscle fibers is exercise, in terms both of exercise training and in 

terms of reduced activity/immobility. The aim of the present PhD work was to evaluate the 

adaptations to exercise, or to the lack of exercise, at the level of mitochondrial oxidative 

phosphorylation function in two conditions particularly relevant for the development of 

diseases, that is obesity (study n. 1: obese patients undergoing different protocols of exercise 

training) and bed rest-induced microgravity and immobility (study n. 2, carried out on young 

healthy volunteers). 



 
 

3. EXPERIMENTAL STUDIES  
 

3.1 Study n. 1: Mitochondrial adaptations to exercise training in 
obese patients 

 

3.1.1 Introduction 

 
Obesity is a common health problem and it represents a significant risk factor for 

several pathological conditions. Success in obesity treatment programs is highly variable, and 

it is related in part to compliance and program characteristics (e.g., type and duration of 

hypocaloric diets, educational components, exercise-associate energy expenditure, type of 

exercise). Numerous studies have demonstrated that skeletal muscle metabolism and 

mitochondrial content/function are impaired in obesity (de Mello et al., 2018). Mitochondrial 

alterations could be involved at several levels in the pathogenesis of the disease (see General 

Introduction above). 

If and to which extent these mitochondrial alterations can be affected by therapeutic 

interventions, and particularly by those associated with exercise training, is not known. . We 

hypothesize more pronounced effects following HIIT vs. those determined following MICT. 

 The study was performed at the Mountain Sports Study Centre, Gemona Hospital 

(Italy) and it was supported by the Department of Medicine of University of Udine under the 

supervision of Professor S. Lazzer with the collaboration of a research group from the 

University of Ferrara (Prof. Angela Passaro). 

 

3.1.2 Aim  

 

The aim of this project was to evaluate mitochondrial oxidative ohosphorylation 

function in obese individuals undergoing to one of two types of exercise training, MICT or 

HIIT. Data obtained on mitochondria were evaluated in association with those related to 

functional variables related to oxidative function at the whole-body level (although these 
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data will not be specifically discussed in the present thesis). High-resolution respirometry in 

permeabilized fibers is considered by many authors (see e.g. Picard et al., 2011) the “gold 

standard” in the functional evaluation of mitochondrial function. Since high-resolution 

respirometry was rarely used in obese individuals undergoing exercise training, the present 

study provides an evaluation of mitochondrial function following two types of physical 

intervention, moderate intensity continuous training (MICT) and high intensity interval 

training (HIIT) (Gibala, 2009), a relatively new training method which has recently gained a lot 

of attention also in patients populations. 

3.1.3 Materials and Methods 

 

Participants and Study design 

Thirty-two healthy obese volunteers, 17 men and 15 women (age 38± 8.5 years, BMI 

35.5±4.2 kg/m2) were recruited from the Exercise Physiology Laboratory of the University of 

Udine where they underwent a medical and dietetic evaluation. The inclusion criteria were: 

age between 18 and 50 years and body mass index (BMI) ≥ 30 kg m-2. Subjects who had 

previously participated in weight management programs, had cardiovascular, respiratory, 

neurological, muscular-skeletal, metabolic and/ or endocrine diseases or those who were 

taking any drugs known to influence energy metabolism and cardiorespiratory adjustments 

to exercise were excluded. No subject was taking beta-blockers. The Ethics Committee of the 

Friuli-Venezia-Giulia Region approved the study. Before the study began, the purpose and 

objectives were carefully explained to each subject and written informed consent was 

obtained. A physical activity questionnaire was administered to exclude potential volunteers 

who engaged in any continuous activity longer than 20 minutes than once a week, indicative 

of a moderate physical activity level (IPAQ-SF) (Craig et al., 2003). 

After the first inclusion visit, subjects were admitted to 3 months of multidisciplinary weight-

management program including lifestyle education, physical activity and dietary follow up. 

Control tests including assessment of body composition, physical capacities, fat oxidation 

rate, physical activities and dietary habits were performed during two weeks before the 

beginning (PRE) and immediately after completion the weight-management program (POST). 

At the same time, skeletal muscle biopsies of the vastus laterals muscle were taken for 

measurement of ex vivo mitochondrial respiration. In addition, indexes and physical 
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capacities were monitored monthly during the program, in order to adjust food allowances 

and physical activities individually. 

 

Physical activity 

During the 3 months-weight-management period, subjects followed a physical 

training program including three training sessions per week under supervision. The subjects 

were split randomly in two groups, one group following a moderate-intensity continuous 

training (MICT, n =16) and the second group following high intensity interval training (HIIT, n= 

16). All subjects completed 34 ± 0.14 sessions of physical training. The intensity of MICT on 

the treadmill was set at a heart rate (HR) corresponding to 60% of the initial V’O2peak, the 

duration of the training session was 44 ± 8 min. HIIT consisted of 10 min of warm up (50 % of 

V′O2peak) followed by 3 to 7 repetitions of 3 min bouts of high-intensity walking (100 % of 

V′O2peak), interspersed by 1.5 min walking at low intensity (50% of V′O2peak) and followed 

by 5 min of cool down (50% of V′O2peak); the duration of the training session was 33 ± 4 min. 

Exercise intensity was set up by adjusting the slope of the treadmill. The amounts of energy 

expended during the training sessions were similar for both groups: 20 kJ per kg of fat-free 

mass (FFM), which corresponds to about 1.5 MJ per session. 

Research assistants and physical trainers were responsible for verifying that each subject 

participated to each training session, performed the exercises correctly, and completed at 

least 90 % of the exercise sessions. All subjects were also advised to practice leisure physical 

activities during the weekend and holidays. 

During the 4-months follow up the same training suggestions were given to all subjects. The 

suggestions consisted of three training session per week covering the full intensities range: 

one high intensity (90% HR peak and less than 30 min), one medium intensity (~70-80% HR 

peak and 30-50 min) and one low intensity (<70% HR peak and more than 60 min). Training 

during the follow-up period was not supervised and compliance was checked by a 

questionnaire (Craig et al., 2013). 
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Anthropometric characteristics and body composition 

The medical history and a physical examination of subjects were taken at the time of 

admission to the weight-management program. Body mass (BM) was measured to the 

nearest 0.1 kg with a manual weighting scale (Seca 709, Hamburg, Germany) with the subject 

dressed only in light underwear and no shoes. Stature was measured to the nearest 0.5 cm 

on a standardized wall-mounted height board. BMI (Nuttal, 2015; Wells and Fewtrell, 2006) 

was calculated as BM (kg) x stature-2 (m). Body composition (Wells and Fewtrell, 2006) was 

measured by bioelectrical impedance (BIA, Human IM Plus; DS Dietosystem, Milan, Italy) 

according to the method of Lukaski et al. (Lukaski et al., 1986). Fat mass (FM) and fat-free 

mass (FFM) were calculated with equations derived either in obese people of different ages 

and BMI (fat-specific formulae), by utilizing a two-compartment model (Gray et al., 1989). 

Biopsies and Samples Collection 

Skeletal muscle biopsies were obtained from the vastus lateralis muscle of individuals 

by percutaneous biopsy after an overnight fast. Muscle biopsies were taken in all subjects 

one week before the exercise (PRE) and one week after the end of exercise (POST). 

Considering the methodological problems, which will be described in detail later, is reported 

the selection of subjects in relation to two groups before (MICT) and after (HIIT) the physical  

intervention: N=6 for PRE and N=8 for POST in MICT group, N=6 for PRE and N=7 for POST in 

HIIT group. Biopsies were obtained using a microneedle (Tru-cut Histocore, 12 G, Biomed 

Instrument & product DmbH, Germany), after anesthesia of the skin, using lidocaine (2%) and 

a small incision to penetrate skin and fascia. For each subjects two specimens were collected 

which were put at 4°C in BIOPS solution (imidazole 20 mM, MES 50 mM, DTT 0.5 mM, EGTA- 

calcium buffer 10 mM – free Ca2+ concentration 100 nmol/L, MgCl2 6.56 mM, ATP 5.77 mM, 

taurine 20mM, phosphocreatine 15 mM; pH 7.1) (4°C) containing 10% (wt/vol) fatty acid-free 

BSA and 30% (vol/vol) DMSO (4°C), and then immediately frozen in liquid nitrogen and stored 

at -80°C until the moment of analysis (Kutznetsov et al., 2003). Experimental measurements 

were set up within 3 months after the collect of muscle biopsy. 
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 High Resolution Respirometry Analyses 

High-resolution respirometer Oxygraph-2k (Oroboros-2K, Innsbruck, Austria) was used 

to evaluate mitochondrial respiration ex vivo of permeabilized vastus lateralis skeletal 

muscles fibers obtained by biopsy (see above). This procedure permeabilizes the plasma 

membrane in order to allow the entrance into the fibers of the substrates during the 

experiment. The permeabilization is obtained by incubation with saponin, a mild cholesterol-

specific detergent that selectively permeabilizes the sarcolemmal membranes while keeping 

mitochondrial membranes, which contain little cholesterol, completely intact (Kuznetsov et 

al., 2008). 

Mitochondrial activity was evaluated by measuring O2 consumption polarographically by 

high-resolution respirometry (Pesta and Gnaiger, 2012). The muscle sample (~ 10-20 mg of 

wet weight) was quickly thawed and immediately placed in BIOPS containing 2 mg / ml (w/v) 

of BSA, to remove any residual DMSO from the tissue. Fiber bundles were cleaned as much as 

possible from the connective tissue and fatty tissue excess and separated with sharp-ended 

needles under magnification (50 x) (MC170 HD, Leica Microsystems, Switzerland, LTD) leaving 

only small areas of contact. The mechanical separation of the fibers with sharp-needle was 

carried out before the respirometry analyses. The excessive of tissue adipose as shown in 

Fig.3.1.3 C, D, E was not always easy to remove thus, the possibility of damage to muscle 

fibers were increased by the isolation procedure. Therefore, many muscle specimens had 

lipidic component which was difficult to remove in order to avoid the disruption of muscle 

fibers and to reach homogeneity of the tissue samples for the experimental analyses. The 

mechanical separation of specimen (Fig.3.1.3 F, G) in isolated fibers under magnification was 

difficult and required specific attention because of the morphology of muscle fibers. Indeed 

muscle fibers specimens had a small length because of the microneedle used during the 

biopsy procedure (Fig 3.1.3 A, B). Muscle biopsies were taken by utilizing a microneedle and 

not by the classic Bergstrom approach (Fig.3.1.3.1 A, B) for safety and ethical reasons. The 

small length of muscle fibers specimens made them more exposed to a risk of a rigor state 

induced by ATP, and for this reason we have added Blebbistatin, a myosin II ATPase inhibitor 

to the respiration medium (see below) (Hughes et al., 2015). Blebbistatin prevents the 

shortening of the muscle fiber due to spontaneous contractions during the measurements 

(Ebrahim et al., 2013). 

 



 

32 
 

 

 

 

 

Fig.3.1.3.1. Images of two type of needles used for muscle biopsies. A) Microneedle and B) Bergstrom needle for muscle 
tissue removal. 

 

Specimens were carefully analysed and evaluated in terms of outer mitochondrial membrane 

intactness. Lesions of this membrane could be the result of the biopsy procedure itself, of the 

freezing/thawing sequence, and/or of the mechanical manipulation of the fiber before the 

actual measurement. 

A 

Fig.3.1.3. Preparation of permeabilized muscle fibers from biopsy of human vastus lateralis taken from obese individuals. 
(A, B) Length and size of typical muscle; (C, D) Amount of adipose tissue (dark brown); (E) Lipidic component located 
between the fiber bundles. (F, G) Fiber bundles after mechanical separation with sharp-needle. 
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Fibers were then incubated in 2 ml of BIOPS (4°C) containing 20 µg/ml (w/v) saponin for 30 

min with continuous gentle stirring to ensure complete permeabilization. After being rinsed 

twice for 10 min in a respiration medium (MiR05; Oroboros Instruments: EGTA 0.5 mM, 

potassium lactobionate 60 mM, MgCl2·6H2O 3 mM, taurine 20 mM, KH2PO410 mM, HEPES 

20 mM, sucrose 110 mM, and BSA 1 g/l, pH 7.1), permeabilized fibers were measured for wet 

weight and immediately transferred into the respirometer (Oxygraph-2k) chambers for O2 

consumption analysis. The instrumentation allows for O2 consumption measurements with 

small amounts of sample in closed respiration chambers containing 2 ml of air-saturated 

respiration medium (MiR05 plus 280 U/mL catalase) at 37°C (Pesta and Gnaiger, 2012). 2–4 

mg of muscle fibers were used for the analysis. Standardized instrumental and chemical 

calibrations were performed to correct for back-diffusion of O2 into the chamber from the 

various components, leak from the exterior, O2 consumption by the chemical medium, and 

by the sensor O2 (Pesta and Gnaiger, 2012). The O2 concentration in the chamber was 

maintained between 300 and 450 µM (average O2 partial pressure PO2 ~ 250 mmHg) to 

avoid O2 limitation of respiration. Intermittent reoxygenation steps were performed during 

the experiments by adding 3 µl of 0.3 mM hydrogen peroxide solution into the medium 

containing catalase (Pesta and Gnaiger, 2012). All respirometric analyses were carried out in 

duplicate.  

A substrate-uncoupler-inhibitor-titration protocol with a substrate combination was 

applied (Pesta and Gnaiger, 2012). Measurements were run in the presence of 25 µM 

blebbistatin to prevent ADP-induced contraction (rigor), particularly evident in small length 

biopsies such as those obtained by microneedle (Hughes et al., 2015). Non-phosphorylating 

resting mitochondrial respiration was measured in the presence of malate (4 mM) and 

glutamate (10 mM), and in the absence of adenylates, so that O2 consumption was mainly 

driven by the back leakage of protons through the inner mitochondrial membrane ( Complex 

I state 2, or “leak” respiration). Saturating ADP (5 mM) was then added to measure Complex I 

respiration in phosphorylating condition (Complex I state 3 respiration). Succinate (10 mM) 

was added to support convergent electron flow into the Q-junction through Complexes I and 

II, thereby achieving the maximal ADP-stimulated mitochondrial respiration sustained by 

Complex I and II (Complex I+II state 3 respiration), as verified by further addition of 5 mM 

ADP. Cytochrome C (10 µM) was added to test for mitochondrial outer membrane integrity 

and only samples demonstrating < 10% increase in respiration were considered good for the 
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analysis. Maximal electron transport system (ETS) capacity was then evaluated by stepwise 

addition of the chemical uncoupler protonophore carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP). Afterward, Rotenone (1 µM) was added to inhibit 

Complex I and to evaluate ETS sustained by Complex II (rotenone-insensitive) and by 

Complex I (rotenone-inhibited). Finally, antimycin A (2.5 µM) was added to inhibit also 

Complex III, providing a measure of residual O2 consumption, indicative of non-mitochondrial 

O2 consumption. Mitochondrial respiration was then corrected for O2 flux due to the residual 

O2 consumption. Data were digitally recorded using DatLab4 software (Oroboros 

Instruments). The respiration parameters were normalized by citrate synthase (CS) activity 

and expressed as pmol O2·s-1·mU-1. The degree of oxidative phosphorylation coupling for a 

specific substrate supply (glutamate and malate in this case) was determined by calculating 

the ratio between Complex I+II state 3 respiration minus Complex I leak respiration and 

Complex I+II state 3 respiration [(state 3 – leak)/state 3] (Gnaiger, 2014, Salvadego et al., 

2018, 2016). 

Citrate Synthase Activity Assay in Obese Study 

Upon completion of the measurements, muscle fibers were taken away from the 

chamber and underwent to a motor driven homogenization in a pre-cooled 1 ml glass-glass 

potter (Wheaton, USA). The muscle specimen was suspended 1:20 w/v in a homogenization 

buffer containing sucrose (250 mM), Tris (20 mM), KCl (40 mM) and EGTA (2mM) with 1:50 

v/v protease inhibitor cocktail (P8340-Sigma). The specimen was homogenised in an ice-bath  

with 20 strokes at 500 rpm. The homogenate was centrifuged at 600 x g for 10 minutes in 

order to discard cellular debris. The supernatant was used to evaluate protein concentration 

according to the method of Lowry (Lowry et al., 1951). 10 µg of protein were added to each 

well of a 96-well-microplate along with 100 µl of 200 mM Tris-Triton X-100 (0,2% v/v), 20 µl 

of 1 mM 5,5’-dithiobis-2-nitrobenzoate (DTNB) freshly prepared, 6 µl of 10 mM acetyl-

coenzyme A (Acetyl-Co-A) and mQ water to achieve a final volume of 190 µl. A background 

ΔAbs, to detect any endogenous activity by acetylase enzymes, was recorded for 90 seconds 

with 10 seconds interval at 412 nm at 25°C by an EnSpire 2300 Multilabel Reader 

(PerkinElmer).  This ΔAbs was subtracted from the one given after the addition of 10 µl of 10 

mM oxalacetic acid that started the reaction. All assays were performed at 25 °C in triplicate 
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on homogenates. Activity was expressed as mUnit (nanomoles/min) per mg of protein. This 

protocol was modified from (Spinazzi et al., 2012; Srere, 1969). 

Statistical analyses 

Collected data were analysed with different statistical methods, according to data 

subdivision, number of groups and clinical intervention on the studied group.  

Statistical analyses were performed using SPSS 20.0 software (IBM, Chicago, USA), with 

significance set at p<0.05. All results were expressed as means and standard error (SE). 

Normal distribution of the data was tested using the Shapiro–Wilk test. Sphericity was 

verified by Mauchly’s test. When the assumption of sphericity was not met, the significance 

of the F-ratios was adjusted according to the Greenhouse–Geisser procedure. 

Respirometric analyses data were analysed with a generalized linear mixed, multilevel, 

growth model, fit by maximal likelihood, which accounts for random effect due to subjects 

and intercept and fixed effects due to group (MICT vs HIIT), gender, time, and interaction 

Group x Time, taking in account the correlation of the data. Since the gender distribution of 

the subjects was balanced in the two groups, and no gender differences and no interaction 

between groups were found in the parameters studied, then male and female subjects were 

considered together. 

 

3.1.4 Results 
 

Thirty-two healthy obese volunteers have taken part in this investigation, their main 

physical characteristics at baseline and after the training intervention are shown in Table 1.  

Before the exercise no significant differences were found between MICT and HIIT in 

anthropometric characteristic and body composition. After the exercise (POST), the subjects 

showed a decreased body mass, BMI, waist circumference, hip circumference, FM decreased, 

while FFM did not change significantly in MICT and HIIT groups, without differences between 

groups. 

Before the training intervention, no significant differences were found between MICT 

and HIIT for HRpeak and V’O2peak (Table 1). After the exercise, HRpeak decreased in MICT 

and HIIT groups, without difference between groups (Table 1). Absolute V’O2peak increased 

in MICT and HIIT groups, respectively; with a significantly lower increase in MICT than HIIT 

(+6% and 16%, P<0.001). V’O2peak normalized by FFM increased in MICT and HIIT groups, 
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respectively, with a significantly lower increase in MICT than HIIT (+8%, and +16%, P<0.001, 

Table 1). 

 

 MICT HIIT 

PRE (N=16) POST(N=16) PRE(N=16) POST(N=16) 

Body mass (Kg) 107.1 ± 4.4 101.2 ± 4.5* 103.5 ± 2.7 97.8 ± 2.5* 

BMI (Kg *m-2) 36.1 ± 1.3 33.9 ± 1.2* 35.1 ± 0.9 33.2 ± 1.0* 

Waist (cm) 113.0 ± 3.5 109.4 ± 4.0* 114.1 ± 2.2 108.8 ± 2.1* 

Hip (cm) 123.1 ± 2.8 118.0 ± 2.9* 120..5 ± 1.8 116.1 ± 2.2* 

FFM (Kg) 69.4 ± 3.9 68.6 ± 4.1 65.1 ± 2.9 64.7 ± 2.7 

FM (Kg) 37.7 ± 2.7 32.4 ± 2.3* 38.4 ± 2.1 32.9 ± 2.5* 

Hrpeak (bpm) 180.1± 0.9 177.2 ± 1.1* 181.0 ±0.9 176.0 ±0.5* 

V’O2peak (L* min-

1) 

3.02 ± 0.05 3.19 ± 0.05* 2.88± 0.04 3.35 ± 0.05* 

V’O2peak (mL* 

min-1 * Kg-1 FFM) 

43.58 ± 0.39 46.80 ± 0.039* 44.26 ± 0.45 51.51 ± 0.40* 

 

Table 1. Anthropometric characteristic, body composition characteristics and physical capacities of the obese subjects. 
Data are expressed as mean ± SEM before (PRE) and after 3-months (POST) of weight- management program in Moderate 
Intensity Continuous Training (MICT) and High Intensity Interval Training (HIIT) groups. BMI: body mass index; FM: Fat Mass; 
FFM: Fat free Mass;*: significantly different from PRE, P<0.05.  

 
 

Mitochondrial oxidative phosphorylation function was evaluated before the effect of 

the exercise (PRE) and after the effect of exercise (POST) by high resolution respirometry.  

32 muscle samples were collected by biopsy and immediately frozen. 5 samples were not 

considered in the analyses as a consequence of an incorrect freezing procedure. 

In the present study, high-resolution respirometry measurements could not be carried out 

immediately on fresh biopsies because of the wide number of biopsies obtained in the same 

day and for other the logistic issues. Our group has repeatedly performed high-resolution 

respirometry measurements on frozen samples (Salvadego et al., 2018, 2016; Tam et al.,   
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2016; Cannavino et al., 2015). Accurately controlled procedures proposed by Kuznetsov et al 

(Kuznetsov et al., 2003) were followed.  

Intactness was evaluated during the respirometric measurements by adding cytochrome C 

(10 μM) in the O2K chamber. If the outer mitochondrial membrane is damaged the 

respiration is stimulated by cytochrome C. On the contrary if the membrane is intact the 

response to the substrate is null. We considered for our analyses only the samples with an 

increase in mitochondrial respiration following administration of cytochrome C within the 

limits allowing the exclusion of significant damage of the outer mitochondrial membrane 

(<10% increase of cyt.C-induced respiration) (Fig.3.1.4). Thus, unfortunately, we were unable 

to analyse mitochondrial respiration in all samples. We had to exclude 23% of respirometric 

measurements, obtaining four numerically homogeneous populations (PRE-MICT N=6, POST-

MICT N=8, PRE-HIIT N=6, POST-HIIT N=7). 

 

 

 

 

 

 

 

 

Fig.3.1.4. Cytochrome C percentage increase in four group analysed. The percentage increase of Cytochrome C was 
calculated with the ratio between value of Cytochrome C and the previous value corresponding to last titration of ADP, in 
PRE-MICT N=6, POST-MICT N=8 , PRE-HIIT N=6, POST-HIIT N=7. All data are represented as mean ± SEM. 
 
 
 
In the Fig3.1.4.1 a representative trace of high resolution respirometry (HRR) including the 

protocol of substrate-uncoupler-inhibitor-titration used in the study. 
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Fig.3.1.4.1. Representative HRR trace. The blue trace represents the oxygen concentration (in nmol/ml) in the chamber and 
the red one the oxygen consumption (pmol/s*mg wet weight). The magenta and dark blue marks represent the 
substrates/inhibitors addition in the chamber. It is represented on the top of the graph the investigated conditions during 
the protocol used. 

 
 
The collected data were expressed per mg of wet weight and then normalized by CS 

activity, taken as an estimate of mitochondrial mass (Larsen et al., 2012a). CS activity did not 

change before and after the exercise in the two groups examined (Fig.3.1.4.2), indicating that 

the mitochondrial content of fibers was not modified by the training protocol. 

 

 

 
 

 

 

The main results of mitochondrial respiration ex vivo, obtained by high-resolution 

respirometry, are presented in Figure 3.1.4.3. Mitochondrial leak respiration (Complex I state 
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Fig.3.1.4.2. Citrate synthase activity.Citrate synthase activity measured before (green column) and after weight-management 
program (red column); N=6 for PRE and N=8 for POST in MICT group, N=6 for PRE and N=7  for POST in HIIT group. Values are 
means + SEM. 
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2 respiration) or non-phosphorylating resting mitochondrial respiration sustained by Complex 

I was not affected by both type exercise interventions, when normalized by CS (Fig. 3.1.4.3). 
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Fig.3.1.4.3. Mitochondrial leak respiration (Complex I state2 respiration) and Maximal ADP-stimulated mitochondrial 
respiration (Complex I+II state 3 respiration). In panel a data are reported for MICT group, in panel B for HIIT group. Leak 
resting respiratory rate was determinated in the presence of glutamate and malate (without ADP), while Maximal ADP-
stimulated mitochondrial respiration was determined with 5 mM ADP and glutamate, malate, succinate as substrates. Data 
are expressed by CS activity. Values are means + SEM; N=6 for PRE and N=8 for POST in MICT group, N=6 for PRE and N=7 for 
POST in HIIT group. Statistical significance is reported as * if p<0.05. 

 
Maximal ADP-stimulated respiration (CI+CII state 3 respiration)  increased significantly 

after the weight-management program (POST) in both MICT and HIIT groups (P: 0.042) with 

respect to the data obtained before training (Fig.3.1.4.4). Although the difference in the 

increase between the two groups was not significant (P: 0.403), percentage-wise the increase 

following MICT (+67%) was more pronounced compared to the increase observed following 

HIIT (+36%). Values before training were not significantly different in the two groups.  

 

 

A B * * 



 

40 
 

 

 

 

 

The data dealing with oxidative phosphorylation coupling at a specific substrate 

supply (glutamate and malate), calculated as ratio [(State 3-Leak)/ State3] and reported in 

Fig.3.1.4.5, show that two training protocols did not affect oxidative phosphorylation 

efficiency. At baseline the values of the ratio were within 0.77-0.80 and did not change 

significantly after the weight management program, for both MICT and HIIT.  

 

 

 

Fig.3.1.4.5. Oxidative phosphorylation coupling. The degree of oxidative phosphorylation coupling was measured before 
(green column) and after (red column) the weight-management program in MICT and HIIT groups. Values are means + SEM. 
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Fig. 3.1.4.4. Maximal ADP-stimulated mitochondrial respiration (CI+CII state 3 respiration) measured before and after the 
weight-management program in MICT and HIIT groups. Data are normalized by citrate synthase (CS) activity, expressed as 
mU/mg protein. Values are means + SEM; N=6 for PRE and N=8 for POST in MICT group, N=6 for PRE and N=7 for POST in HIIT 
group. Statistical significance is reported as * if p<0.05. 
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The maximal capacity of the electron transport system uncoupled from the phosphorylating 

system (complex I+II ETS), evaluated trough titrations of the chemical uncoupler FCCP, 

increased significantly (P:0.042) as compared with baseline in MICT (+45%) and HIIT(+61%), 

without significant difference between the two interventions (Fig.3.1.4.6). Either rotenone-

sensitive or-insensitive ETS exhibited a pattern similar to that of complex I+II ETS, although 

the increase of these variables in comparison to the baseline values did not reach statistical 

significance (Fig. 3.1.4.6). 

 

 

                  

Fig.3.1.4.6. Maximal capacity of the electron transport system.  It is shown maximal capacity of ETS sustained by Complex I 
(rotenone-sensitive ETS, stripes) and by Complex II (rotenone-insensitive ETS squares) expressed as fractions of the electron 
transport system capacity, i.e. ETS sustained by both Complex I and II (full coloured). Data are normalized to the pre-exercise 
Complex I+II ETS. Values are means + SEM; N=6 for PRE and N=8 for POST in MICT group, N=6 for PRE and N=7 for POST in 
HIIT group. Statistical significance is reported as * if p<0.05. 
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3.1.5 Discussion 

 
Obesity is a common disease associated with mitochondrial dysfunction, even if the 

pathophysiological mechanisms are not completely understood. It is already stated that 

success in obesity treatment programs, including physical intervention, is highly variable, and 

it is related in part to compliance and program characteristics, althought the benefical effect 

of exercise training on mitochondrial function is recognized and it can not be neglected. 

 The study described in this thesis was performed on obese individuals exposed to 

two types of training (within a weight-reduction program) carried out for 3 months: 

moderate intensity continuous training (MICT) and high intensity interval training (HIIT). The 

hypothesis was that HIIT would have a greater efficacy than MICT at several levels, both 

systemically (body mass and fat mass, fat oxidation rate, peak pulmonary O2 uptake 

[VO2peak]) and at the level of mitochondrial respiration. In terms of systemic variables, the 

hypothesis was confirmed: body mass and fat mass decreased more following HIIT vs. MICT, 

VO2peak increases were more pronounced following HIIT vs. MICT, and fat oxidation rate 

increased only after HIIT. These data (Vaccari et al., 2019 submitted) are not specifically 

mentioned in the present thesis.  

As discussed above, mitochondrial respiration was evaluated ex vivo by high-

resolution respirometry on permeabilized skeletal muscle fibers obtained by biopsies carried 

out on the vastus lateralis muscle. The functional evaluation was carried out by determining 

the following variables (Pesta and Gnaiger, 2012; Salvadego et al., 2016): Complex I “leak” 

respiration (state 2 respiration, O2 consumption not associated with the phosphorylation of 

ADP but with the leaking of protons across the inner mitochondrial membrane); maximal 

ADP-stimulated mitochondrial respiration (state 3) through respiratory complexes I + II (also 

known as “oxidative phosphorylation capacity”); ETS respiration evaluates the maximal 

capacity of the electron transport system uncoupled from the phosphorylating system. 

Rotenone allows to discriminate the contribution of Complex I and II to the “ETS capacity”. 

Oxidative phosphorylation coupling is an index of the degree mitochondrial coupling at a 

specific substrate supply (glutamate and malate), calculated as the ratio [(State 3-Leak)]/ 

State 3. All data were normalized by CS activity, considered a valid estimate of mitochondrial 

content (Larsen et al., 2012a). 
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Our results revealed an improvement of maximal ADP-stimulated respiration and 

maximal ETS capacity after both MICT and HIIT, without changes in oxidative phosphorylation 

coupling, suggesting that oxidative phosphorylation capacity, but not its efficiency, was 

enhanced by exercise training. Although the increase in maximal ADP-stimulated 

mitochondrial respiration was, percentage-wise vs. baseline values, more pronounced 

following MICT than following HIIT, this difference did not reach statistical significance. CS 

activity, taken as an estimate of mitochondrial mass, did not change after both training 

interventions. This observation is in contrast with data obtained in non-obese subjects 

(Bartlett et al., 2012), documenting that some markers of mitochondrial biogenesis increase 

in high-intensity interval running more than in moderate-intensity continuous running. Thus, 

we may infer that the increases of mitochondrial function we observed in obese subjects 

after the two training interventions were due to OXPHOS complexes activity/assembly 

regulation, or remodelling of mitochondrial inner membrane. Menshikova et al., 2007 

suggested a similar hypothesis in sedentary obese individuals undergoing moderate-intensity 

physical activity combined with weight loss. In particular, the authors observed an improved 

enzymatic capacity for oxidative phosphorylation without a significant change in mtDNA 

content, hypothesizing a mitochondrial cristae remodelling. Our data showing an increase in 

maximal capacity of both Complex I and Complex II may be in accordance to such hypothesis. 

 

Overall, our results prompt us to propose exercise training as a good strategy to 

counteract the alterations of mitochondrial proteome observed in skeletal muscle of subjects 

with obesity, with proteins forming the TCA cycle being increased and those forming protein 

complexes of the oxidative phosphorylation decreased (Kras et al., 2018). Indeed, such 

proteomic profile has an increased capacity to produce reducing equivalents of NADH and 

FADH2 in an impaired electron transport chain, thereby generating oxidative stress. 

Moreover, we formulate the hypothesis of OXPHOS complexes activity/assembly regulation 

or remodelling of mitochondrial inner membrane, supported by a variety of literature data 

regarding mitochondrial dysfunction in obesity, specifically documenting alterations in 

mitochondrial oxidative phosphorylation function (Vijgen et al., 2013; Bakkman et al., 2010), 

mitochondrial content (Ritov et al., 2005) and protein expression of OXPHOS complexes (Kras 

et al., 2018; Wijingarden et al., 2013).  
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In our study, despite both training modalities improved mitochondrial oxidative 

phosphorylation function, only after HIIT the whole body capacity to oxidize lipids during 

exercise improved (Vaccari et al., 2019 submitted). It should be considered that 

mitochondrial oxidative capacity widely exceeds systemic O2 delivery (Boushel et al., 2011), 

and does not seem to be related with total body fat oxidation. Looking at our results, the 

improvement in fat oxidation in HIIT was not associated with changes in CS activity (Vaccari 

et al., 2019 submitted). This suggests that at least for 3 months of training, the improvement 

of fat oxidation is not due to mitochondrial adaptations, but to other factors, like 

improvements in O2 muscle supply, capillary density and O2 diffusion. Indeed, endurance 

athletes, compared with untrained individuals, have higher whole body maximal fat oxidation 

which however does not correlate with mitochondrial fat oxidation (Nordby et al., 2006). This 

further suggests that in the obese patients of the present study higher O2 availability might 

be the main factor increasing whole body fat oxidation. A similar type of reasoning could be 

made for pulmonary VO2peak, which in the present study increased more significantly 

following HIIT vs. MCIT. 

 

Although the values range for maximal ADP-stimulated respiration obtained for this 

study is rather low, it is seems to be in agreement with other studies carried out ex vivo by 

high resolution respirometry (Layec et al., 2018; Warren et al., 2017; Park et al., 2014), even 

on fresh muscle samples. Conflicting opinions can be found in the literature on the possibility 

of freezing and thawing the samples undergoing high-resolution respirometry. The accurately 

controlled procedure proposed by Kuznetsov et al (Kuznetsov et al., 2003) was used in the 

present study, as in several previous studies by our group and by others (Salvadego et al., 

2018, 2016; Tam et al., 2016, Cannavino et al., 2015, Wüst et al., 2012). On the other hand, 

according to Meyer et al., 2014 and Larsen et al., 2012b, cryopreservation of samples can 

result in an underestimation of maximal ADP-stimulated mitochondrial respiration. So, it 

cannot be excluded that the freeze-thaw procedure used in the present study led to some 

underestimation of maximal ADP-stimulated mitochondrial respiration values. Even if this 

occurred, however, the effect was present both before and after training, leaving the 

comparison between the two conditions substantially “safe”. However, the same authors 

(Meyer et al., 2014; Larsen et al., 2012b) observed a good correlation (r2 = 0.82) between 

respirometry measurements in fresh and cryopreserved samples. Moreover, in the studies 
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that raised doubts about the possibility of cryopreserving the samples (and Meyer et al., 

2014; Larsen et al., 2012b) significant damage to the outer mitochondrial membrane was 

frequently present, as suggested by the substantial increase in respiration following the 

administration in the measurement chamber of cytochrome C. As mentioned in the methods, 

as in our previous studies on cryopreserved samples (Salvadego et al., 2016, 2011) also in the 

present one very stringent criteria on cytochrome c increases in respiration were adopted.  

3.1.6. Conclusions 
 

In conclusion, this study reveals functional improvements in mitochondrial function in 

obese individuals exposed to two types of training (MICT vs HIIT). This may have impact in 

the pathophysiology of obesity, which is strongly related to mitochondrial dysfunction. 

Whereas HIIT determined greater improvements vs. MICT in systemic variables of oxidative 

function (fat oxidation rate, peak O2 uptake), this difference was not observed in terms of 

mitochondrial function. Factors “upstream” of mitochondria are presumably more sensitive 

to HIIT.  
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3.2 Study n.2: Mitochondrial adaptations to bed rest 
 

3.2.1 Introduction 
 

Skeletal muscle is a dynamic tissue able and its whose plasticity allows to support 

different conditions of training/inactivity. Disuse is a major feature that can shape muscle 

molecular and systemic structure and function and is a very common condition that can be 

caused by many situations, such as a cast leg/arm, absence of gravity as during space flights, 

or ageing. The molecular pathways and phenomena that occur during a period of 

disuse/immobility are not completely characterized and understood yet. In order to study 

these changes in skeletal muscle are often used bed rest studies. This approach simulates a 

reduced level of physical activity as well as microgravity. Bed rest conditions lead to skeletal 

muscle hypotrophy and/or atrophy that consent to evaluate systemic and molecular changes 

experienced. The effects of a prolonged bed rest were also observed as impairment in 

mitochondrial function (Salvadego et al., 2018), but mechanisms and factors involved in 

mitochondrial impairment during muscle inactivity have not been fully clarified.  

 

3.2.2 Aim 
 

The aim of this project was to evaluate mitochondrial oxidative phosphorylation 

function in subjects undergone to 10 days of bed rest. Ten healthy young men were recruited 

with this aim and the oxidative function in these subjects was evaluated before the bed rest 

(PRE-BR) and after ten days of bed rest ( POST-BR) by high resolution respirometry. The main 

attempt was not only evaluate mitochondrial oxidative phosphorylation function but also 

possible changes in ADP sensitivity after bed rest period. 

 

3.2.3 Materials and Methods  

 
Participants and Study Design 

Ten healthy young men (aged 18-30 years) were recruited for the study carried out 

under a condition of horizontal bed rest. All participants underwent medical examination and 

routine blood and urine analysis. Basic anthropometric parameters of the group were: age 
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(years)   23 ± 4.61 (mean ± SD); stature (m) 1.81 ± 0.03; body mass (kg) 77.51 ± 10.03; 

body mass index (kg/m2) 23.56 ± 2.45. Exclusion criteria were: regular smoking; chronic 

disease requiring clinical treatment, habitual use of drugs, blood clotting defects, history of 

deep vein thrombosis (TVP) with D-dimer values > 500 μg/l; acute or chronic skeletal, 

neuromuscular, metabolic and cardiovascular disease conditions, previous history of 

embolism, inflammatory diseases, psychiatric disorders, epilepsy, participation in sports at a 

competitive level, ferromagnetic implants. Participants were informed of the purpose, 

procedures and potential risk of the study before signing the informed consent.  

The study was conducted in controlled medical environment at the General Hospital of Izola, 

Slovenia. The participants were housed in standard air conditioned hospital rooms and were 

under constant surveillance with 24-hour medical care. For 10 days, the participants 

performed all daily activities in bed and received standard hospital meals three times a day. 

The study was approved by the Local Ethical Committee under the acronym: MARS-PRE BED 

REST SBI 2019; it was funded by the Italian Space Agency (ASI) and was coordinated by 

Science and Research Centre Koper. Oure research group from the University of Udine has 

carried out the functional assessment measures of oxidative bioenergetics metabolism in 

collaboration with Biomedical Technology Institute of National Research Council (CNR) of 

Milan (Italy). 

 Biopsies and mitochondrial respiration analyses  

Two biopsies were taken from vastus lateralis muscle of each subject: one before 

starting bed rest for baseline data collection (BDC), one after the bed rest period (BR9). 

Samples were obtained from the mid-region of the right vastus lateralis muscle. Biopsy was 

done after anaesthesia of the skin, subcutaneous fat tissue, and muscle fascia with 2 ml of 

lidocaine (2%). A small incision was then made to penetrate skin and fascia, and the tissue 

sample was harvested with a Rongeure-conchotome (GmbH & Co, Zepf Instruments, 

Dürbheim - Germany). The samples were put at 4°C until the experimental analysis. Fiber 

bundles were trimmed from the connective and fatty tissue excess (if present) and separated 

with sharp-ended needles under magnification (70 x) (Stereomicroscope CRYSTAL-PRO, 

Konus-optical & sports systems, Italy) leaving only small areas of contact. 

Fibers were then incubated in 2 ml of BIOPS (4°C) containing 20 µg/ml saponin for 30 min 

with continuous gentle stirring to ensure complete permeabilization. After being rinsed twice 
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for 10 min in a respiration medium (MiR05), permeabilized fibers were measured for wet 

weight and immediately transferred into the respirometer (Oxygraph-2k) chambers for O2 

consumption analysis, as described in 3.1.3 paragraph. 

Analyses were performed in duplicate, by processing separately two specimens from 

each biopsy (Fig.3.2.3). The tissue samples were placed onto a pre-cooled Petri dish on ice, 

and were cut diagonally into small portions. Subsamples used for replicates were placed 

quickly in ice-cold BIOPS and connective tissue was removed (when it was necessary). Then 

fiber bundles were separated mechanically using a sharp-needle. The mechanical separation 

did not require in this case the difficulties seen during the manipulation of muscle samples 

taken from obese patients. Indeed, samples were not frozen, were free of adipose tissue, and 

were collected using a Rongeure-conchotome (Fig.3.2.3.1), a surgical instrument that not 

altered the morphology and the integrity of muscle fibers.  Nevertheless, visual inspection of 

the samples under a microscope revealed an inhomogeneous geometry of the bundles. 

 

 

 

Fig.3.2.3. Biopsy of human vastus lateralis taken from individuals subjected to 10 days of bed rest. It is shown small 
muscle specimens after the collecting procedure. 

 

According to experimental procedure, muscle specimens were carefully evaluated in terms of 

outer mitochondrial membrane intactness. Intactness was evaluated during the 

respirometric measurements adding cytochrome C in the O2K chamber (as described in 

paragraph 3.1.4). We considered for our analyses only the samples with an increase in 

mitochondrial respiration following administration of cytochrome C within the limits allowing 

the exclusion of significant damage of the outer mitochondrial membrane (<10% increase of 

cyt C-induced respiration). Since high-resolution respirometry measurements were carried 

out immediately on fresh biopsies, we were able to analyse mitochondrial respiration in all 

the recruited subjects. 
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                                                     Fig. 3.2.3.1. Image of Rongeure conchotome used to muscle biopsy.  

 

 Apart from the ADP sensitivity evaluation (see below), the sequence of substrates was the 

same described in 3.1.3 and in previous papers of our group (see e.g. Salvadego et al. 2016, 

Salvadego et al. 2018). For ADP-stimulated respiratory kinetics, malate (4 mM), glutamate (10 

mM) and succinate (10 mM) were added before ADP titration (25 μM-10 mM) in order to 

determine the apparent Km (Holloway et al., 2018) of a Michaelis-Menten kinetics, allowing 

to evaluate ADP sensitivity of mitochondrial respiration. The apparent Km for ADP was 

determined through the Lineweaver-Burk plot, fitting the model [x =  1
[𝑆𝑆]

 ; y=  1
𝐽𝐽𝐽𝐽2

 ] where [S] is 

[free ADP] (ADPf) and JO2  is the O2 flux at [free ADP]. 

Cytochrome C (10 µM) was added to test for mitochondrial outer membrane integrity and 

only samples whose increase in respiration was < 10% were considered suitable for the 

analyses demonstrating. Data were digitally recorded using DatLab4 software (Oroboros 

Instruments). The respiration parameters were normalized by citrate synthase (CS) activity 

and expressed as (pmol O2·s-1·mU-1). The degree of oxidative phosphorylation coupling for a 

specific substrate supply (glutamate, malate, succinate in this case) was determined by 

calculating the ratio between Complex I+II state 3 respiration minus Complex I+II leak 

respiration and Complex I+II state 3 respiration [(state 3 – leak)/state 3] (Salvadego 2018, 

2016; Gnaiger, 2014).  At the conclusion of each experiment, muscle samples were recovered 

from the chamber, immediately frozen in liquid nitrogen and then stored at -80°C. 

 

Citrate Synthase Activity Assay in Bed Rest study 

In order to carry out citrate synthase activity, muscle samples were thawed and 

underwent a motor driven homogenization in a pre-cooled 1 ml glass-glass potter (Wheaton, 

USA). The muscle specimen was suspended 1:50 w/v in a homogenization buffer containing 

sucrose (250 mM), Tris (20 mM), KCl (40 mM) and EGTA (2mM) with 1:50 v/v protease 

(P8340-Sigma) inhibitors. The specimen was homogenised in an ice-bath  with 20 strokes at 
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500 rpm, but before the last hit, Triton X-100 (0.1% v/v) was added to the solution. After this, 

the sample was left in ice for 30 minutes. The homogenate was centrifuged at 13000 rpm for 

10 minutes in order to discard cellular debris. The supernatant was used to evaluate protein 

concentration according to method of Lowry (Lowry et al., 1951). 5-10-15 µg of protein 

extracts were added to each well of a 96-well-microplate along with 100 µl of 200 mM Tris, 

20 µl of 1 mM 5, 5’-dithiobis-2-nitrobenzoate (DTNB) freshly prepared, 6µl of 10 mM acetyl-

coenzyme A (Acetyl-Co-A) and mQ water to a final volume of 190 µl. A background ΔAbs, to 

detect any endogenous activity by acetylase enzymes, was recorded for 90 seconds with 10 

seconds interval at 412 nm at 25°C by an EnSpire 2300 Multilabel Reader (PerkinElmer). The 

ΔAbs was subtracted from the one given after the addition of 10 µl of 10 mM oxalacetic acid 

that started the reaction. All assays were performed at 25 °C in triplicate on homogenates. 

Activity was espressed as mU (nanomoles/min) per mg of protein. This protocol was modified 

from (Spinazzi et al., 2012; Srere, 1969). 

Statistical analyses   

Data were expressed as mean values ± standard deviation. The normality of data was 

tested with the Shapiro-Wilk test.  Student t-test was used in order to verify when two 

datasets, normally distributed, differed significantly from each other. This test was used for 

paired and unpaired data. The level of significance was set at p ≤ 0.05. Statistical analyses 

were carried out by a commercial with software packages (GraphPad Prism 5.0, GraphPad 

Software). 
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3.2.4 Results  
 

Ten healthy subjects have taken part to the bed rest study and their anthropometric 

characteristics are shown in Table 2. After bed rest intervention body mass and BMI were 

modified significantly in the recruited subjects for the study.  

 PRE-BR (N=10) POST-BR (N=10) 

Body height/ cm 181.18 3.90 181.72 3.85 

Body mass (Kg) 77.51 ± 10.03 75.86 ± 9.47* 

BMI (Kg *m-2) 23.56 ± 2.45 22.93 ± 2.40* 

 

Table 2. Anthropometric characteristic before (PRE) and after (POST) the bed rest. All values are presented as mean ± SD. 
BMI: body mass index; *: significantly different from PRE, P<0.05.  

 
Mitochondrial oxidative phosphorylation function was evaluated ex vivo by high 

resolution respirometry in 10 individuals before (PRE-BR) and after (POST-BR) 10 days of 

inactivity. Muscle samples were collected by biopsy from vastus lateralis. Respirometry 

analyses were performed in controlled medical environment at the General Hospital of Izola 

(Slovenia) and carried out immediately after the collecting of muscle biopsies from the 

individuals. In Fig.3.2.4. is shown a representative trace of the protocol used in this study. The 

averaged data are shown in the plots in Fig.3.2.4. Unfortunately, we decided to exclude one 

of the subjects due to a high difference of the values of the two replicates, maintaining two 

numerically homogeneous populations as: PRE-BR (N=9), POST-BR (N=9).  
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Fig.3.2.4. Representative HRR recording. In upper panel the blue trace represents the oxygen concentration (in nmol/ml) in 
the chamber and the red one the oxygen consumption (pmol/s*mg wet weight). The green marks represent the 
substrates/inhibitors addition in the chamber. On the top of the graph is shown a summary of the investigated conditions 
during the protocol used. Lower panel shows a magnification of the first part of the trace representing ADP titration, in the 
presence of 12.5, 25, 175, 250, 500, 1000, 2000, 4000, 6000,10000 µM ADP, to assess the ADP sensitivity of respiration. 

 

CS activity was carried out on muscle specimens, which were immediately frozen after the 

recover from the chamber at the end of the respirometric measurements.  CS activity was 

not modified in two group examined (137.62 ± 21 PRE-BR) (132.13 ± 16.4 POST-BR), 

indicating that physical inactivity did not change mitochondrial content of fibers. Data are 

shown in Fig.3.2.4.1. 
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 Fig.3.2.4.1. Citrate synthase activity. Citrate synthase activity measured before (light green column) and after bed rest 
period (yellow column); N=10 for PRE-BR and N=10 for POST-BR. Values are means ± SD. 

 

The main results on mitochondrial respiration ex vivo, obtained by high-resolution 

respirometry under conditions of saturating ADP, are shown in Fig.3.2.4.2. The collected data 

were expressed per mg of wet weight, as well as per CS activity in order to evaluate the 

intrinsic mitochondrial respiration. This also allowed us to correct the results for possible 

inaccuracies in fibers wet weight measurement. Mitochondrial leak respiration (Complex I+II 

state 2 respiration), which represent the non-phosphorylating resting mitochondrial 

respiration sustained by Complex I and Complex II, was not affected by period of bed rest 

when normalized by mg of wet weight and also when normalized by CS (Fig.3.2.4.2). Further, 

maximal ADP-stimulated respiration (CI+CII state 3 respiration), which represent the 

phosphorylation capacity, was not affected after bed rest period. No change was observed in 

comparison to the values observed before bed rest considering data reported per unit of 

tissue mass (wet weight) and when were normalized by CS activity. The maximal capacity of 

the electron transport system (ETS) uncoupled from the phosphorylating system did not 

decrease significantly after the bed rest period (Fig.3.2.4.2), but it was observed a trend of 

decrease around 11%. In PRE-BR subjects ETS capacity was slightly but significantly higher 

than phosphorylation capacity (P: 0.099, paired data t-test), indicating that the 

phosphorylating system exerts a control over coupled respiration (Pesta and Gnaiger, 2012) 

under physiological condition of mobility. Intriguingly, this control was not seen after 

immobility condition.  

 

  

PRE-BR POST-BR
0

50

100

150

200

CS
 a

ct
iv

ity
 (U

I/
m

g 
pr

ot
ei

n)

 



 

54 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

The data dealing with oxidative phosphorylation coupling [(state 3 – leak/ state 3)] are 

reported in Fig.3.2.4.3 and at baseline the values of the ratio were 0.88-0.86 for both groups, 

meaning that ten days of bed rest did not alter oxidative phosphorylation efficiency.  

 

                                                                                      

Fig.3.2.4.3. Oxidative phosphorylation coupling. The degree of oxidative phosphorylation coupling was measured before 
(light green column) and after bed rest period (yellow column) in PRE-BR (N=9) and in POST-BR (N=9) groups. Values are 
means ± SD. 

 

As mentioned above, the maximal capacity of electron transport system did not change 

before and after exposure to ten days of bed rest. Either rotenone-sensitive or insensitive 
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Fig.3.2.4.2. Parameteres of mitochondrial respiratory function measured by high-resolution respirometry in permeabilized
muscle fibres. Leak or resting respiratory rate in the presence of glutamate, malate and succinate without ADP (full coloured), 
maximal ADP-stimulated respiration (stripes) and electron transport system (ETS) (squares) before (light green column) and after 
bed rest period (yellow column). In panel A data are expressed per mg wet weight, in panel B data are normalized by citrate
synthase (CS) activity, expressed as mU/mg protein. Values are means ± SD; N=9 for PRE-BR  and N=9 for POST-BR. 
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ETS in both cases did not display any type of change. This suggests that the muscle inactivity 

following the bed rest period did not reveal an impairment in the respiratory function of 

complex I and II (Fig.3.2.4.4).  

 

 

                          

 

 

 

It was analyzed the dynamic response of mitochondria to submaximal ADP concentrations.  

Finally, high-resolution respirometry was used to assess ADP sensitivity of respiration by ADP 

titration, in the presence of 12.5, 25, 175, 250, 500, 1000, 2000, 4000, 6000,10000 μM ADP, 

in the presence of glutamate, pyruvate and succinate. It was considered to be more 

physiological to assess the apparent ADP-affinity with a combination of substrates, which 

leads to electron transfer through both complexes I and II. In order to evaluate the apparent 

ADP Km, the collected data were analysed according to Michaelis-Menten kinetics and 

elaborated with Lineweaver-Burk equation (Barbour and Chan, 1981). The apparent Km ADP 

values from the two replicates are reported in Table 3. Unfortunately, based on MAD values 

-BR) 

-BR). 
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Fig.3.2.4.4. Mitochondrial electron transport system capacity sustained by Complex I (rotenone-sensitive ETS, stripes) and by 
Complex II (rotenone-insensitive ETS squares) expressed as fractions of the electron transport system capacity, i.e ETS sustained
by both Complex I and II (full coloured). In panel A data are expressed per mg wet weight, in panel B data are normalized by 
citrate synthase (CS) activity, expressed as mU/mg protein. Values are means ± SD; N=9 for PRE-BR  and N=9 for POST-BR, where
PRE-BR = before bed rest and POST-BR = after bed rest period.
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PRE-BR 
Km (μM) 

 Replicate 1 Replicate 2 Replicate    Mean MAD 
Subject 1 157,2 200,5 178,85 21,65 
Subject 2 17,24 Instrument instability   
Subject 3 66,6 64,3 65,45 1,15 
Subject 4 144,8 37,1 90,95 53,85* 
Subject 5 58,8 60,7 59,75 0,95 
Subject 6 36,4 39,8 38,1 1,7 
Subject 7 59,2 Hard dissection of fibers   
Subject 8 25,6 21,7 23,65 1,95 
Subject 9 18,27 Increase Cit c >10%   
Subject 10 479 753,5 616,25 137,25 

 

 

 

 

 

 

 

 

POST-BR 
Km (µM) 

 Replicate 1 Replicate 2 Replicate   Mean MAD 
Subject 1 27,1 320 173,55 146,65* 
Subject 2 Higher leak 31,88 31,88  

Subject 3 Low response to 
substrates 100,9 100,9  

Subject 4 61,5 49,1 55,3 6,2 
Subject 5 187,1 93,9 140,5 46,6* 
Subject 6 101,3 89,6 95,45 5,85 
Subject 7 111,8 59,1 85,45 26,35* 
Subject 8 33,6 55,7 44,65 11,05 
Subject 9 110,1 63,1 86,6 23,5 
Subject 10 40 74,8 57,4 17,4 

Table 3. Tables with values of Km obtained with Lineweaver-Burk equation. Each subject was analysed in duplicate and it is 
reported a value of Km for each replicate. It is shown mean of the two replicates and Mean Absolute Deviation (MAD). *values 
excluded from the analysis due to very high MAD. 
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In Fig.3.2.4.5 are shown a representative Michaelis-Menten curve (panel A) and the 

corresponding reciprocal values used for Lineweaver-Burk analysis (panel B). Linear 

regression analysis of reciprocal values of the data obtained from the indicated subjects 

documented good values of linear correlation coefficient (ρ) (panel C, D). In Fig.3.2.4.6 are 

shown the whiskers and box plots of the apparent Km ADP values for such subjects, analysed 

using a t-test with unpaired data (P:0.4918).  

The apparent Km ADP was similar in the two groups (PRE-BR and POST-BR), indicating that 

ten day of exposure to bed rest condition did not affect significantly ADP sensitivity of 

mitochondrial respiration. 
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Fig.3.2.4.5 Assessments of ADP Sensitivity of Mitochondrial Respiration.  In panel A is shown a representative Michaelis-
Menten curve; panel B reports the values used for Lineweaver-Burk analysis corresponding to the curve in A. In panels C and 
D tables show linear regression coefficient (ρ) of two replicates Libeweaver-Burk analysis of different subjects. 

 
 
 

 

 

 

 

[ADP] 
(µM) JO2 

1/[ADP] 
(µM-1) 1/JO2 

12.5 11.91 0.080 0.140 
25 22.37 0.040 0.075 

175 29.27 0.057 0.057 
250 55.71 0.004 0.030 
500 61.58 0.002 0.027 

1000 67.75 0.001 0.025 
2000 70.23 0.0005 0.024 
4000 78.92 0.00025 0.021 
6000 90.90 0.00016 0.018 
8000 100.00 0.00012 0.017 

10000 87.55 0.00010 0.019 

PRE-BR 
Linear regression coefficient (ρ) 

 Replicate 1 Replicate 2 
Subject 1 0.97 0.98 
Subject 2 0.86  
Subject 3 0.99 0.97 
Subject 5 0.98 0.97 
Subject 6 0.92 0.97 
Subject 7 0.95  
Subject 8 0.86 0.81 
Subject 9 0.75  

Subject 10 0.96 0.97 

POST-BR 
Linear regression coefficient (ρ) 
 Replicate 1 Replicate 2 

Subject 2  0.86 
Subject 3  0.96 
Subject 4 0.98 0.97 
Subject 6 0.99 0.96 
Subject 8 0.91 0.90 
Subject 9 0.90 0.97 

Subject 10 0.90 0.94 

A B 

C D 
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Fig.3.2.4.6. Whiskers and box plot of the apparent Km ADP. Minimum, 25th percentile, 75th percentile, and maximum 
values are represented along with the medians inside the box N=9 for PRE-BR and N=7 for POST-BR. 

 
 

3.2.5 Discussion 
 

The bed rest studies are performed to evaluate physiological adaptations in skeletal 

muscle during immobility causing muscle atrophy. This study investigates the effect of ten 

days of immobility in young healthy individuals. The data of the study reported in the present 

PhD thesis deal with a functional evaluation of skeletal muscle mitochondrial oxidative 

phosphorylation, ex vivo. As explained above, mitochondrial respiration was evaluated by 

high-resolution respirometry on preparations of permeabilized non-contracting skeletal 

muscle fibres obtained from biopsies carried out on the vastus lateralis. As expected 

(Salvadego et al.,2016), none of the respirometric parameters, assayed in the presence of 

saturating ADP levels and oxygen availability, was modified by 10 days of bed rest. It should 

be inferred that oxidative phosphorylation capacity and efficiency, as well as the maximal 

capacity of the Electron Transport System (ETS) uncoupled from the phosphorylating system, 

remain substantially unaltered after brief period of inactivity in healthy young individuals. 

Intriguingly, in such subjects only before immobility ETS was slightly but significantly higher 

than oxidative phosphorylation capacity. This suggests that i) the phosphorylating system (i. 

e. ATP synthase, ANT and Pi carrier) exerted a control over coupled respiration only under 

physiological conditions of mobility, and ii) after immobility mitochondrial oxidative 

phosphorylation missed the capacity to act in response to stress-linked energy request. 

Further investigations are needed to clarify the possible causes of such deficit. 
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Concerning the experiments aimed at detecting the mitochondrial respiration ADP 

sensitivity (apparent Km ADP), it should be considered that such measurements using 

permeabilized fibres are very critical because the fibres are in bundles and they may 

assemble on the top of the stirrer during the respirometry recordings. This may restrict the 

diffusion of ADP, whereas a more thorough dissection of the fibres to overwhelm this 

problem may cause mechanical damage. As a consequence, the apparent Km of the bundles 

obtained in this study varied strongly between our experiments, ranging from 616.25-23.65 

μM, with the average value being ∼ 60 μM. The reason might be the variance of effective 

diffusion distance for metabolites inside the bundles, which depends on the mechanical 

separation procedure (see METHODS), leading to the existence of large ADP diffusion gradients 

between mitochondria and the surrounding medium. Diffusion paths depend on the 

permeabilized cells in the bundle and the unstirred water layers surrounding the bundle. In 

additions, differences in intra-fibre ATP-consuming activity might also affect such ADP 

diffusion gradient mainly at low concentrations required for detection of ADP sensitivity. 

The apparent Km ADP values were obtained in this study by applying the Lineweaver-

Burk analysis, within its limits. No significant differences in apparent ADP Km were observed 

after ten days of bed rest. There is a wide range of Km values reported in literature (Holloway 

et al.,2018; Perry et al., 2011), because of the different experimental conditions and 

mathematical elaborations adopted. Indeed, internal comparisons of effects of treatments 

on Km ADP values vs. controls are reliable irrespective of the different procedures employed 

in each laboratory. 

3.2.6 Conclusions 
 

The findings obtained reported in this study showed no alteration of mitochondrial 

respiration and ADP sensitivity after ten days of bed rest inactivity of healthy young 

individuals outcomes align with a previous work carried out over a comparable period of time 

(Salvadego et al., 2016). Anyway, showing how longer bed rest periods elicited an impaired 

mitochondrial function, without decrease in mitochondrial mass, in terms of maximal ADP-

stimulated and ETS respiration, as well as an increased leak respiration documented an 

impaired oxidative phosphorylation efficiency (Salvadego et al., 2018). No data are available 

relative to ADP sensitivity following longer bed rest, which remains to be assessed. 



 
 

4. CONCLUDING REMARKS 
 

In this PhD thesis work two different studies were carried out in order to evaluate skeletal 

muscle mitochondrial adaptations as consequence of exercise training or reduced 

activity/immobility.  

In the first study, though the results should take into account of the limitations of 

experimental procedure and of the methodological difficulties, an improvement of maximal 

ADP-stimulated respiration and ETS capacity after two different types of training (MICT and 

HIIT) were observed in obese subjects, suggesting how exercise training is able to enhance 

oxidative phosphorylation capacity. The improvement of mitochondrial function after the 

two training interventions probably involves the remodelling of mitochondrial inner 

membrane or the OXPHOS complexes activity/assembly regulation determined a greater 

improvement in the systemic variables of oxidative function (fat oxidation rate, peak O2 

uptake) with respect to MICT suggesting the involvement of factors “upstream” of 

mitochondria, presumably more sensitive to HIIT. Overall, it cannot neglect the beneficial 

role of exercise training on the mitochondrial function.  

In the second study the physiological condition of muscle disuse/atrophy (i.e. 10 days of bed-

rest) was investigated at the mitochondrial level. No change in mitochondrial variables was 

observed with respect to pre-immobility conditions, with the exception of ETS capacity. This 

parameter resulted significantly higher than state III respiration before bed-rest and not after 

it, highlighting how the system is able to respond to energy request only in the pre-

immobility condition.  Obviously, this finding needs to be further investigated.  

The relevance of both these studies is represented by their scientific contribution to 

the wide bio-medical literature regarding mitochondrial plasticity in response to different 

cellular energetic requests or in conditions of limited/unlimited substrates and oxygen 

supply.  
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ENDURANCE TRAINING IMPROVES SKELETAL MUSCLE MITOCHONDRIAL FUNCTION IN 

OBESE SUBJECTS  

MAGNESA, B1., COMELLI, M1., MAVELLI, I1., VACCARI, F1., PASSARO, A2., LAZZER, S1., GRASSI, 

B1.  

1Department of Medicine, University of Udine, Italy 
2  Departement of Medical Sciences ,University of Ferrara, Italy 
 

INTRODUCTION: The aim of this study was to evaluate the effect of the exercise on skeletal 

muscle mitochondrial function in obese subjects, considering the recognized alteration of 

mitochondria in obesity and the beneficial effects of exercise on oxidative and energy 

metabolism.  

METHODS: Skeletal muscle biopsies were obtained from the vastus lateralis of healthy obese 

volunteers (age 38.03±8.56 years, BMI 35.57±4.29 kg/m2). Subjects (sedentary) underwent a 

supervised protocol consisting of 3 months of two different type of exercise training walking 

on a treadmill: i) low intensity endurance training, ET (60% VO2 peak) and ii) high-intensity 

interval training, HIIT (100% VO2 peak). Before and after the training period, biopsies were 
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obtained using a microneedle (Histocore, 12 G), immediately frozen in liquid nitrogen and 

stored at -80°C until the moment of analysis by high-resolution respirometry (Oroboros-2k 

oxygraph). To measure mitochondrial respiration, a substrate-uncoupler-inhibitor-titration 

protocol was applied (1). Upon completion of the measurements, muscle fibers were 

immediately homogenized and analyzed for citrate synthase (CS) activity by a 

spectrophotometric method (2). Further, the subjects performed an incremental test on the 

treadmill to obtain the whole body V’O2 peak. The V’O2 was measured breath by breath 

through the metabolimeter CPET, COSMED. RESULTS: Maximal ADP-stimulated respiration 

sustained by complex I and II, of biopsies from twenty-seven subjects (13 men and 14 

women) were measured and normalized for either wet weight or CS activity. Data showed a 

statistically significant improvement with respect to controls before exercise only in ET 

group. ADP-stimulated mitochondrial respiration resulted higher in ET group (7.83±3.36 pmol 

O2∙ s-1∙IU-1) with respect to the controls (4.76±2.87 pmol O2∙ s-1∙IU-1), while HIIT group was 

not significantly different from the controls (6.57±3.11 pmol O2∙ s-1∙IU-1). Intriguingly, CS 

activity was not affected by neither exercise protocols. In fact, mean data from controls were 

0.31±0.05 IU/mg protein, while after exercise were: 0.27±0.05 IU/ mg protein in ET group 

and 0.26±0.05 IU/ mg protein in HIIT group. The whole body V’O2peak is improved in both 

groups but significantly more in HIIT compared with ET (respectively 16% and 6%). 

 CONCLUSION: Overall, these data suggest that ET induced an improvement of mitochondrial 

function (ADP-stimulated respiration), while HIIT did not. No mitochondrial bioegenesis was 

hypothesized based on unchanged CS activity, suggesting that OXPHOS complexes 

activity/assembly regulation, or remodeling of mitochondrial inner membrane, could be 

triggered by ET in obese subjects. The whole body V’O2 peak is improved more in HIIT, 

suggesting a contribution of factors linked to central circulation more in HIIT than in ET 

beside mitochondrial factors.  

(1) Pesta and Gnaiger, Methods Mol Biol 810, 25-58 (2012) 

 (2) Spinazzi et al., Nature Protocols 7, 1235–1246 (2012) 
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Abstract- event “Conoscenza in festa” (May 2019) 

Moderate-intensity Endurance training improves skeletal muscle mitochondrial function in 
obese subjects 

 

Magnesa, B1., Comelli, M1., Mavelli, I1., Vaccari F1., Passaro A2., Lazzer, S1., Grassi, B1. 

1Department of Medicine, University of Udine, Italy 
2  Departement of Medical Sciences ,University of Ferrara, Italy 
 

Endurance training  improved mitochondrial function (ADP-stimulated respiration)  in obese 
subjects, not due to mitochondrial biogenesis. This effect suggested an OXPHOS complexes 
regulation or remodelling of mitochondrial inner membrane. 

 

Submitted article 
 
Effect of 3-month High Intensity Interval Training vs. Moderate Endurance Training and 4-
mounth follow-up on fat metabolism, cardiorespiratory function and mitochondrial 
respiration in obese adults. 
 
Filippo Vaccari,  Angelina Passaro, Andrea D’Amuri, Juana Maria Sanz, Francesca Di Vece, 
Eleonora Capatti, Benedetta Magnesa, Marina Comelli, Irene Mavelli, Bruno Grassi Federica 
Fiori, Giulia Bravo, Alice Avancini, Maria Parpinel, Stefano Lazzer.  
 
 

 

 

 

 

 

 

 

 

 



 
 

81 
 
 

 

 



ORIGINAL RESEARCH

published: 01 May 2019

doi: 10.3389/fphys.2019.00474

Edited by:
Pier Giorgio Mastroberardino,

Erasmus University Rotterdam,

Netherlands

Reviewed by:
David Thomson,

Brigham Young University,

United States

Borja Guerra,

Universidad de Las Palmas de Gran

Canaria, Spain

*Correspondence:
Irene Mavelli

irene.mavelli@uniud.it

†These authors have contributed

equally to this work as first authors

Specialty section:
This article was submitted to

Striated Muscle Physiology,

a section of the journal

Frontiers in Physiology

Received: 29 January 2019

Accepted: 04 April 2019

Published: 01 May 2019

Citation:
Buso A, Comelli M, Picco R,

Isola M, Magnesa B, Pišot R,

Rittweger J, Salvadego D, Šimunič B,
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The aim of the study was to evaluate the expression levels of proteins related

to mitochondrial biogenesis regulation and bioenergetics in vastus lateralis muscle

biopsies from 16 elderly and 7 young people subjected to 14 days of bed-rest,

causing atrophy, and subsequent 14 days of exercise training. Based on quantitative

immunoblot analyses, in both groups a reduction of two key regulators of mitochondrial

biogenesis/remodeling and activity, namely PGC-1α and Sirt3, was revealed during bed-

rest, with a subsequent up-regulation after rehabilitation, indicating an involvement of

PGC-1α-Sirt3 axis in response to the treatments. A difference was observed comparing

the young and elderly subjects as, for both proteins, the abundance in the elderly

was more affected by immobility and less responsive to exercise. The expression

levels of TOM20 and Citrate Synthase, assayed as markers of outer mitochondrial

membrane and mitochondrial mass, showed a noticeable sensitivity in the elderly

group, where they were affected by bed-rest and rehabilitation recalling the pattern

of PGC-1α. TOM20 and CS remained unchanged in young subjects. Single OXPHOS

complexes showed peculiar patterns, which were in some cases dissimilar from PGC-

1α, and suggest different influences on protein biogenesis and degradation. Overall,

exercise was capable to counteract the effect of immobility, when present, except for

complex V, which was markedly downregulated by bed-rest, but remained unaffected

after rehabilitation, maybe as result of greater extent of degradation processes over

biogenesis. Phosphorylation extent of AMPK, and its upstream activator LKB1, did not

change after bed-rest and rehabilitation in either young or elderly subjects, suggesting

that the activation of energy-sensing LKB1-AMPK signaling pathway was “missed”

due to its transient nature, or was not triggered under our conditions. Our study

demonstrates that, as far as the expression of various proteins related to mitochondrial

biogenesis/remodeling, adaptations to bed-rest and rehabilitation in the two populations

were different. The impact of bed-rest was greater in the elderly subjects, where the
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pattern (decrease after bed rest and recovery following rehabilitation) was accompanied

by changes of mitochondrial mass. Modifications of protein abundance were matched

with data obtained from gene expression analyses of four public human datasets

focusing on related genes.

Keywords: mitochondria-related proteins, immobility, aging, exercise, skeletal muscle, western blot, in silico gene

expression data mining

INTRODUCTION

Skeletal muscle is a very plastic tissue that responds and adapts
quickly to inactivity or exercise. Around the fourth decade of
life, skeletal muscle mass and functional performance, including
oxidative metabolism, inevitably decline (Short et al., 2005;
Salvadego et al., 2011; Dirks et al., 2014; Wall et al., 2014).
Such decline accelerates with aging (Hughes et al., 2001) and
it is usually associated with a decreased physical activity that
can be deleterious for skeletal muscle, cardiovascular function,
metabolic control and several other systems of the body (Brower,
2009). Physical inactivity in elderly people is a growing problem
in western countries, also due to the impact of hospitalization.
In fact, injuries in the elderly are very common and even a brief
period of immobilization can result in a great loss of muscle
mass and function, hard to restore even with rehabilitation
interventions (Hvid et al., 2010).

Because of these clinical implications, the research on elderly
subjects and their response to physical inactivity has been very
active in the last few years. In this context, bed-rest studies are
often employed, in order to simulate profound inactivity as well
as microgravity. Bed-rest studies carried out by our group on
young subjects observed a significant functional impairment of
skeletal muscle oxidative metabolism evaluated in vivo following
10 days (Salvadego et al., 2016), 21 days (Salvadego et al., 2018),
and 35 days (Porcelli et al., 2010; Salvadego et al., 2011) of

Abbreviations: AMPK, AMP-activated protein kinase; ATP5A1, ATP synthase
F1 subunit alpha, mitochondrial complex V; BDC, baseline data collection;
BSA, bovine serum albumin; CaMK, calcium/calmodulin-dependent protein
kinase; CaMKKs, calcium/calmodulin-dependent protein kinase kinases; COA4,
cytochrome c oxidase assembly factor 4 homolog; COA7, cytochrome c oxidase
assembly factor 7; COX IV, cytochrome c oxidase subunit 4, mitochondrial
complex IV; COX7C, cytochrome c oxidase subunit 7C; CS, Citrate Synthase;
DEG, differentially expressed genes; FBXO32, atrogin-1; GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; GPD2, glycerol-3-phosphate dehydrogenase 2;
LKB1, Liver kinase B1; NDUFA8, NADH:ubiquinone oxidoreductase subunit
A8; NDUFAF6, NADH:ubiquinone oxidoreductase complex assembly factor 6;
NDUFB8, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8,
mitochondrial complex I; NDUFC1, NADH:ubiquinone oxidoreductase subunit
C1; OXPHOS, oxidative phosphorylation; PGC-1α, Peroxisome proliferator
activated receptor-γ coactivator-1α; PVD, polyvinylidene fluoride; ROS, reactive
oxygen species; SDHB, succinate dehydrogenase [ubiquinone] iron-sulfur subunit
B, mitochondrial complex II; Sirt3, Silent mating-type information regulation 2
homolog sirtuin 3; TIMM23, translocase of inner mitochondrial membrane 23;
TIMMDC, translocase of inner mitochondrial membrane domain containing 1;
TMEM70, transmembrane protein 70; TOM20, mitochondrial import receptor
subunit TOMM20 homolog; TOMM40L, translocase of outer mitochondrial
membrane 40 like; Tris, tris(hydroxymethyl)aminomethane; UCP3, uncoupling
protein 3 - mitochondrial proton carrier; UQCC3, ubiquinol-cytochrome c
reductase complex assembly factor 3; UQCR11, ubiquinol-cytochrome c reductase
complex III subunit XI; UQCRC2, cytochrome b-c1 complex subunit 2,
mitochondrial complex III.

bed-rest conditions. After 21 days, but not after 10 days of bed-
rest, the functional impairment in vivo was associated with an
impaired mitochondrial respiration evaluated ex vivo.

We discussed in detail in a recent publication (Pišot et al.,
2016) previous bed-rest studies from different laboratories on
elderly populations. In short, these studies often lacked a control
group of young individuals, did not consider a rehabilitation
phase, or did not comprehend periods of inactivity long enough
to induce significant changes also in the young controls. These
considerations prompted us to design a bed-rest study in which
young (Y) and elderly (E) participants were exposed to precisely
the same protocol of inactivity in bed for 14 days, and to a
subsequent rehabilitation with high-intensity interval training for
another period of 14 days. The details of the study, as well as
some results about systemic variables, are given in Pišot et al.
(2016) and Rejc et al. (2018). Briefly, adaptations to bed-rest and
rehabilitation in the two populations were different. Interestingly,
the impact of bed-rest on muscle mass and function (muscle
force and power, fiber strength, and V’O2peak) was greater in E
compared to Y, as well as the rehabilitation was slower and/or
less complete in E.

There is still debate about which mechanisms are involved
in the loss of muscle mass and function after inactivity.
During the last few years interest has arisen around the
role played by skeletal muscle mitochondrial function and
biogenesis following inactivity and aging (Carter et al., 2015),
as well as in the pathogenesis of inactivity-related diseases
(Booth et al., 2012). Proteomic and gene expression analyses
documented decreases in expression of peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) and OXPHOS
complexes as consequence of induced disuse, in association
with a reduction in mitochondrial biogenesis and an overall
impairment of energy metabolism (Chen et al., 2007; Alibegovic
et al., 2010a; Brocca et al., 2010, 2012; Ringholm et al., 2011).
“Upstream” of PGC-1α, AMPK/LKB1 energy sensor signaling
pathway has been reported to be involved (Ringholm et al.,
2011; Brocca et al., 2012). AMPK, a serine/threonine protein
kinase, has emerged as a master sensor of cellular energy
balance in mammalian cells, including skeletal muscle, (Hardie
and Sakamoto, 2006; Kjøbsted et al., 2018) and one of the
upstream activators of AMPK signaling pathway is LKB1.
In the context of mitochondrial activity-regulated signaling
“downstream” of PGC-1α, Sirt3, has emerged as the major
regulator of mitochondrial protein deacetylation (Lombard et al.,
2007; Menzies and Auwerx, 2013).

The aim of the present study was to evaluate the changes
occurred as response to inactivity and rehabilitation by E people,
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compared to Y, in the expression levels of the proteins above
mentioned, playing a key role for mitochondrial biogenesis
and function. In no previous studies, the expression levels of
such proteins were determined in Y and E subjects undergoing
the same duration of inactivity in bed followed by the same
rehabilitation protocol, as in the present study. We hypothesized
a pattern of changes in the protein expression similar to that
described for systemic variables directly related to mitochondrial
function (muscle mass and peak aerobic power) in the same
subjects exposed to the same environmental stimuli, i.e., a
more pronounced decrease during bed-rest in E vs. Y and a
slower/incomplete rehabilitation.

Furthermore, with the aim to validate our protein expression
data, we performed some in silico analyses of public human
gene expression datasets, focusing in particular onmitochondria-
related genes involved in skeletal muscle responses to immobility
and rehabilitation in young adult individuals, or demonstrated
to change in association with aging. Combining data from
bioinformatics analyses of gene expression with those of protein
abundance from our bed-rest study encouraged us to hypothesize
possiblemolecularmechanisms implicated in the effects observed
in Y and E subjects.

MATERIALS AND METHODS

Participants
Twenty-three healthy men, of which 7 young (Y; aged 18–
30 years) and 16 elderly subjects (E; aged 55–65 years) were
recruited for the study. All participants underwent medical
examination and routine blood and urine analysis. Basic
anthropometric parameters of the two groups and exclusion
criteria are reported previously in Pišot et al. (2016). Participants
were informed of the purpose, procedures and potential risk of
the study before signing the informed consent. The study was
performed in accordance with the ethical standards of the 1964
Declaration of Helsinki and was approved by the National Ethical
Committee of the Slovenian Ministry of Health on April 17, 2012
under the acronym: IR-aging 1200.

Study Design
The study was conducted in concomitance with the study of
Pišot et al. (2016) and Rejc et al. (2018) in a controlled medical
environment at the Valdoltra Orthopedic Hospital, Slovenia. The
participants were housed in standard air-conditioned hospital
rooms and were under constant surveillance with 24-h medical
care. For 14 days, the participants performed all daily activities
in bed in the horizontal position and followed an individually
controlled eucaloric diet. Such conditions are denoted as bed-
rest (BR). Dietary energy requirements were designed for each
subject by multiplying resting energy expenditure by factors 1.2
and 1.4 in BR and during the rehabilitation period, respectively
(Biolo et al., 2008). The macronutrient food content was
set at 60% of carbohydrates, 25% fat and 15% of proteins.
Energy balance was checked weekly by fat mass assessment
performed with bioelectrical impedance analysis (tetra-polar
impedance-meter, BIA101, Akern, Florence, Italy), using the

software provided by the manufacturer, as in Rejc et al.
(2018). After the BR participants underwent a rehabilitation
protocol (R+14) that consisted of 2-week supervised multimodal
exercise program with 3 sessions per week as described in
details in Rejc et al. (2018). In each session, participants
performed 12-min warm-up, 15–20 min of balance and strength
training and 20–30 min of aerobic training (high-intensity
interval training).

Three different biopsies were taken from vastus lateralis
muscle of each subject: one before starting bed-rest for BDC, one
after the bed-rest period (BR14), the last after the rehabilitation
protocol (R+14) and specifically 4–5 days after the final training
session during the period where the subjects completed the
in vivo performance tests.

Procedures
Muscle Biopsies
Samples were obtained from the mid-region of the left vastus
lateralis muscle. Biopsy was done after anesthesia of the skin,
subcutaneous fat tissue, and muscle fascia with 2 ml of lidocaine
(2%). A small incision was then made to penetrate skin and
fascia, and the tissue sample was harvested with a purpose-
built rongeur (Zepf Instruments, Tuttlingen, Germany). The
samples put in cryopreservation solution were immediately
frozen in liquid nitrogen, and stored at −80◦C until the analyses
(Kuznetsov et al., 2003).

Immunoblot Sample Preparation
Just thawed biopsy samples were rapidly washed in PBS
solution, dried, weighted and placed in a cooled 2 mL glass
Teflon Potter-Elvehjem (Wheaton, IL, United States), in a
suspension 1:4 w/v with PBS containing 0.32 M sucrose,
P8340 – Sigma protease inhibitors (1:50 v/v) and 10 mM
NaF + 1 mM Na3VO4 as phosphatase inhibitors (Mavelli
et al., 1978). Samples were homogenized with 40 motor driven
strokes (ForLab AT120, Carlo Erba, Italy) and aliquots were
withdrawn and stored at −80◦C. Further 1:1 v/v dilution of the
residual homogenates was made with RIPA buffer 2× (300 mM
sodium chloride, 2% NP-40, 1% sodium deoxycholate, 0.2%
SDS, 0.8 mM EDTA and 100 mM Tris, pH 8.0), followed by
other 40 motor driven strokes, to obtain a better membrane
protein solubilization, and 30 min of incubation. All processes
were carried out on ice-bath. Homogenates were centrifuged
at 10,000 × g for 10 min and the extracts were stored
at −80◦C until using for the assays. Protein concentration
was tested with Lowry assay (Lowry et al., 1951) using
BSA as a standard.

Extracts of H9c2 cell line (ATCCR© CRL-1446TM) were
obtained by resuspension of cellular pellet (106 cells/ml) in
RIPA buffer (150 mM sodium chloride, 1% NP-40, 0.5%
sodium deoxycholate, 0.1% SDS, 0.4 mM EDTA and 50 mM
Tris, pH 8.0), containing protease (P8340 - Sigma) and
phosphatase (10 mM NaF and 1 mM Na3VO4) inhibitors.
After 30 min of incubation at 4◦C, the samples were
centrifuged at 14,000 × g for 15 min at 4◦C. Extracts
were used as internal standards (IS) for quantification of
immunoblot results.
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Quantitative Immunoblot
Separation of sample’s different proteins was obtained by
electrophoresis in denaturing conditions (SDS-PAGE), following
Laemmli’s method (Laemmli, 1970) with Tris-glycine running
buffer, using 8–16% polyacrylamide gradient precast resolving
gels (Thermo Fisher Scientific, Waltham, MA, United States).
After separation, analysis of the protein expression levels
was carried out by immunoblotting. After the proteins were
electro-transferred from the gel to a PVDF membrane, the
membrane was divided based on the molecular weight of the
single proteins according to the molecular weight markers.
Each part of the membrane was blocked in a Tris-Buffered
Saline (TBS) solution, containing 0.1% Tween 20, 2.5%
BSA solution for 1 h and then incubated overnight with
the proper antibodies. Specifically, the membranes were
probed with antibodies vs. AMPK and p-AMPKThr172 1:500
(Santa Cruz, Dallas, TX, United States, catalog numbers
sc-74461 and sc-33524, respectively), GAPDH 1:10000
(Santa Cruz, sc-32233), CS 1:10000 (AbCam, Cambridge,
United Kingdom, ab 129095), PGC-1α 1:5000 (AbCam, ab
722301), Sirt3 1:1000 (CST, Danvers, MA, United States,
5490S), LKB1 and p-LKB1Ser482 1:1000 (Phosphoplus Duet
CST, 5132) and TOM20 1:7000 (Santa Cruz, sc-17764). We
also probed the membranes with AbCam Ab Cocktail (ab
110413) vs. OXPHOS complexes (1:5000) for complex I
(mitochondrial NADH dehydrogenase [ubiquinone] 1 beta
subcomplex subunit 8 – NDUFB8), complex II (succinate
dehydrogenase [ubiquinone] iron-sulfur subunit B – SDHB),
complex III (Cytochrome b-c1 complex subunit 2 – UQCRC2),
complex V (CV subunit α – ATP5A1). For complex IV
a single antibody against cytochrome c oxidase subunit
4 – COXIV (Abcam, ab 110272, 1:10000) was used due
to its greater efficiency. Thereafter, the membranes were
incubated in the presence of the proper secondary antibody
(rabbit-anti-mouse [61–6520] or goat-anti-rabbit [32460],
Thermo Fisher Scientific) conjugated with horseradish
peroxidase (HRP).

For quantification purposes, each gel was loaded with
11 samples along with molecular weight markers (Bio-Rad
Laboratories, Berkeley, CA, United States) and IS (prepared
as described above) in order to normalize the results from
the single gels with those of replicates or different samples.
20 μg of proteins were loaded for each sample and 40 μg
of IS. Samples from both Y and E subjects were assayed
together matching the conditions (namely all BDC or BR14 or
R+14 samples).

The protein bands were visualized by an enhanced
chemiluminescence method using ChemiDoc (Bio-Rad
Laboratories) and quantified with ImageQuant TL program
(GE Healthcare, Little Chalfont, United Kingdom).
Quantification was made based on “Adjusted Volume
Intensity,” i.e., the volume given by the sum of the
intensities of the pixels inside the boundary volume
corrected for the background. The intensity of each band
was normalized on total bands revealed by Coomassie-staining
of PVDF membrane, considered as appropriate loading and
transferring control (Welinder and Ekblad, 2011). Each

sample was tested in triplicate and values were expressed as
Arbitrary Units (AU).

In separate experiments, the single subjects were also
analyzed individually by loading each gel with samples of
the three investigated conditions (BDC, BR 14, and R+14).
Gels were loaded with scalar amounts (5, 10, 15, and
20 μg) of Y or E samples, to verify the linearity of
the band intensity vs. the loaded protein amount. As an
example, see representative immunoblot images denoted as (4)
of Figure 1.

Statistical Analysis
Continuous variables were summarized as mean ± standard
deviation. Data were tested for normal distribution using
Shapiro–Wilk test. Equality of variance was assessed using
Levene test. The significance of differences of expression
levels of analyzed proteins between groups (Y vs. E)
throughout different conditions (BDC or BR 14 or R+14)
was explored using the Linear Mixed Models for Longitudinal
Data. Comparisons between groups for each condition
were performed using t-test. Comparisons among the
different conditions within each group were achieved
using paired t-test. Bonferroni correction for multiple
comparisons was applied.

Gene Expression Analysis
Human microarray datasets were downloaded manually from
public repositories, ArrayExpress (Parkinson et al., 2007) and
GEO (Barrett et al., 2011); the data were all related with
Bed-rest or atrophy due to clinical-associated disuse, as well
as with muscle and aging. The raw files were downloaded
when available. All the CEL files were processed together by
using standard tools available within the affy package in R
(Gautier et al., 2004). An UniGene ID centered Chip Description
file (CDF) was used in order to have only one intensity
value per gene. CDF was downloaded from the Molecular
and Behavioral Neuroscience Institute Microarray Lab1 (Dai
et al., 2005). All annotation information were downloaded
from the same website. The normalization step was done
with the standard RMA algorithm (Irizarry et al., 2003). For
determination of the DEG Standard t-test was performed. Lists
of the top DEG are in Supplementary Tables S1–S4 where the
genes were selected based on fold change (>+1.5 or <−1.5;
>+1.3 or <−1.3) and p < 0.05. Gene enrichment analysis
on each DEG list was performed using DAVID 6.8 software
(Sherman et al., 2007).

As concern data related with muscle and aging, the
Spearman’s correlation analysis was also performed making
minimal assumptions about the relationship between
the two diverse variables. Spearman’s Rank correlation
coefficient was used to evaluate the strength and direction
(negative or positive) of a relationship between two variables.
Genes with a significant negative strong correlation were
selected, correlation coefficient < −0.6, Benjamini–Hochberg

1http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
genomic_curated_CDF.asp
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FIGURE 1 | Changes in expression levels of PGC-1α (A) and Sirt3 (B) in vastus lateralis muscle biopsies from young and elderly subjects after bed rest and

rehabilitation. Panels (A,B) graphs denoted as (1) represent immunoblot data of 7 young (Y; aged 18–30 years) and 16 elderly (E; aged 55–65 years) subjects, under

the three conditions: BDC, baseline data collection before bed rest; BR14, after 14 days bed rest; R+14, after 2-week rehabilitation. Gels were loaded with samples

from Y and E subjects (20 μg of proteins) along with IS (40 μg), prepared as described in Section “Materials and Methods.” ImageQuant TL values for single

immunoreactive bands normalized to Coomassie staining of PVDF membrane and corrected for IS are expressed as arbitrary units (AU). Quantitative data are

means ± SD of three different assays for each subject. Red line: Elderly group; black line: Young group. ∗Represents statistical significance (p < 0.05) vs. BDC

condition, # between BR14 and R+14 conditions. Immunoblot images denoted as (2) are representative of experiments with samples from both Y and E subjects

loaded on each gel matching the conditions (namely all BDC or BR14 or R+14 samples), and images denoted as (3) are representative of the corresponding

Coomassie-stained whole PVDF membranes, used as loading and transferring measurement. Immunoblot images denoted as (4) are representative of experiments

where each subject was analyzed individually by loading gel with samples of the three investigated conditions together (BDC, BR 14, and R+14). Gels were loaded

with scalar amounts (5, 10, 15, and 20 μg) of Y or E samples to verify the linearity of the band intensity vs. the loaded protein. The central lane of the gel was loaded

with molecular weight markers.

corrected p < 0.05 (Supplementary Table S5). Rule of thumb
for interpreting the size of a correlation coefficient was
used. Gene enrichment analysis was then performed using
DAVID 6.8 software.

RESULTS

All participants were able to comply with the study protocol.
No dropouts and no medical complications occurred
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(see Pišot et al., 2016 for more details). Anthropometric,
metabolic and muscle function data of the cohort were described
in that publication (Pišot et al., 2016).

Key Proteins of Mitochondrial

Biogenesis and Function
Data about the expression of PGC-1α, a master regulator of
mitochondrial biogenesis and structural/functional integrity, are
given in Figure 1A. At the BDC, before the bed-rest campaign,
PGC-1α protein levels were not different in E vs. Y. Both in E
and in Y bed-rest (BR14) induced a remarkably similar decline in
PGC-1α expression levels, although significance was not reached
in the Y group. The subsequent rise following rehabilitation was
less pronounced in E (R+14 values: 2.6 times vs. BR14) than
that observed in Y (R+14 values: 4.7 times vs. BR14). Both
in Y and in E PGC-1α levels “rebounded” after rehabilitation
attaining in R+14 values higher than those observed at BDC.
This rebound was more pronounced in Y (2 times vs. BDC levels
compared to 1.4 in E).

The expression levels of Sirt3, the most characterized sirtuin
in mitochondria, declined during bed-rest following a pattern
similar to that of PGC-1α (Figure 1B), in accordance with the
concept that they are controlled by PGC-1α in the nucleus
(Brenmoehl and Hoeflich, 2013). No rebound to values over BDC
was observed following rehabilitation in Y or in E. The recovery
to the BDC levels after rehabilitation was complete in Y, whereas
it was only partial in E.

The effects of bed-rest and rehabilitation on OXPHOS
complexes protein expression are shown in Figure 2. The
behavior of the different complexes was rather heterogeneous.
The respiratory chain carriers CII, CIII, and CIV showed
both in Y and in E a similar general pattern, although in
some cases the differences did not reach statistical significance.
Namely, a decrease at BR14 and a recovery (in CII, CIII, and
CIV) with a rebound (only in CII and CIII) at R+14 were
observed, resembling the pattern described above for PGC-1α.
At BDC, protein abundance of CII was significantly greater
in E vs. Y, whereas for the other complexes no significant
differences between groups were observed. Protein abundance of
the respiratory chain carrier CI did not significantly change in
any condition, both in Y and in E. Lastly, OXPHOS Complex V
(CV) showed a unique pattern: both in Y and in E, the expression
decreased at BR14 and did not recover at R+14.

In order to estimate mitochondrial mass we determined the
expression levels of TOM20, a component of the translocase
of the outer mitochondrial membrane, and CS, an enzyme of
the mitochondrial matrix. The patterns of TOM20 (Figure 3A)
and CS (Figure 3B) protein abundance were similar and
appeared to be in agreement with those of PGC-1α and
Sirt3 only in E, showing a decrease following bed-rest
with a restoration following rehabilitation. Indeed, in E the
levels were lower in BR14 than BDC and increased after
rehabilitation (higher values in R+14 vs. BR14). The recovery
vs. BDC was complete (no significant differences between
R+14 and BDC). Conversely, in Y no statistically significant
changes were observed.

The expression levels of the key glycolytic enzyme GAPDH
are shown in Figure 3C. It should be pointed out that the change
from BDC to BR14 in E was less pronounced than Y and did
not reach the statistical significance. Nevertheless, in both groups
the pattern was similar: the levels increased during bed-rest
(suggesting a shift from oxidative to non-oxidative metabolism)
and returned to BDC levels during rehabilitation.

Finally, we also investigated the activation of the energy
sensor AMPK, in order to evaluate if the observed changes were
associated/driven by a condition of energy stress, and if AMPK
signaling pathway, upstream of PGC-1α, was triggered in concert
with the PGC-1α-Sirt3 axis. With this aim, we assessed the
p-AMPKThr172/AMPK ratio. Intriguingly, no significant changes
were observed in the ratio (Figure 4A), as well as in the
total AMPK protein levels (data not shown), in both groups
across conditions. We also assessed the p-LKB1Ser482/LKB1 ratio
considering that LKB1 is one of the upstream activators of
AMPK signaling. No significant changes were observed even for
such variable (Figure 4B), supporting the unexpected absence of
AMPK activation.

Gene Expression Data Mining From

Public Datasets
In an attempt to validate our protein expression data, we
performed some in silico analyses of public human gene
expression datasets, focusing on mitochondria-related genes
relevant for our bed-rest study. As no public databases were
available relative to elderly people in immobility conditions,
our analysis was focused on GEO-included datasets of
genes involved in skeletal muscle responses to aging or to
immobility/rehabilitation in young adult individuals.

Firstly, we analyzed GSE24215, which is one of the most
complete dataset regarding the inactivity-induced responses
of gene expression in adult healthy subjects along with the
effects on exercise rehabilitation (Alibegovic et al., 2010b). Our
DEG analysis focused on genes relevant for skeletal muscle
structure/function with particular attention to mitochondria
and energy metabolism, and showed that a number of such
genes were significantly downregulated following bed-rest
conditions resembling those of our study (list of the top DEG
following inactivity in Supplementary Table S1). We present
our results of gene enrichment analysis in Table 1 reporting
the significantly enriched categories/terms, and summarize
in Table 2 the DEG relative to such categories/terms (see
gray cells) for the genes most relevant for our bed-rest study.
Notably, among the downregulated mitochondrial genes, 2
are subunits of TIM and TOM complexes, 8 are subunits
of OXPHOS Complexes I, II, IV, and V, and 1 is a subunit
of permeability transition pore PTP. Interestingly, PGC-1α
also results downregulated (PPARGC1A gene is included in
category/term “hsa04920:adipocytokine signaling pathway”).
Concerning the genes contained within the category/term
“muscle proteins” (not shown in Table 2), it should be
underlined that, along with 8 genes downregulated, 6 genes are
upregulated including two myosin heavy chain in accordance
to the recognized switch from slow to fast muscle fibers after
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FIGURE 2 | Changes in OXPHOS complexes’ expression levels in vastus lateralis muscle biopsies from young and elderly subjects after bed rest and rehabilitation.

(A) Graphs represent immunoblot data (means ± SD) of OXPHOS complexes I, II, III, IV, V for the Y and E subjects, under BDC, BR14, and R+14 conditions. Red

line: Elderly group; black line: Young group. (B) Immunoblot images denoted as (1) are representative of experiments with samples from both Y and E subjects

loaded on each gel matching the conditions, along with IS, and images denoted as (2) are representative of the corresponding Coomassie-stained whole PVDF

membranes used as loading and transferring measurement. All details of the analysis and quantification are as in Figure 1.

immobility (Schiaffino and Reggiani, 2011; Lynch et al., 2015).
After rehabilitative exercise training a number of mitochondria-
related genes were found significantly upregulated with
respect to immobility (list of the top DEG following post-
inactivity exercise in Supplementary Table S2). Among
these genes, much corresponding to those downregulated
by bed-rest, there are subunits of mitochondrial proton-
transporting ATP synthase Complex V and PTP, as well as
of Complex IV, Complex II, TIM and TOM complexes. All
are comprised within the 41 genes included in category/term
“Mitochondrion” of gene enrichment analysis reported in

Table 1 and are summarized in Table 2. Intriguingly, the
categories/terms “hsa00190:Oxidative phosphorylation,”
“GO:0005753∼mitochondrial proton-transporting ATP synthase
complex,” and “hsa04920:adipocytokine signaling pathway” were
not significantly enriched after the exercise training. This
might be due to the higher number of genes upregulated
after rehabilitation with respect to those downregulated after
immobility (386 vs. 252). Of note, the category/term “Energy
production and conversion” and GPD2 gene comprised within,
appeared significantly downregulated after exercise, in agreement
with a switch toward OXPHOS (Tables 1, 2). Indeed, GPD2
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FIGURE 3 | Changes in TOM20 (A), Citrate Synthase (B), and GAPDH (C) expression levels in vastus lateralis muscle biopsies from young and elderly subjects after

bed rest and rehabilitation. Panels (A–C) graphs denoted as (1) represent immunoblot data (means ± SD) for the Y and E subjects under BDC, BR14, and R+14

conditions. Red line: Elderly group; black line: Young group. Immunoblot images denoted as (2) are representative of experiments with samples from both Y and E

subjects loaded on each gel matching the conditions, along with IS, and images denoted as (3) are representative of the corresponding Coomassie-stained whole

PVDF membranes, used as loading and transferring measurement. All details of the analysis and quantification are as in Figure 1.

encodes for GPD2, which catalyzes the conversion of glycerol-3-
phosphate using FAD as acceptor of reducing equivalents within
the inner mitochondrial membrane.

Remarkably, negligible changes were observed for CS either
after bed-rest or after post-immobility exercise (Table 2), in
accordance with the results of protein abundance obtained for the
young group of our bed-rest study, where changes were observed

for PGC-1α – Sirt3 and single OXPHOS complexes, but not for
markers of mitochondrial mass.

Finally, consistent with the idea that protein turnover could
be affected via alteration of breakdown pathways together with
biogenesis, we also searched for genes involved in ubiquitin-
proteasome pathway. Results of DEG analysis revealed that gene
expression for FBXO32 (Atrogin-1) was significantly up- and
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FIGURE 4 | p-AMPK/AMPK (A) and p-LKB1/LKB1 (B) ratios in vastus lateralis muscle biopsies from young and elderly subjects after bed rest and rehabilitation. In

both panels (A,B), histograms denoted as (1) represent the fold-increase (means ± SD) of the normalized ratio between phosphorylated and total proteins from

immunoblot analyses for Y and E subjects under BDC (empty columns), BR14 (gray columns), and R+14 (black columns) conditions. Immunoblot images denoted

as (2) refer to total (on the left) and phosphorylated (on the right) proteins and are representative of experiments where samples from both Y and E subjects were

loaded together on each gel matching the conditions, along with IS. Images denoted as (3) are representative of the corresponding Coomassie-stained whole PVDF

membranes, used as loading and transferring measurement. All details of the analysis and quantification are as in Figure 1.

down-regulated by immobility and rehabilitation, respectively,
although just below the threshold chosen to define the top DEGs
(Table 2 and Supplementary Tables S1, S2). Intriguingly FBXO2,
that is another component of the ubiquitin E3 ligases playing
important roles in the ubiquitin-proteasome protein-degradation
pathway, resulted more markedly upregulated by immobility, but
not affected following exercise.

We further analyzed the GEO dataset GSE8872 (Chen et al.,
2007), including data from medial gastrocnemiusmuscle of adult

subjects (around 30 years old) undergoing disuse atrophy due to
shorter (5 days) immobilization attained using a short leg cast
with the ankle in a neutral position.

From DEG analysis, performed with the aim to see if there
were changes in mitochondria-related genes’ expression as an
early response to muscle inactivity, resulted some interesting
data, which we considered relevant for our bed-rest study
(list of the top DEG in Supplementary Table S3). Not many
subunits of only two OXPHOS complexes were downregulated
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TABLE 1 | Differentially expressed genes after inactivity and subsequent exercise for muscle- and mitochondria-related proteins in vastus lateralis. GSE24215 dataset.

Category Term Count % p Benjamini Fold enrichment

Gene enrichment analysis of downregulated genes after inactivity

UP_KEYWORDS Mitochondrion 49 20.94 1.5E-16 3.14E-14 4.00

UP_KEYWORDS Muscle protein 8 3.42 5E-06 0.00036 11.74

KEGG_PATHWAY hsa00190:Oxidative phosphorylation 8 3.42 0.00303 0.03573 4.12

KEGG_PATHWAY hsa04920:Adipocytokine signaling pathway 7 2.99 0.00049 0.01087 6.84

GOTERM_CC_DIRECT GO:0005753∼mitochondrial proton-transporting

ATPsynthase complex

4 1.71 0.00200 0.05541 15.62

Gene enrichment analysis of upregulated genes after inactivity

UP_KEYWORDS Muscle protein 6 1.78 0.00296 0.08000 6.10

Gene enrichment analysis of downregulated genes after exercise

COG_ONTOLOGY Energy production and conversion 4 3.15 0.00086 0.00257 18.33

Gene enrichment analysis of upregulated genes after exercise

UP_KEYWORDS Mitochondrion 41 11.39 7.3E-06 0.00031 2.15

Category, original database/resource where the term orient; term, enriched terms associated with the gene list; count, genes involved in term; %, percentage of genes

involved/total genes; p, modified fisher exact p-value, EASE Score; Benjamini, statistical correction; fold enrichment, down (up) regulated genes in a specific category/term

over total down (up) regulated genes (%)/number of genes in that category/term over total number of genes (%). Lists of the top DEG in Supplementary Tables S1, S2.
For DEG analysis, see Supplementary Table legends.

significantly (Complex I NDUFS4/B3/B5 and Complex V
ATP5G3/L/C1: ctrl/immobility FC = 1.49–1.62 around the
threshold, p < 0.05). Notably, among the few genes resulted to
be significantly upregulated there are UCP3 (uncoupling protein
3 – mitochondrial proton carrier), showing a ctrl/immobility
FC = −1.51, p = 0.0055, as well as MT1X and MT2A, codifying
for metallothioneins 1X and 2A (ctrl/immobility FC = −1.83 and
−1.78, p = 0.014 and 0.001, respectively).

As a final point, to explore the expression of mitochondria-
related genes involved in response to aging we focused on two
GEO datasets comprising human microarray data from vastus
lateralis biopsies of subjects with different age. Specifically, we
analyzed the dataset GSE9103 (Lanza et al., 2008) for gene
expression changes between young (18–30 years) and aged (58–
76 years) sedentary people, as well as the dataset GSE47881
(Phillips et al., 2013) in order to perform a correlation analysis
with age taking advantage from data of tree different groups
of sedentary subjects (age 20–28, 45–55, and 64–75 years). For
both datasets, the ranges of age analyzed included the age of the
subjects of our bed-rest study (E: 55–65 years vs. Y: 18–30 years).

From DGE analysis of GSE9103 (list of the top DEG in
Supplementary Table S4) emerged that some of the genes
significantly downregulated in elderly subjects are relevant in
the context of the proteins analyzed in our bed-rest study.
Specifically, a marked decline was observed for the expression
of TOMM40L (FC = −1.54; p = 0.0016), a gene encoding
for the channel-forming subunit of the translocase of the
outer mitochondrial membrane, which might be indicative of
reduction of mitochondrial mass/biogenesis in elderly people.
Conversely, negligible changes were observed for all OXPHOS
complexes, while for PPARGC1A the decline was just below the
threshold selected (FC = −1.3989; p = 0.0080). Finally, though
of different extent, the downregulation of gene expression for
TMEM70 (FC = −1.73; p = 0.0402) and COA7 (FC = −1.39;
p = 0.0061), is also interesting with respect to our bed-rest
study, as such genes are required for assembly of mitochondrial

ATP synthase complex V and respiratory chain complex I and
complex IV, respectively.

Notably, the results of the correlation analysis with age of
mitochondria-related genes’ expression from the second dataset
GSE47881indicate that there is a negative strong correlation
with age of the expression of a number of mitochondrial
genes relevant in the context of the proteins analyzed in
our bed-rest study. The results of gene enrichment analysis
are recapitulated in Table 3, while DEG are summarized in
Table 2 (list of the top DEG in Supplementary Table S5).
Specifically, negative strong correlation with age emerged for
some subunits of respiratory carriers and assembly factors, as well
as for some subunits of TIM and TOM complexes, which are
included within the three categories/terms reported in Table 3 as
highly significantly enriched. In addition, PGC-1α (PPARGC1A)
showed a weak but significant negative correlation with age, while
no correlation resulted for any subunits of mitochondrial ATP
synthase complex V (Table 2).

DISCUSSION

The main aim of the present study was to evaluate variables
related to mitochondrial biogenesis and function in young
(Y) and elderly (E) subjects undergoing 14 days of profound
inactivity (bed-rest), followed by 14 days of rehabilitation
by a multimodal exercise program with an aerobic phase
consisting in high-intensity intervals training. More specifically,
we intended to compare the changes of the expression levels of
key proteins related to the regulation of mitochondrial energy
metabolism with those of “systemic” variables of functional
evaluation, determined in the same subjects and recently
published (Pišot et al., 2016; Rejc et al., 2018). The study was
conducted under strictly controlled conditions and the period of
inactivity was long enough to induce a marked muscle atrophy
in both groups. Indeed, a significant decrease in quadriceps
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TABLE 2 | A summary of results obtained for mitochondria-related genes from DEG, correlation analysis, and gene enrichment of two public datasets.

SYMBOL GSE24215 immobility (FC) GSE24215 exercise (FC) GSE47881 correlation with age (r)

Complex V ATP5C1 ↓↓ ↑↑ ∗ NS

ATP5E ↓↓ ↑↑↑
ATP5F1 ↓↓↓ ↑↑ ∗ NS

ATP5G1 ↓↓↓ ↑↑↑ ∗ NS

ATP5G3 ↓↓↓ ↑↑↑ ∗ NS

ATP5L ↓↓ ↑↑ ∗∗

Complex IV COX7A2 ↓↓↓ ↑↑↑ ∗∗

COX7B ↓↓↓ ↑↑ ∗∗

COX7C ↓ – ∗∗∗

GPD2 ↑↑↑ ↓↓↓ –

Complex I NDUFA8 ↓↓ ↑↑ ∗∗∗

NDUFB10 ↓↓↓ – ∗∗

NDUFB3 ↓↓↓ ↑↑ ∗ NS

NDUFB5 ↓↓ – ∗ NS

NDUFC1 ↓ – ∗∗∗

NDUFS4 ↓ ↑ ∗∗

CS ↓ ↑ NS

Complex II SDHB ↓↓ ↑↑ ∗∗∗

SDHC ↓↓↓ ↑↑↑ –

Complex III UQCR11 ↓↓ ↑ ∗∗∗
TIMM TIMM23 ↓ – ∗∗∗

TIMM8A ↓↓↓ ↑↑↑ –

TIMMDC1 ↓ ↑ ∗∗∗
TOMM TOMM40L ↓↓↓ ↑↑↑ ∗∗

TOMM7 ↓ – ∗∗∗

UCP3 ↓ NS ↓↓↓ –

PTP PPIF ↓↓↓ ↑↑↑ ∗ NS

Assembly factors UQCC3 ∗∗∗

COA4 ∗∗∗

COA7 ↓ NS – ∗

NDUFAF6 ∗∗∗

TMEM70 ↑ NS – –

Ubiquitin-proteasome FBXO2 ↑↑↑ – ∗ NS

FBXO32 ↑↑ ↓↓ ∗ NS

Metallothioneins MT1X – – –

MT2A – – ∗ NS

PGC1a PPARGC1A ↓↓↓ ↑↑↑ NS ∗

(↑↑↑) FC > 1.5; (↑↑) 1.30 < FC < 1.49; (↑) 1.20 < FC < 1.29; (–) FC < 1.19.

(↓↓↓) FC < −1.5; (↓↓) −1.49 < FC < −1.30; (↓) −1.29 < FC < −1.20; (−) FC > −1.19.

(∗∗∗) negative strong correlation; (∗∗) negative moderately strong correlation; (∗) negative weak correlation; (−) r < −0.2 (no correlation). Empty cells: values not present in

the array. The gray cells indicate data referred to results of the gene enrichment analyses (Tables 1, 3).

TABLE 3 | Mitochondria-related genes negatively correlated with age in vastus lateralis. GSE47881 dataset.

Category Term Count % p Benjamini Fold enrichment

Gene enrichment analysis of genes negatively correlated with age (Spearman correlation analysis)

GOTERM_CC_DIRECT GO:0005743∼mitochondrial inner membrane 32 7.27 5.5E-09 1.99E-06 3.42

UP_KEYWORDS Mitochondrion 50 11.36 1.97E-07 2.19E-05 2.24

UP_KEYWORDS Transit peptide 26 5.91 0.0000819 0.00679 2.43

Rule of thumb for interpreting the size of a correlation coefficient was used. Genes with a significant negative strong correlation were selected (correlation coefficient

−0.6 ≤ r ≤ −0.8), Benjamini–Hochberg corrected p-values < 0.05. Category, original database/resource where the term orient; term, enriched terms associated with the

gene list; count, genes involved in term; %, percentage of genes involved/total genes; p, modified Fisher Exact p-value, EASE Score; Benjamini, statistical correction; fold

enrichment, down (up) regulated genes in a specific category class over total down (up) regulated genes (%)/number of genes in that category class over total number of

genes (%). Lists of the top negatively correlated genes in Supplementary Table S5.
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muscle volume occurred in elderly (−8.3%, p < 0.001), and
the same trend was observed in the young controls (−6.1%,
p = 0.052) (Pišot et al., 2016). We expected that the expression
of the investigated proteins would be at the base of the functional
adaptations occurring in skeletal muscles following inactivity and
subsequent rehabilitation, supporting the role of mitochondrial
regulation in muscle plasticity even in older individuals. The
general finding of the previous study (Pišot et al., 2016) was that
“systemic” variables of functional evaluation were often affected
by inactivity more profoundly in E, in whom the rehabilitation
was also less complete vs. that of Y, or did not occur. A similar
pattern was observed for some variables determined in the
present study. The main difference between the results of the
two studies relates to baseline values, which in the present
study were, in most cases, not significantly different in E vs.
Y. As an example, the similar values observed for PGC-1α
protein expression levels are in accordance with previous reports
(Lanza et al., 2008; Irving et al., 2015). What observed for the
systemic variables by Pišot et al. (2016) is in sharp contrast.
For example, peak pulmonary O2 uptake (V’O2peak), a variable
estimating maximal aerobic power, which should be related to
mitochondrial function, was at baseline about 30% lower in E
vs. Y (Pišot et al., 2016). In other words, a clear dissociation
was present at baseline between systemic and mitochondrial
variables related to oxidative metabolism, confirming the concept
that mitochondrial factors are not the main determinant of
systemic maximal aerobic power, and that factors “upstream”
of mitochondria (mainly cardiovascular O2 delivery) are more
relevant in this respect (Lundby et al., 2017). In the present study,
most variables related to mitochondrial oxidative metabolism
decreased following bed-rest. For some variables the decrease
was more pronounced (or was statistically significant only) in E.
A complete restoration was observed in Y formost mitochondrial
variables; the restoration was incomplete in E in some cases.
Thus, we infer that mitochondrial adaptations occurring under
conditions of inactivity-induced atrophy and after rehabilitation
went substantially in parallel with changes of systemic variables
related to mitochondrial function.

PGC-1α and Sirt3
In accordance with a decreased need of new mitochondrial
proteins and energy, we observed that inactivity led to a
diminished expression levels of PGC-1α, a master regulator
of mitochondrial biogenesis and structural/functional integrity
both in physiological conditions and during pathophysiological
processes of muscle atrophy and aging (Finck and Kelly, 2006).
Likewise, we observed a decrease of protein levels for Sirt3,
a NAD+-dependent protein deacetylase localized solely inside
mitochondria (Scarpulla, 2002; Brenmoehl and Hoeflich, 2013),
that is known to be a main mitochondrial activity regulator
with a prominent role in skeletal muscle (Jing et al., 2011, 2013;
Vassilopoulos et al., 2014). Following rehabilitation, the levels of
PGC-1α and Sirt3 protein expression rose, consistently with the
increased energy needs, and PGC-1α levels reached values even
beyond the baseline. Our results are in line with previous data
on PGC-1α expression (protein and mRNA) obtained in young
subjects (Brocca et al., 2012; Wall et al., 2014). As for Sirt3 data,

this is the first study that examined the protein expression levels
in relation to bed-rest and subsequent rehabilitation in both Y
and E people. Nevertheless, exercise training was documented
to upregulate the expression levels of Sirt3 (and PGC-1α) in
skeletal muscle by several studies (Lanza et al., 2008; Hokari
et al., 2010; Irving et al., 2015). The similar trend exhibited by
PGC-1α and Sirt3 in the present study was expected based on
the following considerations. (i) PGC-1α in the nucleus, when
active, is recognized to regulate Sirt3 expression (Brenmoehl
and Hoeflich, 2013); (ii) contractile activity during exercise
is documented to trigger signaling pathways leading to Sirt3
induction by PGC-1α (Ventura-Clapier et al., 2008 and references
therein); (iii) the overexpression/knockdown of Sirt3 or PGC-1α
is reported to elicit in muscle similar effects and to promote the
activity of several enzymes involved in oxidative and energetic
metabolism (Kong et al., 2010). In addition, Sirt3 can enhance in a
positive feedback system PGC-1α expression and the subsequent
regulation of mitochondrial related proteins (Palacios et al., 2009;
Kong et al., 2010; Hokari et al., 2010; Brenmoehl and Hoeflich,
2013). In line, PGC-1α-Sirt3 signaling pathway triggered by
contractile activity is documented to result in both mitochondrial
biogenesis and activation of several enzymes of oxidative and
energetic metabolism (Palacios et al., 2009; Hokari et al., 2010).

The changes in the expression of such proteins observed in the
present study were paralleled by systemic changes (Pišot et al.,
2016), with the decrease in response to bed-rest being more
pronounced (or statistically significant only) in E and exercise-
restoration complete in Y but incomplete in E. Thus, we infer
that mitochondrial adaptations occurring under conditions of
immobility-induced atrophy, and after exercise training, were
associated to PGC-1α-Sirt3 signaling pathway and linked with
changes of systemic variables related to mitochondrial function.

OXPHOS Complexes
Taken as a whole, our data document that the various OXPHOS
complexes show diverse patterns of expression following
inactivity and rehabilitation, each of them very similar in both
E and Y. The patterns of respiratory chain complexes CII, CIII,
and CIV, similar to that described for PGC-1α, are in line with
studies using a protocol of 2 weeks of one-leg immobilization
(Gram et al., 2014). The dissimilar behavior from that of PGC-
1α, observed in the cases of CI and CV, may be considered
in contrast with the well- known regulation by PGC-1α of
the expression of mitochondrial- and nuclear-encoded subunits
of OXPHOS (Scarpulla, 2002). Nevertheless, as the observed
steady state-levels of proteins are in principle the end-result of
biogenesis and degradation, this divergence might be attributed
to different responses to immobility and rehabilitation by the
degradative pathways of OXPHOS complexes, compared to the
expression regulatory pathways linked to PGC-1α. Indeed, it
is recognized that disuse muscle atrophy is accompanied by
activation of multiple catabolic pathways beside inhibition of
protein synthesis (Powers et al., 2012 and references therein –
Brocca et al., 2012; Bonaldo and Sandri, 2013; Cannavino et al.,
2015). Moreover, PGC-1α might elicit different regulation
of single proteins involved in energy production, thereby
controlling mitochondrial remodeling rather than biogenesis.
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Such an effect was described in several reports providing evidence
that PGC-1α in skeletal muscle may selectively and differently
control the expression levels of several mitochondrial proteins
(Chan and Arany, 2014 and references therein).

As for the peculiar behavior exhibited by CV in the
experimental conditions of the present study (expression
decreased at BR14, but not recovered at R+14), it should be
considered that CV is recognized to be finely regulated at
post-transcriptional level and to be expressed in large excess
with respect to the working molecules. In this context, CV is
reported to be a main target of Sirt3, undergoing a deacetylation-
mediated activation in several models (Ahn et al., 2008; Bao et al.,
2010; Jing et al., 2011; Wu et al., 2013; Lin et al., 2014), and
specifically in skeletal muscle in response to exercise-induced
stress (Rahman et al., 2014; Vassilopoulos et al., 2014). In this
scenario, as Sirt3 expression levels in the present study were
documented to be more abundant after rehabilitation both in E
and Y, it might be hypothesized that exercise triggered a Sirt3-
mediated deacetylation of CV, enhancing the enzyme activity
in the presence of unchanged protein expression. These aspects
need further investigations.

Variables Estimating Mitochondrial Mass
The patterns of the expression levels of the mitochondrial matrix
protein CS, and of the outer mitochondrial membrane protein
TOM20, both usually recognized as reliable mitochondrial mass
markers, reveal a marked difference between E and Y subjects, as
in these latter no changes were observed. Based on this behavior
apparently conflicting with the pattern of PGC-1α, we may
hypothesize specific effects on protein turnover as occurring in Y,
rather than modulation of mitochondrial biogenesis. Regardless
of the mechanism involved in the effects observed, the data
of CS and TOM20 expression levels, taken as a whole, are in
line with a less pronounced susceptibility to immobility of Y,
with respect to E.

Glycolytic Marker GAPDH
The glycolytic marker GAPDH increased during bed-rest and
decreased after rehabilitation in both groups, with a more
pronounced effect in Y, suggesting an up-regulation of glycolytic
metabolism during bed-rest, possibly as a compensatory response
to the mitochondrial impairment, and a subsequent return to
a more oxidative metabolism following rehabilitation. These
results are part of the still open debate on glycolytic and oxidative
metabolism in muscle atrophy and inactivity. In fact, there is
not agreement on this topic in literature, likely due to dissimilar
protocols applied by diverse authors. In accordance with our data
are various bed-rest studies documenting an increased reliance
on glycolysis (Acheson et al., 1995; Fitts et al., 2000; Stein and
Wade, 2005). Conversely, other reports (Alibegovic et al., 2010b;
Moriggi et al., 2010; Ringholm et al., 2011; Brocca et al., 2012)
showed a downregulation of both glycolytic and oxidative
metabolism during disuse.

LKB1-AMPK Signaling Pathway
During cell stress events, one of the upstream activators and
inducers of PGC-1α expression through phosphorylation is

AMPK (Ringholm et al., 2011; Brocca et al., 2012). AMPK is
a serine/threonine protein kinase that has emerged as a master
sensor of cellular energy balance in mammalian cells, including
skeletal myocytes (Hardie et al., 2012), and is recognized
to be upregulated by several endogenous stimuli leading to
energy impairment, including exercise/muscle contractile activity
(Kjøbsted et al., 2018 and references therein). The regulation
of AMPK activity is quite complex and, in addition to an
allosteric regulation by the [AMP]/[ATP] ratio, it involves also
increased phosphorylation by upstream kinases and decreased
de-phosphorylation by protein phosphatases. LKB1 appears to be
the primary AMPK upstream activating kinase in skeletal muscle
under conditions of high-energy stress (Kjøbsted et al., 2018 and
references therein). Thus, considering that Ca2+/calmodulin-
dependent protein kinase kinases (CaMKKs), also key activators
of AMPK, were documented to be not considerably expressed in
skeletal muscle (Hardie and Sakamoto, 2006), and that CaMKKb
was reported to be involved to a lesser extent than LKB1 (Kjøbsted
et al., 2018), in the present study we examined the activation
of the LKB1-AMPK axis. We determined p-AMPKThr172/AMPK
and p-LKB1Ser482/LKB1 ratios, and we did not observe any
significant change in both groups.

These results suggest that during bed-rest no energy stress
(increased [AMP]/[ATP]) was likely present. This is not difficult
to conceive. Indeed, skeletal muscle energy turnover in resting
conditions is very low, and the energy charge only rarely
challenged (Kjøbsted et al., 2018). In addition, the marked
decrease in skeletal muscle energy demand during the profound
inactivity associated with bed-rest could have played a role even
in the presence of downregulated mitochondrial biogenesis and
activity. Our results are in accordance with data from another
bed-rest study in young subjects (Brocca et al., 2012).

On the other hand, the lack of activation of LKB1-AMPK
axis by the rehabilitation intervention could be considered,
at a first sight, rather unexpected. According to Combes
et al. (2015), high-intensity intervals training (representing the
aerobic component of the exercise training regimen adopted in
the present study) should elicit pronounced AMPK signaling
pathway. This activation is only transient, however, likely
as consequence of downregulation or de-phosphorylation of
LKB1/AMPK after exercise (Combes et al., 2015). Thus, AMPK
activity decreases after exercise to levels observed in resting
muscle typically within 3–7 h (Kjøbsted et al., 2018 and references
therein). By our protocol, therefore, we might have “missed” the
activation of this signaling pathway, due to the interval between
the last exercise bout and the muscle biopsy.

In any case, we cannot exclude that the changes of PGC-
1α expression, and the resulting modulation of mitochondrial
biogenesis/remodeling, observed in the present study were driven
by mechanism(s) not linked to LKB1-AMPK axis, among the
multiple signaling pathways appearing to converge on regulation
of PGC-1α (Gan et al., 2018). One might hypothesize that
the decrease in PGC-1α levels observed following inactivity
involved Ca2+-dependent signaling and was due to diminished
intracellular Ca2+ levels, which might be counteracted by
exercise (Irrcher et al., 2003; Kusuhara et al., 2007; Kang et al.,
2012). If this is the case, the greater sensitivity to inactivity
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observed in E might be explained by the tendency of Ca2+
concentration to decrease during aging in skeletal muscle cells
(Berchtold et al., 2000 and references therein). A validation of
this hypothesis would require additional studies, as alterations
of intracellular Ca2+ concentration during immobility are still
matter of debate due to contrasting reports (Ingalls et al., 1999;
Fraysse et al., 2003).

Gene Expression Analysis
Several studies have tried to comprehend through gene
expression analyses the molecular mechanisms involved in
skeletal muscle responses to immobility and rehabilitation in
humans, as well as associated with aging.

Overall, data emerged from our analysis of GSE24215 gene
expression dataset, focused on mitochondria- and OXPHOS-
related genes (OXPHOS complexes, PGC1-α, CS) in young
adult populations, are in accordance with the results of protein
abundance obtained for the young group of our bed-rest
study. This support two main messages: (i) decline of the
steady-state levels of mitochondria-related proteins in atrophic
muscle and recovery after rehabilitation for most of them,
(ii) mitochondrial remodeling rather than biogenesis at the
basis of mitochondria modulation. Nevertheless, with regard to
some discrepancies observed, it should be noted that difference
between mRNA and protein stability might be diverse under
different conditions. Moreover, the data of gene expression are
not always related to the same protein subunits which were
analyzed by immunoblot for the single OXPHOS complexes.
In the case of complex I, intriguingly, despite NDUFB3 and
NDUFB10 gene expression was downregulated by immobility,
the absence of changes for NDUFB8, a nuclear DNA-encoded
subunit integral to the assembly of complex I, is in accordance
with our immunoblot data.

Interestingly, from DEG analysis of GSE24215 dataset we
also observed an up- and down-regulation by immobility and
exercise training of gene expression for FBXO32 (Atrogin-1)
and FBXO2, two essential components of ubiquitin-proteasome
pathway. FBXO32 (Atrogin-1) is a specific constituent of
muscle playing a critical role in mediating the loss of muscle
protein (Lecker et al., 2006). Intriguingly, a more marked
upregulation was seen after immobility for FBXO2, which
binds to high mannose glycan-containing glycoproteins, and
is a gene known to be expressed specifically in the brain.
Indeed, as a member of F-box associated family, it displays
divergent binding to glycan and glycoproteins, and tissue-specific
distributions reflecting differences in glycoprotein distribution
(Glenn et al., 2008). In this scenario, upregulation induced by
immobility in skeletal muscle is an apparent divergence with
respect to tissue specificity of FBXO2. Thus, it is tempting to
hypothesize that such rise might reflect a variation of the need
for regulation of the myocyte glycome. As mentioned above,
increased expression of genes/proteins ascribed to ubiquitin-
proteasome pathway is common in atrophic muscle (Reich
et al., 2010; Powers et al., 2012 and references therein), and
there are data supporting the idea that degradative pathways
are enhanced depending on length of immobility (Brocca et al.,
2012). Based on these considerations, we may infer that the

effects observed in our bed-rest study on the steady-state levels
of mitochondria-related proteins might be ascribed, at least in
part, to regulation of the expression of ubiquitin-proteasome
pathway components.

On the other hand, one must consider also that data from
diverse studies should be compared with caution, due to the
multiple protocols of immobility and rehabilitative exercise
training operated in different laboratories.

From our analysis of GSE8872 dataset emerged that a gene
expression downregulation early occurred (5 days of leg cast
immobilization) for a number of genes (such as some muscle
proteins as MYH3 and MYL12A), including, however, only
few mitochondrial OXPHOS subunits. For some of such genes
(i.e., NDUFB3, ATP5G3, and MYL12A), a downregulation of
the expression resulted also from GSE24215 analysis along
with a number of connected genes. GSE8872 data are from
medial gastrocnemius muscle and comparison between the two
datasets was based on similarity to vastus lateralis as concerns
fiber composition (about 50% fast twitch and 50% slow twitch
fibers). The combined data suggest that the immobility effects
on mitochondria-related genes appeared to augment with the
timespan of the immobility and/or severity on the protocol
(leg cast immobilization vs. bed-rest). This finding may be
considered in line with our previous reports documenting an
impaired mitochondrial respiration, evaluated ex vivo in vastus
lateralis muscle, after prolonged bed-rest conditions (21 days)
(Salvadego et al., 2018).

Of note, very few genes from GSE8872 resulted to be
significantly upregulated by immobility, among which there
is UCP3. An upregulation of muscle UCP3 protein was
demonstrated as well, but following prolonged muscle unloading
(Mazzatti et al., 2008). In accordance, our recent report
proved that after 21 days of bed-rest an enhanced leak
respiration (i.e., dissipation of the proton gradient across the
inner mitochondrial membrane) occurred associated with a
reduced efficiency of OXPHOS (Salvadego et al., 2018). On
this basis, we may infer that upregulation of UCP3 gene
expression should be an early event in the atrophy program
provoked by immobility, in face of the evidence for higher
levels of UCP3 protein at later time points upon prolonged
immobility conditions (Mazzatti et al., 2008; Salvadego et al.,
2018). The relevance of such hypothesis is, in our opinion,
in the possibility that uncoupling provoked by immobility
would protect the cells against an excessive mitochondrial
ROS generation, although at the price of an increased energy
dissipation. Indeed, a marked reduction in skeletal muscle
energy demand is expected during the profound inactivity of
the bed-rest regimen. Comparison with data from GSE24215
dataset showed a significant downregulation of UCP3 gene
expression by exercise training, although in this case no effect by
immobility was seen.

From another point of view, the finding that MT1X,
MT2A appeared also among the few genes, which resulted as
significantly upregulated from our analysis of GSE8872 dataset
is worthy of note, though not directly linked to mitochondria-
related proteins investigated in our bed-rest study. Indeed,
metallothioneins are a group of genes associated with muscle
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atrophy in humans (Lecker et al., 2004) and their increased
expression in muscle undergoing atrophy may be necessary
to detoxify metals released by metal-containing compounds,
such as myoglobin and mitochondrial cytochromes, during
muscle protein degradation. In partial accordance with the data
emerged from our analysis is an earlier article (Urso et al.,
2006) documenting a gene expression upregulation for numerous
metallothioneins in vastus lateralis muscle after 48 h of knee
immobilization. The authors suggested that this may play a
role in the initiation of the atrophy program, and inferred
that the atrophy program in humans might be denoted by an
early transcriptional response for metallothioneins, maybe as
consequence of elevated levels of metals and ROS generated
in immobilization. Searching in GSE24215 dataset, collecting
data from prolonged immobility conditions similar to our
bed-rest study, we observed no changes in metallothioneins
gene expression in line with the hypothesis that upregulation
should be transitory.

Unfortunately, there was not enough tissue remaining
from our bed-rest study with which to perform additional
assays, but future directions should include measurements for
the expression levels of UCP3 and metallothioneins proteins
following prolonged immobility, to evaluate their possible
involvement in muscle disuse atrophy.

In summary, combining data from the analysis of gene
expression of two different datasets with those of protein
abundance from our bed-rest study support the idea that
immobility and exercise can affect mitochondria-related protein
expression levels by both gene expression regulation and protein
degradative pathways.

With regard to the expression of mitochondria-related genes
involved in aging, by analyzing the GSE9103 dataset (subjects’
age 18–30 and 58–76 years) we focused in particular on
certain genes/proteins in vastus lateralis relevant for our bed-
rest study and obtained some evidence for gene expression
downregulation. Specifically, to explain the decline observed
for TOM40 and PGC-1α, although it was lower for this
latter, it should be postulated that a reduced physical activity
by the aged people examined had a crucial role. Indeed, in
elderly sedentary subjects exercise was reported to restore
PGC-1α protein levels to the ones of young people (Koltai
et al., 2012). Furthermore, we have taken advantage from the
correlation analysis with age (20–28, 45–55, and 64–75 years)
made with data from GSE47881 dataset to obtain information
about the behavior of the expression of key mitochondria-
related genes. It should be emphasized that the data obtained
from the analysis of the two datasets are consistent each other
with regard to some, but not all, of such key genes/proteins,
specifically, the weak negative correlation with age observed
for PPARGC1A should be considered in line with the low
decline of PPARGC1A gene expression emerged from GSE9103
analysis. This is also in accordance with the results of our
bed-rest study, where at baseline PGC-1α protein abundance
was similar regardless of the subjects’ age. It should be
considered also that the subjects of the elderly group in our
study were moderately active, differently from sedentary people
whose data of gene expression were used to create both

GSE9103 and GSE47881 datasets. Concerning gene expression
for OXPHOS complexes’ subunits, negligible changes were
observed in GSE9103 dataset, in apparent conflict with the results
emerged from the correlation analysis made with GSE47881
data. This may suggest that a more advanced age should be
needed to elicit appreciable downregulation of such genes. In
accordance with this hypothesis are data obtained at baseline
in our bed-rest study where the OXPHOS protein abundance
investigated was similar regardless of the subjects’ age, except
for complex CII that was higher in the elderly subjects.
However, the downregulation of gene expression for TMEM70
and COA7 observed in GSE9103 dataset reminds to the strong
negative correlation of NDUFAF6, COA4, and UQCC3 emerged
from GSE47881 dataset analysis. Downregulation of such genes
during aging should be taken into account when one evaluate
the similar protein expression levels for single subunits of
complexes I, III, IV, and V observed at baseline in our bed-
rest study for E and Y groups. Indeed, such genes encode for
assembly factors of ATP synthase complex V and of respiratory
chain complexes I, III, and IV; thus their decline might be
responsible to reduce in elderly subjects the assembly of whole
complexes in membrane. However, future studies will need
to address this.

In conclusion, data from our analyses of the effects of aging on
expression of a number of mitochondria-related genes relevant
in the context of the proteins analyzed in our bed-rest study
prompt us to highlight that immobility should be more critical
for mitochondrial efficiency and energy production in case of
people more aged than our elderly subjects. Indeed, we might
infer that the trend of the effects documented by our bed-rest
study should go on with age.

Study Limitations
The limited number of subjects enrolled in our studymay weaken
its outcomes. Nevertheless, this is a consequence of logistical
limitations, which are intrinsic to this type of studies. Specifically,
this is a very complex study performed with two populations
of subjects (Y and E) and three muscle biopsies per subject,
one of them obtained after 14 days of bed-rest and another one
after 14 days of supervised exercise program. From a statistical
standpoint, limitations are mainly related to the uneven sample
size of the groups (7 Y and 16 E subjects) and particularly to the
more restricted size of Y group that impact on statistical power to
detect differences at some points.

In addition, only limited amounts of tissue specimens from
the muscle biopsies were available for our experiments, due to
the numerous participants to the bed-rest campaign where our
study was comprised. This reduced the number of proteins we
decided to assay by quantitative immunoblot analyses in order to
achieve accurate quantifications. Most important in this respect,
we did not determine the expression levels of key components
of ubiquitin-proteasome pathway despite our hypothesis that a
reduction of mitochondrial-related proteins in atrophic muscle
might be ascribed, at least in part, to regulation of the expression
of such pathway. Our hypothesis is validated based on our gene
expression data mining from human public datasets, as well as on
solid literature.
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CONCLUSION

In summary, based on the expression levels of key proteins
related to mitochondrial biogenesis regulation and bioenergetics
in vastus lateralis muscle, our study confirms a crucial
role of mitochondrial biogenesis/remodeling in muscle
plasticity following inactivity and exercise rehabilitation. The
heterogeneous patterns of the expression levels observed for
some proteins are indicative of different responses to the
treatments by the respective degradative ways compared to
the biogenesis regulatory pathways. Furthermore, our study
provide evidence that responses to bed-rest causing atrophy, as
well as adaptations to rehabilitation, in E and Y populations
were of different extent and qualitative diverse. Namely, the
impact of bed-rest of most proteins was greater, and the
rehabilitation recovery was less complete in the elderly subjects,
where the changes observed were associated with modifications
of mitochondrial mass. Results on protein expression levels
are reinforced by data obtained from in silico analyses of
four public human gene expression datasets, focusing on
mitochondria-related genes affected in skeletal muscle responses
to disuse and rehabilitation of adult individuals, or declined in
association with aging.
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