
Università degli Studi di Udine

Dipartimento di Scienze Matematiche, Informatiche e Fisiche

Corso di Dottorato in Informatica e Scienze Matematiche e Fisiche

Filling cages
Reverse mathematics and combinatorial principles

Tesi di dottorato di
Marta Fiori Carones

Supervisore
Prof. Alberto Marcone

Ciclo XXXII

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/343614435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PhD candidate:

Marta Fiori Carones

Università di Udine, DMIF

via delle Scienze 206,

33100 Udine,

Italia

Supervisor:

Prof. Alberto Marcone

Università di Udine, DMIF

via delle Scienze 206,

33100 Udine,

Italia

Thesis submitted on October, 31st 2019

Thesis defended on March, 12th 2020



Sommario

Nella tesi sono analizzati alcuni principi di combinatorica dal punto di vista
della reverse mathematics. La reverse mathematics è un programma di ricer-
ca avviato negli anni settanta e interessato a individuare l’esatta forza, intesa
come assiomi riguardanti l’esistenza di insiemi, di teoremi della matemati-
ca ordinaria. — Dopo una concisa introduzione al tema, è presentato un
algoritmo incrementale per reorientare transitivamente grafi orientati infiniti
e pseudo-transitivi. L’esistenza di tale algoritmo implica che un teorema di
Ghouila-Houri è dimostrabile in RCA0. — Grafi e ordini a intervalli sono la
comune tematica della seconda parte della tesi. Un primo capitolo è dedica-
to all’analisi di diverse caratterizzazioni di grafi numerabili a intervalli e allo
studio della relazione tra grafi numerabili a intervalli e ordini numerabili a
intervalli. In questo contesto emerge il tema dell’ordinabilità unica di grafi a
intervalli, a cui è dedicato il capitolo successivo. L’ultimo capitolo di questa
parte riguarda invece enunciati relativi alla dimensione degli ordini numera-
bili a intervalli. — La terza parte ruota attorno due enunciati dimostrati da
Rival e Sands in un articolo del 1980. Il primo teorema afferma che ogni
grafo infinito contiene un sottografo infinito tale che ogni vertice del grafo è
adiacente ad al più uno o a infiniti vertici del sottografo. Si dimostra che que-
sto enunciato è equivalente ad ACA0, dunque più forte rispetto al teorema
di Ramsey per coppie, nonostante la somiglianza dei due principi. Il secon-
do teorema dimostrato da Rival e Sands asserisce che ogni ordine parziale
infinito con larghezza finita contiene una catena infinita tale che ogni punto
dell’ordine è comparabile con nessuno o con infiniti elementi della catena.
Quest’ultimo enunciato ristretto a ordini di larghezza k, per ogni k ≥ 3, è
dimostrato equivalente ad ADS. Ulteriori enunciati sono studiati nella tesi.—



Abstract

— In the thesis some combinatorial statements are analysed from the reverse
mathematics point of view. Reverse mathematics is a research program, which
dates back to the Seventies, interested in finding the exact strength, measured
in terms of set-existence axioms, of theorems from ordinary non set-theoretic
mathematics. — After a brief introduction to the subject, an on-line (incremen-
tal) algorithm to transitively reorient infinite pseudo-transitive oriented graphs
is defined. This implies that a theorem of Ghouila-Houri is provable in RCA0

and hence is computably true. — Interval graphs and interval orders are
the common theme of the second part of the thesis. A chapter is devoted
to analyse the relative strength of different characterisations of countable in-
terval graphs and to study the interplay between countable interval graphs
and countable interval orders. In this context the theme of unique orderability
of interval graphs arises, which is studied in the following chapter. The last
chapter about interval orders inspects the strength of some statements involv-
ing the dimension of countable interval orders. — The third part is devoted
to the analysis of two theorems proved by Rival and Sands in 1980. The first
principle states that each infinite graph contains an infinite subgraph such that
each vertex of the graph is adjacent either to none, or to one or to infinitely
many vertices of the subgraph. This statement, restricted to countable graphs,
is proved to be equivalent to ACA0 and hence to be stronger than Ramsey’s
theorem for pairs, despite the similarity of the two principles. The second theo-
rem proved by Rival and Sands states that each infinite partial order with finite
width contains an infinite chain such that each point of the poset is compara-
ble either to none or to infinitely many points of the chain. For each k ≥ 3,
the latter principle restricted to countable poset of width k is proved to be
equivalent to ADS. Some complementary results are presented in the thesis.



ALBERTO MARCONE Paul Shafer Giovanniksoldà

to anyone who taught me

to anyone who made me wonder

to anyone who encouraged me





Contents

Filling cages viii

I An algorithm, to start 1

1 Reorientations 2
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Avoiding the transitive triangle examples . . . . . . . . . . . . . . . . . 10
1.3 Avoiding the 2⊕ 2 example . . . . . . . . . . . . . . . . . . . . . 13
1.4 The Smart Extension Algorithm . . . . . . . . . . . . . . . . . . . . 17

II Interval graphs and interval orders 26

2 Interval graphs 30
2.1 Structural characterisations of interval graphs. . . . . . . . . . . . . . . . 32
2.2 More definitions of intervals and representations . . . . . . . . . . . . . . 34

2.2.1 Interval graphs and interval orders . . . . . . . . . . . . . . . . 35
2.2.2 The strength of the different notions of representation . . . . . . . . . . 37

3 Indifference graphs 41
3.1 Structural characterisations for indifference graphs . . . . . . . . . . . . . . 42
3.2 More definitions of intervals and representations . . . . . . . . . . . . . . 43

3.2.1 Indifference graphs and proper interval orders . . . . . . . . . . . . 43
3.2.2 Characterisation of indifference graphs . . . . . . . . . . . . . . . 45

4 Unique orderability 46
4.1 Uniquely orderable finite interval graphs . . . . . . . . . . . . . . . . . 48
4.2 Uniquely orderable infinite interval graphs . . . . . . . . . . . . . . . . 49

5 Dimension theory 53
5.1 Some basic facts . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Dimension and interval orders . . . . . . . . . . . . . . . . . . . . 55

III Rival-Sands theorems 58

6 Rival-Sands theorem for graphs 61
6.1 A proof for RSg . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



6.2 A reversal for RSg . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 RSg and RT22 . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Toolkit for Rival-Sands theorem 68
7.1 Some principles about the existence of maximal chains. . . . . . . . . . . . . 68

7.1.1 Maximal (anti)chains . . . . . . . . . . . . . . . . . . . . . 69
7.1.2 Reformulation of MMLC in terms of LPP0 . . . . . . . . . . . . . . 72

7.2 Width and chain decomposition . . . . . . . . . . . . . . . . . . . . 73
7.3 A decomposition for linear orders . . . . . . . . . . . . . . . . . . . 75
7.4 Bounded SRT2k . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Rival-Sands theorem for orders 77
8.1 The original proof of RSpoW<ω . . . . . . . . . . . . . . . . . . . . 78
8.2 A lower upper bound for RSpoW<ω . . . . . . . . . . . . . . . . . . . 80
8.3 An equivalence with ADS . . . . . . . . . . . . . . . . . . . . . . 82

8.3.1 Local counterexamples to ω chains . . . . . . . . . . . . . . . . 82
8.3.2 Local counterexamples to ω + ω chains . . . . . . . . . . . . . . . 84
8.3.3 How to find a (0, ω)-homogeneous chain . . . . . . . . . . . . . . 84

8.4 Proof of RSpoCDk . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5 The strength of RSpoCD<ω . . . . . . . . . . . . . . . . . . . . . . 87
8.6 An equivalence with SADS . . . . . . . . . . . . . . . . . . . . . 88
8.7 A reversal for the parallel version of RSpoW<ω . . . . . . . . . . . . . . . . 90
8.8 A stronger Rival-Sands theorem . . . . . . . . . . . . . . . . . . . . 91

Bibliography xiv

vii



Filling cages

«Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza»

Reverse mathematics indulges an essential inclination of humans, the one towards simplification. Once
one knows that something can be done, then one tries to do it with the least possible effort. In mathematics
this corresponds to say that once it is known that a theorem can be proved, then one would like to know how
much is needed to prove it. Reverse mathematics gives a precise framework to study the previous question.
The Main Question of reverse mathematics, as phrased by Stephen Simpson in [Simpson 2009] is

Which set existence axioms are needed to prove the theorems of ordinary, non-set-theoretic math-
ematics?

The stress in the previous quotation goes on the necessity, and not only the sufficiency, of the axioms, since
only necessity and sufficiency altogether corresponds to minimality. In other words, only once some axioms
are proved to be equivalent to a certain theorem, then the question about the exact amount of effort needed
to prove a certain theorem is definitively settled.

The imprecise presentation of the previous paragraph leaves open several questions. First of all, how can
necessity be proved? Which axioms, and which theorems, are we referring to? What does ‘effort’ mean? Why
should one be seriously interested in minimality in mathematics if not for personal tastes?

In order to answer the first question let us get a look at how sufficiency is proved first. When a mathe-
matician claims that a theorem is true, then he proves that if a set of axioms holds, the theorem holds too. The
mathematician can also reverse the implication, namely he can prove that if the theorem holds, then the axioms
hold. If he does so, he proves the necessity of some axioms to prove a theorem. Necessity and sufficiency alto-
gether give the equivalence between axioms and theorem. To prove the equivalence the mathematician needs
some base theory, or some tools, to work with, and actually proves the equivalence of axioms and theorems
over the base theory. If the axioms belong to second order arithmetic and the base theory is RCA0, Recur-
sive Comprehension Axiom, then the mathematician does reverse mathematics. Harvey Friedman [Friedman
1975] summarises the answer to the first question as follows

When the theorem is proved from the right axioms, the axioms can be proved from the theorem.

We come closer to an answer to the second question. The formal theory in which reverse mathematics
moves its steps is second order arithmetic Z2, which is a theory about arithmetic formulated in a two sorted
language, so that it is possible to speak about both natural numbers and collections of natural numbers. The
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reasons of the choice of Z2 are technical, historical and philosophical as well. Notice that the Main Question
focuses on ordinary, or not set-theoretical, mathematics, namely the mathematics which studies objects which
are either countable or that can be coded by countable objects (for example real numbers follow in the second
category). Hence a theory about natural numbers is able to capture them. Moreover, from an historical
point of view, a formal theory of arithmetic was identified by David Hilbert a century ago as a (or better ‘the’
in Hilbert’s dreams) theory with foundational import, since it should have grounded infinitary mathematics.
Fifty years ago, Harvey Friedman and Stephen Simpson revived Hilbert’s heritage noticing that a large part of
statements from ordinary mathematics are not only provable from Z2, but are provable in a (often very) weak
subsystem of Z2. And now the historical perspective matches with the philosophical one, because results
from reverse mathematics let Simpson argue that a big portion of mathematics is finitistically reducible (see
[Simpson 1988; Simpson 2014a] and, for a detailed historical perspective, [Dean and Walsh 2017]).

So far we concentrated on one of the key words of the Main Question, namely ‘necessity’, but we do not
have to overlook the other one: set-existence axioms. As explained in the following section the relevant axioms
of Z2 are the comprehension axioms. Thus showing that a theorem is equivalent to a certain subset of axioms
of Z2 actually allows identification of which sets are needed to be assumed existent to claim that the theorem
holds. The ontological import of reverse mathematics is thus quite clear and it is definitely a declination of
another question Simpson asked in the preface of [Simpson 2009], namely

What are the appropriate axioms for mathematics?

One can also intend ‘appropriate’ as epistemologically justifiable. In the last decade the epistemological im-
port of reverse mathematics received more attention, thanks to recent development in the area and to the
introduction of complementary approaches as computable reducibility and Weihrauch reducibility. These
two research projects let slightly shift the focus of reverse mathematics as well towards an understanding of
the computational content of the theorems, which is complementary to the traditional proof theoretic ap-
proach (see [Shore 2010; Hirschfeldt 2015]). This confluence of ideas and approaches allow to interpret the
relationships among the theorems as carrying information about the computational core of some theorems
and about the methodological core to which each subsystem of second order arithmetic can be associated.
These reveal the typical kinds of reasoning underneath mathematical statements, for example if a theorem is
equivalent to WKL0, then compactness is indispensable in the proof of the theorem. For a more extensive
discussion on this topic see [Simpson 2014b; Eastaugh 2019; Eastaugh 2018].

We believe that we already answered the fourth question. To add another reason we emphasise that the
main subsystems of second order arithmetic studied in reverse mathematics correspond to programs in foun-
dations of mathematics as constructivism, finitistic reductionism, predicativism, predicative reductionism, and
impredicativity.

Reverse Mathematics

The axiom systems employed in reverse mathematics are subsystems of the theory of second order arithmetic
Z2, whose intended interpretation are the natural numbers and their subsets. The theory Z2 is formulated in
the language L2, a two sorted language with first order variables, x, y, . . . , intended to range over numbers,
and second order variablesX,Y, . . . intended to vary over sets of numbers. The non logical symbols are the
constant symbols 0 and 1, the functional symbols + and ×, the relational symbols < and ∈ for membership.
The latter symbol links first order with second order terms, while the remaining symbols concern only first
order terms.

The basic axioms of Z2 deal with the interpretation of 0, 1,+,×, <, so as to require the interpretation to
be an ordered commutative semiring, and include a form of induction that applies only to sets:

∀X ((0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X))→ ∀n (n ∈ X))

ix



The most important axiom, for our purposes, is the axiom schema of comprehension:

∃X∀n(n ∈ X ↔ φ(n))

for each formula φ in L2 such that X is not free in φ.
A structure for Z2 consists of a domainM and a set SM of subsets ofM , besides the interpretation of

the non logical symbols. In the intended interpretationM is ω and SM corresponds to P(ω).

The subsystems of second order arithmetic are obtained limiting the comprehension axiom and the induc-
tion to specific classes of formulae. An arithmetical formula contains quantification only over number variables
(it may contain free set variables). The number of alternations of quantifiers arranges the arithmetical formulae
into an hierarchy. ∆0

0-formulae, which contain only bounded quantifiers, form the base level. Σ0
n-formulae,

for each n ∈ N, are formulae of the form ∃x0 ∀x1 . . . Qxn−1 (ψ(x0, . . . , xn−1)), such that ψ is∆0
0,Q = ∀

if n is odd and Q = ∃ if n is even. A Π0
n-formula is the negation of a Σ0

n-formula. A formula φ is ∆0
n if it

is Σ0
n (or Π0

n) and there exist a formula ψ which is Π0
n (respectively Σ0

n) and such that ∀n(φ(n)↔ ψ(n)).
A Σ1

n-formula is of the form ∃X0 ∀X1 . . . QXn−1 (ψ(X0, . . . , Xn−1)), such that ψ is arithmetical,
Q = ∀ if n is odd and Q = ∃ if n is even. A Π1

n-formula is the negation of a Σ1
n-formula.

Definition 1. For each n, Σ0
n-induction, denoted as IΣ0

n, is the schema of formulae

φ(0) ∧ ∀n (φ(n)→ φ(n+ 1))→ ∀n(φ(n))

where φ is a Σ0
n-formula.

For each n, Σ0
n-bounding, denoted as BΣ0

n, is the schema of formulae

∀m (∀n < m ∃i (φ(n, i))→ ∃b∀n < m ∃i < b (φ(n, i)))

where φ is a Σ0
n-formula.

For each n, bounded Σ0
n-comprehension is the schema of formulae

∀m∃X ∀i (i ∈ X ↔ i < m ∧ φ(i))

where φ is a Σ0
n-formula in which X does not occur freely.

For each n, BΣ0
n lays strictly in between IΣ0

n and IΣ0
n−1 (see [Paris and Kirby 1978]). Moreover, for each

n, IΣ0
n is equivalent to bounded-Σ0

n-comprehension over RCA0 (see [Simpson 2009, Exercise II.3.13]). Thus
induction is comprehension in disguise for finite sets. Since reverse mathematics is interested in controlling
the existence of sets, the restriction on induction seems quite natural to fulfil this purpose.

The base theory. RCA0, Recursive Comprehension Axiom, is the subsystem of second order arithmetic
obtained by limiting comprehension to ∆0

1-formulae and induction to Σ0
1-formulae. Since, ∆0

1-definable
sets coincide with computable sets by Post’s theorem, it is often said that RCA0 corresponds to computable
mathematics (indeed computable sets form the minimal model for RCA0).

RCA0 suffices to prove certain, even non trivial, theorems, but more importantly offers a base theory
to prove implications among statements. There are some criteria a good base theory T should satisfy as
Hirschfeldt pointed out in [Hirschfeldt 2015].

From a foundational point of view, we would like provability over T to have some philosophical
meaning. From a combinatorial one, when we say that P and Q are equivalent over T, we are
saying that P and Q have the same “fundamental combinatorics” up to the combinatorial pro-
cedures that can be performed in T, so we would like this class of procedures to be one we can
understand and think of as natural in some sense.
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The choice of RCA0 as base theory is considered to respect the two requirements. Essentially, it guarantees
that two principles are equivalent up to ‘effective transformation’. This description of RCA0 may lead to
confusion. In fact, the mere fact that a statement is provable in RCA0 does not guarantee that there exists an
algorithm to solve it, because RCA0 allows arguments by cases, whose case distinction is often non computably
recognisable. Interestingly, the choice of RCA0 as base theory is probably due to the recognition of some
conceptual priority to the computable tools and methods.

The Big Five. There are five main subsystems in reverse mathematics. We already mentioned RCA0, which
is one of them. The others, which form a spine through Z2, are the following:

WKL0 RCA0 plus Weak König’s Lemma.

ACA0 comprehension and induction are limited to arithmetical formulae.

ATR0 arithmetical comprehension can be iterated along any well-order.

Π1
1-CA0 comprehension is limited to Π1

1-formulae.

Weak König’s Lemma states that each infinite binary tree has an infinite path. Those subsystems are
commonly called the ‘Big Five’ because the majority of theorems analysed so far are equivalent to one of
these subsystems. We refer to [Simpson 2009] for a detail exposition of the basic facts and for results in the
area. We only recall the following well known equivalences (see [Simpson 2009, Theorem III.1.3, Lemma
IV.4.4, Lemma VI.1.1] and [Marcone 1996, Theorem 6.5]), which are used in the thesis to prove reversals.

Theorem 2 (RCA0). ACA0 is equivalent to the following statement: for each injective function f : N→ N there exists its
range ran(f).

Theorem 3 (RCA0). WKL0 is equivalent to the following statement: for each injective functions f, g : N → N such that
ran(f) ∩ ran(g) = ∅ there exists a setX such that ran(f) ⊆ X and ran(g) ∩X = ∅.

Theorem 4 (RCA0). Π1
1-CA0 is equivalent to the following statements:

1. for each sequence of trees ⟨Tn ⊆ N<N | n ∈ N⟩ there exists a set X ⊆ N such that ∀n (n ∈ X ↔
Tn has a path);

2. LPP0: each non well founded tree has a leftmost path.

The zoo of reverse mathematics. The Big Five do not exhaust the interesting subsystems of Z2. In
recent years a constellation of principles, mainly from combinatorics and more specifically from Ramsey’s
theory, have been studied in reverse mathematics. They revealed to form a zoo of principles, since they are
hardly equivalent to other, even apparently similar, statements.

Ramsey’s theorem for pairs RT22 plays a prominent role in this picture. It was one of the first principles
proved to lay between RCA0 and ACA0 and to be incomparable with WKL0. After it many principles, often
easy consequences of RT22, were analysed and proved to be not only incomparable with WKL0, but also not
equivalent one to the other. [Hirschfeldt 2015] provides a very nice introduction to the zoo of reverse math-
ematics and it is also a precious source of references. We recall here only those principles mentioned in the
thesis starting from Ramsey’s theorem.

Definition 5. Let c : [N]n → k be a colouring, for some n, k ∈ N. A setH ⊆ N is homogeneous for i < k
if for each h0, . . . , hn−1 ∈ H it holds that c(h0, . . . , hn−1) = i.

A colouring c : [N]2 → 2 is stable if for each x ∈ N there exists y ∈ N and i < 2 such that c(x, z) = i
for each z > y.
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Definition 6. Let ⟨Sn | n ∈ N⟩ be a sequence of subsets of N. A set C ⊆ N is cohesive if, for each n ∈ N,
either C is a subset of Sn, up to finitely many elements, or C is a subset of N \ Sn, up to finitely many
elements.

RTnk For each colouring c : [N]n → k there exists an infinite homogeneous set.

SRT2k For each stable colouring c : [N]2 → k there exists an infinite homogeneous set.

COH For each sequence of subsets of N there exists an infinite cohesive set.

Notoriously, RT22 is equivalent to SRT22 plus COH [Cholak, Jockusch, and Slaman 2001]. We denote as
RTn<ω the statement ‘for each k RT

n
k holds’ and we recall that RT

1
<ω is equivalent to BΣ0

2 [Hirst 1987].
Among the consequences of RT22 we mainly focus on ADS and its stable variant.

Definition 7. A linear order (L,<L) is stable if every element has either finitely many predecessors or finitely
many successors.

ADS For each linear order there exists an infinite ascending or an infinite descending chain.

SADS For each stable linear order there exists an infinite ascending or an infinite descending chain.

The previous statements areΠ1
2-statements, so of the form ∀X ∃Y (φ(X)→ ψ(X,Y )), for some arith-

metical formulae φ and ψ. For principles of this form we often refer, following a well establish terminology,
to X as an instance of the principle and to Y as a solution.

The thesis mentions basic notions from computability theory. We refer to [Soare 2016] as a monograph
on the topic.

And combinatorial principles

In the thesis some combinatorial principles are analysed from the reverse mathematics point of view. The
literature on this topic is rather vast, as we already pointed out in the previous section and as witnessed by
[Hirst 1987; Hirst 1990; Hirst 1992; Hirst and Hughes 2015; Hirst and Hughes 2016; Schmerl 2005; Cenzer
and Remmel 2005], which are only a sample of the articles in this area. For a complementary approach to the
topic of combinatorics and computability theory see the surveys [Gasarch 1998; Downey 1998], where it is
also possible find many references.

In this section we recall some basic definitions from order theory and graph theory used extensively in
the thesis. More definitions and notations are introduced along the chapters when needed. For a deeper
introduction to graph theory and order theory see [Diestel 2017] and [Harzheim 2005]. When not specified
differently we intend that the objects we consider are countable.

A graph is a pair (V,E) where V ⊆ N and E ⊆ N× N is a symmetric relation. We write v E u to mean
that {v, u} ∈ E. Notice that ‘graph’ denotes an undirected graph, if not specified differently. If V ′ ⊆ V ,
then (V ′, E) denotes the induced subgraph, i.e. E stands for E ∩ V ′ × V ′.

The graph (V,E) is the complementary graph of a graph (V,E) if the two graphs have dual edges, namely
for each vertices v, u ∈ V it holds that v E u if and only if ¬v E u.

Definition 8. A graph (V,E) is a comparability graph if there exists a partial order (V,≺) such that for each
vertices v, u ∈ V it holds that v E u if and only if either v ≺ u or u ≺ v.

Comparability graphs, as the name suggests, represent the comparability relation of orders. We often
call such orders the orders associated to a comparability graph. Building on this idea, we name a graph an
incomparability graph if edges represent the incomparability relation of an order. Notice that an incomparability
graph is the complementary graph of a comparability graph.
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Definition 9. Let (V,E) be a graph. A path in (V,E) is a sequence v0, . . . , vn, for some n ∈ N, of elements
of V such that viE vi+1 for each i < n. The length of the path v0, . . . , vn is n.

A cycle in (V,E) is a path with vn = v0. A simple cycle v0, . . . , vn is a cycle such that each vertex in
v0, . . . , vn−1 does not occur more than once. A chord of a cycle v0, v1, . . . , vn is a pair ⟨vi, vj⟩ for i < j ≤ n
such that viE vj and 2 ≤ |i− j| < n−1. The chord is triangular if either j = i+2 or i = 1 and j = n−1.

A partial order, or poset for short, is a pair (P,<P ) where P ⊆ N and <P ⊆ N × N is a irreflexive,
asymmetric and transitive relation. We generally refer to (P,<P ) simply as P . If (P,<P ) is an order, and
p ≮P q and q ≮P p hold, then we write p |P q. In this case the p and q are called ‘incomparable’.

The symbol < denotes the standard order on N.
A set C ⊆ P is an antichain if c |P d for each c, d ∈ C . A set C ⊆ P is a chain if c -P d for all distinct

c, d ∈ C . A linear order is a poset which is also a chain. We often deal with chains of a specific order type.

Definition 10. Let (P,<P ) be a poset. A sequence A = ⟨an ∈ P | n ∈ N⟩ is an ascending chain if n < m
implies an <P am, for each integers n andm. A is descending if for each n andm, n < m implies am <P an.
Occasionally we use ω and ω∗ chain to indicate ascending and descending chains respectively.

Notice that if (P,<P ) is a poset and A ⊆ P is such that, for each a, a′ ∈ A, a < a′ implies a <P a′

(i.e. the <-order of the elements of A correspond to the <P -order), then it is possible to define computably
an ascending sequence of elements of A simply enumerating them in <-increasing order. For this reason
we sometimes tacitly oscillate between the two notions. An analogous observation holds for descending
sequences.

Definition 11. Let (P,<P ) be a poset and A andD be subsets of P (in many cases A andD will be chains
in P ). We say that D is above A, or A <P D, if a <P d for each a ∈ A and each d ∈ D. When A = {a}
(or D = {d}) we write a <P D (resp. A <P d).

Analogously, we say that D is incomparable with A, or A |P D, if a |P d for each a ∈ A and each d ∈ D.
When A = {a} (or D = {d}) we write a |P D (resp. A |P d).

The width of a partial order (P,<P ) is the supremum of the sizes of its antichains. The chain-decomposition-
number of P is the least number k such that P is union of k chains. The height of P is the supremum of the
sizes of its chains.

The symbol N<N denotes the set of finite sequences of natural numbers, while 2<N stands for the set of
finite sequences from {0, 1}. A tree T is a subset of N<N such that if σ ∈ T then every initial segment of σ
is in T . T is finitely branching if each node in T has only finitely many successors in T , and it is binary if it is a
subset of 2<N. A path in T is a function f : N→ N such that ⟨f(0), . . . , f(n)⟩ ∈ T for each n.

If σ ∈ N<N, then |σ| denotes the length of σ. If σ, τ ∈ N<N wewrite τ ⊑ σ whenever ∀n < |τ | (τ(n) =
σ(n)).

OVERVIEW OF THE THESIS The thesis is divided into three main parts. In the first one an on-line
algorithm to transitivelly reorient infinite pseudo-transitive oriented graphs is defined. Interval graphs and
interval orders are the common theme of the second part of the thesis. The third part is devoted to the
analysis of two theorems proved by Rival and Sands.

Each part begins with an introduction to the topic and with an overview of the contents.
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An asymmetric and irreflexive relation → is an orientation of a graph (V,E) if for every a, b ∈ V we have
aE b if and only if a → b or b → a. An orientation→ is transitive if for every a, b, c ∈ V such that a → b
and b → c we have also a → c. Graphs having a transitive orientation are also known as comparability graphs:
in fact E is the comparability relation of the strict partial order→.

A characterization of comparability graphs was given by Alain Ghouila-Houri [Ghouila-Houri 1962;
Ghouila-Houri 1964] (using a different terminology and dealing only with finite graphs) and reproved by
Paul Gilmore and Alan Hoffman [Gilmore and Hoffman 1964]. Further results were obtained by Tibor
Gallai [Gallai 1967], who provided another characterisation of comparability graphs listing all the forbidden
subgraphs.

Theorem 1.1. An undirected graph has a transitive orientation if and only if every cycle of odd length has a triangular chord.

In Figure 1.1 the left graph has a cycle of length nine with no triangular chord, while the right one has no
cycles of odd length without triangular chords.

Figure 1.1: A graph which is not a comparability graph, to the left, and a comparability graph, to the right.

fl
This chapter is the outcome of a joint research with Alberto Marcone.
We thank Nicola Gigante and Paul Shafer for useful discussions about the topic of the paper.
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The forward direction of Theorem 1.1 is easily proved. The backward direction was proved directly
by Gilmore and Hoffman, while the original proof by Ghouila-Houri uses an intermediate step. The latter
approach is also taken in several expositions of the theorem ([Berge 1976, Theorem 16.8], [Fishburn 1985,
Theorem 1.7], [Harzheim 2005, Theorem 11.2.5]) and hinges on the following notion.

An orientation→ is pseudo-transitive if for every a, b, c ∈ V such that a→ b and b→ c we have also either
a→ c or c→ a.

Ghouila-Houri proves the backward direction of Theorem 1.1 by first showing that if every cycle of odd
length has a triangular chord then there exists a pseudo-transitive orientation, and then that any pseudo-
transitive orientation can be further reoriented to obtain a transitive one.

The effectiveness of Theorem 1.1 has already been studied, in particular using the framework of reverse
mathematics ([Simpson 2009] is the basic reference in this area), by Jeffry Hirst in his PhD thesis [Hirst
1987, Theorem 3.20]. Hirst indeed showed that a compactness argument (disguised as an application of
Zorn’s lemma in [Gilmore and Hoffman 1964] and of Rado’s theorem in [Fishburn 1985; Harzheim 2005]) is
necessary for countable graphs and hence the theorem is not computably true. The following lemma includes
Hirst’s theorem and provides a direct proof for it.

Lemma 1.2. The following are equivalent over the base system RCA0:

1. WKL0;
2. every countable graph such that every cycle of odd length has a triangular chord has a transitive orientation;
3. every countable graph such that every cycle of odd length has a triangular chord has a pseudo-transitive orientation.

Proof. To prove that (1) implies (2) assume the statement is true for finite graphs (any of the proofs mentioned
above can be formalised in RCA0). Let (V,E) be a countable graph such that every cycle of odd length has
a triangular chord. We define a binary tree T ⊆ 2<N, whose paths code transitive orientations of E. Let
σ ∈ 2<N be in T if for each ⟨i, j⟩, ⟨j, i⟩, ⟨j, k⟩, ⟨i, k⟩ < |σ| the following conditions are satisfied.

• if σ(⟨i, j⟩) = 1, then i E j,

• if i E j, then exactly one between σ(⟨i, j⟩) = 1 and σ(⟨j, i⟩) = 1 holds,

• σ(⟨i, j⟩) = 1 and σ(⟨j, k⟩) = 1 imply σ(⟨i, k⟩) = 1.

The tree T is infinite because for each finite subgraph ({0, . . . , n − 1}, E {0, . . . , n − 1}) there exists a
transitive orientation→n by assumption. Therefore, each σ ∈ 2<N such that ∀i, j < n (σ(⟨i, j⟩) = 1 ↔
i →n j) belongs to T . Let g be a path and set i → j if and only if g(⟨i, j⟩) = 1. By construction →
transitively orients (V,E).

The implication from (2) to (3) is trivial.
To check that (3) implies (1) let f, g : N → N be injective functions such that ∀m ∀n (f(m) ̸= g(n)).

Define a graph (V,E) as follows: V = {an, bn, cn, dn | n ∈ N} ∪ {xm, ym | m ∈ N} and E is defined by
the following clauses for each n andm:

cnE anE bnE cnE dn;

xmE an if f(m) = n;

ymE bn if g(m) = n.

Every cycle of odd length has a triangular chord because every connected component of (V,E) is isomorphic
to a subgraph of the right graph in Figure 1.1. Let→ be a pseudo-transitive orientation of E. It is easy to
check that the set

X = {n ∈ N | bn → an ← cn ∨ bn ← an → cn}

contains the range of f and is disjoint from the range of g.
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The proof of Lemma 1.2 yields the following results in the framework of computability theory and of the
Weihrauch lattice (see [Brattka, Gherardi, and Pauly 2017] for an introduction to this research program).

Lemma 1.3. There exists a computable graph such that every cycle of odd length has a triangular chord which has no computable
pseudo-transitive orientation.

Every computable graph such that every cycle of odd length has a triangular chord has a low transitive orientation.

Lemma 1.4. Consider the multi-valued functions that map every countable graph such that every cycle of odd length has a
triangular chord to the set of its transitive (resp. pseudo-transitive) orientations. Each of these two multi-valued functions is
Weihrauch equivalent to choice on Cantor space.

Starting with [Gilmore and Hoffman 1964] there has been an interest in algorithms providing transitive
orientations for finite comparability graphs. For example, the influential textbook [Golumbic 2004] devotes a
whole chapter to algorithmic aspects of comparability graphs, including complexity issues. However, the first
part of Lemma 1.3 shows that there is no algorithm to (pseudo-)transitively orient countable computability
graphs. In particular, an algorithm which computes a (pseudo-)transitive orientation of finite comparability
graphs cannot work in an incremental way (i.e. extending the previous orientation as new vertices are added
to the graph), and thus is not on-line. Here we understand the notion of on-line algorithm as defined in
[Bazhenov et al. 2019], which is a recent survey of the theoretical study of on-line algorithms for computable
structures. To be more precise, we assume the input of an on-line (incremental) algorithm to consist of vertices
coming one at a time together with all information about the edges connecting them to previous vertices. (So
at step s the size of the input increases of at most s.) When the algorithm sees a new vertex, it must reorient all
the edges connecting it to previous vertices while preserving the reorientations already set at previous stages.

Lemmas 1.2, 1.3, and 1.4 provide an analysis of the first step in Ghouila-Houri’s proof of Theorem 1.1.
Our main interest is the analysis of the complexity of the second step of this proof, which is best stated
using oriented graphs, i.e. directed graphs such that at most one of the edges between two vertices exist. In this
paper we abbreviate ‘oriented graph’ as ograph. The notions of pseudo-transitivity and transitivity are readily
extended to ographs, and a reorientation of an ograph is an ograph obtained by reversing some of the edges.
Then the second step of Ghouila-Houri’s proof is the following result.

Theorem 1.5. Every pseudo-transitive ograph has a transitive reorientation.

This is the main lemma in [Ghouila-Houri 1962], the lemma on page 329 in [Ghouila-Houri 1964], Theo-
rem 16.7 in [Berge 1976], Theorem 1.5 in [Fishburn 1985], and Theorem 11.2.2 in [Harzheim 2005]. Ghouila-
Houri’s proof deals only with finite graphs and uses induction on the number of vertices. The same proof is
presented in [Berge 1976; Fishburn 1985; Harzheim 2005] and extended to the infinite case by some compact-
ness argument. From this proof it is easy to extract an algorithm to transitively reorient finite pseudo-transitive
ographs. However, the induction step requires, in a nutshell, partitioning the set of vertices into two subsets
with specific properties, to reorient each of the induced subographs by induction hypothesis, and then to set
the reorientation between them (see Algorithm 1 for the pseudocode of the algorithm). Thus this algorithm
is not incremental and does not apply to infinite ographs. This analysis led us to conjecture that we could
obtain results similar to Lemmas 1.2, 1.3 and 1.4 for Theorem 1.5. We were actually wrong.

Overview of the main results. We state the main result of this chapter in various different ways (the
first three items of the theorem correspond to the approaches of Lemmas 1.2, 1.3 and 1.4, respectively).

Main Theorem.

1. RCA0 proves that every countable pseudo-transitive ograph has a transitive reorientation;
2. every computable pseudo-transitive ograph has a computable transitive reorientation;
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3. the multi-valued function that maps a countable pseudo-transitive ograph to the set of its transitive reorientations is
computable;

4. there exists an on-line (incremental) algorithm to transitively reorient pseudo-transitive ographs;
5. Player II has a winning strategy for the following game: starting from the empty graph, at step s + 1 player I plays a

pseudo-transitive extension (Vs∪{xs},→s+1) of the pseudo-transitive ograph (Vs,→s) he played at step s. Player
II replies with a transitive reorientation ≺s+1 of→s+1 such that ≺s+1 extends ≺s she defined at step s. Player II
wins if and only if she is always able to play.

We concentrate on proving (4) of the Main Theorem, as this easily implies (2) and (3), while (5) is just
a restatement in a different language of (4) for countable ographs. More attention has to be paid in order
to derive (1) from (4), since in this case one also needs to check that the proof of the correctedness of the
algorithm can be caried out in RCA0, namely that the amount of comprehension used is limited to ∆0

1-
formulae and the amount of induction used is limited to Σ0

1-formulae. The unique subtle passage on this
respect concerns the double induction used in the proof of Property 1.38, which however is fine since the
matrix of the formula is ∆0

0.
We deal explicitly only with countable ographs; however it is easily seen that our algorithm applies to

ographs of any cardinality, as long as the set of vertices can be well-ordered.
An upper bound for the complexity of the algorithm we define (when applied to finite pseudo-transitive

ographs) is O(|V |3). The problem of orienting comparability graphs can be solved by an algorithm with
complexity O(δ · |E|), where δ is the maximum degree of a vertex ([Golumbic 2004, Theorem 5.33]), and
further fine-tuning has been subsequently made.

Overview of the chapter. Section 1.1 contains the preliminary definitions and a presentation of two
pseudo-transitive ographs with transitive reorientations which are the main obstacles in designing the algo-
rithm. Sections 1.2 and 1.3 analyse in detail these two configurations. In Section 1.4 we present the on-line
algorithm and prove its correctness. We also sketch the ideas needed to obtain the upper bound for the
complexity mentioned above.
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Algorithm 1 Ghuilà-Houri algorithm
Require: (V,→) is a pseudo-transitive digraph
Require: V is an initial segment of (N, <)
procedure REORIENT(V,→)

if (V,→) is transitive then
for a ∈ V do

for b ∈ V do
if a | b then

a ⊀ b, b ⊀ a
else if a→ b then

a ≺ b
else

b ≺ a
end if

end for
end for

else
let i, j, k be such that i→ j → k → i ◃ ijk is non transitive
n← 0
while n ∈ V do

if n ∈ N(i) then
if n ∈ N(j) then

if n ∈ N(k) then
case=1 ◃ Case=1: if n ∈ N(i), then n ∈ N(j) ∩N(k)

n← n+ 1
else

case=2
witness=[i,j,k] ◃ Case=2 is witnessed by n ∈ N(i) ∩N(j) \N(k)

end if
else

case=2
witness=[i,k,j] ◃ Case=2 is witnessed by n ∈ N(i) ∩N(k) \N(j)

end if
else if n ∈ N(j) then ◃ To check if case=1, check if eachN(j) ∩N(k) ⊆ N(i)

if n ∈ N(i) then
if n ∈ N(k) then

case=1
n← n+ 1

else
case=2
witness=[i,j,k]

end if
else

case=2
witness=[j,k,i]

end if
end if

end while
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if case=1 then ◃ If case 1 holds
REORIENT(V \ {j, k},→) ◃ Call REORIENT: it outputs ≺′

for n ∈ V do
form ∈ V do

if m = j ∨m = k then
if n ≺′ i then

n ≺ j, n ≺ k
else if i ≺′ n then

j ≺ n, k ≺ n
else

n ⊀ j, j ⊀ n, n ⊀ k, k ⊀ n
end if

else
n ≺ m according to ≺′

end if
end for

end for
else ◃ If case 2 holds

A = ∅
form ∈ V do

if m→ witness[0]→ witness[1]→ m then
m ∈ A

else
m ∈ Ā

end if
end for
REORIENT(A,→) ◃ Call REORIENT: it outputs ≺A

REORIENT(V \A ∪ {witness[2]},→) ◃ Call REORIENT: it outputs ≺Ā

for u ∈ V do
if u ∈ V \A then

for v ∈ V do
if v ∈ V \A then

u ≺ v according to ≺Ā

else
if u ≺Ā witness[2] then

u ≺ v
else if witness[2] ≺Ā u then

u ≺ v
else

v ⊀ u, v ⊀ u
end if

end if
end for

else
for v ∈ V do

if v ∈ A then
u ≺ v according to ≺A

end if
end for

end if
end for

end if
end if

end procedure
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1.1 Preliminaries

We have already introduced our terminology in the previous pages; we now give the formal definitions of the
central notions.

Definition 1.6. An ograph (V,→) is transitive if for each a, b, c ∈ V , if a→ b→ c, then a→ c. (V,→) is
pseudo-transitive if for each a, b, c ∈ V , if a→ b→ c, then a→ c or c→ a.

A relation R on V is a reorientation of→, if for each a, b ∈ V , if a → b then either aR b or bR a and if
aR b then either a→ b or b→ a.

A transitive reorientation of (V,→) is a reorientation of (V,→) which is also transitive. In this case we often
use ≺ in place of R.

A triple (V,→,≺) is aGhouila-Houri triple (GH-triple for short) if (V,→) is a pseudo-transitive ograph and
≺ a transitive reorientaion of→.

Notice that each reorientation R of (V,→) preserves both→-comparability and→-incomparability. In
other words, the undirected graphs associated with (V,→) and with (V,R) coincide.

Notation 1.7. Let (V,→) be an ograph and a, b, c ∈ V .
• a− b means that either a→ b or b→ a;
• N(a) = {b ∈ V | a− b} is the neighbourhood of a;
• a | b means that neither a→ b nor b→ a;
• when we write ‘a− b by pt(c)’ we mean that we know that→ is pseudo-transitive and we are deducing
a− b because we have either a→ c→ b or b→ c→ a.

Definition 1.8. Let (V,→) be an ograph. If V ′ ⊇ V we say that (V ′,→′) is an extension of (V,→) if
(V ′,→′) is an ograph such that for every a, b ∈ V we have a→ b if and only if a→′ b.

An on-line algorithm computing a transitive reorientation of a pseudo-transitive ograph must produce at
each step a reorientation which can further be extended, in the sense made precise by the following definition.

Definition 1.9. A GH-triple (V,→,≺) is extendible if for every (V ∪ {x},→′), pseudo-transitive extension
of (V,→), there exists ≺′ which extends ≺ and is such that (V ∪ {x},→′,≺′) is a GH-triple.

Some simple cases of GH-triples which are not extendible are depicted in Figures 1.2 and 1.3.

Example 1.10. In Figure 1.2 we have the transitive triangle examples:→ is transitive on {a, b, c} and the transitive
reorientation is defined by a ≺ c ≺ b. Notice that in the left ograph we have a→ c← b, while in the right
one we have a← c→ b: in both cases all edges involving the vertex c have the same direction. We can add
a vertex x connected to c by an edge going in the same direction and connected with neither a nor b. Then
({a, b, c, x},→′) is pseudo-transitive and if ≺′ is a reorientation of →′ extending ≺ we must have either
x ≺′ c or c ≺′ x: both choices lead to the failure of transitivity of ≺′.

Example 1.11. In Figure 1.3 we have the 2 ⊕ 2 example: there are two edges a → c and b → d (with no
other edges between these four vertices) and the transitive reorientation defined by a ≺ c and d ≺ b. In the
left ograph we add a vertex x such that a →′ x, b →′ x, x |′ c and x |′ d. Then ({a, b, c, d, x},→′) is
pseudo-transitive. Suppose ≺′ were a transitive reorientation of→′ extending ≺: since a −′ x and x |′ c,
then a ≺ c implies a ≺′ x; since b −′ x and x |′ d, then d ≺ b implies x ≺′ b. But a ≺′ x ≺′ b is not
compatible with a | b. The situation in the right ograph is the same as the previous one as far as the first four
vertices are concerned, but the new vertex x is now such that x→′ c, x→′ d, x |′ a and x |′ b. We can argue
analogously to show that ({a, b, c, d, x},→′) is a pseudo-transitive ograph with no transitive reorientation
extending ≺.
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b

c x a ≺ c ≺ b
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c x

Figure 1.2: The transitive triangle examples.
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x

a ≺ c

d ≺ b

Figure 1.3: The 2⊕ 2 example.

We eventually show that the examples above are the only obstructions to extendibility of a GH-triple. To
do this we analyse in detail Examples 1.10 and 1.11 using the following notions.

Definition 1.12. Let (V,→,≺) be a GH-triple. If (V ∪{x},→′) is a pseudo-transitive extension of (V,→)
define

N+(x) ={a ∈ N(x) | ∀b (a ≺ b⇒ b ∈ N(x))};
N−(x) ={a ∈ N(x) | ∀b (b ≺ a⇒ b ∈ N(x))}.

(Here N(x) is the neighbourhood of x in (V ∪ {x},→′).)

Remark 1.13. Under the hypothesis of the previous definition we have that if a ∈ N(x)\N+(x), b ∈ N+(x)
and a − b, then a ≺ b. In fact, since a /∈ N+(x) there is d ≻ a with d | x. If b ≺ a, then b ≺ d against
b ∈ N+(x). Thus a ≺ b.

Similarly, if c ∈ N(x) \N−(x), b ∈ N−(x), and b− c, then b ≺ c.

The next lemma states some properties of extendible GH-triples.

Lemma 1.14. Let (V,→,≺) be an extendible GH-triple. Then for any (V ∪ {x},→′) pseudo-transitive extension of
(V,→) we have:

1. N(x) = N+(x) ∪N−(x);
2. N−(x) \N+(x) ≺ N+(x) \N−(x).

Proof. If condition (1) does not hold for some pseudo-transitive extension (V ∪ {x},→′), then there exist
c ∈ N(x) and a, b ̸∈ N(x) such that a ≺ c ≺ b. This impedes both x ≺′ c and c ≺′ x for any transitive
reorientation of→′ with≺′ ⊇ ≺. (Notice that we found in (V,→,≺) a copy of one of the transitive triangle
examples.)

If condition (2) does not hold for some pseudo-transitive extension (V ∪ {x},→′), then there exist
a ∈ N−(x) \N+(x) and b ∈ N+(x) \N−(x) such that a ⊀ b. Since a ∈ N−(x) \N+(x) there exists c
such that a ≺ c and c |′ x. Since b ∈ N+(x) \N−(x), there exists d such that d ≺ b and d |′ x. If ≺′ were
a transitive reorientation of→′ with ≺′ ⊇ ≺ then these conditions imply respectively a ≺′ x and x ≺′ b; it
would follow a ≺′ b, contrary to a ⊀ b. (Notice that in this case we found in (V,→,≺) a copy of the 2⊕ 2
example.)
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1.2 Avoiding the transitive triangle examples

This section is devoted to a careful study of the first condition of Lemma 1.14. The next lemma shows
that this condition captures precisely the lack of the transitive triangle examples. Recall that in that situation
(V,→,≺) is a GH-triple. Moreover, there exist a, b, c ∈ V such that a ≺ c ≺ b and the new vertex x is
connected with c, but not with a and b. Notice that this might happen only if a, b, c form a transitive triangle
and either a→ c← b or a← c→ b.

Lemma 1.15. Let (V,→,≺) be a GH-triple and (V ∪ {x},→′) be a pseudo-transitive extension of (V,→), then
N(x) = N+(x) ∪N−(x) is equivalent to ∀a, b, c ∈ V (a ≺ c ≺ b ∧ x−′ c⇒ x−′ a ∨ x−′ b).

Proof. Notice that c ∈ N(x) \ N+(x) ∪ N−(x) means that there exist a and b such that a ≺ c ≺ b and
a, b /∈ N(x). From this observation the equivalence is immediate.

Lemma 1.15 involves all possible pseudo-transitive extensions of (V,→) by one vertex. It is convenient
to have a characterization of the GH-triples such thatN(x) = N+(x)∪N−(x) for every pseudo-transitive
extension, which involves only the GH-triple itself. To this end we introduce two formulae,Φ andΨ. In order
to do this, we define formulae φ(a, b, c) and ψ(a, b, c) which do not mention the reorientation ≺. Notice
that Lemmas 1.14 and 1.15 imply that the non extendibility of ≺ may be caused by only three vertices. With
this in mind, it is not hard to understand the rationale for φ(a, b, c), ψ(a, b, c), Φ, and Ψ.

Definition 1.16. Let (V,→,≺) be a GH-triple. Let φ(a, b, c) assert the existence of e0, . . . , en ∈ V such
that:

(φ1) c→ e0;

(φ2) ∀i < n ((a→ ei ∧ b→ ei → ei+1) ∨ (ei+1 → ei → b ∧ ei → a));

(φ3) a→ en → b ∨ b→ en → a.

Then Φ is
∀a, b, c ∈ V (a→ c← b ∧ a ≺ c ≺ b⇒ φ(a, b, c)).

Symmetrically, let ψ(a, b, c) assert the existence of e0, . . . , en ∈ V such that:

(ψ1) e0 → c;

(ψ2) ∀i < n ((a→ ei ∧ b→ ei → ei+1) ∨ (ei+1 → ei → b ∧ ei → a));

(ψ3) a→ en → b ∨ b→ en → a.

Then Ψ is
∀a, b, c ∈ V (a← c→ b ∧ a ≺ c ≺ b⇒ ψ(a, b, c)).

Notice that the only difference between φ and ψ occurs in conditions (φ1) and (ψ1), where the direction
of the edge is reversed. Φ and Ψ further differ in applying to triples such that a → c ← b and a ← c → b
respectively.

Remark 1.17. Let (V,→,≺) be a GH-triple. Fix a, b, c ∈ V . If e0, . . . , en witness φ(a, b, c) (or ψ(a, b, c))
then they witness φ(b, a, c) (resp. ψ(b, a, c)) as well.

The following duality principle is useful to avoid checking Φ and Ψ separately.

Remark 1.18. Using Remark 1.17 it is immediate to notice that (V,→,≺) satisfiesΦ if and only if (V,←,≻)
(i.e. the ograph and the reorientation where all edges are reversed) satisfies Ψ.

We start with some properties concerning basic facts about φ and ψ.
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Property 1.19. Let (V,→) be a pseudo-transitive ograph. Suppose that a → c ← b and φ(a, b, c) is witnessed by
e0, . . . , en. Then there exists k ≤ n such that ek, . . . , en witness φ(a, b, d) for each d ∈ V such that d | c and
a− d− b.

The same holds starting from a← c→ b and ψ(a, b, c), and concluding that ek, . . . , en witness ψ(a, b, d).

Proof. Suppose we are in the first case, i.e. a → c ← b and e0, . . . , en witness φ(a, b, c). Let k ≤ n be
largest such that c→ ek , and notice that ek, . . . , en witness φ(a, b, c) as well.

We claim that ei → c for all i such that k < i ≤ n. The claim is proved by a ‘backward’ induction. We
obtain en − c by (φ3) and pt(b) or pt(a). Hence en → c by our assumption (unless n = k). Suppose now
that ei+1 → c. If ei → a, then ei − c by pt(a). Otherwise, ei → ei+1 by (φ2) and so ei − c by pt(ei+1).
Hence, if i > k we have ei → c.

Let now d be such that d | c and a− d− b. In particular we have a→ d← b. Notice that to check that
ek, . . . , en witness φ(a, b, d) conditions (φ2) and (φ3) are identical to conditions (φ2) and (φ3) of φ(a, b, c),
since they concern only the vertices a and b. We are left to prove that condition (φ1) is satisfied, namely that
d→ ek . Since d | c and c→ ek it suffices to show that d− ek .

To this end we prove that indeed we have ei − d for all i such that k ≤ i ≤ n, again by a ‘backward’
induction. Since a→ d← b and either en → a or en → b by (φ3), we have en − d by either pt(a) or pt(b).
Now, assuming i ≥ k and ei+1 − d so that d − ei+1 − c, we must have ei+1 → d because ei+1 → c by
the choice of k. If a→ ei condition (φ2) of φ(a, b, c) implies ei → ei+1 and hence ei − d by pt(ei+1). If
ei → a, then ei − d by pt(a), since a→ d.

If a← c→ b and e0, . . . , en witness ψ(a, b, c) the argument is specular with obvious changes.

Property 1.20. Let (V,→) be a pseudo-transitive ograph and let v, u, e0, . . . , en ∈ V . Suppose u | v, u − e0 and
∀i < n (v → ei → ei+1 ∨ ei+1 → ei → v). Then u− ei for each i ≤ n.

Proof. The proof is by induction on i. The base case holds by assumption, so assume u − ei for i < n. If
u → ei, then v → ei because u | v. Thus ei → ei+1 and u − ei+1 by pt(ei). If ei → u the argument is
specular inverting the arrows.

We can now show that Φ and Ψ are sufficient for the first condition of Lemma 1.14.

Lemma 1.21. Let (V,→,≺) be a GH-triple. If Φ and Ψ are satisfied, then for each (V ∪ {x},→′) pseudo-transitive
extension of (V,→) we have N(x) = N+(x) ∪N−(x).

Proof. Fix (V ∪ {x},→′). By Lemma 1.15 it suffices to show that for any a, b, c ∈ V such that a ≺ c ≺ b
and x−′ c either x−′ a or x−′ b.

If b → c → a then x →′ c implies x −′ a, while c →′ x implies x −′ b. If a → c → b the situation is
similar.

If a→ c← b then Φ implies that ϕ(a, b, c) holds. Let e0, . . . , en witness φ(a, b, c). Assume x−′ c. If
c→′ x, then both a−′ x and b−′ x follow immediately by pt(c). Otherwise we have x→′ c, and suppose
towards a contradiction that x |′ a and x |′ b. Notice that x→′ c→ e0 implies x−′ e0. Hence by condition
(φ2) and Property 1.20 it holds that ∀i ≤ n (x−′ ei). In particular we have x−′ en, and then one of x−′ a
and x−′ b by pt(en) follows by (φ3).

If a← c→ b we argue similarly, using Ψ.

We now prove that Φ and Ψ are necessary conditions for N(x) = N+(x) ∪N−(x).

Lemma 1.22. Let (V,→,≺) be a GH-triple such that one of Φ and Ψ fails. Then there is a pseudo-transitive extension
(V ∪ {x},→′) of (V,→) such that N(x) ̸= N+(x) ∪ N−(x) and hence (V,→,≺) is not extendible by Lemma
1.14.
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Proof. We assume the failure of Φ: if Ψ fails the argument is symmetric.
Let a, b, c ∈ V be such that a → c ← b, a ≺ c ≺ b and ¬φ(a, b, c). We fix x /∈ V and define an

extension→′ of (V,→) to V ∪ {x} in stages, as an increasing union→′ =
∪

n∈N →n. For each stage n,
→n is defined as follows:

• →0 extends→ by adding the single edge x→0 c;
• →n+1 extends→n by adding edges{

x→n+1 u if ∃v((x→n v → u) ∨ (u→ v →n x)) and a→ u← b;

u→n+1 x if ∃v((x→n v → u) ∨ (u→ v →n x)) and a← u→ b.

Notice that x −′ c but x |′ a and x |′ b and hence c ∈ N(x) but c /∈ N+(x) ∪ N−(x). Therefore to
complete the proof it suffices to check the pseudo-transitivity of→′. We first make a couple of preliminary
observations.

Claim 1.22.1. For all u ∈ V such that there exists v ∈ V satisfying either x→′ v → u or u→ v →′ x we have
a− u− b.
Proof. Let us first suppose that x →′ v → u holds. By definition of→′ (or by hypothesis when v = c) it
holds that a→ v ← b. Hence a− u− b by pt(v). If u→ v →′ x the argument is similar.

Claim 1.22.2. If u ∈ V is such that u ̸= c and u−1 x then c→ u.
Proof. Let us suppose that u ̸= c and u −1 x, so that u −0 x does not hold. The definition of→1 implies
that for some v we have either x →0 v → u or u → v →0 x. Since the only v such that v −0 x is c and
x→0 c we must have the first possibility with v = c, so that c→ u holds.

In order to show that→′ is pseudo-transitive, we have to consider the following three cases for v, u ∈ V :
a v →′ x→′ u. Then v − u because v → a→ u by definition of→′;
b x →′ v → u. Then Claim 1.22.1 guarantees that a − u − b. Let n be the least stage such that
x →n v. If a → u ← b or a ← u → b, then x −n+1 u by definition of→n+1. Thus we assume
that either a → u → b or b → u → a. Since n is the minimum stage such that x →n v, there
exists en−2 such that x−n−1 en−2 − v and x→n−1 en−2 ⇔ en−2 → v. Notice that x−n−2 en−2

does not hold, otherwise we would have x →n−1 v. Analogously, there must be an en−3 such that
x−n−2 en−3 − en−2 and x→n−2 en−3 ⇔ en−3 → en−2. For each step i < n, we can repeat this
search of ei−2 witnessing that x−i ei−1. After n− 1 steps we get to x−1 e0 and, since x−0 e0 does
not hold, e0 ̸= c. This means, by Claim 1.22.2, that c→ e0. Let j be maximum such that c→ ej and
set en−1 = v and en = u. We claim that ej , . . . , en witness φ(a, b, c). To this end we need to check
the three clauses in the definition of φ(a, b, c):

(φ1) c→ ej by hypothesis.
(φ2) Fix i < n: ei − ei+1 holds by our choice of the sequence of the ei’s and we have either a →

ei ← b or a← ei → b by definition of→i. Moreover, if x→i+1 ei, then b→ ei, by definition
of→i+1, and ei → ei+1, by choice of ei. If ei →i+1 x the argument is similar.

(φ3) a→ en → b or b→ en → a by hypothesis.

c u→ v →′ x. This is similar to the previous case.

Summarizing the results obtained in Lemma 1.21 and Lemma 1.22 we obtain:

Corollary 1.23. Let (V,→,≺) be a GH-triple. The following are equivalent:

1. for each pseudo-transitive extension (V ∪ {x},→′) of (V,→), it holds that N(x) = N+(x) ∪N−(x);
2. Φ and Ψ are satisfied.
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1.3 Avoiding the 2⊕ 2 example

This section is devoted to study more carefully the second condition of Lemma 1.14. The next lemma shows
that, assuming thatN(x) = N+(x)∪N−(x), this condition captures precisely the lack of the 2⊕2 example.
Recall that in that example (V,→,≺) is a GH-triple and there exist a, b, c, d ∈ V such that a ≺ c, d ≺ b,
a | b, a | d, c | b, and c | d. Then, a new vertex x is connected with a and b but not with c and d, or vice
versa. Notice that this is possible only if either a→ c and b→ d, or c→ a and d→ b.

Lemma 1.24. Let (V,→,≺) be a GH-triple and (V ∪ {x},→′) a pseudo-transitive extension of (V,→). We use Λ
to denote the following property of (V ∪ {x},→′) and ≺:

∀a, b, c, d ∈ V (a | b ∧ c | d ∧ a ≺ c ∧ d ≺ b ∧ x−′ a ∧ x−′ b⇒ x−′ d ∨ x−′ c)

Then:

1 if Λ holds then N−(x) \N+(x) ≺ N+(x) \N−(x);
2 if N(x) = N+(x) ∪N−(x) and N−(x) \N+(x) ≺ N+(x) \N−(x) then Λ holds.

Proof. (1) Assume N−(x) \ N+(x) ⊀ N+(x) \ N−(x), i.e. there exist a ∈ N−(x) \ N+(x) and b ∈
N+(x) \ N−(x) such that a ⊀ b. Since a /∈ N+(x) there is c ≻ a with c | x. Since b /∈ N−(x) there
is d ≺ b with d | x. If b ≺ a, then b ≺ c but this is impossible since c | x and b ∈ N+(x). Since we are
assuming a ⊀ b we have a | b.

We claim that c | d also holds. Since a − x − b, but a | b, then either a → x ← b or a ← x → b. The
argument for the two cases is similar, so let us assume that a → x ← b. This implies a → c and b → d
because c | x and x | d. Hence if c → d, then a − d by pt(c). Since a | b and d ≺ b, it must be d ≺ a but
this contradicts a ∈ N−(x). If d → c, then c − b by pt(d). Since a | b and a ≺ c, it must be b ≺ c which
contradicts b ∈ N+(x). We have thus shown that c | d as claimed.

Now a, b, c and d witness the failure of Λ.
(2) Assume that a, b, c, d ∈ V witness the failure of Λ. Then a /∈ N+(x), b /∈ N−(x) and a ⊀ b.

If N(x) = N+(x) ∪ N−(x) holds then a ∈ N−(x) and b ∈ N+(x), showing that N−(x) \ N+(x) ≺
N+(x) \N−(x) fails.

Observation 1.25. Notice that the first four conjuncts of the antecedent of the implication appearing in Λ imply that a, b, c
and d form a 2 ⊕ 2 because c | b and a | d follow from these. In fact, if c − b, then a ≺ c and a | b imply that b ≺ c,
but then d− c contrary to the assumption. A similar argument shows that a | d.

We now define two formulae Θ and Σ characterizing the reorientations such that the condition Λ of
Lemma 1.24 is satisfied wheneverN(x) = N+(x)∪N−(x). As for Φ and Ψ, the main feature of Θ and Σ
is that they mention only (V,→) and≺. In order to defineΘ and Σ it is necessary to define θ(a, b, c, d) and
σ(a, b, c, d) (which do not mention ≺).

Definition 1.26. Let (V,→,≺) be a GH-triple. Let θ(a, b, c, d) assert the existence of e0, . . . , en ∈ V such
that:

(θ1) e0 → b;
(θ2) ∀i < n (ei+1 → ei → d);
(θ3) d→ en;
(θ4) en | a.

Then Θ is

∀a, b, c, d ∈ V (a→ c ∧ b→ d ∧ a | b ∧ c | d ∧ a ≺ c ∧ d ≺ b⇒ θ(a, b, c, d) ∨ θ(b, a, d, c)).

Symmetrically, let σ(a, b, c, d) assert the existence of e0, . . . , en ∈ V such that:
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(σ1) d→ e0;
(σ2) ∀i < n (b→ ei → ei+1);
(σ3) en → b;
(σ4) en | c.

Then Σ is

∀a, b, c, d ∈ V (a→ c ∧ b→ d ∧ a | b ∧ c | d ∧ a ≺ c ∧ d ≺ b⇒ σ(a, b, c, d) ∨ σ(b, a, d, c)).

Example 1.27. Suppose ({a, b, c, d, e},→) is the pseudo-transitive graph whose only edges are a → c,
b→ d and d→ e→ b. Then θ(a, b, c, d) and σ(a, b, c, d) hold with n = 0 and e0 = e. Thus a 2⊕ 2 such
as the one obtained restricting→ to {a, b, c, d} can satisfy θ and σ simply because one of its edges belongs
to a non transitive triangle. See the first paragraph of the proof of lemma 1.47 below for more on this.

Remark 1.28. Let (V,→,≺) be a GH-triple. Suppose e0, . . . , en witness θ(a, b, c, d) for some a, b, c, d ∈
V . Clearly, if there is an i > 0 such that ei → b, then ei, . . . , en witness θ(a, b, c, d) as well. Thus we can
assume that for every i ≤ n with i > 0 we have b→ ei whenever b− ei. Under this assumption it actually
holds that b→ ei holds for every i ≤ n with i > 0. In fact, b− en by pt(d) and if b→ ei+1, then b− ei by
pt(ei+1).

Before proving the usefulness of Θ and Σ, we would like to comment on their mutual relationship and
on the difference between the connection between Θ and Σ and the connection between Φ and Ψ. Let
(V,→,≺) be a GH-triple and suppose a, b, c, d ∈ V satisfy the antecedent of Θ and Σ (which is the same).
Consider a pseudo-transitive extension (V ∪{x, y},→′) such that a→′ x←′ b and c←′ y →′ d. The two
extensions correspond respectively to the left and right ograph of Figure 1.2. As explained at the beginning
of this section, if either x is incomparable with both c and d or if y is incomparable with both a and b,
then (V,→,≺) is not extendible. We emphasize that under these hypotheses we could have both x and y
witnessing the non extendibility of (V,→,≺). To compare this situation with the one Φ and Ψ take care of,
suppose a → b → c ← a and add x and y such that a → x and y → c. Since c ≺ a ≺ b and a ≺ c ≺ b
cannot occur simultaneously, only one of x and y can witness (if φ(a, b, c), resp. ψ(b, c, a), fails) the non
extendibility of (V,→,≺).

Despite the previous considerations the next lemma shows that xwitnesses the non extendibility of (V,→
,≺) if and only if y does.

Lemma 1.29. Let (V,→) be a pseudo-transitive ograph and suppose a, b, c, d ∈ V are such that a→ c, b→ d, a | b
and d | c. Then θ(a, b, c, d) holds if and only if σ(a, b, c, d) does.

Therefore, if (V,→,≺) is a GH-triple then Θ holds if and only if Σ does.

Proof. Since the antecedents of Σ and Θ coincide and imply the hypothesis of the first statement, it is clear
that the second statement follows from the first.

For the forward direction of the first statement, let e0, . . . , en witness θ(a, b, c, d). By Remark 1.28 we can
assume that b→ ei whenever i > 0. We claim that en, . . . , e0 witness σ(a, b, c, d). In fact, conditions (σ1)
and (σ3) of σ(a, b, c, d) are exactly conditions (θ3) and (θ1) of θ(a, b, c, d). Condition (σ2) of σ(a, b, c, d) is
now ∀i < n (b → ei+1 → ei) and follows easily from our assumption on the ei’s and from condition (θ2)
of θ(a, b, c, d). We are left with showing condition (σ4) of σ(a, b, c, d), i.e. e0 | c. Suppose on the contrary
that e0− c. Since c | d, by Property 1.20 it follows that ∀i ≤ n (c− ei). In particular, c− en and so en → c
because a | en by (θ4) of θ(a, b, c, d). But then c− d by pt(en), contrary to the assumptions.

The proof of the backward direction is analogous.

Thanks to the previous lemma it suffices to concentrate on Θ.
The following duality principle is analogous to Remark 1.18. It is not needed elsewhere and we include it

here for completeness without proof.
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Remark 1.30. Notice that the GH-triple (V,→,≺) satisfiesΘ if and only if the GH-triple (V,←,≻) satisfies
Θ.

Lemma 1.31. Let (V,→,≺) be a GH-triple. Let a, b, c, d ∈ V be such that a → c, b → d, a | b, and d | c and
assume that θ(a, b, c, d) holds. Then for each (V ∪ {x},→′) pseudo-transitive extension of (V,→) if a−′ x−′ b holds
we have x−′ d, and if c−′ x−′ d holds we have x−′ b.

Proof. Let (V ∪ {x},→′) be a pseudo-transitive extension of (V,→) with a −′ x −′ b. Notice that, since
a | b, either a ←′ x →′ b or a →′ x ←′ b. In the first case pt(a) and pt(b) guarantee that c −′ x −′ d, so
we concentrate on the other case.

Suppose that a →′ x ←′ b and let e0, . . . , en witness θ(a, b, c, d). Towards a contradiction, assume
x |′ d. Notice that x −′ e0 by pt(b) (we use condition (θ1)). Hence by condition (θ2) and Property 1.20 it
holds that ∀i ≤ n (x−′ ei), so that in particular x−′ en. It cannot hold that x→ en, otherwise a− en by
pt(x) contrary to (θ4). Hence en → x holds. Moreover, d → en by condition (θ3) and so pt(en) implies
d−′ x.

A similar argument shows that c−′ x−′ d implies x−′ b. The only change is due to the fact that when
c←′ x→′ d then we use σ(a, b, c, d), which holds by Lemma 1.29.

We can now show that Θ is sufficient for the second condition of Lemma 1.14.

Lemma 1.32. Let (V,→,≺) be a GH-triple satisfying Θ. For each (V ∪ {x},→′) pseudo-transitive extension of
(V,→) we have N−(x) \N+(x) ≺ N+(x) \N−(x).

Proof. By Lemma 1.24.1 it suffices to prove condition Λ. Fix a, b, c, d ∈ V such that a ≺ c, d ≺ b, a | b,
and c | d and assume that a−′ x−′ b. We need to prove that either x−′ c or x−′ d.

Since a−c and d−b there are four possible situations. If a→ c and d→ b, but x |′ c, then a→′ x←′ b
and x −′ d follows by pt(b). If c → a and b → d the argument is similar. If instead a → c and b → d
notice thatΘ implies θ(a, b, c, d) or θ(b, a, d, c): then Lemma 1.31 yields the conclusion. The last possibility
is c→ a and d→ b, where we use the second part of Lemma 1.31 (in this case a, b, c, d play roles which are
opposite to those of the Lemma).

We now prove that Θ is necessary for N−(x) \N+(x) ≺ N+(x) \N−(x) if Φ and Ψ hold.

Lemma 1.33. Let (V,→,≺) be a GH-triple such that Φ and Ψ hold and Θ fails. Then there is a pseudo-transitive
extension (V ∪ {x},→′) of (V,→) such that N−(x) \N+(x) ⊀ N+(x) \N−(x) and hence (V,→,≺) is not
extendible by Lemma 1.14.

Proof. Let a, b, c, d ∈ V be such that a → c, b → d, a | b, c | d, a ≺ c, d ≺ b and ¬θ(a, b, c, d). We fix
x /∈ V and define an extension→′ of (V,→) to V ∪{x} in stages, as an increasing union→′ =

∪
n∈N →n.

For each stage n,→n is defined as follows:

• →0 extends→ by adding the edges a→ x e b→ x;

• →n+1 extends→n by adding edges{
x→n+1 u if ∃v((x→n v → u) ∨ (u→ v →n x)) and either c→ u or d→ u;
u→n+1 x if ∃v((x→n v → u) ∨ (u→ v →n x)) and either u→ c or u→ d.

Notice that x→′ u and u→′ x are incompatible, since if c→ u or d→ u then we have neither u→ c nor
u→ d.

If we assume that→′ is pseudo-transitive we can complete the proof as follows. Since Φ and Ψ hold, by
Lemma 1.21 we have N(x) = N+(x) ∪N−(x). On the other hand, by definition of→′, a −′ x −′ b but
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x |′ c and x |′ d (because c | d and hence we never set x→n+1 c or x→n+1 d) and condition Λ fails. Thus,
by Lemma 1.24.2, N−(x) \N+(x) ⊀ N+(x) \N−(x).

Therefore to complete the proof it suffices to check the pseudo-transitivity of→′. We first make a few
preliminary observations.

Claim 1.33.1. If v ∈ V is such that v →′ x then either v → c or v → d. Similarly, if u ∈ V is such that
x→′ u then either c→ u or d→ u.

Proof. Let n be least such that v →n x. If n = 0 then v is either a or b, which satisfy the conclusion. If
n > 0 then v → c or v → d is required by definition. When dealing with u, the case n = 0 cannot hold.

Claim 1.33.2. Let us assume that for z, w ∈ V we have either x →′ z → w or w → z →′ x. Then if w − c
and w | d we have also z − c and z | d, and similarly if w − d and w | c we have also z − d and z | c.
Proof. Assume w − c and w | d. If x →′ z → w, then c → z or d → z by Claim 1.33.1. If d → z, then
d − w by pt(z), contrary to the assumption. So c → z, while z → d cannot hold because c | d. Thus we
have z − c and z | d. If w → z →′ x the argument is similar.

The second statement is proved analogously.

Claim 1.33.3. ∀e (e ̸= a ∧ e ̸= b ∧ e−1 x⇒ e→ a ∨ e→ b)

Proof. Let us suppose that e ̸= a, e ̸= b and e −1 x, so that e −0 x does not hold. The definition of→1

implies that for some v we have either x→0 v → e or e→ v →0 x. Since the only v’s such that v−0 x are
a and b, and a→0 x and b→0 x, we must have the second possibility with v either a or b.

In order to prove that→′ is pseudo-transitive, there are some cases to consider.

a v →′ x→′ u. By Claim 1.33.1 either v → c or v → d and also c→ u or d→ u. If either v → c→ u
or v → d→ u, then u− v follows by pt(c) or pt(d) of→.
We now concentrate on the case v → c and d → u, the other being similar. Notice that c | d implies
that u → c and d → v do not hold. Moreover, we can assume that v → d and c → u both fail,
else we are in one of the previous cases. Hence u | c and v | d. If n is the minimum stage such
that x →n+1 u (notice that x →0 u cannot happen), there exists en−1 such that x →n en−1 → u
or u → en−1 →n x. Analogously, there must be an en−2 such that x →n−1 en−2 → en−1 or
en−1 → en−2 →n−2 x. Iterating this procedure, we get to x−1 e0. Set also en = u. Similarly, let k
be least such that v →k x (in this case k = 0 is possible) and set hk = v. If k > 0, with a procedure
similar to the one used before, we find h0, . . . , hk−1 such that hj witnesses that x−j+1 hj+1 for each
j < k.
Notice that a backward induction using Claim 1.33.2 easily entails ∀i < n (ei − d ∧ ei | c) and
∀j < k (hj − c ∧ hj | d). Notice also that for each i < n either d→ ei → ei+1 or ei+1 → ei → d
holds. In fact, if d → ei, then x →′ ei by definition and so ei → ei+1 by choice of ei. If ei → d
the argument is specular. Arguing as in the previous lines it is easy to show that for each j < k either
c→ hj → hj+1 or hj+1 → hj → c holds as well.
Let i ≤ n be least such that d → ei. We claim that e0, . . . , ei satisfy the first three conditions of
θ(a, b, c, d):

(θ1) e0 → b by Claim 1.33.3 because e0 → a implies e0 − c by pt(a), which contradicts the above
observation;

(θ1) ∀j < i (ej+1 → ej → d): this is immediate by the minimality of i and the observation in the
previous paragraph;

(θ1) d→ ei by choice of i;
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Since θ(a, b, c, d) fails, condition (θ4) must fail, i.e. we have ei − a.
Since a | d we can apply Property 1.20 to obtain that ej − a for every j ≤ n with j ≥ i. Recalling that
en = u, we obtained u− a: then a→ u because a | d.
We show that hj − u for every j ≤ k. Arguing as in the proof of (θ1) above, we have h0 → a so that
h0 − u by pt(a). Thus, since u | c, we can apply Property 1.20 again to obtain the desired conclusion.
Recalling that hk = v we have obtained u− v.

b x →′ v → u then c → v or d → v by Claim 1.33.1. By pt(v), either c − u or d − u and u satisfies
one of the conditions in the definition of→′. Thus x−′ u.

c u→ v →′ x is similar to the previous item.

This shows that→′ is pseudo-transitive and hence that (V,→,≺) is not extendible.

Summarizing, we obtained a characterization of the conditions of Lemma 1.14.

Theorem 1.34. Let (V,→,≺) be a GH-triple. The following are equivalent:

1. for each pseudo-transitive extension (V ∪ {x},→′) of (V,→) bothN(x) = N+(x)∪N−(x) andN−(x) \
N+(x) ≺ N+(x) \N−(x)) hold;

2. Φ, Ψ and Θ are satisfied.

Proof. The implication (1)⇒ (2) follows from Lemmas 1.22 and 1.33. The implication (2)⇒ (1) follows from
Lemmas 1.21 and 1.32.

Thanks to Theorem 1.34 we can now reformulate Lemma 1.14 in a way that does not refer to all possible
pseudo-transitive extensions of (V,→) but mentions only structural properties of (V,→) and ≺.

Theorem 1.35. Let (V,→,≺) be an extendible GH-triple. Then Φ, Ψ and Θ are satisfied.

It follows from Lemma 1.48 below that the reverse implication holds as well, namely that Φ,Ψ andΘ are
also sufficient conditions of the extendibility of a GH-triple.

1.4 The Smart Extension Algorithm

In this section we define an on-line algorithm to transitively reorient a countable pseudo-transitive ograph.
Before defining the algorithm we give some preliminary definitions.

Definition 1.36. Let (V,→,≺) be a GH-triple. If (V ∪ {x},→′) is a pseudo-transitive extension of→, we
define inductively the following subsets of N(x):

S−
0 (x) = N−(x) \N+(x);

S+
0 (x) = N+(x) \N−(x);

Si(x) = S−
i (x) ∪ S+

i (x);

S−
i+1(x) = {a ∈ N(x) \

∪
j≤i Sj(x) | ∃s ∈ S−

i (x)(a | s)};
S+
i+1(x) = {a ∈ N(x) \

∪
j≤i Sj(x) | ∃s ∈ S+

i (x)(a | s)}.

Let S+(x) =
∪

i∈N S
+
i (x), S−(x) =

∪
i∈N S

−
i (x) and S(x) = S−(x) ∪ S+(x) =

∪
i∈N Si(x). Let also

T (x) = N(x) \ S(x).
If ∗ ∈ {+,−} we say that a sequence ρ = ⟨ρ(0), ρ(1), . . . , ρ(|ρ| − 1)⟩ of elements of V is a ∗-sequence

if ρ(i) ∈ S∗
i (x) for every i < |ρ| and ρ(i) | ρ(i+ 1) for every i < |ρ| − 1.
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Remark 1.37. If N(x) = N+(x) ∪ N−(x) then S(x) \ S0(x) and T (x) are both included in N+(x) ∩
N−(x). Moreover S(x) ⊆ N(t) for every t ∈ T (x) (because if t ∈ N(x) and Si(x) \ N(t) ̸= ∅ then
t ∈ Si+1(x)).

Notice that if s ∈ S∗
i (x) then there exists a ∗-sequence ρ such that ρ(i) = s.

For the remainder of the section we use S∗(x) as a shorthand for either S+(x) or S−(x). S∗
i (x) is

used similarly and s∗i always denotes an element of S∗
i (x). We now prove some properties of S∗(x) and its

subsets.

Property 1.38. Let (V,→,≺) be a GH-triple. Let (V ∪ {x},→′) be a pseudo-transitive extension of→.

1. Fix v ∈ V ∪ {x} and ∗ ∈ {+,−}. If ρ is a ∗-sequence such that ∀i < |ρ| (v −′ ρ(i)) then either ∀i <
|ρ| (ρ(i)→′ v) or ∀i < |ρ| (v →′ ρ(i)).

2. S−(x) ≺ T (x) and T (x) ≺ S+(x).
3. If ρ∗ is a ∗-sequence for ∗ ∈ {+,−}, ρ+(0)→′ x←′ ρ−(0) and e0, . . . , en witness φ(ρ−(0), ρ+(0), f)

for some f |′ x, then there exists i ≤ n such that ei, . . . , en witness φ(ρ−(k), ρ+(j), x), for each k and j.
Moreover, ρ−(k)→′ x←′ ρ+(j). The same statement holds with ψ in place of φ.

Proof. (1) is obvious by pseudo-transitivity of→′.
To prove (2) we fix t ∈ T (x) and prove by induction on i that t ≺ S+

i (x) for every i. For the base of the
induction, t ≺ S+

0 (x) follows from S+
0 (x) ⊆ N(t) (Remark 1.37), t ∈ N−(x) and S+

0 (x) ∩N−(x) = ∅.
For the induction step let s+i+1 ∈ S+

i+1(x) and choose s
+
i ∈ S+

i (x) such that s+i+1 | s
+
i . By induction

hypothesis t ≺ s+i and hence, since s+i+1 − t (again by Remark 1.37), we have t ≺ s+i+1. This shows
T (x) ≺ S+(x). Analogously we prove S−(x) ≺ T (x).

To prove (3) fix ρ+, ρ−, f , e0, . . . , en satisfying the hypothesis. Let m∗ be the length of ρ∗ for ∗ ∈
{+,−}. We write s∗k in place of ρ∗(k). Since s∗0 →′ x and S(x) ⊆ N(x), (1) implies that s∗k →′ x for each
k < m∗.

Applying Property 1.19 to (V ∪ {x},→′) we obtain that there exists i ≤ n such that ei, . . . , en witness
φ(s−0 , s

+
0 , x). For the sake of convenience assume i = 0, so that e0, . . . , en witness φ(s−0 , s

+
0 , x) as well.

Fix ∗ ∈ {+,−}. We claim that ∀k < m∗ ∀i ≤ n (ei − s∗k). The proof is by double induction. Suppose
∀i ≤ n (ei−s∗ℓ ) for each ℓ < k. We prove by induction on i that ∀i ≤ n (ei−s∗k). For the base case, e0−s∗k
by pt(x) since s∗k →′ x and x →′ e0 by (φ1) of φ(s−0 , s

+
0 , x). For the induction step suppose ei − s∗k . If

s∗k → ei, then s∗0 → ei by (1) (that applies because ∀ℓ < k (ei − s∗ℓ )). Then ei → ei+1 by φ(s−0 , s
+
0 , x).

Hence ei+1 − s∗k by pt(ei). If ei → s∗k , the argument is analogous.
Let k < m− and j < m+. We check that the three conditions of φ(s−k , s

+
j , x) are satisfied. Condition

(φ1) holds trivially since it coincides with (φ1) of φ(s−0 , s
+
0 , x). To check that (φ2) holds suppose s−k → ei.

Then s−0 → ei by (1) and thus s+0 → ei → ei+1 by (φ2) of φ(s−0 , s
+
0 , x). By (1) again it holds that s

+
j → ei

holds as well. An analogous argument shows that if ei → s−k , then ei+1 → ei → s+j . These establish that
(φ2) of φ(s−k , s

+
j , x) holds. Condition (φ3) is checked in a similar way.

Notice that Property 1.38.2 implies S−(x) ≺ S+(x) whenever T (x) ̸= ∅. To see that this holds in
general we need to strengthen the hypothesis on the reorientation of (V,→).

Lemma 1.39. Let (V,→,≺) be a GH-triple such that Ψ, Φ and Θ are satisfied. Let (V ∪ {x},→′) be a pseudo-
transitive extension of→. Then S−(x) ≺ S+(x) and hence S−(x) ∩ S+(x) = ∅.

Proof. Let s− ∈ S−(x). We first claim that s− − s+ for every s+ ∈ S+(x), which is obviously necessary
for S−(x) ≺ S+(x). Since s−, s+ ∈ N(x), there are four possibilities.

If s+ →′ x→′ s− or s− →′ x→′ s+, then by pt(x) we have s− − s+.
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Otherwise, s− →′ x ←′ s+ or s+ ←′ x →′ s−. Suppose the former holds. For ∗ ∈ {+,−} choose
a ∗-sequence ⟨s∗0, . . . , s∗m∗⟩ such that s∗m∗ = s∗. Recall that, by definition of ∗-sequence, s∗i ∈ S∗

i (x) for
each i ≤ m∗ and s∗i | s∗i+1 for each i < m∗.

Since s− →′ x←′ s+, Property 1.38.1 implies that s+0 →′ x←′ s−0 . Since s
+
0 /∈ N−(x), there exists f

such that f ≺ s+0 and f |′ x. Analogously, there exists e such that s
−
0 ≺ e and e |′ x. Given that f |′ x |′ e

and s+0 →′ x ←′ s−0 , then s
+
0 → f and s−0 → e. Moreover, since s−0 ≺ s+0 by Theorem 1.34, it holds

s+0 → s−0 or s
−
0 → s+0 . Suppose the latter, the other case being similar using e in place of f . We have s

−
0 −f

by pt(s+0 ), and thus s
−
0 → f since s−0 →′ x and x |′ f . Since s−0 ∈ N−(x), then s−0 ≺ f . Summarizing, we

have just shown that s−0 ≺ f ≺ s
+
0 and s

+
0 → f ← s−0 . Since we are assumingΦ holds, there are e0, . . . , en

witnessing φ(s−0 , s
+
0 , f). Applying Property 1.38.3 we obtain that there exists an i ≤ n such that ei, . . . , en

witness φ(s−k , s
+
j , x) for each k ≤ m+ and j ≤ m−. In particular φ(s−, s+, x) is satisfied and so either

s− → en → s+ or s+ → en → s− holds. In both cases, by pt(en), s+ − s− as we wanted to show.
If instead s− ←′ x→′ s+ the argument is similar, reversing all arrows and using Ψ.
We have thus established our claim that s− − s+ for every s+ ∈ S+(x). Now we prove by induction

on i that s− ≺ S+
i (x) for every i. For the base of the induction, s− ≺ s+0 for every s+0 ∈ S

+
0 (x) because

s− − s+0 , s− ∈ N−(x) and s+0 (x) /∈ N−(x). For the induction step let s+i+1 ∈ S+
i+1(x) and choose

s+i ∈ S
+
i (x) such that s+i+1 | s

+
i . By induction hypothesis s− ≺ s+i and hence, since s+i+1 − s−, we have

s− ≺ s+i+1.

These relations between subsets of N(x) explain the choices for the reorientation of V ∪ {x} made in
the following definition.

Definition 1.40. Let (V,→,≺) be aGH-triple satisfyingΦ,Ψ andΘ and such thatV ⊆ N. Let (V ∪{x},→′

) be a pseudo-transitive extension of→.
We define ≺′, the smart extension of ≺ to (V ∪ {x},→′), as the binary relation that extends ≺ to V ∪ {x}

by establishing the relationship between x and each v ∈ V recursively as follows:

(1) if v /∈ N(x) let v ⊀′ x and x ′ v;

(2) if v ∈ S(x) then

(a) if v ∈ S−(x) let v ≺′ x,
(b) if v ∈ S+(x) let x ≺′ v;

(3) if v ∈ T (x) then

(a) if there exists u < v such that v ≺ u ≺′ x let v ≺′ x,
(b) if there exists u < v such that x ≺′ u ≺ v let x ≺′ v,
(c) otherwise let v ≺′ x if v →′ x and x ≺′ v if x→′ v.

Notice that≺′ depends on the order< on N, is always a reorientation of (V ∪{x},→′), and extends≺.
For a visual understanding of ≺′ see Figure 1.4. Here we denote by T−(x), resp. T+(x), the subset of

T (x) consisting of the vertices which are below, resp. above, x. Moreover the picture shows that S−
i (x) ≺

S−
i+2(x) and S

+
i+2(x) ≺ S

+
i (x): we leave to the reader to prove these relations, since we do not need them.

The picture may suggest that (N(x),≺) has width two, but this is not the case because there may be nontrivial
antichains within some S∗

i (x) and/or T ∗(x).
The hypothesis that (V,→,≺) satisfiesΦ,Ψ andΘmakes sure that Conditions (2a) and (2b) of Definition

1.40 are mutually exclusive, by Lemma 1.39. Some of the clauses of Definition 1.40 are necessary for≺′ to be
a transitive reorientation of→′. Condition (1) is obviously necessary for≺′ to be a reorientation. The choice
S−(x) ≺ x made by Condition (2a) is explained by an inductive argument: S−

0 (x) ≺′ x is required because
S−
0 (x) ∩ N+(x) = ∅, and if S−

i (x) ≺ x then the members of S−
i+1(x) (each incomparable with some
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S−
0 (x)

...

S−
2i(x)

...

T−(x)

x

T+(x)

...

S+
2i(x)

...

S+
0 (x)

S−
1 (x)

...

S−
2i+1(x)

...

...

S+
2i+1(x)

...

S+
1 (x)

Figure 1.4: A smart extension.
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element of S−
i (x)) cannot lie above x. The same argument applies to S+(x) and justifies Condition (2b).

Conditions (3a) and (3b) are clearly necessary for transitivity. Condition (3c) is applied when the relationship
between x and vi is not decided by the previous conditions and in this case≺′ simply preserves the direction
of→′.

From a complexity point of view, defining the sets S+(x) and S−(x) requires more resources than setting
the relation between x and v ∈ V according to Definition 1.40. The sets S+

0 (x) and S−
0 (x) are computed

in at most |V 2| steps, since one needs to consider each v ∈ N(x) and for each such v to go through each
u ∈ N(v) \ N(x). The remaining members of S+(x) and S−(x) can be found by a depth-first search
algorithm applied to the non-adjacency graph (V ∪ {x}, E′) (the complexity of depth-first search algorithm
is O(|V |+ |E|), see [Cormen et al. 2009, Section 22.3]). To this end notice that from each s0 ∈ S+

0 (x) start
sequences1 v0 = s0, v1, . . . , vn, for some n < |V |, such that viE ′vi+1 and vi ∈ N(x), for each i ≤ n.
Then each vi ∈ S+(x). The same obviously applies also to S−(x).

Therefore an upper bound for the complexity of the smart extension is O(|V |2).

Definition 1.41. Let (V,→) be a pseudo-transitive ograph with V an initial interval of N. The relation ≺
is the smart reorientation of→ if it at each step s the reorientation ≺s+1 = ≺ {0, . . . , s} is obtained as the
smart extension of ≺s.

For the pseudocode of the smart reorientation see Algorithm 2.

1Such sequences may not be +-sequences, because it may be the case that vi ∈ S+
j (x), for some j < i due to the incomparability

chain caused by some other element of S+
0 (x).
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Algorithm 2 Smart reorientation
Require: (V,→) is a pseudo-transitive digraph
Require: V is an initial segment of (N, <)
i← 1
while i ∈ V do

for j < i and j − i do ◃ Define S0

for k < i and k | i do
if k ≺ j then

j ∈ S+
0

else if j ≺ k then
j ∈ S−

0

end if
end for

end for
for n < i do

for j < i and j − i and j /∈ S0 ∪ · · · ∪ Sn do ◃ Define Sn

for k ∈ Sn do
if j | k and k ∈ S−

n then
j ∈ S−

n+1

else if j | k and k ∈ S+
n then

j ∈ S+
n+1

end if
end for

end for
end for
for j < i do

if j | i then ◃ Smart extension
j ⊀ i and i j

else
if j ∈ S−(i) then

j ≺ i
else if j ∈ S+(i) then

i ≺ j
else

k ← 0
while k < j do ◃ j < i

if j ≺ k ≺ i then
j ≺ i

else if i ≺ k ≺ j then
i ≺ j

else
k ← k + 1

end if
end while
if j → i then

j ≺ i
else

i ≺ j
end if

end if
end if

end for
i← i+ 1

end while
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Remark 1.42. Notice that the smart reorientation of (V,←) is the reversal of the smart reorientation of
(V,→).

Theorem 1.49 proves that the smart reorientation algorithm is correct. To obtain this result we prove some
properties of smart reorientations. In particular we introduce the notion of ‘lazy reorientation’ in Definition
1.44. The intuitive idea behind it is the following one: an edge a → b is reversed only when this is really
needed to obtain a transitive reorientation, because a→ b→ c→ a and the edges b→ c and c→ a are not
reversed.

Property 1.43. Let (V,→,≺) be a GH-triple with V ⊆ N. Let (V ∪ {x},→′) be a pseudo-transitive extension of
→. Let ≺′ be the smart extension of ≺.

If a ≺′ x because we applied condition (3a) with witness b then b ∈ T (x). Moreover we can choose b so that b→′ x.
Similarly, if x ≺′ a because we applied condition (3b) with witness b then b ∈ T (x) and we can assume x→′ b.

Proof. Let a ∈ T (x) and b with b < a be such that a ≺ b ≺′ x. Since b ≺′ x then b ∈ S−(x) ∪ T (x). But
b /∈ S−(x) by Property 1.38.2 and hence b ∈ T (x). Let b be least (as a natural number) such that a ≺ b ≺′ x.
If x →′ b, then we used condition (3a) when dealing with b and so there exists c < b such that b ≺ c ≺′ x,
contrary to the minimality of b. Hence, b→′ x.

The proof of the second statement is analogous.

Definition 1.44. Let (V,→) be a pseudo-transitive ograph. The reorientation ≺ of→ is a lazy reorientation if
it satisfies the following property: for each a, b ∈ V such that a→ b and b ≺ a there exists c ∈ V such that
b→ c→ a (i.e. abc is a non transitive triangle), b ≺ c ≺ a, and c < min(a, b).

(V,→,≺) is a lazy triple if (V,→) is a pseudo-transitive ograph and the reorientation ≺ of→ is a lazy
reorientation.

Notice that a lazy triple is not necessarily a GH-triple, because we are not requiring ≺ to be transitive.

Remark 1.45. (V,→,≺) is a lazy triple if only if (V,←,≻) is a lazy triple, where (V,←) is the reverse
ograph of (V,→).

Property 1.46. Let (V,→) be a pseudo-transitive ograph with V ⊆ N and let ≺ be the smart reorientation of (V,→).
Assume that ≺ is transitive, so that (V,→,≺) is a GH-triple. Then ≺ is lazy, i.e. (V,→,≺) is a lazy triple.

Proof. The proof of the laziness condition for every a, b ∈ V is by induction on the lexicographic order of
the pair of natural numbers (max(a, b),min(a, b)). Suppose a → b and b ≺ a and assume that for each
a′ and b′ such that a′ → b′, b′ ≺ a′ and either max(a′, b′) < max(a, b) or max(a′, b′) = max(a, b) and
min(a′, b′) < min(a, b) there exists c′ such that b′ → c′ → a′, b′ ≺ c′ ≺ a′, and c′ < min(a′, b′).

By remark 1.42 we can assume without loss of generality that a < b. According to Definition 1.40 either
a ∈ S+(b) or a ∈ T (b).

If a ∈ S+(b) let i be such that a ∈ S+
i (b). We first show that i > 0 is impossible. If a ∈ S+

i (b) with
i > 0 let ρ be a +-sequence of length at least 2 such that ρ(i) = a. By Property 1.38.1 we have ρ(1) → b.
Since ρ(1) ∈ S+

1 (b), there exists d < b such that d ∈ S+
0 (b) and d | ρ(1). Then b ≺ d and d → b. Since

d ∈ S+
0 (b) there exists f < b, f | b, f ≺ d. Thus d→ f . As max(d, f) < b = max(a, b) we can apply the

induction hypothesis and there exists c such that f → c → d and f ≺ c ≺ d. We have c − b by pt(d), and
hence b → c because b | f . But now ρ(1) − c by pt(b), and hence c → ρ(1) since ρ(1) | d. Using again
pt(c) we have ρ(1)− f , a contradiction with ρ(1) ∈ S+

1 (b) ⊆ N−(b) ∩N+(b) as f /∈ N(b).
Thus i = 0 and a /∈ N−(b). In particular there exists f < b, f | b, f ≺ a and so a → f . As

max(a, f) < max(a, b) we can apply the induction hypothesis and there exists c < min(a, f) such that
f → c → a and f ≺ c ≺ a. We have c − b by pt(a), and hence b → c because b | f . Hence b → c → a,
b ≺ c ≺ a (because ≺ is transitive and b | f ), and c < min(a, b), as required.
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If a ∈ T (b) we applied condition (3b) of Definition 1.40 to set b ≺ a. Hence, by Property 1.43 there
exists c such that c < a, b ≺ c ≺ a and b→ c. We can assume that c is least (as a natural number) with these
properties. If c→ a we have our conclusion. We now rule out the possibility that a→ c. If this was the case,
by induction hypothesis (as max(a, c) < max(a, b)) there exists d < min(a, c) such that c → d → a and
c ≺ d ≺ a. By transitivity of ≺ we have b ≺ d ≺ a and b− d. If b→ d then d < c violates the minimality
of c. If d → b then by induction hypothesis (as max(d, b) = max(a, b) and min(d, b) < min(a, b)) there
exists e < d such that b ≺ e ≺ d and b → e → d. But then e < c, b ≺ e ≺ a (by transitivity of ≺) and
b→ e contradict the minimality of c.

Lemma 1.47. Let (V,→,≺) be a GH-triple which is also a lazy triple and such that V ⊆ N. Then Φ, Ψ and Θ are
satisfied.

Proof. Thanks to laziness checking that Θ holds is straightforward. In fact, suppose a → c, b → d, a ≺ c
and d ≺ b for some a, b, c, d ∈ V . Since b → d but d ≺ b, there exists an e0 such that d → e0 → b. It is
immediate to check that e0 witnesses θ(a, b, c, d)2.

To check that Φ holds let a, b, c ∈ V be such that a → c ← b and a ≺ c ≺ b. Since b → c, c ≺ b and
≺ is lazy, there exists e0 ∈ V such that c → e0 → b, c ≺ e0 ≺ b and e0 < min(b, c). By transitivity of ≺
it holds that a ≺ e0 and thus a − e0, since ≺ is a reorientation. If a → e0, it is immediate to check that e0
witnesses φ(a, b, c).

Otherwise e0 → a and, since a ≺ e0, by laziness there exists e1 ∈ V such that a → e1 → e0,
a ≺ e1 ≺ e0 and e1 < min(e0, a). Notice that even if a → c → e0 and a ≺ c ≺ e0 it must be c ̸= e1
because e1 < e0 < c by construction. By transitivity we get that e1 ≺ b and so either e1 → b or b→ e1. If
the former holds then e0, e1 witness φ(a, b, c).

We have now to analyse the case when b → e1. Since e1 ≺ b by laziness there exists e2 such that
e1 → e2 → b, e1 ≺ e2 ≺ b and e2 < min(b, e1). By transitivity it holds that a ≺ e2. If a→ e2, it is easy to
check that e0, e1, e2 witness φ(a, b, c). Otherwise e2 → a and we can apply laziness again to obtain e3.

This procedure provides a <-decreasing sequence (ei) such that a → ei+1 → ei when i is even, and
ei → ei+1 → b when i is odd. The sequence stops with en such that a→ en → b. We claim that e0, . . . , en
witness φ(a, b, c). In fact (φ1) is guaranteed by c → e0. Moreover, for each i < n either a → ei ← b or
a← ei → b by assumption. If the former is the case then ei → ei+1, while if the latter holds ei+1 → ei by
construction. These two facts guarantee that (φ2) is satisfied as well. The vertex en satisfies condition (φ3)
by construction.

It is now easy to check that Ψ is satisfied as well applying the duality principle of Remark 1.18. Consider
the graph (V,←) and the transitive reorientation≻. Remark 1.45 guarantees that≻ is lazy as well. Hence, Φ
holds by what we have just shown. Then, by Remark 1.18, Ψ holds in (V,→) and ≺.

Lemma 1.48. Let (V,→,≺) be a GH-triple such that V ⊆ N. AssumeΦ,Ψ andΘ are satisfied. Let (V ∪{x},→′)
be a pseudo-transitive extension of (V,→). Then the smart extension ≺′ to→′ is transitive.

Proof. To check that ≺ is transitive, we have to consider the following cases, where a, b ∈ V :
1. a ≺′ x ≺′ b. Obviously a, b ∈ N(x) and, if a ∈ S(x) then a ∈ S−(x) while if b ∈ S(x) then
b ∈ S+(x). We consider four possibilities:

(a) a ∈ S−(x), b ∈ S+(x): then a ≺ b follows from Lemma 1.39.
(b) a, b ∈ T (x): if a →′ x →′ b or b →′ x →′ a, then a− b by pseudo-transitivity. So we are left

to check that b ⊀ a. Suppose b ≺ a. Then, according to the definition of ≺′, if b < a, then
x ≺′ b entails x ≺′ a, while if a < b, then a ≺′ x entails b ≺′ x.

2 Notice that laziness implies a strong form of Θ, in fact the sequence witnessing the formulae have always length one.
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Otherwise, a →′ x ←′ b or a ←′ x →′ b. Suppose the latter holds, the former being similar.
Since x →′ a, but a ≺′ x by assumption, there is, by Property 1.43, c < a such that c ∈ T (x),
c →′ x and a ≺ c ≺′ x. Notice that c − b by pt(x). We claim that b ⊀ c. Suppose b ≺ c. If
c < b, then, since b ≺ c ≺′ x, then b ≺′ x by definition, contrary to the assumption. Otherwise,
b < c; then, since x ≺′ b ≺ c, then x ≺′ c, contrary to the assumption. Thus it must be c ≺ b
and so a ≺ b because ≺ is transitive by hypothesis.

(c) a ∈ S−(x), b ∈ T (x): a ≺ b follows by Property 1.38.2.
(d) a ∈ T (x), b ∈ S+(x): a ≺ b follows by Property 1.38.2.

2. a ≺ b ≺′ x. Since b ∈ S−(x)∪T (x) we have b ∈ N−(x) and thus a ∈ N(x). If a ∈ S(x), Property
1.38.2 or Lemma 1.39 imply a ∈ S−(x), and thus a ≺′ x.
If instead a ∈ T (x) then b ∈ T (x) by Property 1.38.2. If b < a then a ≺ b ≺′ x implies a ≺′ x. If
a < b then x ≺′ a would imply x ≺′ b; hence a ≺′ x holds also in this case.

3. x ≺′ a ≺ b. The argument is similar to the previous case.

The following theorem proves that Definition 1.40 provides an algorithm to transitively reorient pseudo-
transitive graphs.

Theorem 1.49. Let (V,→) be a pseudo-transitive ograph with V an initial interval ofN and let≺ be the smart reorientation
of (V,→). Then ≺ is transitive.

Proof. For each s ∈ N, let ≺s be the restriction of ≺ to {0, . . . , s − 1}. Notice that ≺s is the smart
reorientation of the restriction of→ to {0, . . . , s−1}. To prove that≺ is transitive it is enough to check that
≺s is transitive for each s. We do so by induction on s. For the base case there is nothing to check. Suppose
≺s is transitive. Then by Property 1.46≺s is lazy. Moreover, by Lemma 1.47Φ,Ψ andΘ are satisfied. Hence,
by Lemma 1.48 the smart extension ≺s+1 is transitive.
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An interval graph is a graph (V,E) whose vertices can be mapped into intervals of a linear order (L,<L)
in such a way that two vertices are adjacent if and only if the intervals associated to them overlap. Consequently,
if two vertices are incomparable in the graph, their intervals are placed one before the other in the linear order
(L,<L). The definition itself of interval graphs lead to imagine that there is an analogous concept for orders,
namely interval orders, which are defined similarly. In fact, an order (P,<P ) is an interval order if its points
can be mapped to intervals of a linear order (L,<L) in such a way that x <P y if and only if the interval
associated to x completely precedes the interval associated to y. Given these definitions, it is easy to imagine
that an interval order gives rise to an interval graph and vice versa.

Norbert Wiener was probably the first to pay attention to interval orders, disguised under the less familiar
name ‘relations of complete sequence’, in [Wiener 1914]. Fifty years later interval graphs and interval orders
were rediscovered and named with the current name. Many articles were published about this topic. [Trotter
1997] provides a survey for many result in this area, focusing primarily on finite structures. We refer mainly
to the monograph [Fishburn 1985], where it is possible to find more results, examples and references about
interval graphs and interval orders.

Interval graphs are, as interval orders, extensively employed in very different fields like psychology, ar-
chaeology and physics, just to mention some of them. Wiener himself noticed that interval orders are useful
for the analysis of temporal events and in the representation of measures subject to a margin of error. For
example it might be the case that two appointments in our agenda overlap and precede a third appointment.
The representation of this situation adopted by some digital calendars is actually a (bi-dimensional) interval
representation, where hours and days form a linear order and a rectangle covers the time assigned to an ap-
pointment. If two rectangles intersect, we had better choose which event we will miss. Intervals are also
suitable for representations of measurements of physical properties which are subject to error, since they can
take into account the accuracy of the measuring device much better than a representation with points. In
psychology and economics the overlap between two intervals often indicates that the corresponding stimuli
or preferences are indistinguishable. To this end indifference graphs and proper interval orders were intro-
duced. They are subclasses of interval graphs and interval orders respectively where no vertices are mapped
to intervals such that one is a proper subinterval of the other.

Interval graphs are the incomparability graphs of interval orders. The notion of comparability graphs, as
well as a structural characterisation, has already been introduced in the previous chapters. Indeed comparabil-
ity graphs, and so the interplay between graphs and orders, is a common thread of the thesis (in the next part
a result concerning graphs can be improved when considering a subclass of comparability graphs). As far as
this part of the thesis in concerned, the relationship between interval graphs and interval orders is considered
from three viewpoints. First, we clarify in which subsystems of second order arithmetic interval graphs are
actually related to interval orders, taking into account different characterisations of both of them. Unique
orderability is the second point of view: generally an interval (or broadly a comparability) graph gives rise to
many orders, but not always. It is interesting to delimit the class of interval graphs which are associated to a
unique order, up to duality. The third aspect under which the interplay between graphs and orders is analysed
concerns the dimension of posets, one of the comparability invariants (all orders with the same comparability
graph have the same dimension). For more results in this direction and more references see [Rival 1985],
especially [Kelly 1985].

Interval graphs have already been analysed from the computability, and more specifically from the reverse
mathematics, point of view. The main reference for the analysis of interval orders in reverse mathematics
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is [Marcone 2007], which contains a number of results about the strength of different characterisations of
interval orders. Chapters 2 and 3 follow the line of that article. Damir Dzhafarov in [Dzhafarov 2011] studied
the notion of saturated orders, a generalisation of interval orders introduced by Reinhard Suck only for finite
posets. Dzhafarov extended this notion to infinite saturated orders and studied it within subsystems of second
order arithmetic.

More attention has been paid to interval graphs and orders from the on-line combinatorics point of view.
The following theorem, proved in [Kierstead and Trotter 1981], is an example.

Theorem. Each computable interval order of width k can be covered by 3k − 2 computable chains.

Section 7.2 covers the material about partial orders with finite width and their decomposition into chains.
We just anticipate here that each poset of width k can be covered by k chains, even if sometimes the chains
are not computable from the poset. However, Kierstead in [Kierstead 1981] proved that not all is lost when
one deals with computable posets. In fact, it is always possible to decompose a poset of width k into at most
(5k − 1)/4 chains. The previous theorem improves the result just mentioned in case one takes into account
only interval orders3. Since interval orders are a subclass of orders with quite peculiar properties it turns out
that results stated for orders, or graphs, can be improved when restricting only to interval orders, or interval
graphs. The statements about the dimension of interval orders, presented in Chapter 5, are examples of this
phenomenon.

A colouring of a graph (V,E) is a function c : V → N such that if uE v then c(v) ̸= c(u) for each
u, v ∈ V . A graph is k colourable if ran(c) ⊆ {0, . . . , k}. A simple corollary of the previous theorem is the
following.

Corollary. If (V,E) is a computable interval graph without complete subgraphs of size k+1, there is a computable 3k−2
colouring of (V,E).

Proof. If (V,E) has no complete subgraph of size k+1, then every interval posets (V,≺) associated to (V,E)
(i.e.≺-incomparability corresponds toE-adjacency) has no antichain of size k. Then≺ is decomposable into
3k − 2 computable chains C0, . . . , C3k−1. Define c : V → N such that c(v) = i if and only if v ∈ Ci.
Notice that c is computable. Moreover, it is immediate to check that the function c colours (V,E) with at
most 3k − 2 colours.

The previous statement is a computable version of Rado’s theorem (see [Rado 1948]), which states the
following: an interval graph is k-colourable if and only if each subgraph of size k + 1 is k-colourable (i.e. it
does not contain any complete subgraph of size k + 1).

In the same article Keirstead and Trotter proved that there is a computable interval graph with no complete
subgraphs of size k + 1 without computable 3k − 3 colouring. James Schmerl in [Schmerl 2005, Corollary
3.1] shows that this statement is provable in RCA0 +¬WKL0. Consequently, Rado’s theorem is equivalent to
WKL0.

Theorem (RCA0). WKL0 is equivalent to the following statement: an interval graph is k-colourable if and only if each
subgraph of size k + 1 is k-colourable.

Proof. It is easy to see that the theorem is provable by compactness. For the reverse implication notice that if
each subgraph of size k + 1 is k-colourable, it is 3k − 3 colourable. The conclusion follows from Schmerl’s
remark.

3Both papers give lower bounds, namely examples of partial orders which cannot be covered by a certain amounts of chains. For
interval orders there is no gap between the upper and lower bound.
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Overview of the main results. We prove thatWKL0 is equivalent to the statement that a graph is an
interval graph if and only if is triangulated and has no asteroidal triples. This result contrasts with Theorem 2.1
in [Marcone 2007], which proves that an analogous structural characterisation for interval orders is provable in
RCA0. An analogous result is proved for indifference graphs, again contrasting the specular result for proper
interval orders.

We prove that in RCA0 there are three non equivalent definitions of interval graphs (besides the structural
one), as happens for interval orders, and that they collapse into one in WKL0. On the other hand there are
two non equivalent definitions of indifference graphs in RCA0 (besides the structural one), as it happens for
proper interval orders, but they still collapse into one inWKL0.

We generalise to the infinite case a sufficient condition and a necessary condition for unique orderability
of connected interval graphs. We show that both of them are computably true. A satisfactory characterisation
for unique orderability of infinite connected interval graphs is still missing.

We prove some basic equivalence between WKL0 and statements about upper and lower bounds of the
dimension of interval orders.

Overview of the chapters. The first chapter analyses the strength of various characterisations of in-
terval graphs and the interplay between interval orders and interval graphs. After stating the preliminary
definitions the first section is devoted to the analysis of the structural characterisations for interval graphs,
while the second concerns different possible definitions of interval graphs. It is split into a subsection about
the relationship between interval graphs and interval orders and into a subsection where the relative strength
of the various definitions presented is examined.

The second chapter is devoted to the strength of various characterisations of indifference graphs and the
interplay between proper interval orders and indifference graphs. It is organised as the previous chapter.

The third chapter discusses the theme of unique orderability of interval graphs. It is noticed that the
characterisation of unique orderability of non connected interval graphs and of indifference graphs can be
proved in RCA0. A characterisation for connected finite interval graphs is presented. Some preliminary results
towards its generalisation to infinite connected interval graphs are shown.

The fourth chapter contains some notes on the dimension of interval orders. The strength of some basic
fact, as the existence of linear extensions whose intersection is a given poset or the existence of posets with
arbitrary dimension, is analysed. The second section focuses on interval orders showing that some tight
bounds on their dimension are provable inWKL0.

fl The results mentioned would not have been obtained without the help and the suggestions of my supervisor.
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The following definition formalises the intuitive idea of interval graph given in the previous pages. Definitions
2.1 and 3.10 are adaptations to interval graphs of the corresponding definitions of interval orders given in
[Marcone 2007].

Definition 2.1. A graph (V,E) is an interval graph if it is reflexive and there exist a linear order (L,<L) and
a relation F ⊆ V × L such that, abbreviating {x ∈ L | (p, x) ∈ F} by F (p), for all p, q ∈ V the following
hold

(i1) F (p) ̸= ∅ and ∀x, y ∈ F (p)∀z ∈ L (x <L z <L y → z ∈ F (p)),
(i2) pE q ⇔ F (p) ∩ F (q) ̸= ∅.

The requirement of reflexivity for interval graphs corresponds to the requirement that comparability
graphs are irreflexive. The link between the two will become clear thanks to Theorems 2.5 and 2.6. Figure 2.1
provides an example of interval graph, while the graph in figure 2.2 does not have an interval representation.

Since interval graphs are strictly linked with interval orders we report here the definition of interval order
(see [Marcone 2007]).

a b

cd

Figure 2.1: An example of interval graph with its representation
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a

cb

x

y z

?

Figure 2.2: A graph which is not an interval graph, with a partial representation

Definition 2.2. Aorder (V,≺) is an interval order if there exist a linear order (L,<L) and a relationF ⊆ V ×L
such that, abbreviating {x ∈ L | (p, x) ∈ F} by F (p), for all p, q ∈ V the following hold

(i1) F (p) ̸= ∅ and ∀x, y ∈ F (p)∀z ∈ L (x <L z <L y → z ∈ F (p)),
(i2) p ≺ q ⇔ ∀x ∈ F (p)∀y ∈ F (q) (x <L y).

We are going to use the following result proved in [Marcone 2007]. Following Marcone we say that (V,≺)
“does not contain a 2⊕ 2” if there is no P ⊆ V such that ≺ P is the partial order with Hasse diagram .
In other words (V,≺) ”does not contain a 2 ⊕ 2” if for each p, q, r, s ∈ V such that p ≺ q and r ≺ s it
holds that either p ≺ s or r ≺ q.

Theorem 2.3 (RCA0). An order (V,≺) is an interval order if and only if it does not contain a 2⊕ 2.

Proposition 2.4 (RCA0). Let (V, Ē) be a comparability graph. The orders associated to the comparability graph contain
a 2⊕ 2 if and only if the complementary graph of (V, Ē) contains a four cycle without chords.

Proof. Let (V, Ē) be a comparability graph, (V,≺) an associated order and (V,E) the complementary graph
of (V, Ē). Suppose (V,≺) contains a 2⊕ 2. This means that there are a, b, c, d such that a ≺ b, c ≺ d and
a | d, c | b, which entail a | c, b | d. Hence aE dE bE cE a is a four cycle without chords. For the reverse
implication the reasoning is analogous.

We now turn to the announced results about the relationship between interval graphs and interval orders
mentioned at the beginning. The first one claims that a graph (V,E) is an interval graph if and only if the
orders associated to its complementary graph are interval orders. The second goes the other way around: if a
poset (V,≺) is fixed, (V,≺) is an interval order if and only if the complementary graph of its comparability
graph is an interval graph. In particular, we show that the proofs of these basic facts given in the literature go
through in RCA0.

Theorem 2.5 (RCA0). Let (V,E) be a graph. Then (V,E) is an interval graph if and only if there is an interval order
(V,≺) such that pE q ⇔ p | q for all p, q ∈ V .

Proof. (⇒) Let (L,<L) be a linear order and F be a representing relation witnessing that (V,E) is an interval
graph. Let ≺ be the order defined by p ≺ q ⇔ ∀x ∈ F (p) ∀y ∈ F (q) (x <L y). Definition 2.1 guarantees
that the Π0

1-definition of ≺ is equivalent to the following Σ0
1-definition

p ≺ q ⇔ ¬pEq ∧ ∃x ∈ F (p)∃y ∈ F (q) (x <L y)

Hence, ≺ is definable in RCA0. Moreover, ≺ is clearly an order on (V, Ē), the complementary graph of
(V,E), since <L is a linear order, and it satisfies pE q ⇔ p | q for all p, q ∈ V . It is easy to check that L
and F themselves witness that (V,≺) is an interval order.

(⇐) Let (V,E) be a graph and (V,≺) be an interval order such that pE q ⇔ p | q for all p, q ∈ V . Let
also (L,<L) be a linear order and F be a representation for (V,≺). We claim that (L,<L) and F witness
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also that (V,E) is an interval graph. In fact, suppose pE q for p, q ∈ V . Since p ≮ q∧q ≮ p, by assumption,
it holds that ∃x ∈ F (p)∃y ∈ F (q)(y ≤L x) and ∃x′ ∈ F (p)∃y′ ∈ F (q)(x′ ≤L y

′). Suppose, without loss
of generality, that y ≤L y′. Then y ≤L x′ or x′ ≤L y, being L a linear order. In the first case, x′ ∈ F (q).
In the second case, y ∈ F (p). Hence F (p) ∩ F (q) ̸= ∅ as required by Definition 2.1.

For sake of completeness, we prove here the subsequent theorem, which provides a conclusion to the
previous one, even if it uses a theorem we have not proven yet.

Theorem 2.6 (RCA0). Let (V,≺) be an order. (V,≺) is an interval order if and only if (V,E), where pE q ⇔ p | q
for all p, q ∈ V , is an interval graph.

Proof. (⇒) This implication follows easily from the definitions.
(⇐) Let (V,≺) be an order and let (V,E) be such that pE q ⇔ p | q for all p, q ∈ V . Assume (V,E)

is an interval graph, then, by Theorem 2.8(a), each cycle of length four has a chord. Proposition 2.4 entails
that (V,≺) does not contain a 2⊕ 2. Therefore (V,≺) is an interval order by Theorem 2.3.

Even if Theorems 2.5 and 2.6 look very similar their proofs reveal an asymmetry between the passage from
an interval order to an interval graph and the reverse passage. In fact, in the proof of the former theorem the
very same (L,<L) and F witness both that (V,E) and (V,≺) are an interval graph and an interval order
respectively, while this is not the case in the later statement. To explain the reason of this suppose (V,≺) is a
chain. Clearly there are infinitely many possible interval representations F witnessing that (V,E), withE =|,
is an interval graph, but among them only one representation is suitable for (V,≺) as well. We stress here
this point because this difference between interval graphs and interval orders will appear again later on.

2.1 Structural characterisations of interval graphs

Definition 2.1 explains clearly the reason of the name of this class of graphs. At the same time it is not a very
nice definition to work with, in fact if a graph is given and one wants to check whether it is an interval graph
or not, he has to find a suitable linear order and a suitable representation which witness that the graph can
be represented as requested by Definition 2.1. It would be useful to understand what structural properties a
graph must have in order to be representable by a linear order. Theorems 1.2 and 2.3 give examples of the
properties we are looking for. Combinatorialists provided two of these structural properties which identify
interval graphs. We prove that the first one holds in RCA0, while the second one is equivalent toWKL0.

The following two theorems deal with necessary conditions to be an interval graph. We underline that
they both go through in RCA0.

Definition 2.7. A graph (V,E) is triangulated if every simple cycle of length four or more has a chord.
An asteroidal triple in (V,E) is an independent set of three vertices (i.e. set of pairwise non adjacent vertices)

of V such that each pair is connected by a path that avoids the neighbourhood of the third.

Theorem 2.8 (RCA0). If a graph (V,E) is an interval graph, then a) every simple cycle of length four has a chord and b)
the complementary graph (V, Ē) is a comparability graph.

Proof. This follows immediately from Theorems 2.5 and 2.3 and Proposition 2.4.

Theorem 2.9 (RCA0). If a graph (V,E) is an interval graph, then it is triangulated and has no asteroidal triples.

Proof. Let (V,E) be an interval graph, (L,<L) be a linear order and F be its representing relation. Suppose
(V,E) is not triangulated, i.e. there is a simple cycle a0E . . . E an = a0, for some n ≥ 4, without chords.
It is easy to check that both F (a0) <L F (an−1), by transitivity of <L, and F (a0) |L F (an−1) since
a0E an−1.
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Suppose (V,E) contains an asteroidal triple {x, y, z}. Without loss of generality, we assume that the
interval associated to y is between the intervals associated to x, z. Since x, y, z form an asteroidal triple,
there exists a path P from x to z, which avoids the neighbourhood of y. This means that all the points in P
must be represented by intervals between F (x) and F (z) overlapping one to the other. These intervals must
not overlap F (y): the two requests are incompatible.

The previous two theorems give two necessary conditions for a graph to be an interval graph. These are
actually sufficient conditions, thus they provide the two characterisations of interval graphs we were looking
for. Before turning to the proof of sufficiency, we would like to highlight a difference between theorems
2.8 and 2.9. The former mentions comparability graphs, which are defined in 8 as graphs whose adjacency
relation is the comparability relation of an order. Thus to verify if a graph is a comparability graph or not,
one has to build a suitable order for it. Instead, the later theorem presents pure structural conditions, namely
conditions which have only to do with the adjacency relation of (V,E) and that can be read off from (V,E)
itself, so to speak, without constructing any other entity. Keeping this observation in mind and thinking about
the strength of Theorem 1.2, it is possible to understand the reason of the different strength between the two
following theorems.

Theorem 2.10 (RCA0). If a graph (V,E) is such that every simple cycle of length four has a chord and the complementary
graph (V, Ē) is a comparability graph, then it is an interval graph.

Proof. Let (V,E) be a graph. Assume every simple cycle of length four has a chord and the complementary
graph (V, Ē) is a comparability graph. Let≺ be the order associated with Ē. Given that pE q ⇔ ¬p Ē q ⇔
p | q for all p, q ∈ V , (V,E) is an interval graph if (V,≺) is an interval order by Theorem 2.5. So suppose
that (V,≺) is not a interval order. Then (V,≺) contains a 2⊕ 2 by Theorem 2.3. Hence, by Proposition 2.4,
(V,E) contains a cycle of length four with no chords, contrary to the assumption.

Theorem 2.11 (RCA0). The following are equivalent:

1. WKL0
2. If a graph (V,E) is triangulated and has no asteroidal triples, then is an interval graph.

Proof. (1⇒ 2) By Theorem 2.10 it is enough to prove that if a graph (V,E) is triangulated and has no aster-
oidal triples, then every simple cycle of length four has a chord and the complementary graph (V, Ē) is a com-
parability graph. The first requirement follows from the definition of triangulated graph. For the second one,
suppose (V, Ē) is not a comparability graph. Then, by Lemma 1.2 it contains an odd cycle without triangular
chords. Let a0 Ē . . . Ē an be its minimal sub-cycle without chords. Then a0E a2E a4E a1E a3E a0 is a
cycle in (V,E) of length five without chords, contrary to the assumption.
(2 ⇒ 1) Let f, g : N → N be two injective functions such that there is no x ∈ ran(f) ∩ ran(g). We
want to define a graph satisfying the hypotheses in (2) and such that its interval representations give enough
information to define a set X which separates the range of f, g in RCA0.

Let V = {ak, bk, ck, xk, yk | k ∈ N} be the set of vertices. Define E such that for each k ∈ N the
following are satisfied: 

bk E yk E ck

ak E xnE bk if f(n) = k

ak E xnE ck if g(n) = k

(V,E) is triangulated and has no asteroidal triples, so there are a linear order (L,<L) and a relation F which
witness that (V,E) is an interval graph.

It is very easy to realise that if f(n) = k, then F (ak) <L F (bk) <L F (ck) ∨ F (ck) <L F (bk) <L

F (ak). While if g(n) = k, then F (ak) <L F (ck) <L F (bk) ∨ F (bk) <L F (ck) <L F (ak). The
following figure represents the k-segment of (L,<L) in case f(n) = k, to the left, and in case g(n) = k, to
the right.
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ak bk ck

xn yk

bk ck ak

yk xn

By Π0
1-separation (which is provable in RCA0 [Simpson 2009, Exercise IV.4.8.]) there exists a setX such

that
∀n∀k((∀x ∈ F (ak)∀y ∈ F (bk)∀z ∈ F (ck)(x ≺ y ≺ z ∨ z ≺ y ≺ x)→ k ∈ X)∧

(∀x ∈ F (ak)∀y ∈ F (bk)∀z ∈ F (ck)(x ≺ z ≺ y ∨ x ≺ z ≺ y)→ k /∈ X))

From what we said before, we obtain that ∀n(f(n) ∈ X ∧ g(n) /∈ X) as wanted.

Theorems 2.8 and 2.10 are not surprisingly at all given the ties between interval graphs and interval orders
as Proposition 2.4 expresses. On the other hand, Theorems 2.9 and 2.11 are the real analogues of Theorem
2.3, because they provide a full structural characterisation of interval graphs and orders respectively. Their
different strengths shows the difference between interval orders and interval graphs. One one hand, a ≺ b
carries the information about the order of the intervals associated to the two points, while aE b does not
do the same. Moreover, if ¬aE b it is possible to choose between the representations F (a) <L F (b) and
F (b) <L F (a). This freedom in the representations of an interval graph implies a greater difficulty in the
construction of the relations F . This difficulty amounts to find a transitive orientation for the complementary
graph (which has to be a comparability graph), which requiresWKL0 because of Theorem 1.2.

James Schmerl in [Schmerl 2005] noticed that the claim “A graph is an interval graph if and only if each
subgraphs is representable by intervals” is equivalent to WKL0. The previous theorem confirms his claim.
Notice also that the corresponding claim for interval orders, i.e. an order is an interval order if and only if
each suborders is representable by intervals, is provable in RCA0 because of Theorem 2.3.

[Lekkerkerker and Boland 1962] provides another characterisation of interval graphs listing all the forbid-
den subgraphs. It is routine to check that those graphs are a complete list of graphs whose cycles of length
greater than four do not have chords or which contain an asteroidal triple.

2.2 More definitions of intervals and representations

As mentioned in the first lines, interval graphs and interval orders take their name from their representation
on intervals of a linear ordered set (L,<L). In the literature it is possible to find slightly different definitions
of them, which depend on the notion of interval employed. For example intervals may be required to be
closed or not, it is possible to allow that intervals associated to different points share two extremities, one or
none. The combinations of these notions give rise to five conceptually distinct definitions of interval graphs,
which are stated in the following definition.

Definition 2.12. Let (V,E) be an interval graph and let (L,<L) be a linear order and F ⊆ V × L be a
relation for it. (V,E) is a 1-1 interval graph if it also satisfies

(i3) F (p) ̸= F (q) whenever p ̸= q.

A graph (V,E) is a closed interval graph if it is reflexive and there exists a linear order (L,<L) and two functions
f0, f1 : V → L such that for all p, q ∈ V
(c1) f0(p) <L f1(p),
(c2) pE q ⇔ f0(p) ≤L f0(q) ≤L f1(p) ∨ f0(q) ≤L f0(p) ≤L f1(q)

A graph (V,E) is a 1-1 closed interval graph if we also have

(c3) f0(p) ̸= f0(q) ∨ f1(p) ̸= f1(q) whenever p ̸= q.
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A graph (V,E) is a distinguishing interval graph if (c1) and (c2) hold and

(c4) fi(p) ̸= fj(q) whenever p ̸= q ∨ i ̸= j.

The corresponding definitions for orders are the obvious modifications of Definition 2.2 following the
ideas in the Definition 2.12. For example a 1-1 interval order is an interval order which satisfies condition (i3)
in Definition 2.12.

2.2.1 Interval graphs and interval orders

Since we are already acquainted with the link between interval graphs and interval orders, we immediately
analyse the strength of this tie for the various definitions of intervals given. The next theorem is the equiv-
alent of Theorem 2.5 for 1-1 and closed representations. Even in these two cases if the graph is fixed, it is
computably true that 1-1 (closed) interval graphs correspond to 1-1 (closed) interval orders.

Theorem 2.13 (RCA0). Let (V,E) be a graph. Then (V,E) is 1-1 (closed) interval graph if and only if there is a 1-1
(closed) interval order (V,≺) such that pE q ⇔ p | q for all p, q ∈ V .

Proof. For 1-1 interval graphs the proof is the same as for interval graphs (see Theorem 2.5). Hence, we turn
to closed interval graphs and orders.

(⇒) Let (V,E) be a closed interval graph and f0, f1 : V → L its representing functions. Define the
order relation ≺ such that p ≺ q ⇔ f1(p) <L f0(q) for all p, q ∈ V . By definition, pE q ⇔ p | q for all
p, q ∈ V and (V,≺) is a closed interval order.

(⇐) Let (V,E) be a graph, (V,≺) a closed interval order, where that pE q ⇔ p | q for all p, q ∈ V ,
and let f0, f1 : V → L be its representing functions. It is straightforward to verify that f0, f1 witness also
that (V,E) is a closed interval graph.

The previous theorems about the characterisation of interval graphs allow to deduce some straightforward
corollaries. For example the following is equivalent to WKL0: for each graph (V,E), (V,E) is triangulated
and has no asteroidal triples if and only if there is an interval order (V,≺) such that pE q ⇔ p | q for all
p, q ∈ V .

The following theorems are more interesting, especially when compared with Theorem 2.6. In that case
if (V,≺) is an order and (V,E) is an interval graph, for E = |, then one can argue in RCA0 that (V,≺) is
interval as well, thanks to the characterisation of interval order given in Theorem 2.3. While the next theorems
show that, even if (V,E) is known to be a 1-1 (closed) interval graph, WKL0 is necessary to conclude that
(V,≺) is a 1-1 (closed) interval graph. The proofs of the reversals are modifications of Theorem 6.4 in
[Marcone 2007].

Theorem 2.14 (RCA0). The following are equivalent:

1. WKL0
2. Let (V,≺) be an order. (V,≺) is a 1-1 interval order if and only if (V,E), where pE q ⇔ p | q for all p, q ∈ V ,

is a 1-1 interval graph.
3. Let (V,≺) be an order. (V,≺) is a closed interval order if and only if (V,E), where pE q ⇔ p | q for all
p, q ∈ V , is a closed interval graph.

Proof. (1⇒ 2, 3) The proof proceeds as for Theorem 2.13. Notice thatWKL0 is needed to infer, from (V,≺)
is not a 1-1, or not a closed, interval order, that (V,≺) contains a 2⊕2 (see Theorem 6.1 in [Marcone 2007]).

(2 ⇒ 1) Let f, g : N → N be two injective functions with rg(f) ∩ rg(g) = ∅. Define an order (V,≺)
such that V = {ak, bk | k ∈ N} ∪ {cnk | n, k ∈ N}. If xk, yh ∈ V , then xk ≺ yh if and only if k < h. If
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k = h, then xk, yk are incomparable except in these two cases{
cnk ≺ ak ≺ c

n+1
k if f(n) = k

cnk ≺ bk ≺ c
n+1
k if g(n) = k

The hypotheses on f, g guarantee that at most one of the possibilities occurs for a given n and that such n is
unique. ≺ is definable in RCA0.

(V,≺) induces a unique comparability graph (V, Ē). Consider its complementary graph (V,E). We
claim that it is a 1-1 interval graph. It is in fact possible to show a linear order (L,<L) and a relation F which
do the job. Let L = Q and F be the following representation for each k

F (ak) = (k + 2/16, k + 8/16)

F (bk) = (k + 7/16, k + 14/16)

F (cnk ) = (k + 1/16− rn, k + 15/16 + rn) for 0 < rn < rn+1 < 1/16 if f(n) ̸= k ̸= g(n)

F (cnk ) = (k + 9/16, k + 11/16) ∧ F (cnk+1) = (k + 10/16, k + 12/16) if f(n) = k

F (cnk ) = (k + 3/16, k + 5/16) ∧ F (cnk+1) = (k + 4/16, k + 6/16) if g(n) ̸= k

It is not difficult to check that L and F satisfy conditions (i1)-(i3) of Definition 2.12. Hence, we conclude
that (V,≺) is a 1-1 interval order.

This is a representation of a segment of V in the case, going from left to right, where ∀n(f(n) ̸= k ̸=
g(n)), f(n) = k, g(n) = k.

cnk

cmk

an

bk

cmk

cnk cn+1
kan

bk

cmk

cnk cn+1
k

an

bk

Let (L,<L) be a linear order and F be a representing relation for (V,≺). Let φ(k) and ψ(k) be the
Π0

1-formulas F (ak) ⊆ F (bk) and F (bk) ⊆ F (ak) respectively. Notice that if ∃nf(n) = k, then φ(k)
holds. Instead if ∃ng(n) = k, then ψ(k) holds (see [Marcone 2007], Theorem 6.4, for the proof). F being
one-to-one assures that ∀k¬(φ(k) ∧ ψ(k)). These facts together allow to infer, by Π0

1-separation, which is
provable in RCA0, that there exists a setX such that

∀k((φ(k)→ k ∈ X)) ∧ (ψ(k)→ k /∈ X))

Thus, we proved the existence of a setX which separates the range of f from the range of g.
(3 ⇒ 1) The proof follows the same steps as the proof before. The definition of the two representing

function f0, f1 : V → L is an immediate modification of the definition of F , e.g. f0(ak) = k + 3/16 and
f1(ak) = k+ 7/16. While the setX is definable in RCA0 asX = {k | f0(bk) <L f0(ak)}. For the same
reasons as before, X separates the range of f from the range of g.

Notice that in the above proof the graph (V,E) is shown to be a 1-1 (closed) interval graph directly giving
a 1-1 (closed) representation F (f0, f1 respectively) for its points. What is remarkable here is the fact that
F is not a suitable representation for (V,≺) since it does not maintain the correct ≺-relation among ak , cnk ,
cn+1
k or among bk , cnk , c

n+1
k . This feature is actually what allows to define in RCA0 a 1-1 representation for

E but not for ≺.



CHAPTER 2. INTERVAL GRAPHS 37

distinguishing interval 1-1 closed intervalclosed interval

1-1 interval

four cycle + comparability interval graph

triangulated + no asteroidal triplesfour-odd cycles with chord

Figure 2.3: represents implications in RCA0, represents implications inWKL0

This theorem allows also to make a point about the link between interval orders and interval graphs.
Getting back to the observation which follows Theorem 2.6, it is evident that sometimes the same (1-1,
closed) representation F witnesses that a graph and an order are representable by intervals, but this is not
always the case. In particular, it may not be the case when F is a representing relation for a graph (V,E)
which is given as the incomparability graph of an order (V,≺). The reason of this lies on the fact that, in
general, more that one order can be associated to a given interval graph (while the contrary does not hold).
Said in other words (see Theorem 2.8), a comparability graph can be the graph of the comparability relation
of various orders. The trick used in the reversal of Theorem 2.14 exploits exactly this fact and takes advantage
of the fact that some associated orders may be defined computably, others cannot.

2.2.2 The strength of the different notions of representation

This subsection is devoted to the analysis of the relative strength of the various definitions of interval graph
given in the Definition 2.12. The same investigation for interval orders has already been carried out in [Mar-
cone 2007]. Indeed, in this respect, interval graphs and interval orders share the same behaviour.

Intuitively the Definition 2.12 enumerates increasingly strong definitions of interval graph. For example if
(V,E) is a 1-1 interval graph, then the same linear order (L,<L) and the same representation F witness that
it is also an interval graph. Analogously, if (V,E) is a distinguishing interval graph, then the same functions
f0, f1 witness also that it has a closed representation. Moreover, if the functions f0, f1 witness that (V,E)
has a (1-1) closed representation, then a relation F such that F (p) = {(p, x) | f0(p) ≤L x ≤L f1(p))}, for
each p ∈ V , witnesses that (V,E) is a (1-1) interval graph. The following fact is perhaps more surprising.

Theorem 2.15 (RCA0). If a graph (V,E) is a closed interval graph, then it is a distinguishing interval graph.

Proof. Suppose (V,E) is a closed interval graph, then there exists an order ≺ such that (V,≺) is a closed
interval order by Theorem 2.13. Hence, (V,≺) is a distinguishing interval order by Theorem 5.1 in [Marcone
2007]. It is then possible to conclude that (V,E) is a distinguishing interval graph.
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We prove that, as happens for interval orders, there are three distinct notions of interval graphs in RCA0,
namely that of interval, 1-1 interval and closed interval graph. This means that given an interval representation
F it is not always possible to find computably the functions f0 and f1 which give information on the extreme
points of the interval associated to a given vertex. But also given a representation F it is not always possible
to refine it computably to a 1-1 representation. Nonetheless, these notions collapse into one inWKL0. Figure
2.3 summaries the implications.

Theorem 2.16 (RCA0). The following are equivalent:

1. WKL0
2. If a graph (V,E) is an interval graph, then it is a 1-1 interval graph.

Proof. (1⇒ 2) Let (V,E) be an interval graph and (V,≺) its associated interval order by Theorem 2.5. Then
(V,≺) is a 1-1 interval order by lemma 6.1 in [Marcone 2007]. Then (V,E) is a 1-1 interval graph by 2.13.

(2 ⇒ 1) This is a slight modification of proof of Theorem 6.4 in [Marcone 2007]. Suppose (2) holds
and let f, g : N → N be two injective functions with rg(f) ∩ rg(g) = ∅. Define a graph (V,E) such that
V = {ak, bk | k ∈ N} ∪ {cnk , dnk | k, n ∈ N} and E is the set of pairs {(ak, bk), (cnk , dnk ) | n, k ∈ N} plus

• cnk E bk E c
n+1
k if f(n) = k,

• cnk E ak E c
n+1
k if g(n) = k.

We claim that (V,E) does not contain cycles of length four and its complementary graph is a comparability
graph (V, Ē). To prove this claim, we define an order ≺ related to (V, Ē). Let ≺ be the set constituted by
xk ≺ yh for each xk, yh ∈ V such that k < h and by

1. cnk ≺ ak ≺ c
n+1
k , dnk ≺ bk ≺ d

n+1
k if f(n) = k,

2. cnk ≺ bk ≺ c
n+1
k , dnk ≺ ak ≺ d

n+1
k if g(n) = k.

≺ is definable in RCA0 and it is easy to check that its comparability graph is (V, Ē). Thus (V,E) is an
interval graph by Theorem 2.10 and hence a 1-1 interval graph.

It is not difficult to check that if f(n) = k, then F (ak) ⊆ F (bk), while if g(n) = k, then F (bk) ⊆
F (ak), because the conditions force the following representations (or its overturning) respectively

cnk ak cn+1
k

bkdnk dn+1
k

cnk bk cn+1
k

akdnk dn+1
k

Since (V,E) is a 1-1 interval graph, F (ak) ̸= F (bk) for each k ∈ N. By Π0
1-separation we can define,

in RCA0, a set X such that

∀k((F (ak) ⊆ F (bk)→ k ∈ X) ∧ (F (bk) ⊆ F (ak)→ k /∈ X))

By the previous claim, we thus obtain that ∀n(f(n) ∈ X ∧ g(n) /∈ X).

Property 2.17 (RCA0). If (V,E) is an interval graph such that ∀p, q ∈ V ∃r ∈ V (pEr ↔ ¬qEr), then (V,E)
is a 1-1 interval graph.

Theorem 2.18 (RCA0). The following are equivalent:

1. WKL0
2. If a graph (V,E) is a 1-1 interval graph, then it is a closed interval graph.
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Proof. (1⇒ 2) If a graph (V,E) is a 1-1 interval graph, then there exists an order≺ such that (V,≺) is a 1-1
interval order, by Theorem 2.13. Then (V,≺) is a closed interval order, by Theorem 6.5 in [Marcone 2007].
Hence (V,E) is a closed interval graph.

(2 ⇒ 1)1. Suppose (2) holds and let f, g : N → N be two injective functions with rg(f) ∩ rg(g) = ∅.
Define a graph (V,E) such that V = {ak, bk, ck | k ∈ N} ∪ {dnk | k, n ∈ N} and E is the set of pairs
{(ak, bk), (ak, ck) | n, k ∈ N} plus the pairs

• bk E dnk , ck E d
n+1
k if f(n) = k,

• dnk E ak E d
n+1
k if g(n) = k.

(V,E) is an interval graph because it does not contain cycles of length four and its complementary graph is
a comparability graph (V, Ē). To prove this claim, we define an order ≺ for (V, Ē). Let ≺ be the relation
defined by the following clauses

1. xk ≺ yh for each xk, yh ∈ V such that k < h,

2. bk ≺ ck for each k,
3. dnk ≺ dmk for each k and for each n < m,

4. ak, bk, ck ≺ dnk if f(n) ̸= j ̸= g(m), for each k, n,

5. dnk ≺ ak ≺ d
n+1
k if f(n) = k,

6. dnk ≺ bk ≺ ck ≺ d
n+1
k if g(n) = k.

≺ is definable in RCA0 and it is easy to check that its comparability graph is (V, Ē). The following is a
picture of a chunk of (V,E) in case f(n) = k, to the left, and g(n) = k, to the right.

dnk ak dn+1
k

bk ck

ak

dnkdn+1
k bk ck

In order to fulfil the premise of statement (2) we need to check that (V,E) is also a 1-1 interval graph. It
is immediate to verify that for each v, u ∈ V there is a w ∈ V connected only with one of v and u. Hence,
by Property 2.17, (V,E) is a 1-1 interval graph.

By statement (2), we conclude that (V,E) is a closed interval graph. So there are a linear order (L,<L)
and two functions f0, f1 : V → L satisfying conditions (c1)-(c2) of Definition 2.12. Let X be the set {k |
f1(ak) <L f1(ck) ∨ f1(ak) <L f1(bk)}. We claim that ∀n(f(n) ∈ X ∧ g(n) /∈ X). In fact, suppose
that f(n) = k and f1(bk) <L f1(ak). Since, according to the definition of E, bk E dnk ,¬ak E dnk , it must
be that f0(bk) <L f0(ak). Given that ak E ck and ¬bk E ck , this implies f0(ck) <L f0(ak) <L f1(ck).
But then f1(ak) <L f1(ck), otherwise it would be impossible that the intervals associated with ck and with
dn+1
k overlap, but those of ak, dn+1

k do not. Hence, k ∈ X .
To conclude, suppose g(n) = k. Then, according to the definition of E, it holds that dnk E ak E d

n+1
k .

Suppose, without loss of generality, that f0(dnk ) <L f0(ak) <L f1(d
n
k ). Since ¬dnk E d

n+1
k , this implies

f0(ak) <L f0(d
n+1
k ) <L f1(ak). Hence, f1(dnk ) <L f0(d

n+1
k ) by transitivity of <L. Clearly, it also holds

that f1(dnk ) <L f0(bk) <L f1(bk) <L f0(d
n+1
k ) and f1(dnk ) <L f0(ck) <L f1(ck) <L f0(d

n+1
k ),

which implies f0(ak) <L f0(bk) <L f1(bk) <L f1(ak) and f0(ak) <L f0(ck) <L f1(ck) <L f1(ak).
Therefore, k /∈ X .

Theorem 2.19 (RCA0). The following are equivalent:

1. WKL0
1This is a slight modification of proof of Theorem 6.5 in [Marcone 2007]
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2. If a graph (V,E) is an interval graph, then it is a closed interval graph.

Proof. It follows from Theorems 2.16 and 2.18.
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Indifference graphs are a subclass of interval graphs. The distinguish feature of this class is the fact that there
are no distinct vertices such that the interval associated to one is included in the interval associated to the other.
The name ‘Indifference graphs’ was first introduced by Fred Roberts in [Roberts 1969] and is motivated by
the theory of indifference in economics and psychology. Studies in the mid of the XX century underline the
fact that the human beings have imperfect powers of discrimination, so they are able to distinguish two stimuli
only when they are different enough. For example we do not mind if a bag weighs 10 or 10,4 kilos, but we do
mind if it weighs 10 or 14 kilos. In other words, one is generally indifferent between a bag of 10 or 10,4 kilos,
but it is more likely that one has preference between one of 10 and one of 14 kilos.

We analyse their characterisations and their link to proper interval orders in reverse mathematics following
the same pattern as for interval graphs. Some of the proofs are easy consequences of the corresponding
proofs for interval graphs. The unique point worth mentioning is the fact that it is provable in RCA0 that 1-1
indifference graphs are closed indifference graphs, while for interval graphs this passage requiresWKL0.

Definition 3.1. A graph (V,E) is an indifference graph if it is reflexive and there exist a linear order (L,<L)
and a relation F ⊆ V × L witnessing that (V,E) is an interval graph and such that

(i4) F (p) ⊆ F (q) implies F (p) = F (q) for all p, q ∈ V .

For completeness we give here the corresponding expected definition of proper interval orders, followed
by their structural characterisation (see [Marcone 2007] for more details on proper interval orders). We say
that an order (V,≺) “contains a 1⊕ 3” if there is a suborder {(a, b, c, d),≺} such that a ≺ b ≺ c and d is
incomparable with all of a, b, c.

Definition 3.2. An order (V,≺) is a proper interval order if there exist a linear order (L,<L) and a relation
F ⊆ V × L witnessing that (V,≺) is an interval order and such that

41
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(i4) F (p) ⊆ F (q) implies F (p) = F (q) for all p, q ∈ V .

Theorem 3.3 (RCA0). An order (V,≺) is a proper interval order if and only if it contains neither a 2⊕ 2 nor a 1⊕ 3.

The theorems about structural characterisations for indifference graphs follow trivially from the previous
analysis of interval graphs and from the subsequent observation, which link suborders to subgraphs of the
incomparability graph and vice versa. K1,3 is the complete bipartite graph with four vertices such that three
of them are pairwise incomparable and connected with the fourth vertex.

Proposition 3.4. An order (V,≺) contains a 3⊕ 1 if and only if its incomparability graph (V,E) contains aK1,3.

Proof. Let (V,≺) be an order. Suppose (V,≺) contains a 3 ⊕ 1. This means that there are a, b, c, d such
that a ≺ b ≺ c and a | d, b | d, c | d. Hence {a, b, c, d} is a K1,3 subgraph of (V,E) with E = |. For the
converse the reasoning is analogous.

Analogously to interval graphs it is immediate to see that the order associated to the complementary graph
of an indifference graph is indeed a proper interval order and vice versa.

Theorem 3.5 (RCA0). Let (V,E) be a graph. Then (V,E) is an indifference graph if and only if there is a proper interval
order (V,≺) such that pEq ⇔ p | q for all p, q ∈ V .

Proof. The proof follows the same reasoning as the proof 2.5. Notice that conditions (i4), which characterises
indifference graphs, is the same for proper interval orders and indifference graphs.

Theorem 3.6 (RCA0). Let (V,≺) be an order. (V,≺) is a proper interval order if and only if (V,E), where pE q ⇔
p | q for all p, q ∈ V , is an indifference graph.

Proof. (⇒) By Definition 3.10 and Theorem 2.6.
(⇐) Let (V,≺) be an order and define a relation E such that pE q ⇔ p | q for all p, q ∈ V . Assume (V,E)
is an indifference graph. Then (V,E) is an interval graph which does not contain a K1,3 as subgraph, by
Theorem 3.7. Theorem 2.6 assures that (V,≺) is an interval order, while Proposition 3.4 entails that (V,≺)
does not contain a 3⊕ 1. Therefore (V,≺) is a proper interval order by Theorems 3.3 and 2.3.

3.1 Structural characterisations for indifference graphs

The key feature of indifference graphs is the fact that if p ̸= q, then the interval associated with p is not
included in the interval associated with q. This immediately translates, in terms of forbidden subgraphs, to
not havingK1,3 as subgraph.

Theorem 3.7. (V,E) is an indifference graph if and only if it is an interval graph which does not contain a K1,3 as
subgraph.

Proof. The left to right implication is immediate to check. For the contrary, let (V,E) be an interval graph
which does not contain aK1,3 as subgraph. By Theorem 2.13, there exists an interval order (V,≺) such that
pEq ⇔ p | q for all p, q ∈ V . Moreover, by Claim 3.4, (V,≺) does not contain a 3 ⊕ 1, so it is a proper
interval order by Theorem 7.12 in [Marcone 2007]. Then (V,E) is an indifference graph by theorem

Theorem 3.8 (RCA0). A graph (V,E) is an indifference graph if and only if a) every simple cycle of length four has a
chord, b) the complementary graph (V, Ē) is a comparability graph and c) it does not contain aK1,3 as subgraph.

Proof. The left to right implication follows from Theorem 2.8 and Claim 3.4. The reverse implication follows
from Theorem 2.10 and Claim 3.4.
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Theorem 3.9 (RCA0). The following are equivalent:

1. WKL0
2. a a graph (V,E) is an indifference graph if and only if it is triangulated, has no asteroidal triples and does not contain

aK1,3.

Proof. Straightforward consequence of Theorem 2.9 and Proposition 3.4 plus Theorem 2.11 (notice that the
graph used in the proof of the reversal is an indifference graph).

Notice the different strength between the structural characterisation of proper interval orders, Theorem
3.3, and of indifference graphs. We have already commented this for interval graphs.

3.2 More definitions of intervals and representations

The same variants of the definition of interval graphs are applicable also to indifference graphs. For example
it is possible to ask that the mapping is 1-1 or to have a closed representation. The following definition collects
all the options and is the analogous of Definition 2.12.

Definition 3.10. A graph (V,E) is an 1-1 indifference graph if it is reflexive and there exist a linear order L and
a representation F ⊆ V × L witnessing that (V,E) is a 1-1 interval graph which also satisfy the following

(i3) F (p) ̸= F (q) whenever p ̸= q.

A graph (V,E) is a closed indifference graph if it is reflexive and there exist a linear order L and two functions
f0, f1 : V → L witnessing that (V,E) is a closed interval graph which also satisfy the following

(c5) f0(p) <L f0(q)⇔ f1(p) ≤L f1(q) for all p, q ∈ V .
A graph (V,E) is a 1-1 closed indifference graph if we also have

(c3) f0(p) ̸= f0(q) ∨ f1(p) ̸= f1(q) whenever p ̸= q.

A graph (V,E) is a distinguishing indifference graph if (c1) and (c2) holds and

(c4) fi(p) ̸= fj(q) whenever p ̸= q ∨ i ̸= j.

3.2.1 Indifference graphs and proper interval orders

We briefly analyse the relation between 1-1 or closed indifference graphs and 1-1 or closed proper interval
orders. On this respect, indifference graphs behave as interval graphs.

Theorem 3.11 (RCA0). Let (V,E) be a graph. Then (V,E) is an 1-1 (closed) indifference graph if and only if there is
a proper 1-1 (closed) interval order (V,≺) such that pE q ⇔ p | q for all p, q ∈ V .

Proof. The proof follows the same reasoning as the proof 2.13. Notice that conditions (i4) and (c5), which
characterize indifference graphs, are the same for proper interval orders and indifference graphs.

Theorem 3.12 (RCA0). The following are equivalent

1. WKL0
2. Let (V,≺) be an order. (V,≺) is a proper 1-1 interval order if and only if (V,E), where pE q ⇔ p | q for all
p, q ∈ V , is a 1-1 indifference graph.

3. Let (V,≺) be an order. (V,≺) is a proper closed interval order if and only if (V,E), where pE q ⇔ p | q for all
p, q ∈ V , is a closed indifference graph.
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Figure 3.1: represents implications in RCA0, represents implications inWKL0

4. Let (V,≺) be an order. (V,≺) is a proper closed interval order if and only if (V,E), where pE q ⇔ p | q for all
p, q ∈ V , is a closed interval graph withoutK1,3.

Proof. (1⇒ 2, 3) The proof proceeds as for Theorem 3.6. Notice thatWKL0 is needed to infer, from (V,E)
is a 1-1 (closed) interval graph that (V,≺) is a 1-1 (closed) interval order (see Theorem 2.14).

(2⇒ 3) and (3⇒ 4) are immediate.
(4 ⇒ 1)1 Let f, g : N → N be injective function with ran(f) ∩ ran(g) = ∅. We define an order (V,≺)

and we argue that its incomparability graph is closed interval withoutK1,3. Let V = {ak, bk | k ∈ N}∪{cnk |
n, k ∈ N} and let ≺ be defined as

• ak ≺ cnk if f(n) = k

• cnk ≺ ak if g(n) = k

No other comparability occurs between the points of V . Let (V,E) be the graph such that pEq ⇔ p | q
for all p, q ∈ V . Clearly, (V,E) does not containK1,3. Moreover, the linear order (N, <) and the functions
f0, f1 : N→ N defined by the following items provide a closed representation for (V,E).

f0(ak) = f1(ak) =3k + 1

f0(bk) =3k

f1(bk) =3k + 1

f0(c
n
k ) =3k if f(n) ̸= k

f1(c
n
k ) =3k + 2 if g(n) ̸= k

f0(c
n
k ) =3k + 2 if f(n) = k

f1(c
n
k ) =3k if g(n) = k

1This is a slight modification of Theorem 7.21 of [Marcone 2007]
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We can then conclude that (V,≺) is proper closed interval order. Let (L,<L) and f0, f1 : N → N be its
witnesses. Let X = {k ∈ N | f1(ak) <L f1(bk)}. If f(n) = k, then f1(ak) <L f0(c

n
k ) by definition.

Moreover, f0(cnk ) <L f1(bk) because cnk | bk . Hence, k ∈ X . To show that if k /∈ ran(g), then k /∈ X the
reasoning is analogous.

3.2.2 Characterisation of indifference graphs

We now turn to the analysis of the strength of the various definitions introduced in 3.10. As for interval
graphs some implications are trivial, for example each distinguishing indifference graph is a closed indifference
by definition. Moreover, the implications from closed to indifference or from closed to distinguishing is
obtainable as for interval graphs (see Theorem 2.15), so we do not repeat it here. More interesting is the fact
that 1-1 indifference and closed indifference graphs collapse into one notion already in RCA0. This is the
unique difference in strength between the characterisations of interval and indifference graphs (see Theorem
2.18), and reflects the difference between interval and proper interval orders. Figure 3.1 summarises the
implications.

Theorem 3.13 (RCA0). If a graph (V,E) is a 1-1 indifference graph, then it is a closed indifference graph.

Proof. Let (V,E) be a 1-1 indifference graph. By Theorem 3.5, there is a proper 1-1 interval order (V,≺)
such that pE q ⇔ p | q for all p, q ∈ V . By Theorem 7.16 in [Marcone 2007] (V,≺) is a proper closed
interval order, so (V,E) is a closed indifference graph.

So we are left to prove the following.

Theorem 3.14 (RCA0). The following are equivalent:

1. WKL0
2. If a graph (V,E) is an indifference graph, then it is a closed indifference graph.

Proof. (1 ⇒ 2) Let (V,E) be a indifference graph. By Theorem 3.5, there is a proper interval order (V,≺)
such that pE q ⇔ p | q for all p, q ∈ V . By Theorem 7.19 in [Marcone 2007] (V,≺) is a proper closed
interval order, so (V,E) is a closed indifference graph.
(2 ⇒ 1) We show that if (V,E) is an indifference graph, which is also a closed interval graph, then it is a
closed indifference graph. Used the same idea as in the proof of Theorem 2.11, claiming that that graph is a
closed interval and an indifference graph showing an interval representation in Q.
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This chapter is devoted to the characterisation of interval graphs whose associated poset is unique up to
duality. To give two extreme examples, any complete graph admits a unique order, because its associated
interval order is an antichain (recall that the graph is the incomparability graph of the order), while any totally
disconnected graph can be turned into infinitely many different chains. Graphs theorists are thus interested
in giving structural characterisations for interval graphs which are uniquely orderable1.

Fishburn’s monography contains some characterisations for interval graphs, building on results proved in
[Hanlon 1982] and in [Roberts 1971], but it considers mainly finite interval graphs. Our first aim is thus to
check whether those characterisations are peculiar of finite graphs or whether they can be extended to the
infinite case. The question is interested on its own, but in our opinion Theorem 2.14 increase its interest.
We already mentioned that the interval graph defined in Theorem 2.14 is not uniquely orderable and some of
its associated orders are definable in RCA0, while others require WKL0. We exploited this fact to prove the
reversal.

Definition 4.1. An interval graph (V,E) is uniquely orderable if there exists an unique (up to duality) order ≺
such that for each v, u ∈ V it holds that ¬uE v if and only if u | v.

Notice that if (V,E) is uniquely orderable by≺, then (V,E) is the incomparability graph of (V,≺). This
choice is due the fact that we are mainly dealing with interval graphs, which, we remind, are incomparability
graphs of interval orders.

Question 4.2. Is it possible to characterise those infinite interval graphs which are uniquely orderable?

The following easy theorem turns out to be useful to narrow down the classes of graphs which admit a
unique orderability. Notice that no assumption on being interval is needed. Indeed the theorem holds for
any incomparability graph, namely for the largest class of graphs for which it makes sense to wonder about
unique orderability.

1The same question arises for comparability graphs in general. [Golumbic 2004; Aigner and Prins 1971; Kelly 1985, Chapter 5.2],
just to cite a sample of papers, contain results about this topic for finite comparability graphs.
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Lemma 4.3 (RCA0). Let (V,E) be a not connected incomparability graph. (V,E) is uniquely orderable if and only if
for each choice of three points at most two are non adjacent (i.e. has exactly two connected components each of which is complete).

Proof. Let (V,E) be a non connected incomparability graph.
(⇒) Assume there exist a, b, c ∈ V such that they are pairwise non adjacent. We claim that there exists

v ∈ V which is not connected with either a, b or c (notice that v may be equal to a, b or c), otherwise
(V,E) would be connected. Suppose on the contrary that each vertex in V is connected with a, b and
c and let v, u ∈ V . By assumption there exist v1, . . . , vn and u1, . . . , um, for some n,m ∈ N, such
that v E v1E . . . E vnE a and aE u1E . . . E umE u. Then v, v1, . . . , vn, a, u1, . . . , um, u is a path
connecting u, v contrary to the fact that (V,E) is assumed to be non connected.

Without loss of generality assume v is not connected with a. Since (V,E) is an incomparability graph,
there exists an order ≺ on V . Suppose a ≺ b ≺ v and assume also that b is not connected with v. We claim
that there exists an order ≺′ on V such that either v ≺′ a ≺′ b or b ≺′ a ≺′ v. If such ≺′ does not exist,
then there must be a point x such that a ≺ x and v | x | b, that is ¬xE a and bE xE v. Thus x witnesses
that b and v are connected, contrary to the assumption. Otherwise, i.e. if b is not connected with v, then it
holds that b is not connected with a, otherwise a and v would be connected trough b, an analogous argument
shows that there exists ≺′ such that either a ≺′ v ≺′ b or b ≺′ v ≺′ a.

The orders ≺ and ≺′ witness that (V,E) is not uniquely orderable.
(⇐) Suppose that for each a, b, c ∈ V it holds that either aE b or bE c or aE c. We show that (V,E)

has two connected components. Let ⟨vn | n ∈ N⟩ be an enumeration of V and set v0 ∈ U . Let U = {vn |
vnE v0} andW = V \ U . It is trivial to check that U is connected, since for each i, j ∈ N, viE v0E vj .
SinceW ̸= ∅, because (V,E) is not connected by assumption, let iminimum such that vi ∈W . Notice that
for eachm such that vm ∈W it holds that vmE vi (this follows from the fact that ¬viE v0, ¬vmE v0, and
from the assumption). HenceW is connected as well.

We claim that both U andW are complete graphs. In fact, if vm, vℓ ∈ U , then ¬viE vm, ¬viE vℓ, thus
vmE vℓ by assumption. A similar argument, with 0 in place of i, shows thatW is complete too. This implies
that (U,≺) and (W,≺) are antichain in any order ≺ associated to E. It follows that any order ≺ on (V,E)
must choose one of the following: u ≺ w, for each u ∈ U and w ∈ W , or w ≺ u, for each u ∈ U and
w ∈W . The graph (V,E) admits a unique ordering up to duality.

Thanks to the previous lemma we can restrict our attention to connected graphs. Moreover, we can
safely assume that the graph we are dealing with are not complete, given that RCA0 proves that any complete
incomparability graph is uniquely orderable, because it gives rise to an antichain. Notice also that universal
points, i.e. vertices connected with all the remaining vertices of a graph, are uninfluential for the uniqueness of
the ordering, since they are isolated in any order. It is then more convenient to assume that a graph does not
contain such vertices, once one is aware of the fact that recognising those points is not a computable task.

Roberts in [Roberts 1971] proved that connected indifference graphs have only one associated order.

Lemma 4.4 (RCA0). Each connected indifference graph is uniquely orderable.

Proof. Suppose (V,E) is a connected indifference graph and ≺, ≺′ are two (non dual) orderings of E. Let
a, b, c ∈ V such that a ≺ b ≺ c and c ≺′ a ≺′ b. By Theorem 3.5 (V,≺) and (V,≺′) are proper interval
orders, so let F ⊆ V × L and F ′ ⊆ V × L′, for some linear orders (L,<L) and (L′, <L′), be interval
representations of ≺ and ≺′ respectively. Since the graph is connected and a ≺ b ≺ c there exists a path
v0, . . . , vn, for some n ∈ N, between b and c which does not contain a. This implies that there exists i ≤ n
such that vi ̸= a and either F ′(a) ⊆ F ′(vi) or F ′(vi) ⊆ F ′(a), contrary to the fact that (V,E) is an
indifference graph.

Notice that the last passage of the previous proof exploits Condition (i4) of Definition 3.2 which differ-
entiate indifference graphs from interval graphs. Lemmas 4.3 and 4.4 settle the question about the uniquely
orderability of indifference graphs.
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4.1 Uniquely orderable finite interval graphs

The graph we mention in this section are all connected, finite and without universal points. Suppose (V,E)
is an interval graph. Saying that (V,E) is not uniquely orderable amounts to checking that there are two
orders ≺ and ≺′ and three vertices a, b, c ∈ V such that a ≺ b ≺ c and b ≺′ a ≺′ c. The vertices a
and b can be reoriented without regard, so to speak, to the order of c. The connected graph with vertices
{a, b, k, r, s} and edges aE k E b, k E r E s, whose interval representation is represented in Figure 4.4, is a
very basic example of a non uniquely orderable connected finite interval graph. The first characterisation of
uniquely orderable interval graphs exploits the above observation to identify subgraphs which are forbidden
in uniquely orderable interval graphs.

Theorem 4.5. Let (V,E) be a finite connected interval graph. The following are equivalent:

1. (V,E) is uniquely orderable,
2. (V,E) does not contain a buried subgraph (defined below),
3. the graph (W,Q) has two connected components, where W = {(a, b) | a, b ∈ V ∧ ¬aE b} and abQ cd ⇔
aE c ∧ bE d.

The previous theorem provides a definitive answer to the individuation of finite connected interval graph
which are uniquely orderable. A proof can be found in [Fishburn 1985, Theorems 3.11-3.12]. We now give
the definitions needed to understand the previous theorem.

Definition 4.6. Let (V,E) be an graph. For each subgraph B let K(B) = {v | ∀b ∈ B (v E b)}. The
subgraph B is a buried subgraph of (V,E) if the following holds:

1. there exists a, b ∈ B such that ¬aE b,
2. K(B) is not empty andK(B) ∩B = ∅,
3. if x0, . . . , xn is a path between b ∈ B and v ∈ V \B, then there exists i ≤ n such that xi ∈ K(B).

The last point of the previous enumeration encapsulates the idea that B is connected with the remaining
vertices of V only viaK(B).

On a first sight, in the situation of the previous definition, if (V,E) is infinite K(B) requires ACA0 to
be defined. The following observation shows that K(B) exists in any model of RCA0 which contains the
buried subgraph B.

Property 4.7. Let B be a buried subgraph of a graph G. ThenK(B) is ∆0
1-definable in B.

Proof. We claim thatK(B) = {v /∈ B | ∃b ∈ B (v E b)}.
If v ∈ K(B), then there is a b ∈ B such that v E b by definition ofK(B). Moreover, sinceB is a buried

subgraphK(B) ∩B = ∅, so v /∈ B.
For the reverse inclusion let v /∈ B and b ∈ B be such that v E b. By point (3) of Definition 4.6

v ∈ K(B).

Property 4.8. Let (V,E) be an interval graph and B be a buried subgraph in (V,E). Then the following holds:

1. K(B) is a complete subgraph,
2. for each r /∈ B ∪K(B) and for each b ∈ B, ¬r E b .

Proof. To prove (1) assume that there exists k, k′ ∈ K(B) such that ¬k E k′. Let a, b ∈ B be such that
¬aE b (the existence of such a, b is guaranteed by Definition 4.6). Then xE k E y E k′E x is a cycle of
length four without chords. By Theorem 2.8 (V,E) is not an interval graph, contrary to the assumption.

Item (2) follows immediately from Definition 4.6, since bE r would imply that there is a path between b
and r with no element inK(B).
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a � d �

x0 �

x′
0 �

Figure 4.1: A connected uniquely orderable interval graph which contains a buried subgraph.

With respect to the second characterisation in Theorem 4.5 notice that if (V,E) is an interval graph and
abQxy, for some a, b, x, y ∈ V , then the order of a and b determines the order of x and y. In fact, by
Theorem 2.8, either ¬aE y or ¬bE x, otherwise aE bE xE y E a is a cycle of length four without chords.
Without loss of generality assume ¬aE y and a ≺ b. If y ≺ x, then y ≺ a because y E a. By transitivity it
holds that y ≺ b contrary to the assumption that bE y. We emphasise that the hypothesis on (V,E) being
an interval graph is crucial to settle the conclusion.

4.2 Uniquely orderable infinite interval graphs

The absence of buried subgraph is a necessary condition for the unique orderability of infinite connected
interval orders as well, while (W,Q) having two connected components is a sufficient condition. The proof
of these two facts is a slight modification of the proof given in [Fishburn 1985] for finite graphs.

Theorem 4.9 (RCA0). If a graph (V,E) is a connected interval graph without universal points and it is uniquely orderable,
then it does not contain a buried subgraph.

Proof. Assume that (V,E) is a connected interval graph without universal points and that B is a buried
subgraph. LetK(B) = {v | ∀b ∈ B (v E b)}, by Property 4.7K(B) is definable in RCA0 and so is the set
R(B) = V \ {K(B) ∪B}. Since there are no universal points, it holds that R(B) ̸= ∅.

Let ≺ be an order associated to (V,E). We claim that the order ≺ is such that R′(B) ≺ B ≺ R′′(B)
and R′(B) ≺ K(B) ≺ R′′(B), where R(B) = R′(B) ∪ R′′(B) (one of the two subset may be empty).
To check that R′(B) ≺ K(B) ≺ R′′(B) notice that it cannot be the case that r ≺ k ≺ r′ ≺ k′ for some
r, r′ ∈ R(B) and k, k′ ∈ K(B), otherwise ¬k E k′, contrary to (1) of Property 4.8. Since each b ∈ B is
≺-incomparable with each k ∈ K(B), it must hold that R′(B) ≺ B ≺ R′′(B).

We define another ordering ≺′ of (V,E) as follows: for each v, u ∈ V such that v ≺ u if v, u ∈ B
let u ≺′ v, otherwise let v ≺′ u. It is easy to check that ≺′ is transitive. To verify that ≺′ is not the dual
of ≺ let a, b ∈ B be such that ¬aE b and r ∈ R(B) and suppose that r ≺ a ≺ b. Then it holds that
r ≺′ b ≺′ a.

Notice that the assumption on the non existence of universal points is crucial in the previous theorem.
Indeed the graph in Figure 4.1 is a connected uniquely orderable interval graph and it contains a buried
subgraph. However, it is easy to realise that if B ⊆ V is a buried subgraph with V = B ∪ K(B), then
(V,E) is uniquely orderable if and only if B is uniquely orderable.

Theorem 4.10 (RCA0). Let (V,E) be a connected interval graph. If for all three pairs of vertices there exists a Q-path
between two of them (i.e. (W,Q) has two connected component), then (V,E) is uniquely orderable.

Proof. We claim that ab and ba, for each ab ∈ W , are not Q-connected. Assume by contradiction that
there exists ab ∈ W such that there exists a path abQx0y0Q . . . QxnynQba connecting ab with ba. By
definition of the relationQ it holds that aE x0E . . . E xnE b and that aE ynE . . . E y0E b. Let (L,<L)
be a linear order and F be an interval representation of (V,E) on (L,<L). We claim that this entails the
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c �

a � b � r0 � r2 �

k � r1 � . . .

Figure 4.2: A graph without buried subgraphs and with a finite subgraph with buried subgraph.

existence of i ≤ n such thatF (xi)∩F (yi) ̸= ∅, namely xiE yi contrary to the definition of (W,Q). Assume
without loss of generality that F (a) <L F (b). Firstly, we claim that if F (xj) <L F (yj) for all j ≤ n, then
F (a) <L F (yn). In fact, since F (a) <L F (b) and F (b) ∩ F (xn) ̸= ∅, then either F (a) <L F (xn) or
F (b) ∩ F (xn) ̸= ∅. Both cases imply that F (a) <L F (yn) contrary to the fact that aE yn. Thus let i+ 1
be minimum such that F (yi+1) <L F (xi+1). Since xiE xi+1, there exists x ∈ F (xi)∩F (xi+1). Let also
y ∈ F (yi+1) and y′ ∈ F (yi). By minimality of i+1 and by the assumptions it must hold that y <L x <L y

′

and thus that F (yi+1) <L F (yi) contrary to the fact that yiE yi+1. Since we are assuming that (W,Q) has
two connected components, thanks to the previous claim, for each ab, cd ∈ W it holds that either cdQab
or cdQ ba.

Let≺ be an order associated to (V,E) and ab, cd ∈W be such that abQ cd. We claim that a ≺ b holds if
and only if c ≺ d holds as well. Notice that it holds that either¬bE c or ¬aE d, otherwise aE cE bE dE a
would be a cycle of length four without chords, contrary to the assumption that (V,E) is an interval graph.
Suppose now that a ≺ b. If ¬bE c, then c ≺ b because ¬aEc. Hence, c ≺ d holds otherwise d ≺ b contrary
to the assumption. If instead bE c, then it must be that ¬aE d holds and so that a ≺ d, otherwise d ≺ b. It
follows that c ≺ d otherwise a ≺ c, contrary to the assumption.

Since the order of a single pair determines the order of the entire component and given that the the two
components are duals, it is possible to conclude that (V,E) is uniquely orderable.

To complete the generalisation of Theorem 4.5 to infinite graphs, it would be enough to prove that if
(V,E) does not contain a buried subgraph, then (W,Q) has two connected components. This would estab-
lish, in particular, that the absence of buried sugraph is a necessary and sufficient condition for the unique
orderability of infinite connected interval graphs, thus getting a structural characterisation for the later class
of graphs.

The missing implication is proved in [Fishburn 1985, Theorem 3.12] for finite interval graphs showing
that the contrapositive statement holds, namely building a buried subgraph from suitable ab, xy ∈W living in
different connected components. The existence of pairs with the properties required by the proof in [Fishburn
1985] heavily depends on the fact that the graphs are finite.

Question 4.11. Is the absence of buried subgraphs a sufficient condition for the unique orderability of infinite
connected interval graphs?

One would be tempted to generalise Theorem 4.5 to the infinite case arguing by compactness, but this
strategy fails. In favour of this strategy one may argue that if (V,E) is a connected interval graph such that
each finite subgraph is uniquely orderable, then (V,E) is itself uniquely orderable (this is due to the fact
that the non unique orderability is witnessed by three points). Nonetheless, there exists a connected interval
graph with no buried subgraph which contains a finite connected subgraph with a buried subgraph. In fact,
let V = {a, b, c, k} ∪ {rn | n ∈ N} and k E a, k E b, k E c, k E r0, aE c, r0E c and rnE rn+1 for each
n ∈ N as represented in Figure 4.2. It is easy to check that (V,E) does not contain a buried subgraph, but
that {a, b} is a buried subgraph in ({a, b, k, r0}, E).
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a � b �

c � d � r0 � r2 �

k � r1 �
. . .

Figure 4.3: A graph with a buried subgraphs and with a finite subgraph without buried subgraph.

...

c0 �

a � b � r �

k � s �

Figure 4.4: A graph which has a buried subgraph, but no finite subgraph has a buried subgraph.

Notice also that there exists a connected interval graph with a buried subgraph which contains a finite
connected subgraph without a buried subgraph. In fact, let V = {a, b, c, d, k} ∪ {rn | n ∈ N} and
k E a, k E b, k E c, k E d, k E r0, aE c, cE b, bE d and rnE rn+1 for each n ∈ N as represented in Figure
4.3. It is easy to check that {a, b, c, d} forms a buried subgraph in (V,E), but that ({a, b, c, d}, E) does not
contain a buried subgraph.

To complete the inspection of the relationship between infinite graphs with buried subgraphs and their
finite subgraphs, we mention the fact that there exists a connected interval graph which contains an infinite
buried subgraph, but no finite buried subgraph. Let (V,E) be as in Figure 4.4, where the dots stand for
infinitely many cn such that cnE cn+1 and cnE k for each n ∈ N. The setB = {x | x = a∨x = b∨xEa}
is a buried subgraph for (V,E), but noB′ ⊆ B is buried. Another example of this kind is depicted in Figure
4.5.

For sake of completeness notice also that there exists a connected uniquely orderable graph with a non
uniquely orderable finite subgraph (see Figure 4.6 for an example). In contrast with this observation, one
may notice that if a not connected interval graph is uniquely orderable, then each finite subgraph is uniquely

x0 � x2 � y2 � y4 �

x4 � x3 � . . . . . .
y1 � y3 � s �

k �

Figure 4.5: A graph which has a buried subgraph, but no finite subgraph has a buried subgraph.
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c � a � c′ �

d � b � d′ �

Figure 4.6: The unique interval representation of graph with a non uniquely orderable subgraph.

orderable. In fact, by Lemma 4.3, each finite subgraph is either complete or has two connected components
each of which complete and it is then uniquely orderable.
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The dimension of a poset is one of the parameters, like width and height, which characterise a poset. Moreover,
it is a comparability invariant, so that each poset associated to a comparability graph has the same dimension.
This parameter was introduced by Ben Dushnik and Edwin Miller in 1941 [Dushnik and Miller 1941] and it
links posets with linear orders. In fact, the notion of dimension builds upon a theorem proved by Edward
Szpilrajn in 1930 which shows that each partial order can be extended to a linear one (for a proof see [Harzheim
2005, Theorem 2.3.2]).

Definition 5.1. Let (P,<P ) be a poset. An order ≺ is partial extension of <P if it holds that <P ⊆ ≺. A
linear extension is a partial extension which is also a linear order.

Definition 5.2. Let (P,<P ) be a poset. The dimension of P is the minimum number n ≤ ω such that there
are linear extensions ≺0, . . . ,≺n−1 of <P which satisfy the following condition for each p, q ∈ P : p <P q
if and only if p ≺i q for each i < n.

Usually the dimension of (P,<P ) is defined as the minimal cardinality of a realiser, which is nothing else
than a family of linear extensions whose intersection is exactly <P . The previous definition is more easily
formalised in arithmetic.

Notice that the dimension of a poset does not measure how far away a poset is from being a linear order.
Indeed, an antichain has dimension two, as witnessed by any linear order and its dual, despite the fact that it
is as far as possible from being a linear order.

To the best of our knowledge not much attention has been devoted to dimension theory from the reverse
mathematics point of view. The following theorem, proved by Douglas Cenzer and Jeffrey Remmel in [Cenzer
and Remmel 2005, Theorem 3.5], is an exception1.

Theorem 5.3. WKL0 is equivalent to the following statement: if (P,<P ) is a poset such that each finite subposet has
dimension at most n, then P has dimension at most n.

1Quite interestingly Francois Dorais in 2012 suggested using dimension to understand if ADS is equivalent to CAC (see http:
//logic.dorais.org/archives/656).
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On the other hand, there are interesting results about dimension theory and computability theory. [Downey
1998, Section 6] and [Kierstead 1986] survey those results.

After its introduction in 1941 several researchers studied properties and bounds for the dimension of
posets. [Harzheim 2005, Chapter 7] is a nice introduction to the topic and [Trotter 2001] is entirely devoted
to dimension theory. Wemainly refer to [Fishburn 1985, Chapter 5] which focuses especially on the dimension
of interval orders. We notice that some statements mentioned in that chapter, in particular Theorems 5.11,
5.13 and 5.14, are easily provable in WKL0 thanks to Theorem 5.3. The original proofs of those statements
generally go through in ACA0 and it gives a more explicit construction of the linear extensions which witness
that the dimension is bounded. Moreover, we establish the equivalence of Theorems 5.10, 5.11 and 5.13 with
WKL0.

5.1 Some basic facts

The first basic fact we highlight, following results in [Harzheim 2005, Chapter 2], is that RCA0 proves that
for each poset there exist linear extensions whose intersection is the partial order.

Lemma 5.4 (RCA0). Let (P,<P ) be a poset and p, q ∈ P be incomparable elements. Then there exists a partial (hence
linear) extension ≺ such that p ≺ q.

Sketch of the proof. For each x, y ∈ P set x ≺ y if and only if either x <P y or x ≤P p and q ≤P y. By
definition ≺ is an extension of <P . It is routine to verify that ≺ is a partial order.

Corollary 5.5 (RCA0). Let (P,<P ) be a partial order. If p, q ∈ P are incomparable, then there exist linear extensions
≺1 and ≺2 such that p ≺1 q and q ≺2 p.

Lemma 5.6 (RCA0). For each poset (P,<P ) there exists i ≤ ω and a sequence ⟨≺n| n ≤ i⟩ of linear extensions which
satisfy the following condition for each p, q ∈ P : p <P q if and only if p ≺n q for each n ≤ i.

Proof. For each p, q ∈ P such that p |P q, let ≺pq ⊇ ≺P be a linear extension such that p ≺pq q. The
existence of such extension is guaranteed by Corollary 5.5. It is immediate to check that, for each r, s ∈ P ,
it holds that r <P s if and only if r ≺pq s in each linear extension ≺pq .

Notice that, by the previous lemma, the dimension of P does not exceed the cardinality of P . However,
the previous lemma does not establish that RCA0 proves that each poset has a dimension, in fact the linear
extensions defined in the lemma may not be the optimal ones. IΣ1

1 surely guarantees that each poset (P,<P )
has a dimension, since it allows to find the minimal i such that there exist linear extensions witnessing that
the dimension of P is i. It would be interesting to understand what amount of induction is really necessary.

Lemma 5.4 may be compared with the following lemma, which is just a particular case of the following
statement, proved to be equivalent toWKL0 in [Cholak, Marcone, and Solomon 2004, Lemma 3.16]: for each
acyclic relation there exists its transitive closure.

Lemma 5.7 (RCA0). The following are equivalent:

1. WKL0,
2. let (P,<P ) be a partial order and R ⊆ P . If (R,≺R) is a linear extension of <P⊆ R×R, then there exists a

linear extension ≺ of <P such that ≺R ⊆ ≺.

Proof. We have only to check that <P ∪ ≺R is an acyclic relation, so that there exists its transitive closure,
and therefore its linearisation. The fact that <P ∪ ≺R is acyclic follows from the observation that if it holds
that p <P q ≺R r, then it holds either that q <P r and so that p <P r, or that q |P r and so that r ≮P p
by transitivity of <P . A similar consideration holds for p ≺R q <P r.
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For the reversal let f, g : N→ N be injective functions with ran(f)∩ran(g) = ∅. LetP = {an, bn, xn, yn |
n ∈ N}. The elements of P are pairwise incomparable with the following exceptions: an <P xk and
yk <P bn if f(k) = n; furthermore, bn <P xk and yk <P an if g(k) = n. Let R be the antichain
{xk, yk | k ∈ N} and ≺R be such that xk ≺R xk+1, yj ≺R yj+1 and xk ≺R yj for each k, j ∈ N.
By definition ≺R is a linear extension of <P⊆ R × R, so let ≺ be a linear extension of <P ∪ ≺R. It is
straightforward to verify that the setX = {n | an ≺ bn} separates ran(f) from ran(g).

Since antichains have dimension two one may wonder if there are posets of arbitrary high dimension. This
question was answered by Dushnik and Miller themselves. The proof of the following theorem is based on
the proof in ([Fishburn 1985, Theorem 5.1]). We notice that it goes through in RCA0.

Theorem 5.8 (RCA0). Let A ⊆ N be a set and P = {{a} | a ∈ A} ∪ {A \ {a} | a ∈ A}. Then (P,⊆) has
dimension |A|.

Proof. Let a∗ = {a} and a∗ = A \ {a} for each a ∈ A. Assume without loss of generality that |A| ≥ 3.
Notice that {a∗ | a ∈ A} and {a∗ | a ∈ A} form two antichains, while a∗ ⊆ b∗ for each a ̸= b in A.

Notice that if a ̸= b it cannot exists a linear extension≺ such that it hold both that a∗ ≺ a∗ and b∗ ≺ b∗,
otherwise, by transitivity, it would hold that a∗ ≺ b∗ contrary to b∗ ⊆ a∗. This implies that the dimension of
P is at least |A|.

For each a ∈ A let ≺a be a linear extension of ⊆ such that b∗ ≺a c
∗ ≺a a∗ ≺a a

∗ ≺a b∗ ≺a c∗ for
each b < c. By definition, for each b ̸= c ∈ A, it holds that b∗ <a c∗ for each a ∈ A. Moreover, it holds
that b∗ <b b

∗ and b∗ <c b∗, that b∗ <b c∗ and c∗ <c b∗ and finally that b∗ <c c
∗ and c∗ <b b

∗. Hence,
⟨<a| a ∈ A⟩ witnesses that the dimension of P is at most |A|.

The previous theorem gives a receipt to generate posets of dimension n for each n ≤ ω. Despite this
fact it is quite hard to define posets with dimension greater than four. Notice that the order used in the proof
is not an interval order, because it hold that a∗ ⊆ b∗ and b∗ ⊆ a∗ but it holds neither that b∗ ⊆ b∗ nor that
a∗ ⊆ a∗ for each a, b ∈ A.

5.2 Dimension and interval orders

As already mentioned, sometimes it is possible to set sharp bounds on the dimension of interval orders. The
next theorem provides another characterisation of interval orders based on the existence of a certain kind of
linear extensions.

Definition 5.9. Let (P,<P ) be a poset and A,B two disjoint subsets of P . Then [A|B] denotes a linear
extension ≺ of (A ∪B,<P ) such that it holds that a ≺ b whenever a ∈ A, b ∈ B, and a |P b.

Theorem 5.10 (RCA0). The following are equivalent:

1. WKL0,
2. a poset (P,<P ) is an interval order if and only if [A|B] exists for each disjoint A,B ⊆ P .

Proof. It is sufficient to check that the relation <′ = <P ∪ {⟨a, b⟩ | a ∈ A, b ∈ B, a |P b} is acyclic if and
only if <P is an interval order. In fact, if <′ is acyclic it can be extended to a linear order ≺ with the desired
properties.

If <P is not an interval order, then let a <P b and c <P d witness the fact that P contains a 2⊕ 2 (see
Theorem 2.3). Let A = {b, d} and B = {a, c}. Since it holds that d <′ a and b <′ c, by definition of <′, it
follows that d <′ a <′ b <′ c′ <′ d, so <′ is cyclic.

Suppose now p0 <′ · · · <′ pn <
′ p0 is a cycle. We show that it contains a 2⊕ 2. There are three cases

to consider: p0 ∈ A, p0 ∈ B or p0 /∈ A ∪B.
Suppose the former holds. It follows from the definition of <′ that pn <P p0.
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Claim 5.10.1. There exists i ≤ n such that pi ∈ B and pi <P p0.
Proof. If there is no pi ∈ B, then p0 <P · · · <P pn <P p0 would be a cycle in<P . Let i ≤ n be maximum
such that pi ∈ B. Then it holds that pi <P pi+1 · · · <P p0 by definition of <′ and thus pi <P p0 holds by
transitivity.

Let i ≤ n satisfy the previous claim. Let also j < i be such that pj ∈ A and pj |P pi. Notice that such
j exists, otherwise p0 <P · · · <P pn <P p0 would be a cycle in <P . Notice that it holds that p0 ≮P pj ,
otherwise it would hold that pi <P pj , contrary to the assumption.

Claim 5.10.2. There exists k < j such that pk ∈ B and pk <P pj .
Proof. Firstly, we claim that there exists k < j such that pk ∈ B. If this does not hold, it follows from the
definition of <′ that pm <P pm+1 for each m < j. This implies that p0 <P pj , contrary to what we just
proved.

Let k < j be maximum such that pk ∈ B. Then it holds that pk <P pj by transitivity of <P and by
definition of <′.

Notice that it holds that p0 ≮P pk and pi ≮P pk , otherwise transitivity implies pi <P pj . Suppose that
p0 |P pk . It follows that pk |P pi, because pk <P pi implies pk <P p0 by transitivity. Moreover, it holds
that p0 |P pj , because we proved that p0 ≮P pj and because pj <P p0 implies pk <P p0, contrary to the
assumption. Thus pk <P pj and pi <P p0 form the desired 2⊕ 2.

Otherwise, it holds that pk <P p0. Since we are assuming that p0 <′ · · · <′ pk , by definition of <′

there exist a < b ≤ n such that pa ∈ A, pb ∈ B, p0 <′ pb <P pa <′ pk , p0 |P pb and pk |P pa.
Notice that p0 |P pa also holds, because p0 <P pa implies that pk <P pa, while pa <P p0 implies that
pb <P p0. Finally, it holds that pk |P pb, because pk <P pb implies that pk <P pa, and pb <P pk implies
that pb <P p0. In this case pk <P p0 and pb <P pa form the desired 2⊕ 2.

If p0 ∈ B, then it holds that p0 <P p1 by definition of <′. It is possible to reason analogously to the
previous case, swapping A with B and <′ with >′, to find a 2⊕ 2.

Lastly, suppose that p0 /∈ A ∪ B. Let a < b ≤ n be such that pa ∈ A, pb ∈ B and pa |P pb (their
existence is guaranteed by definition of <′ and by the fact that <P does not have cycles). Notice that we can
assume a is minimum and b is maximum having the desired properties, since pa <′ pb holds by definition of
<′ and p0 <′ · · · <′ pa <

′ pb <
′ · · · <′ p0 is still a cycle. The choice of a and b implies that p0 <P pa and

that pb <P p0. It follows by transitivity that pb <P pa contrary to the choice of a and b.

For the reversal let f, g : N→ N be injective functions with ran(f)∩ ran(g) = ∅. Let P = A∪B where
A = {an, bn | n ∈ N} and B = {xkn | k, n ∈ N}. The elements of P are pairwise incomparable with the
following exceptions: xkn <P an if f(k) = n and xkn <P bn if g(k) = n.

(P,<P ) is an interval order, so let ≺ be a linear extension of <P witnessing that [A|B] exists. The
set X = {n | bn ≺ an} separates the ranges of f and g. In fact, if f(k) = n, for some k ∈ N, then
bn ≺ xkn ≺ an, by definition of ≺. If g(k) = n, for some k ∈ N, then an ≺ xkn ≺ bn.

The previous theorem turns out to be useful to prove the next one, which contrasts with Theorem 5.8.
Remember that the height of a poset is the maximum size of the chains. Notice that the family of posets used
in Theorem 5.8 has height two.

Theorem 5.11 (RCA0). The following are equivalent:

1. WKL0,
2. every interval order (P,<P ) with height two has dimension two.

Proof. Suppose the statement holds for finite orders (see [Fishburn 1985, p. 86], [Rabinovitch 1978a] or
[Trotter 2001, theorem 8.3.4] for proofs). Since each finite subposet of P is an interval order with height two,
then each finite subposet has dimension two. It follows from Theorem 5.3 that P has dimension two as well.
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For the reverse implication let f, g : N→ N be injective functions with ran(f) ∩ ran(g) = ∅. We define
an interval order (P,<P ) of height two. Let P = {an, bn, cn, dn | n ∈ N} ∪ {xk, yk | k ∈ N}. The
unique comparabilities in <P are the following: an <P xk and bn <P xk if f(k) = n, and cn <P yk and
dn <P yk if g(k) = k.

It is trivial to check that (P,<P ) satisfies the hypotheses. Hence, let ≺1 and ≺2 be linear extensions
such that <P =≺1 ∩ ≺2. Let −1 denote the betweens relation, namely an −1 cn −1 dn if and only if either
an ≺1 cn ≺1 dn or dn−1cn−1an. We claim that the setX = {n | ¬(an−1cn−1bn)∧¬(an−1dn−1bn)}
separates ran(f) from ran(g).

Assume f(k) = n, for some k, n ∈ N. We rule out the possibilities that an −1 cn −1 bn and that
an−1 dn−1 bn. Assume without loss of generality that an ≺1 cn ≺1 bn. Since {an, bn, cn} is an antichain,
then it holds that bn ≺2 cn ≺2 an. It follows from the definition of <P and from the fact that <P ⊆ ≺1

and <P ⊆ ≺2, hat cn ≺1 xk and cn ≺2 xk , contrary to cn |P xk . An analogous reasoning shows that dn
is not ≺1-between an and bn. Thus we conclude that n ∈ X .

A similar argument shows that if g(k) = n, for some k, n ∈ N, then it cannot hold that an and bn are
in between cn and dn, otherwise they would be≺1 and≺2-below yk , contrary to the<P -incomparability. It
follows that n /∈ X .

For strong interval orders it is possible to obtain the same conclusion on the dimension, even dropping
the assumption on the height.

Definition 5.12. A poset (P,<P ) is a strong interval order if p <P q, s <P t, p |P s and q |P t imply
p <P t and s <P q for each p, q, s, t ∈ P .

Theorem 5.13 (RCA0). The following are equivalent:

1. WKL0,
2. each strong interval order it is either a linear order or it has dimension two.

Proof. The proof follows the same line as the proof of Theorem 5.11. For the reversal notice that the order
(P,<P ) defined from the functions f, g is also a strong interval order.

For proper interval orders the bound on the dimension is even tighter. Indeed Rabinovitch proved in
[Rabinovitch 1978b] that each proper interval order has dimension at most three. In [Bosek et al. 2012] it is
defined an on-line algorithm which, for each proper interval order, outputs four linear extensions witnessing
that the dimension is at most four. It is also presented a proper interval order such that the intersection of
each triple of linear extensions is not the poset itself. As a corollary we get that Rabinovitch’s theorem is not
computably true. On the other hand,WKL0 proves this statements thanks to Theorem 5.3.

Theorem 5.14 (WKL0). Each proper interval order has dimension at most three.

Question 5.15. Is Theorem 5.14 equivalent toWKL0?



(s-)RSg/po(k)

(W/CD)

PART III



Ivan Rival and Bill Sands proved the following two theorems in [Rival and Sands 1980].

Theorem. For every infinite graph G there exists an infinite subgraph H such that every vertex of G is adjacent to at most
one vertex ofH or to infinitely many vertices of H .

Theorem. Let (P,<P ) be an infinite poset of finite width. Then there exists an infinite chain C such that every point of
P is comparable to none or to infinitely many elements of C . Moreover, if P is countable, C may be chosen so that each p ∈ P
is comparable to none or to cofinitely many elements of C .

The first theorem concerns graphs, of any cardinality, and the existence of certain subgraphs with peculiar
adjacency relation with the other vertices of the graph. To some extent it resembles Ramsey’s theorem for
pairs RT22. The latter statement asserts that for each infinite graph there exists a subgraph which is either
complete or totally disconnected. In other words, for each graphG there exists a subgraphH such that either
every vertex ofH is adjacent to all vertices ofH , or no vertex of H is adjacent to any vertex ofH .

Rival and Sands noticed that while Ramsey’s theorem fully describes the adjacency structure inside the
subgraph H , it gives no information about the adjacency structure between H and the rest of the graph.
Their first theorem is, in some sense, an attempt to fill this lacking information. On the other hand, to attain
this result, Rival and Sands have to drop the complete information about the adjacency relation inside H .
In fact, they exhibited a graph whose complete and totally disconnected subgraphs are not solutions to the
Rival-Sands statement.

The second theorem improves the first one for a specific class of graphs, namely comparability graphs
whose associated partial orders have finite width (i.e. the size of the antichains is bounded by some k ∈ N).
On one hand, the solution to Rival-Sands second theorem is always a complete subgraph, so that we have
complete information about the internal structure of the solution. On the other hand, there are no points of
the poset comparable with only one element of the solution2.

fl
This part of the thesis is the outcome of a joint project with Alberto Marcone, Paul Shafer and Giovanni
Soldà. The material presented here is the result of our joint efforts.

Overview of the main results. We are interested in analysing these theorems (restricted to countable
graphs and to countable posets) from the point of view of reverse mathematics, in order to understand their
strengths within subsystems of second order arithmetic and to compare them with the strength of RT22. The
first theorem turned out to be equivalent to ACA0, hence stronger than RT22, despite the similarity between
the two statements. On the other hand, a variant of RSg, suggested by Steffen Lempp and Jeffry Hirst and
apparently weaker than RT22, is equivalent to RT

2
2.

The analysis of the second theorem turned out to be more complicated than the first one, but more
interesting and results in new and simpler proofs of Rival-Sands second principle. The proof given in [Rival
and Sands 1980] goes through in Π1

1-CA0. We give proofs which are very different from the original one and
which substantially improve the axiomatic upper bound of the statement. More specifically, we prove that,
for each k ≥ 3, ADS is equivalent to the following statement: for each poset (P,<P ) of width k there exists
an infinite chain C such that every point of P is comparable to none or to infinitely many elements of C .

2[Rival and Sands 1980] contains some open questions about possible improvement of these theorems and let rise some questions
about possible further results. To the best of our knowledge the unique follow up is [Gavalec and Vojtáš 1980], concerning generalisations
of Rival-Sands theorems to solutions of all cardinalities.
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Figure 5.1: A summery of the implications generated by Rival-Sands theorems.

Moreover, we prove that the same statement restricted to posets of width two, is equivalent to SADS over
WKL0.

We also prove that ADS is equivalent to the following stronger version (limited to posets of width two) of
Rival-Sands second theorem: for each poset (P,<P ) of width two there exists an infinite chain C such that
every point of P is comparable to none or to co-finitely many elements of C .

The two principles mentioned are, to the best of our knowledge, the first statements of ordinary mathe-
matics known to be equivalent to ADS and SADS. In reverse mathematics ADS received attention as an easy
consequence of Ramsey’s theorem, which is nonetheless strictly weaker than Ramsey’s theorem for pairs, but
neither computably true nor comparable withWKL0. ADS shares this behaviour with many other statements,
which are quite close, yet non equivalent, to each other. This behaviour contrasts with that of the so called
Big Five of reverse mathematics, which are characterised by a sort of robustness and by the equivalence to
numerous theorems from different areas of mathematics.

Overview of the chapters. Chapter one covers the analysis of Rival-Sands theorem for graphs. After
stating some preliminary definitions we present the forward proof in ACA0 and the reversal. Finally, we com-
ment on the relationship between Rival-Sands theorem and Ramsey’s theorem. The second chapter presents
miscellaneous results used in the final chapter, including some principles about the existence of maximal
chains, some statements about the composition of posets into nicer posets and a bounded version of SRT22.
The third chapter is devoted to Rival-Sands theorem for orders. In section one we present the original proof
of the latter theorem, while we give another proof in ACA0 in section two. Sections three, four and five are
devoted to the equivalence with ADS, and section six to the equivalence with SADS. Some considerations
about a stronger form of Rival-Sands theorem end the chapter.
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By analogy with the notion of homogeneous set adopted for Ramsey’s theorem we introduce the notion of
(0, 1, ω)-homogeneous subgraph.

Definition 6.1. Let (V,E) be a graph. Then an induced subgraph (V ′, E)1 is (0, 1, ω)-homogeneous if each
v ∈ V is adjacent to at most one vertex of V ′ or to infinitely many of them.

Similarly, (V ′, E) is called (0, 1)-homogeneous if each v ∈ V is adjacent to at most one vertex of V ′. (V ′, E)
is called (0, ω)-homogeneous if each v ∈ V is adjacent to none or to to infinitely many vertices of V ′.

Definition 6.2. A graph (V,E) is locally-finite if each v ∈ V has only finitely many neighbours.
A graph (V,E) is highly recursive if there exists a computable function f : V → N which maps each v ∈ V

to the maximum, with respect to <, of its neighbours.

The first theorem in [Rival and Sands 1980] can thus be reformulated as follows:

RSg For each graph (V,E) there exists a (0, 1, ω)-homogeneous subgraph (V ′, E).

RSlfg For each locally-finite graph (V,E) there exists a (0, 1)-homogeneous subgraph (V ′, E).

The main result of this chapter is the following.

Theorem 6.3 (RCA0). ACA0 and RSg are equivalent.

Reading carefully the proof of RSg given in [Rival and Sands 1980] we noticed that it essentially goes
through in ACA0. For sake of completeness we rewrite the proof here (see Theorem 6.9). The reverse
direction is instead proved in Theorem 6.13.

To prove RSg it is useful to introduce some notations and a definition.
1Abusing notation we write (V ′, E) in place of (V ′, E V ′).
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Notation 6.4. Let (V,E) be a graph. Then

• N(a) = {v ∈ V | v E a} ∪ {a} is the neighbourhood of a ∈ V . Notice that a ∈ N(a),

• N(A) =
∪

a∈AN(a) is the neighbourhood of A ⊆ V ,
• F = {a ∈ V | N(a) is finite} is the set of elements with finitely many neighbours,
• T = {a ∈ V | N(a) ∩ F is finite}. Notice that F ⊆ T ,
• N∗(a) = N(N(a) ∩ T ) ∩ F for each a ∈ V ,
• N∗(A) =

∪
a∈AN

∗(a) for A ⊆ V .

Remark 6.5. From a computability theoretic viewpoint, the set F defined above is Σ2-definable in (V,E),
so (V,E)(1) enumerates it. On the other hand, the set T is ∆3-definable in (V,E), so (V,E)(2) computes
it. It is not difficult to see that neither set is computable in (V,E); thus RCA0 does not suffice to prove
their existence. Furthermore, N∗(a) is c.e. in T and Σ3-definable in (V,E) for each a ∈ V , so (V,E)(2)

enumerates it.

Proposition 6.6. Let (V,E) be a graph and a0, . . . , an−1, for some n ∈ N, be a sequence of vertices of F . Then RT1n
proves that

∪
i<nN

∗(ai) is finite.

Proof. Since ai ∈ F , for each i < n, by RT1n it holds that
∪

i<nN(ai), and so
∪

i<nN(ai) ∩ T , is
finite. Moreover, each v ∈

∪
i<nN(ai) ∩ T has finitely many neighbours in F , by definition of T . Thus∪

i<nN
∗(ai) is finite.

Definition 6.7. Let (V,E) be a graph andA,B ⊆ V . We say thatA is disjoint relative toB ifN(a)∩N(a′)∩
B = ∅ for each a, a′ ∈ A.

6.1 A proof for RSg

The proof of the main theorem exploits the following lemma as an essential step towards the conclusion. The
sets F , T and N∗(A) mentioned in the lemma are as in Notation 6.4. Since the proof of the theorem goes
through in ACA0 we just notice that the lemma can be proved in ACA0 as well.

Lemma 6.8 (ACA0). Let (V,E) be a graph such that F ⊆ V is infinite. Let I ⊆ F be infinite and A ⊆ F be finite
and disjoint relative to T . Then there exists a vertex b ∈ I \A such that A ∪ {b} is disjoint relative to T .

Proof. We claim that A ∪ {b} is disjoint relative to T , for each b ∈ I \N∗(A). Suppose on the contrary that
there exists a ∈ A, b ∈ I \N∗(A) and c ∈ N(a) ∩N(b) ∩ T . In other words, it holds that c ∈ N(a) ∩ T
and cE b. Thus b ∈ N(N(a) ∩ T ) and b ∈ I ⊆ F imply that b ∈ N∗(A), contrary to the choice of b.

Let b ∈ I \N∗(A) (Proposition 6.6 guarantees that such a b exists). Thus b is the vertex sought after by
the previous claim and because it holds that A ⊆ N∗(A).

Rival and Sands proved a slightly general version of the previous lemma. Namely they argued that for
each n ∈ N if I0, . . . , In are infinite subsets of F and A ⊆ F is finite and disjoint relative to T , then there
exist distinct b0, . . . , bn such that bi ∈ Ii \A, for each i ≤ n, and A∪ {b0, . . . , bn} is disjoint relative to T .
The proof is by induction and the base case corresponds to the proof of our restatement of the lemma. For
the induction step one assumes that b0, . . . , bm, for somem < n, have already being chosen and argues, very
much as in base case, that there exists bm+1 with the desired properties. To do so RT1k+m, where k = |A|,
is used. In the Rival-Sands variant of the lemma the pigeonhole principle is thus used n times to define the
sequence b0, . . . , bn.
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Our restatement of the lemma is a particular case of Rival-Sands one, namely we prove it for n = 1. This
is sufficient to carry out the proof of RSg and avoids using the lemma for arbitrary n inside the main proof2.

Theorem 6.9 (RCA0). ACA0 proves RSg.

Proof. Let (V,E) be a graph. If F is finite, then let V ′ = V \ N(F ). Because F is finite, V ′ is infinite.
Then (V ′, E) is (0, ω)-homogeneous. In fact, if x ∈ F , then x is connected to none of V ′, otherwise x
is connected to infinitely many vertices in V ′. Notice that in this case every x ∈ V ′ has infinitely many
neighbours in V ′.

We can now assume that F is infinite. This case is split into two subcases depending whetherN(a) ⊆ T
for each a ∈ F or not.

Suppose the former is the case. We define a sequence ⟨an | n ∈ N⟩ of vertices of F as follows

a0 = min a ∈ F

an = min a ∈ F \
∪
i<n

N∗(ai)

Given that F is infinite and by Proposition 6.6 each
∪

i<nN
∗(ai) is finite, the sequence V ′ = ⟨an | n ∈ N⟩

is infinite.

Claim 6.9.1. (V ′, E) is (0, 1)-homogeneous.

Proof. Suppose v ∈ V is such that |N(v) ∩ V ′| > 1 and let m < n be such that v ∈ N(am) ∩ N(an).
Then v ∈ N(am)∩ T , becauseN(am) ⊆ T by assumption, and so an ∈ N(N(am)∩ T )∩F = N∗(am)
contrary to the choice of an. (V ′, E) is thus (0, 1)-homogeneous.

Notice also that (V ′, E) is totally disconnected.
Suppose now that there exists a ∈ F such that N(a) * T . Let a0 ∈ F be such that N(a0) \ T ̸= ∅,

namely such that there exists b ∈ N(a0) such thatN(b)∩F is infinite. We define V ′ as an increasing union
of sets Vi ⊆ F . To do so we also define an auxiliary sequence σi, for each i ∈ N.

To start let V0 = {a0} and σ0 = ⟨a | a ∈ N(V0) \ T ⟩. The assumptions on a0 guarantee that
the sequence σ0 is finite but not empty, and that N(σ0(i)) ∩ F is infinite for each i < |σ|. Thanks to
Lemma 6.8, applied on N(σ0(0)) ∩ F and V0, we obtain a1 ∈ (N(σ0(0)) ∩ F ) \ V0 such that {a0, a1} is
disjoint relative to T . Thus we set

V1 = {a0, a1}
σ1 = ⟨σ0(1) . . . , σ0(|σ0| − 1)⟩aN(V1) \ T

We assume the elements ofN(V1)\T are listed in increasing order. Assume now that the sequences Vn ⊆ F
and σn ⊆ N(Vn) \ T have been defined and that Vn is disjoint relative to T . The sets N(σn(0)) ∩ F and
Vn satisfies the hypothesis of Lemma 6.8, thus let an+1 ∈ (N(σn(0)) ∩ F ) \ Vn such that Vn ∪ {an+1} is
disjoint relative to T . We thus set

Vn+1 = Vn ∪ {an+1}
σn+1 = ⟨σn(1) . . . , σn(|σn| − 1)⟩aN(Vn+1) \ T

We assume the elements of N(Vn+1) \ T are listed in increasing order. Finally let V ′ =
∪

n∈N Vn. By
construction V ′ is an infinite subset of F disjoint with respect to T .

Claim 6.9.2. (V ′, E) is (0, 1, ω)-homogeneous.
2The lemma can actually be stated and proved in RCA0 plus arithmetical induction. The key observation here is the fact thatN∗(A),

for any A ⊆ F , can be defined by bounded Σ4-comprehension, once it has been proved, by BΣ4 that it is finite.
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Proof. Let v ∈ V and m < n be such that v ∈ N(am) ∩ N(an). Since Vn is disjoint relative to T , then
v /∈ T , so v ∈ N(Vn) \ T . We claim that for each s > n, there exists t ≥ s such that at ∈ N(x) ∩ V ′. Let
s > m. Then it holds that v ∈ N(Vs) \ T because Vn ⊆ Vs by construction. Hence, there is an i < |σ|
such that σs(i) = v by definition of σs. The construction guarantees that, at stage t = s+ i+1, Vt contains
a vertex vt ∈ (N(x) ∩ F ) \ Vs+i. Hence, |N(v) ∩ V ′| = ω as required.

Notice also that (V ′, E) is totally disconnected. Assume, on the contrary, that aiEaj for i < j and
ai, aj ∈ V ′. Then aj ∈ N(ai) ∩ N(aj) ∩ T (since F ⊆ T ), so Aj would not be disjoint relative to T ,
contrary to the construction.

Remark 6.10. The proof of the theorem guarantees that each vertex of V ′ is adjacent to none or to infinitely
many vertices of V ′.

Moreover, the proof gives more information about the adjacency structure of (V ′, E), namely

• if F is finite, there exists (V ′, E) not totally disconnected and (0, ω)-homogeneous,

• if F is infinite, then there exists (V ′, E) totally disconnected. Moreover, ifN(a) ⊆ T for each a ∈ F ,
then (V ′, E) may also be found (0, 1)-homogeneous.

The proof of the previous theorem is highly non uniform, since (V,E)(2) is needed to recognise whether
F is finite or not, namely if (V,E) follows in the first or the second case of the proof.

We also emphasise that (V,E)(4) is required in the proof to calculate a (0, 1, ω)-homogeneous subgraph.

Sharper results, concerning the computable strength of Theorem 6.9, can be obtain for locally finite
graphs. Notice that if (V,E) is locally finite, then F = T = V and (V,E) falls under case 2.1 of the
previous theorem.

We give here a simpler, but suitable only for locally-finite graphs, proof of RSlfg.

Theorem 6.11 (RCA0). ACA0 proves RSlfg.

Proof. Let (V,E) be a locally-finite graph. We define an increasing sequence ⟨an | n ∈ N⟩ of vertices as
follows:

a0 = min {v ∈ V }

an = min {v ∈ V | ∀y ∈
∪
i<n

N(ai)(a /∈ N(y))}

Finally, let V ′ = ⟨an | n ∈ N⟩. Since each an ∈ V ′ is at distance at least two from any other am ∈ V ′, then
(V ′, E) is trivially (0, 1)-homogeneous.

The previous proof allows to notice immediately that if (V,E) is highly recursive, then RSlfg is com-
putably true. In fact, since at step n one can computably enumerate the neighbours of a0, . . . , an−1, then
the previous proof gives an effective procedure to build (V,E′). If a computable function f : N → N
bounds the neighbourhood of the vertices of C , then (V ′, E) is ∆V

1 -definable since x ∈ V ′ if and only if
∀y < x∀z < f(y)(z ∈ N(y)→ z /∈ N(x)).

Theorem 6.12 (RCA0). For each highly recursive graph there exists a (0, 1)-homogeneous subgraph.

6.2 A reversal for RSg

Theorem 6.13 (RCA0). RSlfg implies ACA0.
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Proof. Let f : N→ N be an injection. We show that the range of f exists. To do this, we build a locally-finite
graph (N, E) such that we can decode the range of f from any (0, 1, ω)-homogeneousH ⊆ N.

The relation E is the symmetric closure of the following relation

(v, s) ∈ E ⇔ v < s ∧ f(s) < s ∧ f(s) < f(v)

The graph is locally finite. To see this, consider v ∈ N. As f is injective, there are only finitely many s > v
such that f(s) < f(v), and therefore there are only finitely many s > v that are adjacent to v.

Let H ⊆ N be an infinite (0, 1)-homogeneous set. Enumerate H in increasing order as u0 < u1 <
u2 < · · · . We show that, for any n ∈ N, if ∃s(f(s) = n), then (∃s ≤ un+1)(f(s) = n). So suppose
that f(s) = n. If n ≥ s, then s ≤ n ≤ un+1. If n < s, then s is adjacent to all but at most n of the
vertices v < s. This is because f is an injection, so there are at most n = f(s) many vertices v < s with
f(v) < f(s). By the (0,1)-homogeneity of H , at most one neighbour of s is in H . Therefore there can be
at most n + 1 many vertices in H that are < s. Thus un+1 ≥ s. Thus n is in the range of f if and only if
(∃s ≤ un+1)(f(s) = n), so the range of f exists by∆0

1 comprehension.

As a consequence of the previous theorem we get

Theorem 6.14 (RCA0). RSg implies ACA0.

Notice that it is also possible to modify the graph built in the reversal to get a non locally-finite graph.
For example let V = N∪{a} and set a adjacent to all the vertices of V . Notice that this graph follows under
case 2.2 in the proof of Theorem 6.9, since each n ∈ N belongs to F and has a neighbour, namely a, not in
T .

The question about the strength of RSg in the hierarchy of subsystems of second order arithmetic is thus
settled. Nonetheless, it would be interesting to investigate further this principle in order to understand its
computational content more deeply. Theorem 6.13 witnesses that there exists a locally-finite graph whose
(0, 1, ω)-homogeneous sets code 0′. Notice that this is the best possible for locally-finite graphs, since 0′ is
enough to prove RSlfg, as underlined in Theorem 6.11. On the other hand, the proof of Theorem 6.9 for
arbitrary graphs uses several jumps, since it requires to define the sets F , T and N∗(a) for some vertices
a ∈ V (see Remark 6.5). Hence, we suspect that there are graphs, non locally-finite, whose coding power is
higher. Some progresses have been very recently made towards answering to this problem; we now believe
that any degree that is PA relative to (V,E)′′ can compute a (0, 1, ω)-homogeneous to (V,E) and that this
bound is strict.

6.3 RSg and RT22

Introducing Rival-Sands theorem we emphasised the link between RSg and Ramsey’s theorem for graphs,
RT22, which inspired Rival and Sands themselves. The authors exhibited a graph such that each (0, 1, ω)-
homogeneous subgraph is neither complete not totally disconnected. Reverse mathematics provides addi-
tional insight into their result because it gives formal methods to prove that there exists a graph such that each
solution for Ramsey’s theorem does not code a (0, 1, ω)-homogeneous subgraph.

Another measure of the similarity between a certain principle and Ramsey’s theorem is the notion of
‘Ramsey-like statements’. A statement of the form ∀G(φ(G)⇒ ∃Hψ(G,H)) is said to be of Ramsey-type
when it has the following properties:

• if φ(G) and ψ(G,H), then H must be infinite,

• if φ(G), ψ(G,H), and H ′ ⊆ H is infinite, then also ψ(G,H ′).

In other words the feature of Ramsey-like statements is the fact that each infinite subset of a solution is
itself a solution.
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RSg is not in general of Ramsey’s type. For example let V = {an | n ∈ N} ∪ {bn | n ∈ N} ∪ {c}
such that cE an for each n ∈ N. Then H = {an | n ∈ N} ∪ {bn | n ∈ N} is (0, 1, ω)-homogeneous,
but H ′ = {bn | n ∈ N} ∪ {a0, a1} is not (0, 1, ω)-homogeneous. More interestingly, there is a graph
whose (0, 1, ω)-homogeneous subgraphs are not of Ramsey type. Just take the graph mentioned in the first
paragraph, whose (0, 1, ω)-homogeneous subgraphs are neither complete nor totally disconnected. If it had a
(0, 1, ω)-homogeneous subgraphH whose infinite subgraph were still (0, 1, ω)-homogeneous, then applying
Ramsey’s theorem to H one gets a subgraph which is either complete or totally disconnected and which is
(0, 1, ω)-homogeneous contrary to the assumption. However, solutions are always preserved when only
finitely many elements fromH are removed. This implies that ifH is (0, 1)-homogeneous, then each infinite
subgraph is still (0, 1)-homogeneous, and so RSlfg is a Ramsey-type principle.

To better calibrate the different strengths of RSg and RT22 we introduced two weakenings of the former
statement.

wRSg For each graph (V,E) there exists an infinite subgraph H such that either for each x ∈ H
there exists at most one y ∈ H such that xEy, or for each x ∈ H there exist infinitely many
y ∈ H such that xEy.

wwRSg For each graph (V,E) there exists an infinite subgraphH such that for each x ∈ H either there
exists at most one y ∈ H such that xEy or there exist infinitely many y ∈ H such that xEy.

A solution to wRSg or to wwRSg depends only about the adjacency relationship internal to the solution
H , rather than to the adjacency relationship between H and the remaining points. In this respect the two
statements are closer to RT22 than RSg.

The two principles above were suggested by Steffen Lempp and Jeffry Hirst at the workshop ‘Ramsey the-
ory and Computability’ in 2018. The following theoremwas proved in the same occasion with their substantial
help.

Theorem 6.15 (RCA0). The following are equivalent: RT22, wRSg, and wwRSg.

Proof. The implication from RT22 to wRSg and from wRSg to wwRSg are trivial. To prove that wwRSg implies
RT22 we exploit the fact that RT

2
2 is equivalent to SRT

2
2 plus COH.

To prove SRT22 let c : N→ N be a stable colouring and define as usual a graph (V,E) such that xE y if
and only if c(x, y) = 1. LetH be a solution to wwRSg. Notice that if x ∈ H has two neighbours inH , then
it has infinitely many of them.

Suppose there are infinitely many x ∈ H with infinitely many neighbours in H (i.e. there are infinitely
many y ∈ H such that c(x, y) = 1). Notice that for those x the colouring stabilises at 1. We define an
infinite homogeneous set H ′ = ⟨xn | n ∈ N⟩ which is 1-homogeneous. Let x0 ∈ H be such that there are
y, z ∈ H such that y E xE z. Suppose xn has been defined and search for the minimum triple x, y, z such
that x, y, z ∈ H , y E xE z and c(xi, x) = 1 for each i ≤ n. Set xn+1 = x. It is easy to check that the
procedure enumerates an infinite setH ′ ⊆ H , which is 1-homogeneous by construction.

Otherwise there exists x ∈ H such that for each y > x it holds that y is incomparable with all but at
most one elements inH (i.e. such that c(y, z) = 0 for all z ∈ H except at most one). Enumerate an infinite
0-homogeneous set H ′ as follows: if x0, . . . , xn have been defined, let xn+1 be the minimum x ∈ H such
that c(xi, x) = 0 for each i ≤ n. Since there are at most n elements y ∈ H such that c(xi, y) = 1, the
procedure does not halt. We have thus proved that wwRSg implies SRT22.

We now prove that wwRSg implies ADS, which implies COH. Since we are dealing with linear orders it
is more convenient to rephrase wwRSg, in the standard way, using colouring rather than graphs. Let (L,<L)
be a linear order and define a colouring c : [N]2 → 2 such that c(x, y) = 1 whenever x <L y and x < y.
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Let H be a solution to wwRSg, namely for each x ∈ H either there exists at most one y ∈ H such that
c(x, y) = 1 or there are infinitely many such y’s.

Suppose there are infinitely many x ∈ H such that c(x, y) = 1 for infinitely many y ∈ H (i.e. such that
there are infinitely many y ∈ H such that x <L y). We define an ascending chain A = ⟨xn | n ∈ N⟩ as
follows: let x0 be such that there are y, z ∈ H such that c(x, y) = c(x, z) = 1; suppose x0, . . . , xn ∈ A
and that x0 <L · · · <L xn, then search for the minimum triple x, y, z such that x, y, z ∈ H , c(x, y) =
c(x, z) = 1 = c(xn, x) = 1. Set xn+1 = x. By assumption the procedure does not stop and enumerates an
ascending chain.

Otherwise there is x ∈ H such that for each y > x it holds that c(y, z) = 0 for all but one z ∈ H .
We claim that there exists a descending chain in H . Let x0 be the minimum vertex greater that x. If x0 >L

· · · >L xn have been defined, let xn+1 be minimum x ∈ H such that c(xn, x) = 0. Since xn has only
finitely elements inH above it by assumption, the procedure does not halt and enumerates a descending chain.
We have thus proved that wwRSg implies ADS.

Notice that RT22 implies a slightly stronger modification of both wRSg and wwRSg where one substitutes
the condition on the existence of at most one y ∈ H adjacent to x ∈ H with the condition of x ∈ H being
incomparable with all y ∈ H . Since the following theorem proves that RT22, wRSg, and wwRSg are equivalent
over RCA0, the previous variation is equivalent to RT22 as well.
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This chapter contains quite variedmaterial. The first section is devoted to the analysis of some principles about
the existence of maximal chains. As emphasised in the next chapter Rival-Sands second theorem mentions
one of these principles; we named itMMLC. What is more, the strength ofMMLC determines the axiomatic
system needed to carry out the original proof of Rival-Sands theorem. For the sake of completeness, analogous
principles for antichains are mentioned.

The remainder of the chapter is instead related to new proofs of Rival-Sands theorem. We gather some
lemmas and observations essential for the proof of Theorems 8.7, 8.8 and 8.16.

7.1 Some principles about the existence of maximal chains

Several of the following lemmas exploit the tool of true and false stages of an injective function f : N→ N.

Definition 7.1. Let f : N → N be an injective function. The number n ∈ N is a true stage if f(k) > f(n)
for each k > n. Otherwise, n is a false stage.

True stages are interesting from a computability theoretic point of view because the range of f is com-
putable in any infinite subset of true stages. In fact, if n is a true stage, one can determine ran(f) up to f(n)
simply running f on inputs 0, . . . , n.

True stages revealed to be useful also to prove reversals to ACA0. In fact, to prove that the range of some
function f : N → N exists, it suffices to prove that an infinite subset of the true stages of f exists, because
the two are computably equivalent.

68
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We are especially interested in coding the true stages of f , and so the range of f , for some function
f : N→ N, into chains which are solutions to various principles regarding posets. To this end we find useful
a particular ordering on the true and false stages introduced in [Frittaion and Marcone 2014] (see for example
Theorem 4.5) and used later in [Frittaion et al. 2016]. Since we are going to use it several times in Lemmas 7.4,
7.7, 7.10 and 7.10, we present the common construction here separately.

Construction 7.2. Let f : N → N be an injective function. Define a linear order (L,<L) such that L =
{ℓn | n ∈ N} and for each n < m the following hold:

1. ℓn <P ℓm if f(k) < f(n) for some k such that n < k ≤ m (i.e. at stage m, k witnesses that n is a
false stage),

2. ℓm <P ℓn if f(n) < f(k) for all k such that n < k ≤ m (i.e. at stagem, we have no reason to think
that n is a false stage)

It is easy to see that (L,<L) is a chain of order type ω + ω∗ (the false and true stages respectively).

7.1.1 Maximal (anti)chains

Thinking about principles on the existence of maximal chains or antichains, the first natural statement which
blossomed in our mind is the following one.

Lemma 7.3 (RCA0). Let (P,<P ) be a poset. Then there exist a maximal chainD and a maximal antichain E in P .

Proof. Define D inductively adding, at stage n, the minimum element of P comparable with points selected
in the previous stages. It is immediate to check thatD is the desired chain.

Analogously, build E choosing at each step a point incomparable with the points selected in the previous
stages.

Notice that a solution to the previous statement may be finite. For example D (or E) may coincide with
an isolated point or with a maximum, if P contains one of those. Indeed this statement is very weak. It is
enough to require that the maximal chain (or antichain) extends a given chain (resp. antichain) to jump up to
the level of ACA0.

Lemma 7.4 (RCA0). ACA0 is equivalent to the following statements: let (P,<P ) be a poset and C ⊆ P be a chain.
Then there exists a maximal chain D ⊇ C .

Proof. Let (P,<P ) be a poset and C ⊆ P be a chain. Define a sequence of points as follows:

d0 =< -min {p ∈ P | ∀c ∈ C (p <P c ∨ c <P p)}
dn+1 =< -min {p ∈ P | ∀c ∈ C ∪ {d0, . . . , dn} (p <P c ∨ c <P p))}

Let D = ⟨dn | n ∈ N⟩. By construction D is a chain and C ⊆ D. In order to check the maximality, let
p ∈ P \D and dn ∈ D be the greatest such that dn < p. Then, if dn+1 ̸= p, it means that p is incomparable
with some c ∈ C ∪ {d0, . . . , dn} and hence with some d ∈ D.

For the reverse implication let f : N → N be an injective function. We define a poset (P,<P ) and a
chain C ⊆ P in such a way that each maximal chain D ⊇ C codes the range of f .

Let P = {an, cn | n ∈ N} and let <P on {an | n ∈ N} be as defined in Construction 7.2. Moreover,
for eachm and n let

1. cm <P an if ∀k (n < k ≤ m→ f(n) < f(k)) (i.e. n is a true stage at stagem),

2. cm <P cn ifm < n.
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In order to check that <P is an order, we need to verify that it holds that cℓ <P an, for each ℓ, n ∈ N,
whenever there exists m such that either cℓ <P cm and cm <P an, or cℓ <P am and am <P an. Firstly,
suppose cℓ <P cm and cm <P an, then an is a true stage at stagem by definition of<P . It follows that an
is a true stage at all the previous stages and in particular at stage ℓ, so cℓ <P an according to the definition.

Suppose now that cℓ <P am and am <P an. If ℓ ≤ n, then it follows immediately that cℓ <P an. So
suppose that n < ℓ. We claim that n < m holds. Suppose on the contrary thatm < n, so thatm is false at
stage n by definition of <P . Hence,m is false at each later stage and in particular at stage ℓ, contrary to the
fact that cℓ <P am andm < ℓ.

Notice that, since n < m and am <P an, then n is true at stagem by definition of<P . If ℓ < m, then n
is also true at stage ℓ and so it holds that cℓ <P an as wanted. Otherwise, it holds that n < m < ℓ. Suppose
that there exists k such that n < k ≤ ℓ and f(k) < f(n), i.e. n is false at stage ℓ. Since n is true at stagem,
it holds that m < k. Moreover, since m is true at stage ℓ by definition of <P , it holds that f(m) < f(k),
which entails f(m) < f(n) by transitivity. Thusm itself witnesses that n is false at stagem, contrary to the
assumption.

Since C = ⟨cn |n ∈ N⟩ forms a chain in P by definition, we apply the statement to obtain a maximal
chain D extending C . Notice that an is comparable with all elements in C if and only if n is a true stage.
Thus, thanks to the maximality of D ⊇ C , it holds that n is a true stage if and only if an ∈ D. This gives a
∆0

1-definition of the true stages of f , from which one can recover computably the range of f .

Lemma 7.5 (RCA0). ACA0 is equivalent to the following statements: let (P,<P ) be a poset andC ⊆ P be an antichain.
Then there exists a maximal antichain D ⊇ C .

Proof. To prove the statement one can reason as in the proof of Lemma 7.4 just substituting the request of
comparability between dn+1 and C ∪ {d0, . . . , dn} with the requirement of incomparability.

For the reversal let P = {an, bn | n ∈ N} and let am <P bn if and only if f(m) = n, for each
m,n ∈ N. No other comparability holds. Let C = {an | n ∈ N} and D ⊇ C be a maximal antichain. We
claim that P \D = ran(f). In fact, if bn /∈ D, for some n ∈ N, then there existsm such that am -P bn by
maximality of D. Hence n ∈ ran(f) by definition of <P . Moreover, if bn ∈ D, for some n ∈ N, then for
eachm it holds that am |P bn and so n /∈ ran(f) by definition of <P .

Lemma 7.4 guarantees that, if C is infinite, then D does not degenerate to a maximum or to an isolated
point, if P contains any of those. On the other hand, it does not guarantee that D does not contain a
maximum. To attain this we analyse a further principle, the last one about maximal chains. We call a chain
max-less (min-less) if it has no maximal (resp. minimal) element.

MMLC For each poset P and each max-less (min-less) chainC ⊆ P there exists a maximal and max-less
(resp. min-less) chain D ⊇ C .

Notice that MMLC is the statement actually used in the original proof of Rival-Sands second theorem.
We prove thatMMLC is equivalent to Π1

1-CA0, it is so a very strong principle compared to the previous two.
In order to define a max-less maximal chain it is possible to adopt the same strategy as in the proof of the
Lemma 7.4, except for the fact that at each step, one has also to be careful to choose elements which are not
maximal or ‘potentially maximal’. For example if a chain C ⊇ P has only three points a <P b <P c above
it, then not only the maximum c cannot belong to a max-less maximal extension D ⊇ C , but neither a nor
b can belong to D. In a nutshell choosing whether p ∈ P has to be placed in Dinvolves not only testing its
maximality, but rather involves testing whether there is an ω chain above p. This is the difficult part in the
definition of max-less chains in terms of set-existence axioms.

Before turning to the proof of the equivalence between MMLC and Π1
1-CA0, we introduce a definition

and prove a couple of intermediate lemmas that make precise the idea sketched in the previous lines.
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Definition 7.6. Let (P,<P ) be a poset. A point p ∈ P is well founded if there is an ω chain above it. It is
reverse-well founded if there is an ω∗ chain below it.

Notice that p is well founded in (P,<P ) if and only if it is reverse-well founded in (P,>P ). We recall
that if T ⊆ NN is a tree, then the Kleene-Brouwer ordering <KB on T is defined as follows: σ <KB τ if
and only if either τ ⊑ σ or σ(i) < τ(i) for the minimum i such that τ(i) ̸= σ(i), for each σ, τ ∈ T .

Lemma 7.7 (RCA0). The following principle implies ACA0: for each poset (P,<P ) there exists the set of reverse-well
founded elements.

Proof. Let f : N→ N be an injective function and define (P,<P ) as in Construction 7.2. LetR be the set of
reverse-well founded elements. It is straightforward to check that an ∈ R if and only if n is a true stage.

Lemma 7.8 (RCA0). Π1
1-CA0 is equivalent to the following statement: for each poset (P,<P ) there exists the set of

reverse-well founded elements.

Proof. Let (P,<P ) be an order and R be the set of p ∈ P such that there exists a function f : N → N
which enumerates a descending sequence and such that ∀n (f(n) <P p). Notice thatR is Σ1

1-definable and,
according to Definition 7.6, is the set of reverse-well founded elements.

For the reversal, by Lemma 7.7 we may work in ACA0. Let ⟨Tn ⊆ N<N | n ∈ N⟩ be a sequence of
trees. We define a poset (P,<P ) such that P =

∪
n∈N Tn and σ <P τ if and only if σ, τ ∈ Tn and

σ <KB τ for some n ∈ N. Let R be the set of reverse-well founded elements and define X = {n ∈
N | the root of Tn is in R}. We claim that ∀n (n ∈ X ↔ Tn has a path). Notice that the root of Tn is
reverse-well founded if and only if (Tn, <KB) is not well founded. Moreover, ACA0 proves that (Tn, <KB)
is not well founded if and only if Tn has a path1. By Theorem 4.1 we have thus proved Π1

1-CA0.

The previous lemma is the key point of the proof of MMLC in Π1
1-CA0. As already noticed, the set

of well founded elements of (P,<P ) corresponds to the set of reverse-well founded elements of (P,>P ).
Therefore, the previous lemma shows also that the existence of the set of well founded elements of a poset is
equivalent to Π1

1-CA0.

Lemma 7.9 (RCA0). Π1
1-CA0 proves MMLC.

Proof. Let (P,<P ) be a poset and C ⊆ P be a chain without maximal element. Let W be the set of well
founded elements of P . Notice that C ⊆ W . Then, define D as in the proof of Lemma 7.4 just adding the
requirement that dn ∈W , for each n ∈ N.

The next lemma provides a lower bound forMMLC useful to prove the reversal in 7.12.

Lemma 7.10 (RCA0). MMLC implies ACA0.

Proof. Let f : N → N be an injective function and (P,<P ) be defined as in Construction 7.2. Notice that,
since false stages form a c.e. set F , then a subchain C ⊆ F exists in RCA0. By MMLC there exists a max-
less maximal chain D extending C . Notice that D = F , because each true stage has only finitely many
predecessors. Hence, P \D is the set of true stages, from which one can computably recover ran(f).

Remember from Theorem 4.2 that LPP0 asserts that for each non well founded tree T there exists the
leftmost path through T , and that it is equivalent to Π1

1-CA0.

Lemma 7.11 (RCA0). The following principle impliesΠ1
1-CA0: every linear order which is not well founded has a maximal

min-less chain.
1See [Simpson 2009, Lemma V.1.3]
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Proof. Let T ⊆ N<N be a non well founded tree. We show that the principle we are considering implies that
there is a leftmost path in T . Thanks to Lemma 7.10 we can reason in ACA0.

Ordering the elements of T with the Kleene-Brouwer order <KB we obtain the linear order (T,<KB).
Since T is non well founded by assumption, there exists a min-less maximal chainD in (T,<KB).

Let P be defined as follows:

P = {σ ∈ D | ∀τ ∈ D ∃u ∈ D (u ⊒ σ ∧ u <KB τ)}

Notice that P contains the elements of D with reverse-cofinitely many extensions in D. We claim that P
is the leftmost path in T . Firstly, suppose that there are σ, σ′ ∈ P with σ <KB σ′ such that σ ̸⊒ σ′ and
σ′ ̸⊒ σ. Notice that for each u ⊒ σ′ it holds that σ <KB u by definition of <KB , but this contradicts the
assumption that σ′ ∈ P .

To check that P is the leftmost path, suppose that there exists a path P ′ such that σ′(n) < σ(n) for
some σ ∈ P , σ′ ∈ P ′ and some n ∈ N (suppose n is minimum with this property). Then σ′ <KB σ and
σ′ <KB u for each u ⊒ σ, contrary to assumption that σ ∈ P .

Lastly, we verify that P is infinite. Suppose on the contrary that P is finite and so let µ be minimum
in P . Since µ ∈ D and D is min-less, there exists δ ∈ D such that δ <KB µ. Notice that it must be
that µ ⊑ δ, since µ ∈ P and P is the leftmost path. Thus let σ be the immediate ⊑-successor of µ.
Since D is maximal, then σ ∈ D and, by assumption, it also holds that σ /∈ P . Thus let τ be such that
∀u ∈ D (u ⊒ σ → τ <KB u). By choice of σ it holds that u A σ if and only if u A µ. This contradicts
the fact that µ ∈ P , since there exists τ such that ∀u ∈ D (u ⊒ µ→ τ <KB u).

Notice that the following weakening of the previous statement already impliesΠ1
1-CA0: each linear order

(L,<L) which is not well founded has a min-less chain cofinal in L. To prove the reversal one can reason
as in the proof of the previous lemma, just defining P = {σ | ∃σ′ ∈ D (σ′ ⊒ σ) ∧ ∀τ ∈ D ∃u ∈ D (u ⊒
σ ∧ u <KB τ)}.

Summarising the previous results we get the following theorem.

Theorem 7.12 (RCA0). The following are equivalent:

1. Π1
1-CA0,

2. LPP0,
3. MMLC,
4. each non well founded linear order has a maximal min-less chain,
5. each well founded linear order has a maximal max-less chain.

Proof. 1 and 2 are equivalent by Theorem 4.2. 1 implies 3 by Lemma 7.9, while 4 is a weakening of 3. State-
ments 4 and 5 are duals. Finally, 4 implies 2 by Lemma 7.11.

7.1.2 Reformulation of MMLC in terms of LPP0
To complete the analysis ofMMLCwe show that it is possible to rephrase it in terms of the following principle,
introduced in [Towsner 2013].

MPP0 For each ill founded tree T and for each well founded order ≺ there exists a path through T which
is minimal with respect to ≺.

Towsner pointed out that LPP0 is nothing but the restriction ofMPP0 to the order < of the integers.
Let (P,≤P ) be a poset containing a max-less chain. We define a tree T ⊆ N<N such that its paths code

the max-less chains in P and such that the minimal path in T is a max-less maximal chain. Notice that while
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the paths of T are Π0
1-definable, being max-less is a Π0

2 property, so “directly” coding max-less chains is not
feasible. To overcome this difficulty, each σ ∈ T is a pair ⟨p, b⟩ such that p ∈ P , b ∈ N and b contains the
promise on the existence of τ ⊒ σ in T such that τ(|τ | − 1) witnesses that p is not a maximum. With this
in mind let T be the following tree

⟨
⟨pi, bi⟩ | i < k

⟩
∈ T ⇔

{
∀i < j < k ((pi ≤P pj ∨ pj ≤P pi) ∧ pi < pj) ∧
∀i (bi ≤ pk−1 → ∃j < k(pi <P pj))

Suppose g is a path in T and let g′ be its projection on the first component. By definition of T it is
immediate to observe that g′ is a max-less chain in P . Moreover, if C is a max-less chain, since it is possible
to associate to every point of C a satisfiable promise, there is at least one path in T which corresponds to C .

Let ≺ be the lexicographic sum of <P and <. The order ≺ is well-founded and so MPP0 guarantees
that there exists a path g through T which is minimal with respect to ≺. Let g′ be its projection on the first
component. We claim that g′ is a maximal max-less chains of P . Suppose on the contrary that g′ is not
maximal. Hence, let p /∈ g′ be <P -comparable with g′ and not a maximum of g′. Let also b be a suitable
promise for p. It is possible to define a path h such that

h(⟨pi, bi⟩) =


g(⟨pi, bi⟩) if pi < p

g(⟨pi−1, bi−1⟩) if pi−1 > p

⟨p, b⟩ otherwise

By the assumption on p, the projection on the first component of h is a max-less chain. Moreover, h ≺ g,
contrary to the minimality of g.

7.2 Width and chain decomposition

An instance of Rival-Sands second theorem is a poset of finite width. In this section we discuss the relationship
between width and chain-decomposition-number of a poset.

It follows from the definitions that if a poset (P,<P ) has chain-decomposition-number k, then P has
width k. The reverse implication is less immediate and was proved by Dilworth in [Dilworth 1950] (for
another proof of Dilworth’s theorem see [Harzheim 2005, Section 2.5]). Jeffry Hirst in [Hirst 1987, Theorem
3.23] proved that Dilworth’s theorem is equivalent toWKL0.

Theorem 7.13 (RCA0). The following statement is equivalent to WKL0: each poset (P,<P ) of width k has chain-
decomposition-number k.

The proof of the previous theorem reveals that there exists a computable poset of width two which
cannot be decomposed into two computable chains. Despite this Dilworth’s theorem does have an ‘effective
analogue’.

Kierstead was interested in extending the algorithmic or constructive content typical of the finite combi-
natorics to countable structures, following the approach of what we would now call on-line combinatorics.
His approach with respect to the non computability of solutions of Dilworth’s theorem was thus to ask for a
bound b such that each computable poset (P,<P ) of width k can be decomposed into at most b computable
chains. In [Kierstead 1981] the bound b is set to (5k − 1)/4 providing an on-line algorithm to decompose
each poset of width k into (5k − 1)/4 chains. The bound has recently been greatly improved in [Bosek et al.
2018]. However, for our purposes it is not relevant the exact bound on the chain-decomposition-number, but
instead the crucial fact is that the proof of Kierstead’s theorem can be formalised in RCA0, as reveals by an
inspection of the proof that we omit2.

2We thank Keita Yokoyama to help us overcoming some obstacles we encountered in this verification.
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Theorem 7.14 (RCA0). For each k ∈ N, each poset (P,<P ) of width k has chain-decomposition-number at most 5k .

For completeness we mention that Jeffry Hirst in [Hirst 1987, Theorem 3.24] proved also that WKL0 is
equivalent to the antichain version of Dilworth’s theorem, namely each poset (P,<P ) of height k can be
decomposed into k antichains. These theorems can be compared with Theorem 5.3. Moreover Kierstead in
[Kierstead 1986] provides computable analogs for the latter statement, in the spirit of Theorem 7.14.

Existence of (anti)chains in posets of finite width. The previous theorem turned out to be useful
also in some unexpected way. If (P,<P ) is an infinite poset of width (or height) k, then it surely contains
an infinite chain (resp. antichain). One may wonder if these principles are computably true. The answer
is positive and Theorem 7.14 allows to give a straightforward proof of the former. To be more precise we
introduce the following variants of CAC:

CCk Each poset of width k has an infinite chain.

CAk Each poset of height k has an infinite antichain.

Recall that the height of a poset is the supremum of the cardinality of the chains. We denote with CC<ω

andCA<ω the uniform version ofCCk andCAk respectively (i.e. for each k ∈ N, each poset of width (height)
k has an infinite (anti)chain).

It is immediate to see that CCk , for each k ∈ N, is computably true. In fact, each poset of width k is
effectively decomposable into 5k many chains and RT15k finds an infinite chain in P . Moreover, the following
lemma holds.

Lemma 7.15 (RCA0). BΣ0
2 is equivalent to CC<ω .

Proof. Fix k and let (P,<P ) be a poset and C0, . . . , Ck−1 be chains such that P =
∪

i<k Ci. RT1<ω implies
that there exists i < k such that Ci is infinite.

To prove that the reverse implication holds as well, we fix k and show thatCCk implies RT1k . Let c : N→ k
and define the poset (P,<P ) setting p <P q whenever f(p) = f(q) and p < q. P is constituted by k
incomparable chains, hence it has trivially chain-decomposition-number k. Moreover, a chain is homogeneous
for c.

Lemma 7.16 (RCA0). BΣ0
2 is equivalent to CA<ω .

Proof. Let (P,<P ) be a poset of height k. We define a colouring c : N → N such that, for each n ∈ N,
c(n) = ⟨x, y⟩ where x is the maximum length of the chains below n and y is the maximum length of the
chains above n. The two maxima exist because P has height k. Thus the colouring c is bounded and by RT1<ω

there exists an homogeneous setH ⊆ N. It is immediate to check thatH is an antichain.
To prove the reverse implication fix k and let c : N→ k be an instance of RT1k . We define a poset (P,<P )

such that p |P q if c(p) = c(q) and p <P q if c(p) < c(q). It is immediate to check that <P is transitive
and that P has height k. Moreover, an antichain A is homogeneous for c.

Lemma 7.15 straightforwardly implies that ADS finds ascending and descending chains in posets of finite
width (remember that ADS implies BΣ0

2).

Proposition 7.17 (RCA0). ADS proves the following: for each k and for each poset (P,<P ) of width k, P contains either
an ascending or a descending chain.

Proof. Let (P,<P ) be a poset of width k. ByCCk there exists an infinite chainC in P and by ADS it contains
either an ascending or a descending chain.
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7.3 A decomposition for linear orders

The proof of Theorem 8.7 uses the following lemma which allows us to find the well founded part and the
reverse well founded part of a linear order with no suborders of order type ζ in ACA0.

Lemma 7.18 (RCA0). The following statement in equivalent to ACA0: each linear order (L,<L) with no suborder of
order type ζ can be split into its well founded part and its reverse well founded part.

Proof. Let (L,<L) be a linear order (L,<L) with no suborder of order type of ζ . Define X = {x ∈ L |
∀y <P x∃z (y <P z <P x)}; intuitively X is the set of limit points of the well founded part. We claim
that the downward closure of X , X ↓, is well founded. Suppose on the contrary that D = ⟨dn | n ∈ N⟩
is a descending sequence contained in X ↓. Let x ∈ X be such that d0 ≤L x, such x exists by definition
X ↓. By transitivity it holds that D <L x. We define an ascending chain A = ⟨an | n ∈ N⟩ such that
D \ {d0} <L A <L x. Notice that D \ {d0} ∪ A has order type ζ by construction, we thus reach the
contradiction sought after. The ascending chain A is defined as follows:

a0 = min {z | d1 <L z <L x}
an+1 = min {z | an <L z <L x}

For each n ∈ N there exists an with the desired properties because x ∈ X .
Consider L \X ↓. If it is reverse well founded, then X and L \X ↓ provide the desired splitting of L.

Otherwise, we claim thatL\X ↓= O∪R such thatO has order type ω,R is reverse well founded and possibly
empty. In this case X ∪ O and R provides the desired splitting. Since L \ X ↓ is not reverse well founded
by assumption, there exists an ascending chain A = ⟨an | n ∈ N⟩. Let B = {x ∈ L \X ↓| x <L a0} and
suppose B is infinite. Under this hypothesis we define a descending chain C = ⟨cn | n ∈ N⟩ so that C ∪A
forms a ζ . Let

c0 = min {y ∈ L \X ↓| y <L a0 ∧ ¬∃z (y <L z <L a0)}
cn+1 = min {y ∈ L \X ↓| y <L yn ∧ ¬∃z (y <L z <L yn)}

Notice that for each n ∈ N there exists cn with the desired properties because, since B ⊆ L \ X ↓ each
c >P B cannot belong to X . We conclude that B is finite and so that B ∪A is still ascending.

It is easy to verify that if A has an immediate successor x, then x ∈ X and so A ∈ X ↓, contrary to the
assumption. It follows that R = L \ (X ↓ ∪A ∪B) is reverse well founded.

For the reversal let f : N→ N be an injective function and define a linear order (L,<L) as in Construc-
tion 7.2. The reverse well founded part of L correspond with the true stages of f by definition of <L.

7.4 Bounded SRT2k

The last ingredient needed for the following chapter is the following ‘bounded version’ of SRT2k .

Definition 7.19. Let c : [N]2 → k be a colouring. We say that c is n-stable if for each x ∈ N there existsm ≤
n and y0, . . . , ym, such that c(x, yi) ̸= c(x, yi+1) for each i < m, and for each u, v > max{y1, . . . , ym}
it holds that c(x, u) = c(x, v).

Loosely speaking c is n-stable if each x ∈ N changes colour at most n times. We thus introduce the
following principle.

n-SRT2k Each n-stable colouring c : [N]2 → k contains an infinite homogeneous set.
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To emphasise the differences and the commonalities between n-SRT2k and SRT
2
k , for some n, k ∈ N, it

is useful to restate the stability condition as follows: a colouring c : [N]2 → k is stable if for each x ∈ N
there exists m and y0, . . . , ym, such that c(x, yi) ̸= c(x, yi+1) for each i < m, and for each u, v >
max{y1, . . . , ym} it holds that c(x, u) = c(x, v).

Lemma 7.20. For each standard n, k ∈ N, RCA0 proves n-SRT2k .

Proof. We prove the statement by induction on n. For the base case let c : [N]2 → k be 0-stable we define
Hj = {x ∈ N | c(x, x + 1) = j} for each j < k. To check that Hj is homogeneous let x, y ∈ Hj ; by
definition onHj it hold that c(x, x+1) = j and c(y, y+1) = j, thus c(x, y) = j because c is 0-stable. By
RT1k there exists i < k such that Hi is infinite.

Suppose the statement is true for n-stable colouring and let c : [N]2 → k be (n+ 1)-stable.
Suppose there are infinitely many x which witness that c is n + 1-stable, but not n-stable. We define,

for each j < k, a set Hj as the increasing union of sets Hs
j . At stage s, we set x ∈ Hs

j if there are
y0 <N · · · <N yn+2 <N s such that c(x, yi) ̸= c(x, yi+1) for each i ≤ n and c(x, yn+2) = j. By
assumption

∪
j<kHj is infinite and so there is a j < k such that Hj is infinite by RT1k .

Otherwise, there is an x such that c (N \ {0, . . . , x}) is n-stable. The colouring contains an homoge-
neous set by induction hypothesis.

Corollary 7.21 (RCA0). For each n ∈ N, BΣ0
2 is equivalent to for all k n-SRT2k .

Proof. The forward direction is a straightforward consequence of the proof of the previous lemma which
indeed shows that RCA0 proves ∀k(RT1k → n− SRT2k), so that BΣ0

2 proves ∀k n-SRT
2
k .

For the reversal let c : N→ k be an instance of RT1k . Define a colouring d : [N]2 → k such that d(x, y) =
c(x) for each x, y ∈ N. By definition d is 0-stable so let H be an infinite homogeneous set for d. It is
immediate to verify thatH is homogeneous for c too.

Since n-SRT2k is proved in RCA0 by induction on n we do not get immediately that RCA0 proves that for
each n ∈ N n-SRT2k holds. However IΣ0

4-induction is sufficient to prove the uniform version of this principle.
In fact, once n, k ∈ N are fixed, Lemma 7.20 actually proves that for eachX ⊆ N and for each e ∈ N if φX

e

codes a k-colouring of [N]2 such that each x changes colour at most n times, then there exist i and j < k
such that φX

i is homogeneous for j. Once formalised the previous statement one gets the following result.

Corollary 7.22 (RCA0). IΣ0
4-induction proves n-SRT2k for each k, n ∈ N.
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The following definition is analogous to Definition 6.1 for posets.

Definition 8.1. Let (P,<P ) be a poset. ThenC is a (0, ω)-homogeneous chain for (P,<P ) if each element
of P is comparable to none of the elements of C or to infinitely many of them.

The second theorem in [Rival and Sands 1980] can thus be reformulated as follows:

RSpoW<ω For each k and each poset (P,<P ) of width k there exists a (0, ω)-homogeneous chain C .

To better analyse the strength of RSpoW<ω it is convenient to introduce RSpo
W
k , which is simply the re-

striction of RSpoW<ω to posets of width k, and RSpoCDk , the restatement of RSpoWk for posets with chain-
decomposition-number k.

RSpoWk For each poset (P,<P ) of width k there exists a (0, ω)-homogeneous chain C .

RSpoCDk For each k and each poset (P,<P ) with chain-decomposition-number k there exists a (0, ω)-
homogeneous chain C .
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Since, by Dilworth’s theorem, each poset of width k has chain-decomposition-number k, the second of
the previous principles is a natural restatement of the first. Furthermore, the chain decomposition of a poset
turned out to be a very convenient framework in any proof but the original proof of the Rival-Sands theorem
(which could nonetheless be rewritten using this notion) of Rival-Sands theorem.

Each partial order of finite width (P,<P ), viewed as a graph, is an instance of RSg, which thus provides
a (0, 1, ω)-homogeneous subgraph (V ′, <P ) of (P,<P ). Certainly such a V ′ contains an infinite chain
C , because P has finite width, but as emphasised in Section 6.3 C may not be (0, 1, ω)-homogeneous. To
give a specific example let (P,<P ) be composed by two ω-chains A and B which coincides for the first n
points, for some n ∈ N, and which are incomparable from the n + 1th point on. The graph P itself is
(0, 1, ω)-homogeneous, but it is clearly not a chain. Moreover, it contains the chain A which is not (0, ω)-
homogeneous, because each b ∈ B is comparable with n elements of A.

8.1 The original proof of RSpoW
<ω

Unlike the case of RSg, the Rival-Sands proof for RSpoW<ω cannot be the optimal one. In fact, RSpo
W
<ω is

a Π1
2-statement, the original proof goes through in Π1

1-CA0, and a Π1
2-statement cannot be equivalent to

Π1
1-CA0. This implies that the complexity of RSpoW<ω is strictly weaker thanΠ1

1-CA0. Nonetheless we prefer
to present in Theorem 8.3 the original proof, emphasising which set existence axioms are used, because it
contains some ideas we develop and exploit in other proofs of RSpoW<ω and because, to better understand
its strength, we were pushed to study some interesting principles about the existence of maximal chains we
discussed in Section 7.1.

Notation 8.2. Let (P,<P ) be a poset and A be an ascending chain. Then Am denotes the ascending
sequence ⟨an |n ≥ m⟩, which forms a tail of A.

By definition a chainA is not (0, ω)-homogeneous if there exists a point p ∈ P such that p is comparable
with some element of A but only with finitely many elements of them.

Suppose now that the chain A = ⟨an | n ∈ N⟩ is ascending and not (0, ω)-homogeneous. In this
case we can be more specific about the comparability relation between such a p and the points of A. In
fact, there must exists n ∈ N such that p >P an and p |P An+1 (see Definition 11 for the definition of
p |P An+1). We often call such a p a counterexample to A being (0, ω)-homogeneous. If each tail of A is
not (0, ω)-homogeneous, then there must be infinitely many of such p each of which witnesses that An is
not (0, ω)-homogeneous for cofinaly many n ∈ N. Lemma 8.4 provides more details about this.

Theorem 8.3 (RCA0). Π1
1-CA0 proves RSpoW<ω .

Proof. Let (P,<P ) be a poset of width k, for some k ∈ N, and assume that P does not contain a (0, ω)-
homogeneous chain. Since P has finite width, then it contains an ascending chain or a descending chain by
Proposition 7.17. Assume that P has an ascending chain (the case where P contains a descending chain may
be obtained by considering (P,>P )).

We define inductively triples (Si, Ci, Di), for each i ≤ k, such that Si ⊆ P , Ci ⊆ Si is a maximal
max-less chain andDi is cofinal in Ci and of order type ω1. Those triples will allow to define an antichain of
length k + 1, contrary to the assumption.

At the base step set S0 = P and, by Lemma 7.9, let C0 ⊆ S0 be a maximal max-less chain. Let also D0

be a cofinal in C0 and of order type ω.
1It is not necessary, and not required in the original proof, that Di is an ω chain, for each i ≤ k. We introduce this change, which

affects neither the structure of the proof nor its strength, to better emphasise the features of Si+1, as defined in the inductive step, and
to slightly modify Claim 8.3.1 in a way that allows us to introduce a schema of argumentation very useful in the other proofs of RSpoW<ω .



CHAPTER 8. RIVAL-SANDS THEOREM FOR ORDERS 79

Suppose (S0, C0, D0), . . . , (Si, Ci, Di) have been defined such that, for each j ≤ i, Sj = {p ∈ P |
∃d ∈ Dj−1 ∀e >P d (p >P d ∧ e |P p)}, Cj ⊆ Sj is a maximal chain without maximum and Dj is
cofinal in Cj and of order type ω. Notice that by assumption each tail of Di is not (0, ω)-homogeneous.
Let Si+1 = {p ∈ P | ∃d ∈ Di ∀e >P d (p >P d ∧ e |P p)} (notice that, in the terminology previously
introduced, Si+1 is the set of counterexamples of Di). Notice that Si+1 ̸= ∅, otherwise Di would be
(0, ω)-homogeneous. The following claim proves that Si+1 contains a max-less chain.

Claim 8.3.1. There exists a max-less chain in Si+1.
Proof. Suppose on the contrary thatm0, . . . ,mn, for n < k are the maximal elements of Si+1. By definition
of Si+1 there exist d0, . . . , dn such that dj ∈ Di and ∀e >P dj(e |P mj), for each j ≤ n. Let e ∈ Di be
greater than dj for each j ≤ n, so that e |P mj for each j ≤ k. We claim that D = {p ∈ Di | p ≥P e}
is a (0, ω)-homogeneous chain, contrary to the assumption on P . In fact, if p ∈ P \ Si, then either p is
incomparable with Di, hence with D, or it is below some d ∈ Di, hence below infinitely many points in D.
Otherwise, if p ∈ Si, then there exists a j ≤ n such that p <P mj , by choice of m0, . . . ,mn. This entails
that p |P D.

The previous claim and Lemma 7.9 guarantee the existence of a maximal max-less chain Ci+1 ⊆ Si+1.
Let Di+1 be cofinal in Ci+1 and of order type ω.

Claim 8.3.2. For each j ≤ i, Di+1 ⊆ Sj .
Proof. Fix j < i and assume, as induction hypothesis, that Di+1 ⊆ Sn, for each n < j. To prove that
Di+1 ⊆ Sj , by definition of Sj , we have to verify that for each di+1 ∈ Di+1 there exists a dj−1 ∈ Dj−1

such that dj−1 <P di+1 and e |P di+1 for each e >P dj−1. Fix now di+1 ∈ Di+1.
Since di+1 ∈ Si+1 there exists di ∈ Di such that di <P di+1. For the same reason there exists

di−1 ∈ Di−1 such that di−1 <P di. Iterating this procedure we find di, . . . , dj such that dn ∈ Dn, for
each i ≤ n ≤ j, and di+1 >P di >P · · · >P dj . By transitivity it holds that di+1 >P dj . Since dj ∈ Sj

there exists dj−1 ∈ Dj−1 such that dj−1 <P dj and e |P dj for each e >P dj−1. By transitivity it holds
that dj−1 <P di+1.

We are left to check that e |P di+1 for each e >P dj−1. Suppose on the contrary that this is not the case.
Notice that if there exists e >P dj−1 such that e >P di+1, then transitivity implies that e >P dj , contrary to
the choice of dj . Hence, it must be that di+1 >P e for each e >P dj−1. LetC = {d ∈ Di+1 | d ≥P di+1}.
By induction hypothesis it holds thatC ⊆ Sj−1. Moreover it holds thatCj−1 <P C , becauseDj−1 is cofinal
in Cj−1. These two fact imply that Cj−1 ∪ C is a max-less chain in Sj−1, contradicting the maximality of
Cj−1.

At step k + 1 it is possible to define an antichain of size k + 1 as follows:

ck = min d ∈ Dk

ci = min {d ∈ Di | c |P ci+1 ∧ · · · ∧ c |P cn}

The existence of cn, . . . , c0 is guaranteed by the previous claim. In fact, if cn, . . . , ci have been defined, then
cj ∈ Si, for each i ≤ j ≤ n, and so it is incomparable with cofinitely many points in d ∈ Di−1. The
existence of this antichain contradicts the assumption on the width of P , so we conclude that there exists a
(0, ω)-homogeneous chain.

Suppose that (P,<P ) is a poset of width k without (0, ω)-homogeneous chains and containing an as-
cending chain. Notice that Si, for each i ≤ k, is defined by a ∆0

2 formula relative to Di−1. In fact, being
Di−1 ascending, the formula

∃d ∈ Di−1 ∀e >P d (si >P d ∧ e |P si)

is equivalent to
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∃d ∈ Di−1 (si >P d) ∧ ∀e ∈ Di−1 ∃f >P e (si |P f)

The ascending chainDi is instead computable in Ci. In fact, suppose ⟨cn | n ∈ N⟩ is an enumeration of
Ci and d0, . . . , dn have been chosen to be inDi, then, by the standard inductive construction, choose dn+1

to be the minimum d > dn and d >P dn. It is easy to check thatDi is cofinal and ascending.
The most delicate passage in the proof of Theorem 8.3 concerns the existence of the maximal max-less

chains C0, . . . , Ck as explained in Section 7.1.
Theorem 7.12 witnesses that the full strength of Π1

1-CA0 is used in the proof of Theorem 8.3 through
MMLC. Nonetheless, as already mentioned, RSpoW<ω cannot be equivalent to Π1

1-CA0. This mismatch be-
tween the lower and upper bound reminds other Π1

2-principles, as those analysed in [Marcone 1996] and
[Shafer 2012], whose known proof goes through in Π1

1-CA0 because some form of maximality is used in the
proof. Henry Towsner studied extensively those cases noticing that often, and in particular in the two prin-
ciples previously mentioned, maximality in not used in its full strength, since one needs that certain objects
are maximal with respect to certain, not all, objects. [Towsner 2013] presents a detailed framework where this
idea is make explicit and defines a hierarchy of weakening of LPP0.

To obtains a deeper comprehension of the proof of Theorem 8.3 it would be interesting to understand if
one of the Towsner’s principles might replaceMMLC (given the fact thatMMLC can be reformulated in terms
of LPP0, as shown in Section 7.1.2). More explicitly one needs to understand whether maximal max-less chains
in Claim 8.3.2 can be replaced with max-less chains which are maximal with respect to a class of Σ-definable
chains for some formula Σ.

Looking at the proof of RSpoW<ω under this perspective, one can notice that the chain C , defined in
Claim 8.3.2 to contradict the maximality of Cj−1, is computable in Di+1 and so in Ci+1. Hence, the chain
Cj−1 ∪ C is computable in Ci+1 ⊕ Cj−1. It would be interesting to figure out what is Σ in this particular
case, in order to calibrate better the strength of the maximality we are using. The difficulty in carrying on this
analysis here relates to the fact that Ci is defined thanks to C0 ⊕ · · · ⊕ Ci−1, which are maximal max-less
chains themselves.

8.2 A lower upper bound for RSpoW
<ω

Despite the great strength required by the original proof, we were able to give an entirely different proof of
RSpoW<ω , which goes through in ACA0.

The key difference between the proofs of Theorem 8.3 and of Theorem 8.7 is the replacement of maximal
max-less (or min-less) chains, not useful in a weaker subsystem, with well founded max-less (resp. reverse-well
founded min-less) chains. To this end Lemma 7.18 comes into play.

The other two main ingredients of the proofs are: the Dilworth decomposition of the partial order into a
finite number of chains (see Section 7.2) and a finer analysis of the notion of counterexamples to ascending or
descending chains whose tails are not (0, ω)-homogeneous. Lemma 8.4 is devoted to the latter and expands
the comment on counterexamples to ascending or descending chains made at the beginning of Section 8.1.

Lemma 8.4 (ACA0). Let (P,<P ) be a poset and C0, . . . , Ck−1 be chains such that P =
∪

i<k Ci. Let A =
⟨an | n ∈ N⟩ be an ascending chain included in Ci, for some i < k, such that each tail of A is not (0, ω)-homogeneous.

Then there exist j < k and an ascending chain B = ⟨bn | n ∈ N⟩ included in Cj such that ∀m ∃n >
m ∃ℓ (an <P bℓ ∧ ∀r > n (ar |P bℓ)).

Proof. Supposem ∈ N is such that ∀n > m ∀p (an ≮P p ∨ ∃r > n (ar -P p)). Then for each p ∈ P and
for each n > m, either p is above or incomparable with A or p <P ar for some r > n. The chain An+1 is
thus (0, ω)-homogeneous, contrary to the assumption.

Notice that the sequence of points satisfying the formula above is infinite. In fact, suppose that am <P p
and ∀r > m (ar |P p) for somem ∈ N and some p ∈ P . Then, there must be ann > m and a p′ (notice that
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one can choose p′ such that p < p′) such that an <P p′ and ∀r > n (ar |P p′). Since am+1 ≤P an <P p′

and am+1 - p, it holds that p ̸= p′.
Let S ⊆ P be the sequence of points satisfying the formula above. RT1k guarantees that there exist an

infinite set B ⊆ S and j < k such that B ⊆ Cj . We claim that B is ascending. In fact, let p < p′ as in
the previous paragraph and suppose that p and p′ belong to B. If p′ <P p, then by transitivity it holds that
am+1 <P p, contrary to the assumption.

In the situation of the previous lemma we often call B a counterexample to A or we say that B witnesses
that each tail of A is not (0, ω)-homogeneous. Very similar considerations hold for a descending chain A
which does not contain (0, ω)-homogeneous chains. Indeed an ω∗ chain has order type ω in (P,>P ) and it
is (0, ω)-homogeneous in (P,<P ) if and only if it is (0, ω)-homogeneous in (P,>P ). The unique change to
the notion of counterexample to descending chains is thus due to the fact that, in this case, the counterexample
B is a descending sequence such that ∀m ∃n > m ∃ℓ (an >P bℓ ∧ ∀r > n (ar |P bℓ)).

Counterexamples to ascending and descending chains whose tails are not (0, ω)-homogeneous have thus
a very clear structure. This is the main reason why they play a central role in each of the proofs of RSpoW<ω

we give, included the original one.
It is very convenient to introduce the following definition to describe some relations between A and B.

Definition 8.5. We say that D is pointwise bounded by A, or A <∀∃ D, if for each a ∈ A there exists d ∈ D
such that a <P d. If A = {a} (or D = {d}), then we write a <∀∃ D (resp. A <∀∃ d).

Property 8.6. In the situation of the previous definition the following facts holds:

• A <P d if and only if A <∀∃ d;
• if A has no maximum and A ⊆ D then A <∀∃ D;
• a <∀∃ D if and only if a <P Dn for some n ∈ N;
• <∀∃ is transitive.

Notice that, ifD is a counterexample to A, it holds that A <∀∃ D and it does not hold that D <∀∃ A.

Theorem 8.7 (RCA0). ACA0 proves RSpoW<ω .

Proof. Let (P,<P ) be a poset of width k and let C0, . . . , Ck−1 be the decomposition chain according to
Theorem 7.13. Assume that (P,<P ) does not contain a (0, ω)-homogeneous chain. Notice that any chain
Z of order type ζ is (0, ω)-homogeneous. In fact, if p ∈ P is comparable with some z ∈ Z , then it is either
comparable with all elements above z or with all elements below z. It follows that Ci, for each i < k, does
not contain chains of order type ζ . By Lemma 7.18 we can split Ci, for each i < k, in its well founded part
Wi, refined deleting maximal elements, and its reverse well founded part Ri.

Suppose thatW0, . . . ,Wu, for some u < k, are the non empty well founded chains. If all of them are
empty, then some reverse well founded chain is not empty and we can reason analogously with the obvious
changes. For each i ≤ u let Ai = ⟨an | n ∈ N⟩ be a cofinal sequence inWi of order type ω. By assumption
each tail ofAi, for each i ≤ u, is not (0, ω)-homogeneous, so letBi be a counterexample toAi by Lemma 8.4.
Let h : {0, . . . , u} → {0, . . . , u} be a bijection such that Bi ⊆ Ch(i), for each i ≤ u. Since Bi is ascending
then it holds, for each i ≤ u, that Bi ⊆Wh(i).

Notice that, for each i ≤ u, it holds that Bi <∀∃ Ah(i) since Ah(i) is cofinal in Wh(i). Since it holds
that Ah(i) <∀∃ Bh(i), by choice of Bh(i), and since <∀∃ is transitive, it holds that Bi <∀∃ Bh(i), for each
i ∈ N. By transitivity we get that Bhn(i) <∀∃ Bhm(i) for each i ≤ u and each n ≤ m ∈ N (hm(i) stands
for themth iteration of h(i), where h0(i) = i).

We claim that there exist i, j ∈ N such that i < j and hi(0) = hj(0): simply consider h(0), h(h(0)), . . . .
Let i, j ∈ N satisfy the previous claim. It follows from the previous paragraph that Bhi+1(0) <∀∃ Bhj(0)

and so that Bhi+1(0) <∀∃ Bhi(0). Finally, it holds that Bhi+1(0) <∀∃ Ahi+1(0), since Bhi(0) <∀∃ Ahi+1(0)

by cofinality of Ahi+1(0). This contradicts the fact that Bhi+1(0) is a counterexample to Ahi+1(0).
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8.3 An equivalence with ADS

The main theorem of this section is the following one.

Theorem 8.8. For each k ≥ 3, RCA0 ⊢ ADS↔ RSpoWk .

Proof. Fix k ≥ 3 and let (P,<P ) be a poset of width k. By Theorem 7.14P has chain-decomposition-number
h, for some h ≤ (5k − 1)/4. By Theorem 8.13 P contains a (0, ω)-homogeneous chain C .

We now prove that RSpoW3 , and so RSpo
W
k , implies ADS.

Let (L,≤L) be a linear order and consider (L× 3, <P ) with the product partial order (with the ordering
0 <3 1 and 2 <3 1). Since L× 3 has clearly width 3, let C be a (0, ω)-homogeneous chain for L× 3.

For each i < 3 set Ci = C ∩ (L × i). By definition of <P it is easy to see that C ⊆ C0 ∪ C1 or
C ⊆ C1 ∪ C2. In fact (ℓ, 0) and (ℓ, 2) are incomparable for each ℓ ∈ L.

We claim that C1 has no maximum. Suppose on the contrary that (m, 1) is a maximum of C1 and hence
of C . Since C0 = ∅ or C2 = ∅ and both (m, 0) and (m, 2) are below (m, 1), then at least one between
(m, 0) and (m, 2) is comparable with some and finitely many elements ofC . This contradicts the assumption
that C is (0, ω)-homogeneous. Hence, if C1 ̸= ∅, we can recursively define an ascending chain in it.

Otherwise, by RT13 at least one betweenC0 andC2 is infinite. In this case eitherC0 orC2 has nominimum,
otherwise there would be a point in (L, 1) incomparable with all C but the minimum. It is thus possible to
define recursively a descending chain in C0 or C2, which is obviously a descending chain in L.

8.3.1 Local counterexamples to ω chains

Before getting into the proof of Theorem 8.13 we anticipate some ideas and considerations that hopefully
guide the reader toward a better comprehension of the proof itself.

Let (P,<P ) be a poset with chain-decomposition-number k. The main idea behind the proof is to focus
almost exclusively on ω chains (as usual it would be the same focusing on ω∗ chains) and to use extensively
the fact that for each ascending chain whose tails are not (0, ω)-homogeneous there exists a counterexample.
On a first sight this may appear to be a problem since the most natural definition of counterexample requires
ACA0, as witnessed by Lemma 8.4.

The key point behind the proof of Theorem 8.13 is actually the fact that the counterexample may be
found computably even if this may require trails and errors in its search. The following lemma is a computable
modification of Lemma 8.4.

Lemma 8.9 (RCA0). Let (P,<P ) be a poset and C0, . . . , Ck−1 be chains such that P =
∪

i<k Ci. Let A =
⟨an | n ∈ N⟩ be an ascending chain included in Ci, for some i < k, such that each tail of A is not (0, ω)-homogeneous.

Then there exist j < k and an ascending chain D = ⟨dn | n ∈ N⟩ included in Cj such that ∀m ∃n >
m ∃ℓ (an <P dℓ ∧ an+1 |P dℓ).

Proof. Firstly, we prove that the formula ∀m ∃n > m ∃p ∈ P (an <P p ∧ an+1 |P p) holds. Suppose not,
namely suppose that

∃m ∀n > m ∀p ∈ P (an ≮P p ∨ an+1 -P p)

Letm satisfy the formula. Then for each p ∈ P and for each n > m, either p is above or incomparable with
A or p <P ar for some r. The chain An+1 is thus (0, ω)-homogeneous.

Notice that the sequence of points satisfying the formula above is infinite. In fact, suppose that am <P p
and am+1 |P p for somem and some p ∈ P . Then, there must be an n > m and a p′ such that an <P p′

and an+1 |P p′. Since am+1 ≤P an <P p′ and am+1 - p, it holds that p ̸= p′.
Let S ⊆ P be the sequence of points satisfying the formula above. RT1k guarantees that there exist an

infinite setD ⊆ S and j < k such thatD ⊆ Cj . We claim thatD is ascending. In fact, let p and p′ as before
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and suppose that p and p′ belong to D. If p′ <P p, then by transitivity it holds that am+1 <P p, contrary
to the assumption.

Notice that the proof is identical to the proof of Lemma 8.4 except for a small change in the formula
proved to be true. This change allows to enumerate S in RCA0.

Definition 8.10. Each ascending chain D satisfying Claim 8.9 is named a local counterexample to A.

Notice that ifD is a local counterexample to A, then A <∀∃ D by definition of local counterexample.
In contrast to from the counterexamples of Lemma 8.4 there is no guarantee that a local counterexample

D to A witnesses that each tail of A is not (0, ω)-homogeneous. There are in fact two possibilities:

• ∀d ∈ D ∃a ∈ A (d <P a), i.e. D <∀∃ A

• ∃d ∈ D ∀a ∈ A (d ≮P a)

In the first case D surely does not witness that each tail of A is not (0, ω)-homogeneous, since each
d ∈ D is comparable with infinitely many points of A. In this case we say that the local counterexample D
interleaves A.

In the second case it is possible to refineD in such a way that ∀a ∈ A (d0 ≮P a). We always assume that
this refinement is done and we actually call D the refined chain as well. Notice that no d ∈ D is below any
point inA. Hence,D witnesses that each tail ofA is not (0, ω)-homogeneous. For this reason we occasionally
say that D is a real counterexample of A, besides saying that D does not interleave A.

Suppose A ⊆ Ci, for some poset P =
∪

i<k Ci, is an ascending chain such that its tails are not (0, ω)-
homogeneous. Our goal is to claim in RCA0 that there exists a chain D which witness this. If Lemma 8.9
produces a local counterexample D1 ⊆ Cj , for some j < k, which interleaves A, then D1 is not useful for
our purposes. However, this tell us that there must exists a local counterexampleD2 included in Ch for some
h ̸= j. Again it may be that D2 interleaves A, but in this case we can look for another local counterexample
which lives in a different chain of the decomposition, since both D1 and D2 do not witness that tails of A
are not (0, ω)-homogeneous. Iterating this procedure at most k− 1 steps we find a local counterexampleD
not interleaving A.

Theorem 8.11 (RCA0). Let (P,<P ) be a poset and C0, . . . , Ck−1 be chains that P =
∪

i<k Ci. Let A ⊆ Ci, for
some i < k, be an ascending chain in P . If A and its tails are not (0, ω)-homogeneous then there exists an ascending chain
D ⊆ Cj , for some j ̸= i, such that D is a local counterexample not interleaving A.

Proof. Firstly we prove that if D1, . . . , Dw , for some w < k, are local counterexamples interleaving A and
if there exists an injection h : w + 1 → k such that Dj ⊆ Ch(j) for each j ≤ w, then there exists a local
counterexample Dw+1 to A which is contained in De for some e /∈ ran(h).

Fix anm and let p ∈ P be such that ∃r > m ∀s > r (p >P ar ∧ p |P as). Such a p must exist because
Am is not (0, ω)-homogeneous. If p ∈ Ch(j) for some j ≤ n, then either p <P Dj

n, for some n ∈ N, or
Dj <P p. In the former case, p <∀∃ A since D <∀∃ A. In the latter case, A <P p since A <∀∃ D. Both
cases contradict the choice of p. Thus the following formula is satisfied:

∀m∃n > m ∃p ∈ P (p >P an ∧ p |P an+1 ∧ p /∈
∪

j≤wCh(j))

Once the sequence S of points satisfying the formula is enumerated, it is possible to refine S to an ascend-
ing chain Dw+1 ⊆ Ce, for some e /∈ ran(h), as done in Lemma 8.9. By construction Dw+1 is a local
counterexample to A.

The previous lines describe a procedure to find new local counterexamples toA provided that those which
have already been defined interleave A. We are left to prove that in at most k− 1 steps the procedure finds a
local counterexample not interleavingA. Suppose on the contrary that w = k−1 so that h is surjective onto
k. We have just proved that, under these hypotheses, there exists a local counterexample Dk to A included
in Ce, for some e ∈ k \ ran(h): this contradicts the surjectivity of h.
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8.3.2 Local counterexamples to ω + ω chains

Suppose that A and F are ω chains such that A <P F . If each tail of the ω + ω chain A ∪ F is not (0, ω)-
homogeneous, then there must be infinitely many points which are comparable with finitely many points in
A∪F and incomparable with the remaining elements. Since A∪F is of order type ω+ω, such points must
be above some an ∈ A and incomparable with each point in An+1 ∪ F . As for ω chains, finding such D
directly requires ACA0. Hence we look for points above some an ∈ A and incomparable with an+1. Thus
Lemma 8.9 gives a procedure to find local counterexamples to ω + ω chains as well. As discussed in the
previous section if D is a local counterexample to A ∪ F , then D may interleave A or not. However, that
is not the notion of interleaving we are interested in for ω + ω chains, since it gives no information about
the comparability relation between elements of D and of F . The relevant possibilities in this case are the
following two:

• ∀d ∈ D (∃a ∈ A (d <P a) ∨ ∃f ∈ F (d <P f))

• ∃d ∈ D (∀a ∈ A (d ≮P a) ∧ ∀f ∈ F (d ≮P f))

If the first case holds, thenD does not witness that each tail of A∪F is not a solution, because each d is
comparable with infinitely many points of A ∪ F . We say that D interleaves A ∪ F . If the second case holds,
then it is possible to refineD in such a way that d0 witnesses that the formula is satisfied. We say thatD does
not interleave A ∪ F .

Even if we use the same word ‘interleaving’ to indicate two slightly different properties for ω and ω + ω
chains, we believe the context always indicates which of the two notions we are mentioning.

As for ω chains, if each tail of A∪F is not (0, ω)-homogeneous, we would like to find a local counterex-
ample not interleaving A ∪ F . The following is the analogous of Theorem 8.11.

Theorem 8.12. Let (P,<P ) be a poset and C0, . . . , Ck−1 be chains that P =
∪

i<k Ci. Let A and F be ascending
chains in P such that A <P F . If A ∪ F and its tails are not (0, ω)-homogeneous, then there exists an ascending chain
D ⊆ Cj , for some j < k, such that D is a local counterexample not interleaving A ∪ F .

Proof. The proof is a straightforward modification of Theorem 8.11.

8.3.3 How to find a (0, ω)-homogeneous chain

Let (P,<P ) be a poset decomposable in k chains C0, . . . , Ck−1. Suppose thatA0, . . . , Ak−1 are ascending
chains each of which is included in a distinct decomposition chain. Then each p ∈ P belong to Cj , for some
j < k, and so p is comparable with all points in Aj . Moreover, since Aj is an ω chain, one of the following
alternatives holds: either p is below a tail of Aj , i.e. p <∀∃ A

j , or it is above Aj , i.e. Aj <∀∃ p.
If one wants to guarantee that an ω + ω chain A ∪ F is (0, ω)-homogeneous, it is then enough to let

A <∀∃ A
j and Aj <∀∃ F for each j < k. In fact, if p <∀∃ A

j , then p <∀∃ F and hence p <∀∃ A ∪ F .
On the other hand, if Aj <∀∃ p, then A <∀∃ p. In both cases p is comparable with infinitely many elements
of A ∪ F and so cannot be a counterexample to A ∪ F being (0, ω)-homogeneous.

In a nutshell the proof of Theorem 8.13 shows that, under the hypothesis that each ω or ω + ω chain
B such that A <∀∃ B is not (0, ω)-homogeneous, it is possible to define F and A0, . . . , Ak−1 as in the
previous paragraph.

8.4 Proof of RSpoCD
k

Theorem 8.13. For each k, ADS proves RSpoCDk .

Proof. We will prove by induction on k that RCA0 proves the following statement:
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(♣k) Let (P,<P ) be a poset with chain-decomposition-number k. Then for each ascending (resp. descending)
chain A there is a (0, ω)-homogeneous chain B of order type ω or ω + ω (resp. ω∗ or ω∗ + ω∗) such that
A <∀∃ B (resp. ∀a ∈ A ∃b ∈ B (a ≥P b)).

Using ADS it is straightforward to see that ♣k implies RSpoCDk . In fact if (P,<P ) is a poset with chain-
decomposition-number k then by ADS there exists either an ascending chain or a descending chain in P and
then ♣k provides a (0, ω)-homogeneous chain in P .

For♣1 it suffices to letB = A. For the inductive step fix k > 1 and assume that♣k−1 holds. Let (P,<P )
be a poset with chain-decomposition-number k and fix chains C0, . . . , Ck−1 such that P =

∪
i<k Ci.

Let A = ⟨an | n ∈ N⟩ be an ascending chain. (The case where A is descending can be obtained by
considering (P,>P ).) By RT1k there is an g < k such that infinitely many points of A are in Cg and we can
assume that A itself is contained in Cg (because if A <∀∃ B the same holds also for the original A).

We assume that each chain B of order type ω or ω + ω such that A <∀∃ B is not (0, ω)-homogeneous
in P . The proof describes a finite procedure which leads to a contradiction in at most 2k steps. At stage s we
have a sequence A0, . . . , Aw of ascending chains included in distinct Cj ’s and an either empty or ascending
chain Fs.

Before describing the procedure in its full generality we sketch the first few steps. At stage 0 we start with
the ascending chain A0 = A and we set F0 = ∅. At stage 1, since each tail of A is not (0, ω)-homogeneous
by assumption, by Theorem 8.11, let A1 ⊆ Cj , for some j ̸= g, be a local counterexample not interleaving
A. Set F1 = F0. Since A1 is an ascending chain such that A <∀∃ A

1 our assumption entails that each tail
of A1 is not (0, ω)-homogeneous. By Theorem 8.11 there exists a local counterexample D not interleaving
A1 such thatD ⊆ Ch, for some h ̸= j. In Claim 8.13.2 we will show that either h ̸= g orD is above A. At
stage 2, if h ̸= g we set A2 = D and F2 = F1, otherwise we set F2 = D and do not define A2 yet. If A2

has not been defined, at stage 3 we look for a local counterexample not interleaving A∪F2: this is A2, while
F3 = F2.

We now describe the main features of the procedure (the remainder of the proof is devoted to showing
that this plan can be carried out).

Suppose that at stage s the ascending chains A0, . . . , Aw , each satisfying A <∀∃ A
j have been defined

and that there exists an injection h : w+1→ k such thatAj is an ascending chain included in Ch(j) for each
j ≤ w. Suppose also that Fs is either empty or an ascending chain aboveA and Fs ⊆ Ch(j) for some j ≤ w.
Assume also that exactly one of the following facts is true: Aw has been defined at stage s, Fs ̸= Fs−1.

At stage s+ 1, we will make one of the following moves:

Move 1 define an ascending chain Aw+1 ⊆ Ci, for some i /∈ ran(h), local counterexample not
interleaving the ω chain Aw or the ω + ω chain A0 ∪ Fs; in this case Fs+1 = Fs;

Move 2 define an ascending chain Fs+1 ⊆ Ch(j), for some j ≤ w, such that A0 <P Fs+1, Fs <∀∃
Fs+1, and Aw <∀∃ Fs+1; in this case we do not define Aw+1 yet.

To decide the move we carry out, we look at the previous move. If at stage s we madeMove 1 letD be a local
counterexample not interleaving Aw by Theorem 8.11 (recall that A <∀∃ A

w and hence the tails of Aw are
not (0, ω)-homogeneous by assumption). We show in Claim 8.13.2 thatD is either contained in Ci for some
i /∈ ran(h) or A0 <P D. If the former holds we apply Move 1 with Aw+1 = D (so that h(w + 1) = i),
otherwise we useD to define Fs+1 and apply Move 2 (see Claim 8.13.3). If at stage s we madeMove 2 let,
by Theorem 8.12,D be a local counterexample not interleavingA0∪Fs (obviouslyA <∀∃ A∪Fs and hence
the tails of A∪Fs are not (0, ω)-homogeneous by assumption). We show in Claim 8.13.1 that in this caseD
is contained in Ci for some i /∈ ran(h) and we apply Move 1 with Aw+1 = D (and set h(w + 1) = i).

Notice that Move 2 is always followed by Move 1 (while the converse does not hold). This guarantees
that in at most 2k − 1 stages the function h becomes a bijection.
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Claim 8.13.1. If at stage s we make Move 2, i.e. Fs ̸= Fs−1, then Aj <∀∃ Fs for every j ≤ w and each local
counterexample not interleaving A∪Fs is not included in Ch(j) for every j ≤ w, so that at stage s+1 we make Move 1.

Proof. Let us suppose that the Claim holds for every stage t < s. Let t < s be maximum such that Move 2
was played at stage t (if it exists). In this case let i ≤ w be such that Ai was defined at stage t+ 1, where, by
induction hypothesis, we madeMove 1. Otherwise let i = 0.

If j ≥ i then for every i ≤ n < w we have that An+1 is a local counterexample to An and hence
An <∀∃ An+1. Moreover by the properties of Move 2 we have Aw <∀∃ Fs. Hence, by transitivity of
<∀∃, Aj <∀∃ Fs. If j < i (and hence t is defined) then by induction hypothesis Aj <∀∃ Ft. Since
Ft = Fs−1 <∀∃ Fs by the properties of Move 2, Aj <∀∃ Fs.

To prove the second statement let D be a local counterexample not interleaving A ∪ Fs. Suppose that
there exists p ∈ D ∩Ch(j) for some j ≤ w. If p <P aj for some aj ∈ Aj , then p is below a tail of A ∪ Fs

by the first part of the claim, which contradicts D not interleaving A ∪ Fs. If instead aj <P p for every
aj ∈ Aj then p is above A because A <∀∃ A

j , contradicting the fact that D is a local counterexample to
A ∪ Fs.

Claim 8.13.2. If at stage s we made Move 1 defining Aw andD is a local counterexample not interleaving Aw such
that D ⊆ Ch(j) for some j ≤ w, then A <P D.

Proof. It suffices to show thatAj <P D. In fact, ifAj <P D then it is immediate to conclude thatA <P D
since we are assuming A <∀∃ A

j .
Towards a contradiction, assume that there exist d ∈ D and aj ∈ Aj such that aj ≮p d. As d, aj ∈ Ch(j)

they are comparable and so d <P aj . Let aw ∈ Aw be such that aw <P d (such a point exists becauseD is
a local counterexample to Aw). By transitivity it holds that aw <P aj .

Let t < s be maximum such that Move 2 was played at stage t (if it exists). In this case let i ≤ w be
such that Ai was defined at stage t + 1 as a local counterexample not interleaving A ∪ Fs (remember that
Fs = Ft). Otherwise let i = 0. For every i ≤ n < w we have that An+1 is a local counterexample to An

and hence An <∀∃ A
n+1. Hence, by transitivity of <∀∃, An <∀∃ A

w for each i ≤ n < w.
If j ≥ i, let aj+1 ∈ Aj+1 be such that aj+1 <P aw . By transitivity it follows that aj+1 <P aj contrary

to the fact that Aj+1 does not interleave Aj .
If j < i, let ai ∈ Ai be such that ai <P aw . By transitivity it holds that ai <P aj . Since aj ∈ Aj and

Aj <∀∃ Fs by Claim 8.13.1, ai is below a tail of Fs, contrary to the assumption that Ai does not interleave
A ∪ Fs.

Claim 8.13.3. If at stage s we made Move 1 defining Aw and there exists a local counterexampleD not interleaving
Aw such that D ⊆ Ch(j) for some j ≤ w, then there exists an ascending chain Fs+1 ⊆ Ch(j), for some j ≤ w, such
that A0 <P Fs+1, Fs <∀∃ Fs+1, and Aw <∀∃ Fs+1, so that we can apply Move 2.

Proof. Let i ≤ w be such that Fs ⊆ Ch(i). Since we are assuming as induction hypothesis that ♣k−1 holds,
there exists a chain S which satisfies the following properties: S is (0, ω)-homogeneous in

∪
i ̸=h(j) Ci, has

order type ω or ω + ω and Fs <∀∃ S.
Since A <P Fs we have A <∀∃ S and so S is not (0, ω)-homogeneous in P by assumption. Let E be a

local counterexample to S. It must be that E ⊆ Ch(j), because S is (0, ω)-homogeneous in
∪

i ̸=h(j) Ci.
If D <∀∃ E, let en ∈ E be such that d0 <P en and set Fs+1 = En. Clearly Fs+1 ⊆ Ch(j). By

Claim 8.13.2 we have A <P D and in particular d0 is above A so that d0 <P En implies A <P Fs+1.
Moreover, Aw <∀∃ Fs+1 because Aw <∀∃ D (since D is a local counterexample to Aw) and by case
hypothesis. Furthermore, Fs <∀∃ Fs+1 because Fs <∀∃ S <∀∃ E by definition of S and because E is a
local counterexample to S.

If instead D ̸<∀∃ E, let dn ∈ D be such that E <P Dn (such a dn exists because E ∪ D ⊆ Ch(j))
and set Fs+1 = Dn. Clearly Fs+1 ⊆ Ch(j) and, by Claim 8.13.2, A <P Fs+1. In this case Aw <∀∃ Fs+1

follows immediately from Aw <∀∃ D. Finally, Fs <∀∃ Fs+1 because Fs <∀∃ S <∀∃ E <P Dn.
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To conclude notice that at some stage s < 2k the procedure definesA0, . . . , Ak−1 and Fs. By construc-
tion Ak−1 is ascending and A <∀∃ A

k , so Ak is not (0, ω)-homogeneous by hypothesis. Let D be a local
counterexample not interleaving Ak . Claim 8.13.2 guarantees that A <P D since h is surjective. According
to the rules at stage s+1Move 2 is made and an ascending chain Fs+1 >P A is defined. Now Claim 8.13.1
would define a chain Ak not included in

∪
j<k Ch(j) = P , which is clearly impossible.

Notice that ADS is used only once at the very beginning of the proof. Indeed it allows to find an ascending
or descending chain to start the procedure with.

Moreover, the assumption on the non existence of (0, ω)-homogeneous chains is only an expositive device
for the proof, which could be written more “constructively”. In this case we think that the procedure stops at
some stage s ≤ 2k finding a (0, ω)-homogeneous chain B which is of order type ω or ω + ω and such that
A <∀∃ B. In particular B may be a tail of some Aw , if Move 1 defines Aw at stage s, or a tail of A∪ Fs or
even a (0, ω)-homogeneous S for (

∪
i ̸=j Ci, <P ) for some j < k, found using ♣k−1 as in Claim 8.13.3.

The strategy of the previous proof is conceptually very different from the one employed in Theorems 8.3
and 8.7, which are on this respect more similar. Apart for the use of ζ in Theorem 8.7, each of the three proofs
of RSpoCDk is based on an iterative search of counterexamples, possibly local, to ascending or descending
chains. The proofs consist on showing that this search eventually stops (even if each proof is written as a re-
ductio ad absurdum we already comment on the fact that they also give a recipe to find a (0, ω)-homogeneous
chain). The difference between the three proofs, and in particular the difference between proofs of Theo-
rems 8.3 and 8.7, on one hand, and of Theorem 8.8 on the other hand, stands in the reason why the procedure
stops. To explain the difference let (P,<P ) be a poset which does not contain ζ and such that P =

∪
i<k Ci

and Ci is a chain for each i < k. Both the proofs of Theorem 8.3 and of Theorem 8.7 cover Ci with some
cofinal chain Ai, for each i < k, and exploit the fact that the iteration of the counterexample devise cannot
provide a chain above Ai, for each i < k. On the contrary, in the proof Theorem 8.8 there is no guarantee
that the ascending chain A0 covers C0 and we take advantage of this fact to define an ω + ω chain which is
(0, ω)-homogeneous.

8.5 The strength of RSpoCD
<ω

The main effort of the previous proof is devoted to show that, for each k ∈ N, RCA0 proves that ♣k holds
and we do so by induction on k. Since ♣k is computably true, it essentially states that for each X ⊆ N, for
eachX-computable poset with chain-decomposition-number k and for each ascending chainX-computable,
there exists an X-computable chain B with the desired properties.

At a first sight ♣k is thus a Π1
2-statement. However, thanks to the fact that ♣k is computably true, we can

rephrase it quantifying over indices of the programs enumerating the poset and the chains. Hence, ♣k can be
stated as: for each X ⊆ N and for each e, i ∈ N if φX

e is a poset with chain-decomposition-number k and
φX
i is an ascending chain, then there exists j ∈ N such that φX

j is (0, ω)-homogeneous, of order type ω or
ω + ω and φX

i <∀∃ φ
X
j .

Once each condition is carefully formalised one realises that the latter statement is a IΣ0
5-statement. This

implies that IΣ0
5-induction proves that for each k ♣k holds. Thanks to this observation we get the following

corollary.

Corollary 8.14 (RCA0). ADS plus arithmetical induction prove RSpoW<ω .
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8.6 An equivalence with SADS

Theorem 8.8 settled the question about the strength of RSpoWk and of RSpoCDk for each k ≥ 3. As happens
with Ramsey theorem, RSpoW2 and RSpoCD2 are weaker principles, as shown by the following theorems.

The interesting feature of the proof of RSpoCD2 in SADS is the use of the absence of (0, ω)-homogeneous
chains to find an ascending or descending chain in a (non necessary stable) poset with chain-decomposition-
number two.

Notation 8.15. Let (P,<P ) be a poset and p ∈ P . p ↓ denotes the set {q ∈ P | q <P p}. Similarly, p↑
denotes the set {q ∈ P | q >P p}.

Theorem 8.16 (RCA0). SADS implies RSpoCD2 .

Proof. Let (P,<P ) be a poset and C0, C1 chains such that P = C0 ∪ C1. Assume that P does not contain
(0, ω)-homogeneous chains.

Firstly, we rule out the possibility that either C0 or C1 is finite. Suppose on the contrary that C1 is finite
and let c0 <P · · · <P ck−1 be the elements of C1. Define L = {x ∈ C0 | x <P ck−1}. We claim that if
C0 \L is infinite, then it contains a (0, ω)-homogeneous chain. We define the colouring f : C0 \L→ k+1
as follows2:

f(x) =


k if ck−1 <P x

i+ 1 if ci <P x ∧ ci+1 ≮P x

0 otherwise

Notice that ran(f) is bounded by k, so by RT1k+1 there exists j < k + 1 and H ⊆ C0 \ L such that H
is homogeneous for j. Moreover, H is (0, ω)-homogeneous because each p ∈ C0 is comparable with H ,
c0, . . . , cj−1 are below H , and cj , . . . , ck−1 are incomparable with H .

Suppose now that C0 \ L is finite, so that L is infinite. Let us consider the colouring g : L→ k defined
as follows:

g(x) =

{
i if x <P ci ∧ x ≮P ci−1

0 otherwise

By RT1k there exists j < k and H ⊆ L such that H is homogeneous for j. Notice that cj , . . . , ck−1 are
aboveH , while ci, for each i < j, can only be below some point ofH and incomparable with some point of
H . Lastly, we define the colouring h : H → j + 1 as follows:

h(x) =


i+ 1 if ci <P x ∧ ci+1 ≮P x

j if cj−1 <P x

0 otherwise

By RT1j+1 there exists i < j + 1 such that and H ′ ⊆ L such that H ′ is homogeneous for i. Notice that
c0, . . . , ci−1 are below H ′, ci, . . . , cj−1 are incomparable with H ′, and cj , . . . , ck−1 are above H ′ by the
choice of j. H ′ is thus (0, ω)-homogeneous contrary to the assumption3.

2To be more precise dom(f) is an enumeration of C0 \ L, we let it coincide with C0 \ L in order to simplify the notation. The
same consideration holds for the functions g and h defined in the proof.

3Notice that in this paragraph we actually need RT1<ω which is proved by SADS.
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Suppose now both C0 and C1 are infinite and let ⟨pn | n ∈ N⟩ and ⟨qn | n ∈ N⟩ be an enumeration of
C0 and C1 respectively. Define a colouring c : [N]2 → 4 as follows:

c(n,m) =


0 if ∀i ≤ m (pn |P qi)

1 if ∃i (n < i ≤ m ∧ pn <P qi)

2 if ∀i (n < i ≤ m→ pn ≮P qi) ∧ ∃i (n < i ≤ m ∧ pn >P qi)

3 otherwise

Intuitively, c colours pairs ⟨p, q⟩, according to their comparability relation and through their indices, such
that p ∈ C0 and q ∈ C1. Notice that, for each m ∈ N, c changes colour at most twice. By 2-SRT22 (see
Lemma 7.20) there exists an infinite homogeneous set H for c. Thanks to H we define an ascending or
descending chain in P .

We claim thatH is not homogeneous for 0. Suppose on the contrary that it is and let S = ⟨ph | h ∈ H⟩.
Clearly each p ∈ C0 is comparable with S, while each q ∈ C1 is incomparable with S by the homogeneity of
H . It follows that S is (0, ω)-homogeneous contrary to the assumption.

Suppose now that H is 1-homogeneous and consider the set A = ⟨ph | h ∈ H⟩. Let f : N → N
be such that, for each h ∈ H , f(h) is minimum such that qf(h) witnesses that h ∈ H (i.e. h < f(h)
and ph <P qf(h)). Notice that f is injective. In fact, suppose that h < k and h, k ∈ H . Then by 1-
homogeneity there exists i < k such that ph <P qi, so f(h) < k. Now consider c(k, j), for some j ∈ H :
by 1-homogeneity there exists r > k such that pk <P qr , so f(k) > k > f(h).

If A is stable, then SADS finds an ascending or a descending chain in A and so in P . Otherwise, let
n ∈ H be such that pn↓ and pn↑ are both infinite. We claim that for each h ∈ H such that pn ≤P ph,
it holds that qf(h)↑ is finite. Suppose this does not hold and let qf(h)↑ be infinite. Then pn↓ ∪ qf(h)↑ is a
chain, it contains infinitely many elements in both C0 and C1 and is thus (0, ω)-homogeneous, contrary to
the assumption. It follows that the sequence ⟨qf(h) | pn <P ph⟩ can be refined to an ω∗ chain.

If H is 2-homogeneous we can reason analogously, so we are left to the case of H 3-homogeneous.
Notice that if c(h, k) = 3, for some h, k ∈ H , then there exists i ≤ h such that ph -P qi. There are two
cases to consider: either there exists n ∈ N such that, for each h ∈ H , if ph -P qi, then i ≤ n, or there are
infinitely many h ∈ H and infinitely many i ∈ N such that ph -P qi. If the former is the case, then for each
h ∈ H and for eachm > n it holds that ph |P qm. So we can think as if C1 = ⟨q0, . . . , qn⟩ and argue as in
the first paragraphs to rule out this case too.

If the latter holds define g : N→ N such that g(h) is the minimum i such that ph -P qi, for each h ∈ H .
By assumption there exists an infinite set H ′ ⊆ dom(g) such that g H ′ is injective. Moreover, there are
either infinitely many h ∈ H ′ such that ph <P qg(h) or infinitely many h ∈ H ′ such that ph >P qg(h)).
In both cases an argument analogous to the one forH 1-homogeneous provides an ascending or descending
sequence.

Suppose P contains an ascending sequence. Then ♣2 guarantees that there exists a (0, ω)-homogeneous
chain. If P contains a descending sequence D, then ♣2 applied on (P,>P ) and D guarantees that there
exists a (0, ω)-homogeneous chain.

It is easy to understand that the assumption on the non existence of (0, ω)-homogeneous chains was
only instrumental in the previous proof. Without this assumption one can either decode directly from the
homogeneous set a (0, ω)-homogeneous chain or argue as above to find an ascending or descending chain.

Theorem 8.17. Over RCA0, SADS is equivalent to RSpoCD2 .

Proof. We are left to prove the reversal. Let (L,<L) be an infinite stable poset. Consider (L× 2, <P ) with
the product partial order (from 0 < 1). Clearly, L × 2 has chain-decomposition-number two. Let S be
(0, ω)-homogeneous and set Ci = C ∩ (L × i) for each i < 2. By RT12 at least one between C0 and C1 is
infinite.
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SupposeC0 is infinite. If each (c, 0) ∈ C0 has finitely many predecessors, then it is possible to enumerate
computably an ω chain contained in S0 and hence in L. Otherwise, we claim that there exists a descending
chain in C0. Let (c, 0) ∈ C0 be such that c has finitely many successors and suppose that (c′, 0) ∈ C0 has
finitely many predecessors. Notice also thatC1 must be finite, because (c, 0) has only finitely many successors
and (c, 0) |P (d, 1) for each d <L c by definition of <P . Then (c′, 1) is above some and only finitely many
elements of C , contrary to the fact that S is (0, ω)-homogeneous. This proves that each element of C0 has
finitely many successors and so it is possible to enumerate computably an ω∗ chain contained inC0 and hence
in L.

If C1 is infinite and each element of C1 has finitely many successors, then C1 contains an ω∗ chain.
Otherwise, arguing as in the previous paragraph it is possible to show that C1 contains an ω chain.

Corollary 8.18. Over WKL0, SADS is equivalent to RSpoW2 .

Proof. Let (P,<P ) be a poset of width two. By Dilworth’s theorem let C0 and C1 be chains such that
P = C0 ∪ C1. By Theorem 8.16 P contains a (0, ω)-homogeneous chain.

Since the partial order (L×2,≺) defined in the proof of Theorem 8.17 has width two, the same argument
provides a reversal for RSpoW2 as well.

Notice that the full strength ofWKL0 is used to prove the left to right implication of the previous corollary,
since there exists a computable poset of width two which is not decomposable into two computable chains.

As a consequence of the previous theorem we get that RSpoW2 is strictly weaker than ADS, since ADS and
WKL0 + SADS are incomparable, and not computably true. It is open whether RSpoW2 is equivalent to SADS
over RCA0 as well or whether it lies strictly in between SADS and ADS.

Question 8.19. Over RCA0, is SADS equivalent to RSpoW2 ?

8.7 A reversal for the parallel version of RSpoW
<ω

To complete our analysis about the Rival-Sands theorem for posets we present a further result about the
strength of the parallel version of the Rival-Sands theorem. In this case an instance of the problem is a
sequence ⟨(Pn, <n) | n ∈ N⟩ of posets of finite width. The solution is thus a sequence of chains ⟨Cn | n ∈
N⟩ such that Cn is (0, ω)-homogeneous in (Pn, <n) for each n ∈ N. The parallel RSpoW<ω implies ACA0;
it is in fact possible to arrange the posets in such a way that each (0, ω)-homogeneous chain in Pn codes the
information whether n ∈ ran(f) for some injective function f : N→ N.

Theorem 8.20 (RCA0). The following statement implies ACA0: let {Pn | n ∈ N} be a sequence of posets of width three.
Then there exists a sequence {Dn | n ∈ N} such that, for each n ∈ N, Dn a (0, ω)-homogeneous chain in Pn.

Proof. For each n we define a poset Pn of width three in such a way that each (0, ω)-homogeneous chain for
Pn allows to determine if n belongs to the range of an injective function f : N → N. Each poset takes care
about one possible value of f , so that having infinitely many of them allows to define ran(f).

Let f : N → N be an injective function and n an integer. For each n, Pn is the union of three ω chains
An = {ank | k ∈ N}, Bn = {bnk | k ∈ N}, Cn = {cnk | k ∈ N}. The comparability relation <Pn is defined
as follows: {

ans <Pn b
n
s+1 ∧ cns <Pn b

n
s+1 if ∀m ≤ s (f(m) ̸= n)

bns <Pn
ans+1 ∧ bns <Pn

cns+1 if ∃m < s (f(m) = n)

Pn is thus formed by three ω chains whose comparability relations is determined by n being or not in ran(f).
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We claim that the following equivalence holds

ran(f) = {n | Dn ∩Bn = ∅}

Notice that this equivalence, giving a Π0
1-definition of ran(f), assures that the range of f is∆0

1 - definable in
{Dn | n ∈ N}.

In order to prove the claim, suppose n /∈ ran(f). If Dn ∩B = ∅ then Dn ⊆ An or Dn ⊆ Cn because
An and Cn are incomparable and Dn is a chain. Suppose the first possibility happens, namely Dn ⊆ An.
Then each element inBn is comparable with only finitely many elements ofDn by construction of the poset,
contrary to the assumption that Dn is (0, ω)-homogeneous.

For the right to left inclusion assume without loss of generality that Dn ⊆ An. If n /∈ ran(f), then for
each k there were an s such that ans <Pn

bnk ∧∀r > s(anr |Pn
bnk ) by definition of <Pn

. Hence for all all but
finitely many k there is a t such that dnt <Pn

bnk ∧ ∀v > t(anv |Pn
bnk ) because Dn ⊆ An, contrary to the

assumption that Dn is (0, ω)-homogeneous.

8.8 A stronger Rival-Sands theorem

The proof of Theorem 8.3 shows that for each poset of finite width is possible to find a chainC of order typeω
or ω∗ which is (0, ω)-homogeneous. Because of the specific order type ofC one gets that actually each p ∈ P
is either incomparable with C or it is comparable with cofinitely many of elements of C . This represents a
further improvement with respect to RSg, for which a solution is (0, 1, ω)-homogeneous. Moreover, the latter
formulation of Rival-Sands second theorem is a Ramsey-type principle, while this is not true for RSpoW<ω .

Definition 8.21. Let (P,<P ) be a poset. Then C is a (0, cof)-homogeneous chain for (P,<P ) if each
p ∈ P is comparable to none of the elements of C or to cofinitely many of them.

sRSpoWk For each poset (P,<P ) of width k there exists a (0, cof)-homogeneous chain C .

sRSpoCDk For each poset (P,<P ) with chain-decomposition-number k there exists a (0, cof)-homogeneous
chain C

As usual sRSpoW<ω denotes the uniform version of the former principle.

Theorem 8.7 and Theorem 8.8 do not prove sRSpoWk nor sRSpoCDk . The proof of the former relies on
the fact that a copy of Z is always (0, ω)-homogeneous, even if not always (0, cof)-homogeneous. Despite
this, if P does not contain a copy of Z, then the proof of Theorem 8.7 provides an ascending or a descending
chain and so a (0, cof)-homogeneous chain (notice that ω and ω∗ chains are (0, ω)-homogeneous if and only
if are (0, cof)-homogeneous). On the other hand, Theorem 8.8, via Theorem 8.13, proves that for each poset
of width k, for some k ≥ 3, there always exists a (0, ω)-homogeneous chain of order type ω or ω+ ω or ω∗

or ω∗ + ω∗. Even in this case there is no reason why a chain of order type ω + ω or ω∗ + ω∗ must also be
(0, cof)-homogeneous (indeed the one exhibited in the proof of Theorem 8.8 are not (0, cof)-homogeneous).

The strength of sRSpoWk , for k ∈ N, is less clear than the strength of RSpoWk . Theorem 8.3 shows that
Π1

1-CA0 is an upper bound for sRSpoWk as well, but it cannot be optimal. In this section proves that sRSpo
CD
2

is actually stronger that RSpoCD2 and settle the exact strength of sRSpoW2 , contrary to the still unclear strength
of RSpoW2 .

Theorem 8.22 (RCA0). ADS is equivalent to sRSpoW2 and to sRSpoCD2 .
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Proof. Theorem 8.24 shows that ADS implies sRSpoW2 , which implies sRSpo
CD
2 . Theorem 8.25 takes care of

the reversals.

The key step to obtain Theorem 8.24 is a refinement of Lemma 8.4 and Lemma 8.9 which exploits essen-
tially the fact that (P,<P ) has width (or chain-decomposition-number) two.

Lemma 8.23 (RCA0). Let (P,<P ) be a poset of width two and A = ⟨an | n ∈ N⟩ be an ascending chain in P whose
tails are not (0, cof)-homogeneous. Then there exists a function g : N → N which enumerates an ascending chain witnessing
that each tail of A is not (0, cof)-homogeneous.

Proof. Firstly, we prove that the formula φ = ∀m∃n > m ∃p ∈ P (an <P p ∧ an+1 |P p) holds. Suppose
it does not and so letm satisfies the following formula

∀n > m ∀p ∈ P (an ≮P p ∨ an+1 -P p)

Then for each p ∈ P and for each n > m, either p is above A, or p is incomparable with A, or p <P ar for
some r ∈ N. The chain Am+1 is thus (0, ω)-homogeneous, contrary to the assumption.

Let πi : N2 → N, for each i < 2, be the projection on the ith component of a pair. We define two
functions f, g : N→ N as follows:

f(0) = π0(min ⟨n, p⟩ (an <P p ∧ an+1 |P p))

g(0) = π1(min ⟨n, p⟩ (an <P p ∧ an+1 |P p))

f(m+ 1) = π0(min ⟨n, p⟩ (n > f(m) ∧ an <P p ∧ an+1 |P p))

g(m+ 1) = π1(min ⟨n, p⟩ (n > f(m) ∧ an <P p ∧ an+1 |P p))

The two functions enumerate the pairs ⟨n, p⟩, avoiding repetitions, satisfying φ. The previous paragraph
thus guarantees that f and g are total functions and are well defined. A straightforward (∆0

1) induction shows
that f is monotone (with respect to N). Thus f enumerates a cofinal sequence inA. Moreover, we claim that
for distinctm, ℓ ∈ N, it holds that g(m) ̸= g(ℓ). Suppose on the contrary thatm < ℓ, so that f(m) < f(ℓ),
and g(m) = g(ℓ). Since af(m)+1 ≤P af(ℓ) <P g(ℓ) holds by definition, then af(m)+1 <P g(m), contrary
to the definition of f and g. This claim guarantees that ran(g) is infinite.

The functions f and g allow to enumerate an infinite sequence of antichain ⟨⟨af(m)+1, g(m)⟩ | m ∈ N⟩.
Notice that, since (P,<P ) has width two, for eachm ∈ N and each p ∈ P it holds either that p -P af(m)+1

or that p -P g(m).
We claim that there existsM ∈ N such that for each m > M it holds that ∀i > f(m) (ai |P g(m)).

Suppose on the contrary that no suchM exists. It follows that for each g(m) there exists i > f(m) such
that g(m) <P ai holds (notice that ai <P g(m) cannot holds because it implies af(m)+1 <P g(m)). Let
p ∈ P . If there existsm such that p <P af(m)+1 or p <P g(m), then p is below a tail of A. Otherwise, p is
either above af(m) or above g(m), for eachm ∈ N. In both cases p is above A. This argument shows that
A is (0, cof)-homogeneous, contrary to the assumption.

We also claim that for almost allm and ℓ (namely for allm, ℓ > M forM satisfying the previous claim),
if m < ℓ, then g(m) <P g(ℓ) holds. Let m < ℓ, so that f(m) < f(ℓ). If it holds that g(m) |P g(ℓ),
then ⟨g(m), g(ℓ), af(ℓ)+1⟩ is an antichain of size three, contrary to the assumption that P has width two
(remember that g(ℓ) |P af(ℓ)+1 by definition and af(ℓ)+1 |P g(m) by the previous claim). If g(ℓ) <P g(m)
holds, then af(m)+1 ≤P af(ℓ) <P g(ℓ) and transitivity imply af(m)+1 <P g(m) contrary to the definition
of f and g. Thus, given that g(m) ̸= g(ℓ), g(m) <P g(ℓ) holds as we wanted to show.

The previous claims guarantee that g enumerates an ascending chain with the desired properties.

Notice that the functions f and g defined in the previous proof need to inspect only an initial segment of
A to give an output. Moreover, the proof of the previous lemma shows that there exists a uniform procedure
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to associate to each A, ascending chain whose tails are not (0, cof)-homogeneous, an ascending chain which
is a counterexample to A.

It is also easy to observe that the previous lemma and related observations holds for descending chains
with the obvious changes. These observations are crucial for the proof of next theorem.

Theorem 8.24 (RCA0). ADS implies sRSpoW2 .

Proof. Let (P,<P ) be a poset of width two. By Proposition 7.17 (P,<P ) contains either an ascending or a
descending chain A. Suppose that A = ⟨an | n ∈ N⟩ is ascending (the case where A is descending can be
obtained by considering (P,>P )). Suppose also that P does not contain (0, cof)-homogeneous chains.

We define recursively a function g : N2 → Nwhich enumerates a sequence of chains, starting fromA, each
of which is a counterexample to the previous one. To do so we also define an auxiliary function f : N2 → N
which enumerates indices used as arguments for g. Let πi : N2 → N be the projection on the ith component
of a pair. We define f, g : N2 → N as follows:

f(0,m) = m

g(0,m) = am

f(i+ 1, 0) = π0(min ⟨n, p⟩ (g(i, n) <P p ∧ g(i, n+ 1) |P p))

g(i+ 1, 0) = π1(min ⟨n, p⟩ (g(i, n) <P p ∧ g(i, n+ 1) |P p))

f(i+ 1,m+ 1) = π0(min ⟨n, p⟩ (n > f(i+ 1,m) ∧ g(i, n) <P p ∧ g(i, n+ 1) |P p))

g(i+ 1,m+ 1) = π1(min ⟨n, p⟩ (n > f(i+ 1,m) ∧ g(i, n) <P p ∧ g(i, n+ 1) |P p))

Let gi(m) = g(i,m) and gi =
∪

m∈N g(i,m). Notice that to calculate fi+1(m) and gi+1(m), for some
i,m ∈ N, one needs to calculate fi+1 and gi+1 up to m − 1 and fi and gi up to n + 1 for some n which
depends on f(i+ 1,m− 1).

By definition, g0 enumerates the ascending chain A. We claim that, for each i ∈ N, gi+1 is an ascending
chain and witnesses that each tail of gi is not (0, cof)-homogeneous. Suppose the claim is true for i. Since
(P,<P ) does not contain (0, cof)-homogeneous chains, each tail of gi is not (0, cof)-homogeneous. Hence,
by Lemma 8.23 there exists a function g which enumerates an ascending chain witnessing that each tail of gi
is not (0, cof)-homogeneous. It is immediate to see that gi+1 coincides with the function g defined in the
proof of the lemma.

The previous claim implies also that f and g are total functions (notice that here the assumption on
(P,<P ) not containing (0, cof)-homogeneous chains is crucial).

We define an infinite ascending sequence S = ⟨sn | n ∈ N⟩ inductively. For the base case let s0 = g0(0).
Suppose that s0 <P · · · <P s2i have been defined and s2i = gi(k) for some k ∈ N. By definition of gi
there exist least n and u ≤ k such that gi(k) <P gi(n) and n = fi+1(u). Let s2i+1 = s2(i+1)−1 = gi+1(u)
and s2i+2 = s2(i+1) = gi+1(u + 1). Notice that by definition both s2i+1 and s2i+2 are elements of gi+1

and that s2i <P s2i+1 <P s2i+2.
We claim that S is a (0, cof)-homogeneous chain. Let p ∈ P , assume p is not above S and so letm ∈ N,

be such that p ≯P si for each i ≥ 2m. We argue that this entails the existence of j ≥ 2m such that
p <P sj . Assume towards a contradiction that p |P sj for each j ≥ 2m (p >P sj cannot occur by
assumption). Since s2m+1 = gm+1(k) for some k ∈ N, it holds that gm+1(k) |P gm(fm+1(k) + 1). Since
⟨p, gm+1(k), gm(fm+1(k) + 1)⟩ cannot be an antichain it holds that p -P gm(fm+1(k) + 1). In particular
one of the following holds:

1. p >P gm(fm+1(k) + 1). Notice that gm(fm+1(k)) >P s2m. In fact, it holds that gm(fm+1(k)) -P
s2m because the both live in ran(gm). Moreover, it holds that s2m+1 >P s2m, since S is ascending.
So s2m >P gm(fm+1(k)) would imply s2m+1 >P gm(fm+1(k)), contrary to the assumption. Thus
by transitivity we get that p >P s2m, contrary to the assumption;
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2. p <P gm(fm+1(k)+1). Since s2m+1 = gm+1(k), then s2m+2 = gm+1(k+1) and so p <P s2m+2,
contrary to the assumption.

We conclude that, for each p ∈ P , either p >P S or p is below a tail of S. Hence, S is (0, cof)-homogeneous
contrary to the assumption that (P,<P ) has no (0, cof)-homogeneous chains.

Notice that ADS is used only once at the very beginning of the proof. Indeed it allows us to find an
ascending or descending chain with which to start the procedure.

The assumption on the non existence of a (0, cof)-homogeneous chain in (P,<P ) is only instrumental
in the proof. If one drops it, it is possible that the functions f and g are no more total functions because a
tail of gi is (0, cof)-homogeneous, for some i ∈ N. In this case gi+1 would be undefined from somem ∈ N
on and gi would be (0, cof)-homogeneous.

There are some obstacles to the generalisation of the previous proof to posets of greater width. Suppose
(P,<P ) is a poset such that P =

∪
i<3 Ci for some chain C0, C1, C2 (it is more convenient to speak

about chain-decomposition-number at the moment). Assume as usual that P does not contain (0, cof)-
homogeneous chains and let A ⊆ C0 be ascending. A first problem lay in the search of a counterexample. If
one defines the functions f and g as in Lemma 8.23, then theremay existn andm such that g(n) |P g(m), and
so g may not be a chain. It is still possible to show that if g(n) -P g(m) and n < m, then g(n) <P g(m).
Thus ran(g) contains an ascending chain D = ⟨dn | n ∈ N⟩. However, initial segment of A cannot
determine any more initial segments of D, indeed one needs to get ran(g) in order to apply RT12 and so
get D. It is thus hard to imagine that there exists an uniform procedure to produce a local counterexample
(notice that it no more true that every local counterexample is a counterexample) to ascending chains whose
tails are not solutions. If one wants to imitate the iteration of search of local counterexamples in posets
of chain-decomposition-number greater than two, then one needs to determine ran(g0) and then a chain
D0 ⊆ ran(g0). Once D0 is defined, D1 can be obtained in the same way and so on. To conclude ACA0

seems to be needed to define the sequence ⟨Dn | n ∈ N⟩.
The second peculiarity of posets of chain-decomposition-number two is the fact that after at most ω

iterations of search of local counterexamples a (0, cof)-homogeneous chain is surely found, as proved in
Theorem 8.24. It is not hard to see that this does not hold for posets with chain-decomposition-number
equal or grater than three. For example suppose that the chains C0, C1, C2 decompose a poset which does
not contain (0, cof)-homogeneous chains and that each (local) counterexample, found with the usual iteration,
lives in C0 ∪ C1. Then an ω chain defined taking two points from each local counterexample, as S in the
proof of Theorem 8.24, may still have a counterexample in C2 and hence not being (0, cof)-homogeneous.

Thanks to the previous considerations we imagine that a (0, cof)-homogeneous chain can be obtained, in
poset with chain-decomposition-number greater than two, iterating the search of counterexample transfinitely
many steps, even probably a number of steps bounded by the chain-decomposition-number of the poset. Even
if this idea would finally convert into a proof of sRSpoCDk it would surely be a proof in a system stronger than
ACA0, while the unique lower bound for sRSpoCDk is the following.

Theorem 8.25 (RCA0). sRSpoW2 and sRSpoCD2 imply ADS.

Proof. Let (L,≤L) be a linear order and let P = (L × 2,≤P ) the order on the Cartesian product of L, so
that (ℓ, i) ≤P (m, j)⇔ ℓ ≤L m ∧ i ≤ j. Such a poset has clearly width and chain-decomposition-number
two, so let C ⊆ P be (0, cof)-homogeneous. For each i < 2 set Ci = C ∩ (L× i).

We claim that if C0 is infinite, then C0 has no minimum, and can thus be refined to a descending chain.
Suppose on the contrary that C0 is infinite and that (m, 0) is minimum in C0. By definition of <P it holds
that (m, 0) <P (m, 1) and (n, 0) |P (m, 1), for each n >L m. It follows that (m, 1) is incomparable with
infinitely many elements of C , contrary to the assumption that C is (0, cof)-homogeneous.

Similar reasoning allows us to prove that if C1 is infinite, then C1 has no maximum, and hence that L
contains an ascending chain.
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Question 8.26. What is the strength of sRSpoWk , for each k ∈ N?

It follows from Theorem 8.17 that (0, cof)-homogeneous chains of a poset of width two (or chain-
decomposition-number two) codes ascending or descending chains of a linear order. There are very simple
examples which witness this fact. Consider for example the linear orders L0 or order type ω + ω and L1 or
order type ω∗ + ω∗, and let P0 and P1, respectively, be defined as in the previous proof. For each i < 2, any
chain such that |C ∩ (Li, 0)| = |C ∩ (Li, 0)| = ω is (0, ω)-homogeneous (this is actually a trick used in the
proof of Theorem 8.16), so it does distinguish between ascending and descending chains.
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