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Abstract

Finding the largest triangle in an n-nodes edge-weighted graph belongs
to a set of problems all equivalent under subcubic reductions. Namely, a
truly subcubic algorithm for any one of them would imply that they are
all subcubic. A recent strong conjecture states that none of them can be
solved in less than Θ(n3) time, but this negative result does not rule out
the possibility of algorithms with average, rather than worst-case, subcu-
bic running time. Indeed, in this work we describe the first truly-subcubic
average complexity procedure for this problem. For graphs whose edge
lengths are uniformly distributed in [0, 1] our procedure finds the largest
triangle in average quadratic time, which is the best possible complexity of
any algorithm for this problem. We also give empirical evidence that the
quadratic average complexity holds for many other random distributions
of the edge lengths. A notable exception is when the lengths are distances
bewteen random points in Euclidean space, for which the algorithm takes
average cubic time.

Keywords: Applied Probability; Combinatorial Optimization; Max Weight
Triangle; 3-OPT TSP Neighborhood; Probabilistic Analysis of Algorithms.

1 Introduction

The problem addressed in this paper, called MaxTR, can be stated as follows:
given a complete graph of n vertices weighted on the edges, find a triangle of
maximum weight. This seemingly innocuous problem, for which there is an
obvious polynomial algorithm of complexity Θ(n3), does in fact appear, albeit
in disguise, as the core question to solve in many optimization problems on
graphs but not only. For instance, it relates to finding all-pairs shortest
paths, or the best 3-OPT move in TSP local search, but also checking wether a
given matrix defines a metric or computing Boolean matrix multiplication over
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the (OR,AND)-semiring. Therefore, any improvement over the trivial cubic
algorithm which enumerates all triangles would have a big impact on many
other problems as well. Unfortunately, theory tells us that, if a popular recent
conjecture is valid, there cannot be a better-than-cubic algorithm for MaxTR.
This result holds also for a set of other classical graph problems that can be
reduced to MaxTR. In order to introduce the conjecture, let us start with some
definitions.

We say that an algorithm for n-vertex graphs is truly subcubic if its run-
time is bounded by O(n3−ε) for some constant ε > 0. Vassilevska-Williams and
Williams [12] introduced a framework for relating the truly subcubic solvability
of several classic problems to each other. In particular, they defined the notions
of subcubic reducibility and subcubic equivalence. Essentially, a subcubic reduc-
tion of a problem P to a problem P ′ implies that a truly subcubic algorithm for
P ′ becomes a truly subcubic algorithm for P . The problems are subcubic equiv-
alent if each of them can be subcubic reduced to the other. A list of problems
that are subcubic equivalent to MaxTR includes, among others ([12, 3]):

• All pairs Shortest Paths (APSP): finding a shortest path between each
pair of vertices in a weighted graph.

• Finding a triangle of negative weight in a weighted graph.

• Finding a 3-OPT move (replacing 3 edges with 3 new ones) which shortens
a TSP tour in a weigthed graph.

• Finding a minimum-weight cycle in a graph of non-negative edge weights.

• Finding the 2nd shortest simple path between two nodes in a weighted
digraph.

A recent conjecture, known as the APSP conjecture [1], states that there
cannot be a truly subcubic algorithm for APSP. The conjecture is widely ac-
cepted since a truly subcubic algorithm for APSP would imply, via the reduc-
tions described in [12], truly subcubic algorithms for all the above problems,
which no one had ever been able to find despite many attempts.

The above list of problems includes 3-OPT, which arises in the context
of solving the Traveling Salesman Problem (TSP) via local search heuristics
[6, 10]. The 3-OPT input is a TSP tour T = (π1, . . . , πn). A move consists in
removing three edges e1 := {πi, πi+1}, e2 := {πj , πj+1}, and e3 := {πk, πk+1}
and replacing them with three new edges f1, f2 and f3 in such a way that
T ′ := T \ {e1, e2, e3} ∪ {f1, f2, f3} is still a tour. The move is improving if T ′ is
shorter than T . The 3-OPT problem consists in finding any improving move
(or the best improving move). Modulo the APSP conjecture, there is no truly
subcubic algorithm for 3-OPT, so that the obvious Θ(n3) enumeration which
tries all possibilities for i, j, k is, in a sense, the best way to find an improving
move [3].

The cubic time needed to find an improving 3-OPT move made the usage
of the 3-OPT neighborhood for the TSP practically impossible except for very
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small graphs. Recently, however, a new technique was proposed in [9], observed
to be orders of magnitude faster than the Θ(n3) enumeration on all instances on
which it was applied, both random and from the standard repository TSPLIB
[11]. Let us call Ah the technique introduced in [9]. The technique is based on a
clever enumeration of the moves which tends to find very good moves early on,
coupled with a pruning criterion which allows to discard several “bad” moves
without having to enumerate them. Given the relation between 3-OPT and
MaxTR, we suspected that Ah could have a similarly effective counterpart for
the solution of MaxTR. The focus of this paper has therefore been the study
of a version of Ah adapted for the solution of MaxTR. While a theoretical
analysis of the average running time of Ah for 3-OPT turned out to be too
complex (the work [9] contains only experimental evidence but no formal proof
of the subcubic running time), in the case of MaxTR we have been able not only
to prove that Ah is truly subcubic on average, but that indeed it is quadratic
which is clearly the best possible complexity for an algorithm whose input has
size Θ(n2).

Since theory told us that any exact algorithm for finding the largest triangle
should be at least cubic in the worst case, we looked for (and found) classes
of instances on which the algorithm Ah takes indeed time Θ(n3). We also
characterized some instances on which it takes (worst-case) Θ(n2) time. Finally,
we have defined a new randomized algorithm Ar which is much simpler to
implement than Ah and which also exhibits a truly subcubic average behavior,
worse than Ah but only by a constant factor.

The remainder of the paper is organized as follows. In Section 2 we in-
troduce some useful notation and terminology. Section 3 describes the ideas
behind the algorithm Ah while in Section 4 we describe some best and worst
possible instances. Section 5 contains the probabilistic analysis of Ah as well as
some experimental evidence of its quadratic behavior. In Section 6 we describe
the randomized algorithm Ar and compare it to Ah. Section 7 is devoted to
the experimental analysis of Ah on various families of random instances, with
both independent and dependent random edge lengths. Some conclusions are
drawn in Section 8. Finally we review some useful probabilistic results from the
literature in Appendix A.

2 Basic notation and definitions

We consider the complete graph Kn of nodes {1, . . . , n}, weighted on the edges.
The edges will be denoted preferably by ij, but sometimes also by {i, j}. Let
T be the set of triples (i, j, k) ∈ {1, . . . , n}3 such that i < j < k. We can think
of T as the set of (vertices of) all triangles in Kn. Clearly |T | =

(
n
3

)
.

Assume the
(
n
2

)
edges of Kn are given costs drawn uniformly at random in

[0, 1]. In particular for each 1 ≤ i < j ≤ n we have a uniform random variable
Lij in [0, 1] representing the length of the edge ij. For each triple (i, j, k) ∈ T
we define

∆(i, j, k) := Lij + Ljk + Lik.
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The problem MaxTR studied in this paper consists in finding a triple
(i∗, j∗, k∗) ∈ T such that

∆(i∗, j∗, k∗) = max
(i,j,k)∈T

∆(i, j, k).

We will call any such triple the best overall. For α ∈ [0, 1] let us call α-good any
edge ij such that Lij > α. We extend the definition of α-good to any triple that
contains at least one α-good edge. We say that an edge (respectively, a triple)
is α-bad if it is not α-good.

3 The main idea and the algorithm Ah
There is an obvious Θ(n3) algorithm of complete enumeration of all triples,
i.e., three nested for cycles, for i, j and k, iterating over all triples (i, j, k) ∈ T ,
evaluating the ∆-value of each of them and eventually returning the best overall.

In this paper we are going to follow a different strategy, that allows us not
to enumerate all triples, but only those who are “good candidates” to be the
best overall. The idea is quite simple, and is applied to a sequence of iterative
improvements where, at each iteration, there is a certain triple (the current
“champion”) which is the best we have seen so far and which we want to beat.

Assume the current champion is T̂ = (̄i, j̄, k̄). Then, for any triple (i, j, k)
better than T̂ it must be Lij + Ljk + Lik > ∆(T̂ ) and hence(

Lij >
∆(T̂ )

3

)
∨

(
Ljk >

∆(T̂ )

3

)
∨

(
Lik >

∆(T̂ )

3

)

i.e., at least one of its edges must be (∆(T̂ )/3)-good. Based on this observation,
we will set-up an enumeration scheme which builds the triples starting from
edges that are (∆(T̂ )/3)-good and then completing any such edge into a triple
by adding the missing vertex.

Our basic steps are the selection and the expansion of the edges. The selec-
tion of an edge is simply the choice of an edge ij (which has not been selected
before). The expansion of ij is the evaluation of all triples {i, j, k}, for k 6= i, j.

Our algorithm, at a high level, can be seen as a sequence of iterations, where
each iteration is a selection followed, perhaps, by an expansion. If during an
expansion the current champion gets improved, we say that the iteration was
fruitful, otherwise it was fruitless. We will show that, as long as we expand only
edges that are (∆(T̂ )/3)-good we expect to have, overall, only O(n) expansions.
Our first strategy for edge selection is to select them in decreasing order of
length. The best data structure for performing this type of selection is a heap
(justifying the “h” in Ah), from which we pop out the edges from the largest to
the smallest.

Since in our algorithms we constantly make references to the threshold
(∆(T̂ )/3) defined by the current champion T̂ , from now on we will say that
an edge (or a triple) is good if it is (∆(T̂ )/3)-good, and it is bad otherwise.
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Procedure 1 DeterministicHeapBasedAlgorithm Ah

1. Build a max-heap with elements [(i, j), Lij ] ∀1 ≤ i < j ≤ n
sorted by L-values;

2. Set T̂ := ∅ and ∆(T̂ ) := −∞;
3. while the L-value of the top heap element is > ∆(T̂ )/3 do
4. Extract the top of heap, let it be [(a, b), Lab];
5. let c = argmaxk 6=a,b(Lab + Lbk + Lak);

6. if Lab + Lbc + Lac > ∆(T̂ ) then
7. T̂ := {a, b, c}; /* update the champion */
8. endif
9. endwhile

10. return T ∗;

The deterministic algorithm Ah is described in Procedure 1. In this algo-
rithm we make use of a max-heap, in which we put all the edges with their
L-value. Each entry of the heap is indeed a 2-field record [(a, b), Lab]. The
max heap is basically a binary tree whose nodes correspond to the pairs ij, and
such that, for each node ab, it is Lab ≥ Lxy for all xy in the subtree rooted
at ab. Building the heap (step 1) is done in linear time w.r.t. the number of
heap elements (i.e., in time Θ(n2) in our case) by using the standard procedure
heapify() (described in each classic book on algorithms and data structures
such as, e.g., [4]).

At the beginning T̂ is undefined and we set ∆(T̂ ) := −∞ as the value to
beat. Testing if there are still any good edges is done in step 3 and takes time
O(1) per test since we just need to read the root of the heap. The selection
is done in step 4 and takes time O(log n2) = O(log n) to maintain the heap
property. The main loop 3–8 terminates as soon as there are no longer any
good edges.

At the generic step, we pop the top of the heap, let it be [(a, b), Lab]. If
Lab ≤ ∆(T̂ )/3, we stop and return T̂ as the best triple possible. Otherwise,
a and b are two out of the three indices of some potential triple better than
T̂ . Knowing two out of the three indices, we then run the expansion (step 5)
which, in linear time, finds the best completion of {a, b} into a triple. Each time
we find a triple better than the current champion, we update T̂ . This way the
termination condition becomes easier to satisfy and we get closer to the end of
the loop.

If, overall, there are N selections (and, therefore N expansions), the running
time of the algorithm is O(n2+N(log n+n)) which is O(n2) as long asN = O(n).
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4 Best- and worst-case analysis

Any algorithm for finding a best triangle in a graph must have a complexity
Ω(n2), since, at the very least, all edges have to be considered for being in
the best triangle. In this section we show that our algorithm has a best-case
complexity of O(n2) and a worst-case complexity of Θ(n3).

Theorem 1 The algorithm Ah has a best-case complexity O(n2).

Proof: The simplest best-case instance is when all the edge lenghts are the
same, say = 1. In this graph, any triangle is a best triangle and has value 3. The
algorithm starts by selecting an edge and finding, in the expansion, as the first
champion the best overall. This will set the threshold for good edges at 3/3 = 1
so that there will be no longer any good edge. At this point the algorithm stops.
The total time is O(n2) for building the heap plus O(log n + n) for the single
loop iteration. �

It is easy to show that there are also best-case instances in which all costs
are distinct. For example, set L12 = 1 and take all the remaining lenghts in
[0, 1

3 ]. Also here, the best triangle is found at the first, and only, expansion.
Let us now look at a worst-case example.

Theorem 2 The algorithm Ah has a worst-case complexity Θ(n3).

Proof: Clearly the complexity is O(n3) since there are O(n2) elements in the
heap and the expansion of each of them takes O(n) time. To show the lower
bound Ω(n3) consider the following instance.

Fix any ε ∈ (0, 1/2) and define

Lij =

{
1− ε if i = j (mod 2)

1 if i 6= j (mod 2)

Notice that each triangle contains at least one pair of nodes of the same parity,
and hence at least one edge of cost 1− ε. Therefore, the optimal value is 3− ε
and is realized by any triple in which exactly two of the nodes have the same
parity.

The algorithm selects any edge of value 1 at the first iteration (e.g. {1, 3}),
and, at the first expansion, finds the best overall (e.g., (1, 2, 3)). This sets the
threshold for being a good edge at 1 − (1/3)ε so that every edge between an
even and an odd vertex is good. Notice that there are n2/4 = Ω(n2) such edges.
All these edges will be selected and expanded, in fruitless iterations, for a total
work of Ω(n3). �

Considering that the worst-case complexity is Θ(n3), one might wonder if
the hidden multiplicative constant can be bigger than 1. Indeed, one could say
that since a triple contains three edges, it could be evaluated three times (if
each of these edges is good). However, we show that it will be evaluated at
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most twice. Furthermore, only triples that are good (at a given point of the
algorithm) can be evaluated twice, not all triples.

Lemma 1 Let t be the number of good triples at any point during the execution
of the algorithm Ah. Then the number of triples evaluated by the algorithm
from this point on is bounded by 2t.

Proof: We know that only (a subset of) the t good triples will be evaluated
from now on. However a specific triple {i, j, k} could be evaluated more than
once, since it can be good because of ij OR jk OR ik. The only good triples
that could be evaluated three times are those whose edges are all good. Let us
consider any such good triple T = {i, j, k}, i.e.,

(Lij > ∆(T̂ )/3) ∧ (Ljk > ∆(T̂ )/3) ∧ (Lik > ∆(T̂ )/3).

Without loss of generality, assume Lij ≥ Ljk ≥ Lik. Whenever ij is popped
from the heap and T gets evaluated for the first time, the value ∆(T ) = Lij +

Ljk + Lik > ∆(T̂ ) and so the champion gets updated to T̂ := T and its value

to ∆(T̂ ) := Lij + Ljk + Lik. Note that at this point

Lik = min{Lij , Ljk, Lik} ≤
Lij + Ljk + Lik

3
=

∆(T̂ )

3

and hence the element ik will not be popped from the heap for expansion, since
the search will stop earlier. Therefore, T cannot be evaluated three times. �

5 The average-case complexity of the algorithm:
probabilistic findings and empirical evidence

Each run of the algorithm on a random instance determines some random vari-
ables, such as:

• the total number N of expansions, which corresponds to the number of
selections and loop iterations;

• the L-values H1 > H2 > · · · > HN of the 1st, 2nd, ..., last edge pulled
from the heap ( since the random variables are continuous, they are strictly
decreasing almost surely);

• the total number C of times that the champion T̂ (and its value) gets
updated;

• the values V1 < V2 < · · · < VC of the champion after the 1st, 2nd, ..., last
update;

• the total number M of triples evaluated by the algorithm and defined as
M = N(n − 2) (this is the quantity which determines the complexity of
the algorithm).
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The aim here is to determine the expected total number of triples E(M) =
E(N)(n−2), as a function of n, and then to discuss the average-case complexity
of the algorithm. By considering a suitable mean pattern, we obtain an upper
bound for E(M) and we find that, as it appears experimentally, E(M) = O(n2).
Hereafter, we define as a step of the algorithm the total number of selections and
loop iterations which produces a new champion, and the number C of times that
the champion gets updated corresponds to the number of steps required to ter-
minate the algorithm. Furthermore, we usually consider the interest quantities
up to terms of order O(n−1/2).

5.1 The steps of the deterministic algorithm

Step 1. In the initial step of the algorithm, since ∆(T̂ ) := −∞, the (relative)
frequency of good edges in the heap is p1 = 1 and then the number of available
edges, which can specify the first champion, is simply R1 = n(n − 1)/2. The
value of the first edge pulled from the heap is H1 = max1≤i<j≤n{Lij}, namely,
the maximum of m = n(n−1)/2 independent uniform random variables in [0, 1]
Lij , i, j = 1, . . . , n, i < j, and then the value of the first champion is given by

V1 = H1 +B1.

Here we set B1 = B|(Lwv < E(H1), w = a, b), where

B := max
v=1,...,n;v 6=a,b

{Lav + Lbv}

is the maximum of m = n−2 independent triangular random variables, obtained
as the sum of pairs of independent uniform random variables in [0, 1]. Since H1

corresponds to the maximum edge length, say realized by the pair (a, b), the
random variable B has to be considered under the condition that the random
variables Lwv, w = a, b, assume a value that is lower than the observed value of
Lab.

From Theorem A2, we state that

E(H1) =
m

m+ 1
= 1− 1

1 + n(n− 1)/2
= 1− 2

n2 − n+ 2
= 1 +O(n−2)

and, applying relation (A3), we conclude that E(B1) = E(H1)E(B). Since
from (A2) a lower bound for E(B) can be specified, a simple lower bound for
the expected value of the first champion is given by

E(V1)− =

(
1− 2

n2 − n+ 2

){
3− 2−(n−2)

2n− 3
−
√

π

2(n− 2)

}
= 3−

√
π

2
n−1/2 + o(n−1/2).

Step r. We consider the generic r-th step, with r = 2, 3, . . ., and the interest
quantities are specified as a function of those ones obtained in the preceding
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step, with the aim of defining a suitable iterative procedure. Let us assume that
the lower bound for the expected value of the champion defined in the (r−1)-th
step is

E(Vr−1)− = 3− λr−1

√
π

2
n−1/2 + o(n−1/2), r = 2, 3, . . . ,

with λ1 = 1 and λr = g(λr−1), r = 2, 3, . . ., where g(·) is a function to be
defined in the following. Then, the (relative) frequency of good edges in the
heap is approximated by

pr = P

(
Lij >

E(Vr−1)−

3

)
= 1− E(Vr−1)−

3
=
λr−1

3

√
π

2
n−1/2 + o(n−1/2),

and an upper bound for the expected number of good edges in the heap is

Rr =
n(n− 1)

2
pr =

n1/2(n− 1)

6
λr−1

√
π

2
+ o(n3/2), r = 2, 3, . . . . (1)

If there is at least one good edge available in the heap, it could specify a
new champion with value

Vr = Hr +Br,

where Hr = X(m−Er−1), with m = n(n − 1)/2, is the (m − Er−1)-th record of
the heap in decreasing order. Here,

Er−1 =

r−1∑
s=1

E(Ns) (2)

is the expected number of expansions performed until the (r−1)-th step, where
Ns is the number of expansions produced in the s-th step. Clearly, N1 = 1,
whereas the random variables Ns, s = 2, 3, . . ., will be defined in the following.
Whenever Er−1 = o(n3/2), as usual in the observed behavior of the algorithm,
we may conclude, using Theorem A2, that

E(Hr) =
m− Er−1

m+ 1
= 1− Er−1 + 1

1 + n(n− 1)/2
= 1 + o(n−1/2).

Moreover, Br = B|B > βr, where B is the maximum of m = n− 2 indepen-
dent triangular random variables and

βr = E(Vr−1)− − E(Hr) = 2− λr−1

√
π

2
n−1/2

is the value for B which has to be exceeded in order to beat the current cham-
pion. Applying relation (A5), with β = βr, we find out that the probability of
this event is

P (B > βr) = 1−
(

1− λ2
r−1

π

4
n−1

)n−2

.
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It is immediate to conclude that the number of expansions required in the r-th
step in order to obtain a new champion is a random variable Nr following a
geometric distribution with expected value

E(Nr) =
1

P (B > βr)
, r = 2, 3, . . . . (3)

If the (upper bound of the) expected number of good edges in the heap is
strictly lower that expected number of expansions to be performed until the
r-th step, that is, if

Rr − Er < 0, (4)

then the algorithm terminates. In this case we have a number of available edges
in the heap Rr−

∑r−1
s=1 E(Ns) which is strictly lower than the expected number of

expansions E(Nr) to be performed in r-th step in order to get a new champion.
Then, the algorithm performs r − 1 steps (which is an approximation for the
number C of times that the champion gets updated), the (lower bound for the)
expected value of the champion is E(Vr−1)− and an upper bound for the mean
value of the total number of expansions E(N) is

max

{
r−1∑
s=1

E(Ns), Rr

}
.

We note in passing that this quantity is not greater than Rr−1, namely, the
expected number of good edges in the heap at the beginning of the (r − 1)-th
step.

If the termination condition (4) is not satisfied, we expect that the champion
and its value get updated in the r-th step. Using (A4), we compute the following
lower bound for the expectation of Br

E(Br)
− = E(B|B > βr)

− = 2− g(λr−1)

√
π

2
n−1/2 + o(n−1/2)

and, consequently, a lower bound for the expected value of the potential cham-
pion defined in the r-th step

E(Vr)
− = E(Hr) + E(Br)

− = 3− g(λr−1)

√
π

2
n−1/2 + o(n−1/2),

where, up to terms of order O(n−1/2),

g(λ) =
1

1− {1− λ2(π/4)n−1}n−2

[
2Φ

(
λ

√
π

2

)
− 1− λ{1− λ2(π/4)n−1}n−2

]
,

with λ ∈ (0, 1] and Φ(·) the distribution function of a standard normal random
variable. Since

{1− λ2(π/4)n−1}n−2 ≥ e−λ
2π/4,
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it is easy to state that function

g̃(λ) =
1

1− e−λ2π/4

{
2Φ

(
λ

√
π

2

)
− 1− λe−λ

2π/4

}
is an upper bound for g(λ) and also a good approximation, for moderate values
on n. Notice that function g(·) is increasing on the domain (0, 1] and its right
limit at λ = 0 is 0. Moreover, the sequence λr, r = 1, 2, . . ., with initial value
λ1 = 1, is decreasing towards 0 and the associated sequence Rr−Er, r = 1, 2, . . .,
usually assumes negative values after a few number of steps.

5.2 The average-case complexity of Ah

In this section, we discuss the asymptotic order, as the number n of nodes
increases, of a suitable upper bound for the expected number of times E(C)
that the champion gets updated and for the expected number of expansions
E(N) produced in the development of the algorithm. These results enable
an approximate evaluation of the average-case complexity of the algorithm, by
assuming that its mean behavior is the one outlined in the previous section.

Theorem 3 Let Kn be a complete graph with n ≥ 3 nodes, where the n(n−1)/2
edge weights are independent uniform random variables in [0, 1]. By considering
the mean behavior of the algorithm outlined in Section 5.1, if

r? = max{r ∈ N+ : Rr − Er ≥ 0},

with Rr and Er specified in (1) and (2), respectively, we have that r? = O(log n)
and Rr? = O(n).

Proof: At first, from equation (3), we state immediately that E(Nr) ≥ 1,
r = 1, 2, . . ., and then, since Rr − Er ≤ Rr − r, we may conclude that r? ≤ r̂,
with r̂ ∈ N+ such that Rr̂ − r̂ = 0. Here, for simplifying the exposition, we
assume that the equality turns out to be exactly true. Using (1), and neglecting
terms of lower asymptotic order, this last equation can be rewritten as

r̂

λr̂−1
=
n1/2(n− 1)

6

√
π

2
. (5)

Moreover, by considering the definition of function g(·), introduced at the
end of Section 5.1, since 2Φ(λ

√
π/2) < 1+λ, for λ ∈ (0, 1], it is easy to show that

there exists a quantity b ∈ (0, 1) such that g(λ) ≤ bλ, for λ ∈ (0, 1]. Recalling
that the sequence λr, r = 1, 2, . . ., is obtained by applying recursively function
g(·), starting from λ1 = 1, we state that λr̂−1 ≤ br̂−2. Thus, the following
inequalities hold

1

br̂−2
≤ r̂

br̂−2
≤ r̂

λr̂−1
=
n1/2(n− 1)

6

√
π

2
,
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and applying the logarithmic transformation to the first and the last terms,
we conclude that r̂ = O(log n). Finally, since r? ≤ r̂, we prove also that
r? = O(log n).

The asymptotic order of Rr? may be easily derived by considering that r? ≤
n and that, from (5), we obtain the following upper bound

λr̂−1 ≤
6n

n1/2(n− 1)
√
π/2

.

Plugging this inequality in equation (1), we also prove that Rr? = O(n). �

This theorem sheds some light on the average-case complexity of the deter-
ministic algorithm Ah, since r? can be viewed as an approximation for E(C),
namely, the expected number of times that the champion gets updated, and
Rr? is an upper bound for the overall expected number of expansions E(N).
From Theorem 3, we conclude that E(M) = O(n2) and that E(C) = O(log n),
namely the average-case complexity of the algorithm turns out to be Θ(n2) and
the expected number of times that the champion gets updated is Θ(log n).

These theoretical findings are in accordance with the results of the following
simulation study. We consider a set of runs of the algorithm on random instances
of size varying from n = 20 to n = 5120, each time doubling the value of n. The
values reported in each row of Table 1 are the averages over Tn instances of size
n, where Tn = 10, 000 for n ≤ 500 and Tn = 2, 000 for n > 500.

n Ê(N) ρN Ê(C) δC Ê(M)
(
n
3

)
ratio

20 10.18 - 2.32 - 183 1,140 6,2
40 20.07 1,97 2.96 0.64 763 9,880 12,9
80 39.99 1.99 3.61 0.65 3,119 82,160 26.3

160 79.10 1.98 4.30 0.69 12,498 669,920 53.6
320 158.01 2.00 4.97 0.67 50,247 5,410,240 107.6
640 317.80 2.01 5.66 0.69 202,759 43,486,080 214.4

1280 629.64 1.98 6.39 0.73 804,674 348,706,560 433.3
2560 1,259.85 2.00 7.02 0.63 3,222,692 2,792,926,720 866.6
5120 2,486.33 1,97 7.72 0.70 12,725,050 22,356,515,840 1756.8

Table 1: Empirical mean values, computed using Tn simulated instances of size
n, of the random variables involved in the development of the algorithm Ah.

Column Ê(N) is the estimated mean value of loop iterations, i.e., of elements
pulled from the heap. The estimated total number of triples evaluated (rounded
to integer), is shown in column Ê(M). Next to this column we report the value
of
(
n
3

)
which is the number of triples evaluated by the complete enumeration

algorithm. We can appreciate how our method achieves speed-ups from 1 up to 3
orders of magnitude. In column ρN we report the ratio of Ê(N) for consecutive-
size instances and we see how this value is approximately 2, i.e., Ê(N) appears
to be linear in n. Consequently, Ê(M) = Ê(N)(n− 2) appears to be quadratic

12



and then we can say that, on average, the algorithm evaluates more or less one
triple for each pair of nodes.

Column Ê(C) is the estimated total number of times that the champion has
been updated. Each time we double n, Ê(C) increases by roughly a constant
factor. In column δC we report the difference of Ê(C) for instances of consecu-
tive size. Similarly to ρN , also this column seems to revolve around a constant,
roughly ' 0.69. This growth is typical of a logarithmic function. Hence we
may conclude that these empirical findings are in accordance to the theoretical
statements assuring that E(M) = O(n2) and E(C) = O(log n).

Finally, in Table 2 we report the values for E(N) and E(C) obtained by
considering the associated approximations Rr? and r? outlined in Section 5.1.
The number of nodes varies, as before, from n = 20 to n = 5120. Since these ap-
proximations correspond to integer values, in order to obtain results comparable
to those ones given in Table 1, we specify E(N) as a suitable weighted mean
between Rr? and Rr?+1. Moreover, we compute also E(M) = E(N)(n−2). The
values reported in Table 2 are similar to those one obtained using simulations
and they exhibit the same behavior as n increases.

n E(N) E(C) E(M)
20 9.50 3 171
40 18.88 4 717
80 37.28 5 2,908
160 78.89 5 12,465
320 166.88 6 53,068
640 340.53 7 217,258
1280 669.03 8 855,020
2560 1,258.96 9 3,220,420
5120 2,442.17 10 12,499,026

Table 2: Approximations for E(N), E(C) and E(M), for different values of n,
obtained using the results presented in Section 5.1.

6 A randomized algorithm for MaxTR

The deterministic algorithm Ah which performs so well on average is based on
two main ideas: (i) selecting the edges in order of length (the rationale being
that to obtain a “large” triangle at least one edge should be “large”), with the
hope of obtaining good champions early on; (ii) employing a pruning criterion
which does not consider some edges for expansion (i.e., does not generate some
triples which cannot beat the champion). A question then arises about which
between (i) and (ii) is the winning idea –if any– or if they are both needed.

The answer is that the winning idea is (ii), while (i) is important only to
speed-up the algorithm by a constant factor, but not to change its order of
complexity. We have come to this conclusion by investigating a new, simpler,
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algorithm which is the randomized version of Ah and which we called Ar. The
algorithm Ar is outlined in Procedure 2. In this algorithm we do not employ a
heap to select the edges in order of length, but we simply select them at random.
The main loop consists of

(
n
2

)
iterations. At each iteration the selection of an

edge (step 4) has cost O(1) (considering the generation of a random number
an O(1) operation). The expansion is done in step 7. Assuming there are N
expansion altogether, the running time of this algorithm is O(n2 +Nn), which
is O(n2) as long as N = O(n).

Procedure 2 RandomizedAlgorithm Ar

1. Set P := {{i, j} : 1 ≤ i < j ≤ n};
2. Set T̂ := ∅,∆(T̂ ) := −∞ ; /* Starting undefined champion */
3. while P 6= ∅ do
4. Pick p = {a, b} ∈ P at random;
5. P := P \ {p};
6. if Lab > ∆(T̂ )/3 then
7. let c = argmaxk 6=a,b(Lab + Lbk + Lak);

8. if Lab + Lbc + Lac > ∆(T̂ ) then
9. T̂ := {a, b, c}; /* update the champion */

10. endif
11. endif
12. endwhile
13. return T̂ ;

Since our analysis of the average running time of Ah has determined that
Ah is optimal for the problem, we did not consider necessary to perform a
similar evaluation for Ar, but rather to assess experimentally its performance
and compare it to that of Ah. In Table 3 we report the same type of data as
in Table 1 but this time for the algorithm Ar . Also in this case we notice that
Ê(N) is linear, Ê(M) is quadratic and Ê(C) is logarithmic.

Finally, if we compare the empirical results for Ah and Ar, by computing the
ratio between the number of triples evaluated by the latter and the former, we
notice that the Ar appears to be slower than Ah by approximately a constant
factor around 25% (see Table 4).

7 Experiments with various types of instances

The goal of this section is to show (empirically) that our algorithm performs well
not only on instances with uniform random costs but also on instances where
the costs follow some other distributions. In particular, in a first experiment we
have considered some classical probability distributions, such as Normal, Log-
normal, Beta, etc, and have generated the edge lengths as independent random
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n Ê(N) ρN Ê(C) δC Ê(M)
(
n
3

)
ratio

20 13.77 - 3.99 - 248 1,140 4.5
40 26.41 1.92 5.04 1.05 1,004 9,880 9.8
80 51.34 1.94 6.07 1.03 4,004 82,160 20.5

160 100.39 1.96 7.12 1.05 15,862 669,920 42.2
320 199.25 1.98 8.18 1.06 63,363 5,410,240 85.3
640 393.31 1.97 9.28 1.10 250,933 43,486,080 173.2

1280 788.78 2.00 10.29 1.01 1,008,056 348,706,560 345.9
2560 1568.66 1.99 11.36 1.07 4,012,645 2,792,926,720 696.0
5120 3157.03 2.01 12.19 0.83 16,157,687 22,356,515,840 1383.6

Table 3: Empirical mean values, computed using Tn simulated instances of size
n, of the random variables involved in the development of the algorithm Ar.

n Ah Ar ratio
20 183 248 1.35
40 763 1,004 1.31
80 3,119 4,004 1.28

160 12,498 15,862 1.27
320 50,247 63,363 1.26
640 202,759 250,933 1.24

1280 804,674 1,008,056 1.25
2560 3,222,692 4,012,645 1.25
5120 12,725,050 16,157,687 1.27

Table 4: Comparing Ê(M) for Ah and Ah

variables with those distributions. The results, described in Section 7.1 show
how the work done by the algorithm grows as a quadratic function of n on all
the distributions we tried.

In a second experiment we have studied the behavior of our algorithm on
instances where the edge costs are not independent. In particular, we have con-
sidered Euclidean instances, i.e., instances in which the nodes of the graph are
random points of Rd and the length of the edges are the Euclidean distances be-
tween the nodes. The results, described in Section 7.2, show how the work done
by the algorithm still grows as a quadratic function of n on all the distributions
we tried, with the notable exception of points whose coordinates are uniform
random variables in [0, 1]. Indeed, we prove that for such uniform Euclidean
instances, the algorithm has a cubic complexity on average (although it can
be still more effective than complete enumeration by a constant multiplicative
factor).
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How to read the tables. The results are reported in a set of tables organized
as follows. For each value of n = 20, 40, . . . , 5120 we have generated 1000 random
instances. To each instance type we associate a column of a table, labeled
by the corresponding distribution of the random costs (for instance, the label
N(0, 1) refers to a normal distribution with mean 0 and standard deviation
1). For each value of n we report the average number of triples (rounded to
integer) evaluated by the algorithm. The growth of the values along this column
illustrates the average complexity of the algorithm on these instances. The next
column, labeled ρ, reports the ratio between the number of triples evaluated
for n and for n/2. By looking at this column we get an immediate idea about
the fact that the growth is cubic, quadratic, or of some other order. Since
the value of n doubles each time, for a cubic algorithm the ratio should tend,
asymptotically, to 8. For a quadratic algorithm the ratio should tend to 4.
A ratio smaller than 4 is also possible. Of course this does not mean that the
algorithm takes a less than quadratic time to solve the problem, which would be
impossible. The algorithm is still quadratic, but the quadratic part is spent in
building the heap, while, once the heap has been built, the time to find the best
triple is less than quadratic. If ρ ' 2 then the best triple is found in linear time,
typically by just one expansion. A final row, labeled ‘ratio’, reports the ratio
between the total number of triples and the number of triples evaluated by Ah
for the last value of n. This number is indicative of the speed-up, with respect
to the time spent in evaluations, of our method over the complete enumeration
approach for n ' 5000.

7.1 Independent random costs

In this experiment we have considered the following distributions:

N(µ, σ) : Normal, with mean µ and standard deviation σ. In particular, we have
experimented with (µ, σ) = (0, 1).

LN(µ, σ) : Lognormal, with mean µ and standard deviation σ of the natural loga-
rithm transformation. In particular, we have experimented with (µ, σ) =
(1, 0.1) and (µ, σ) = (1, 2).

t(ν) : Student t, with ν degrees of freedom. In particular, we have experi-
mented with ν = 3 and ν = 5.

β(a, b) : Beta with parameters a, b. In particular, we have experimented with
(a, b) = (0.5, 0.5), (a, b) = (2, 2), (a, b) = (0.5, 2) and (a, b) = (2, 0.5).

Each distribution has its own important parameters, which, clearly, in our
runs we had to fix to a limited number of (hopefully representative) cases. For
the normal distribution, however, the study of our algorithm with µ = 0, σ = 1
catches the behavior for all possible values of µ, σ. This is due to the following
result:
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Lemma 2 The execution of Ah is invariant with respect to an affine transfor-
mation of the input costs (i.e., when each cost Lij is replaced by L′ij := A+BLij,
for constants A ∈ R and B > 0).

Proof: Notice that L′ij ≥ L′hk if and only if Lij ≥ Lhk and hence the edges are
popped from the heap in the same order as before. Furthermore, if we define
∆′(i, j, k) := L′ij + L′jk + L′ik we have ∆′(i, j, k) = 3A + B∆(i, j, k) for each
triangle (i, j, k), so that (i, j, k) is a better triangle than (u, v, w) with respect
to L′ if and only if it was a better triangle also with respect to L. Finally, since

∆′(̄i, j̄, k̄)

3
=

3A+B∆(̄i, j̄, k̄)

3
= A+B

∆(̄i, j̄, k̄)

3

for the good edges it is

L′ij >
∆′(̄i, j̄, k̄)

3
⇐⇒ A+BLij > A+B

∆(̄i, j̄, k̄)

3
⇐⇒ Lij >

∆(̄i, j̄, k̄)

3
.

Therefore the good edges are the same and the sequence of champions and ex-
pansions is the same for L′ and L. �

We have the following corollary:

Corollary 1 For any µ ∈ R and σ > 0, the average running time of Ah over
instances with costs distributed according to N(µ, σ) is the same as when the
costs are distributed according to N(0, 1).

Proof: This follows immediately by noticing that for a random variable X
with distribution N(µ, σ) it is X = µ+ σY where Y is a random variable with
distribution N(0, 1). �

By the same observation, our analysis of uniform distributions, which was
made for uniform random variables Y in [0, 1], applies to uniform random vari-
ables X in [a, b] for each a < b, since in this case X = a+ (b− a)Y .

The results of the computational experiments, reported in Table 5, show
that our algorithm is quadratic over all distributions examined. Given that
on all instances we must pay a quadratic time for the construction and usage
of the heap, let us just focus on the part concerning the expansions of edges
and evaluations of triples. For the normal distribution instances, the number
of triples evaluated grows slightly slower than a quadratic function. A similar
growth is exhibited by the Lognormal instances with µ = 1, σ = 0.1. For
Lognormal instances with µ = 1, σ = 2 as well as for Student t instances with
ν = 3 and ν = 5, the number of triples evaluated is even smaller, and appears to
grow almost linearly in n. An explanation of this phenomenon is that there is a
not negligible probability of observing both high and low edge costs. The beta
distribution instances, for all values of a and b that we tried, are those for which
the number of triples evaluated grows almost perfectly as a Θ(n2) function. In
particular, for a = b = 2 whenever n doubles, the number of triples evaluated
is almost exactly 4 times the value that it was before.
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n
(
n
3

)
N(0, 1) ρ LN(1, 0.1) ρ LN(1, 2) ρ

20 1140 122 - 114 - 45 -
40 9880 463 3.8 416 3.6 119 2.6
80 82160 1713 3.7 1620 3.9 313 2.6

160 669920 6570 3.8 6226 3.8 797 2.5
320 5410240 24155 3.7 22636 3.6 1941 2.4
640 43486080 85968 3.6 84197 3.7 4978 2.6

1280 348706560 305586 3.6 323732 3.8 11471 2.3
2560 2792926720 1005527 3.3 1208520 3.7 26325 2.3
5120 22356515840 3411357 3.4 4686272 3.9 57742 2.2
ratio - 6554× - 4771× - 387179× -

n
(
n
3

)
t(3) ρ t(5) ρ β(0.5, 0.5) ρ

20 1140 48 - 64 - 211 -
40 9880 117 2.4 167 2.6 906 4.3
80 82160 265 2.3 424 2.5 3661 4.0

160 669920 574 2.2 1037 2.4 14752 4.0
320 5410240 1316 2.3 2392 2.3 58587 4.0
640 43486080 2677 2.0 5791 2.4 238581 4.1

1280 348706560 5979 2.2 12579 2.2 950841 4.0
2560 2792926720 12571 2.1 28420 2.3 3795768 4.0
5120 22356515840 28677 2.3 51058 1.8 14621374 3.9
ratio - 779597× - 437865× - 1529× -

n
(
n
3

)
β(0.5, 2) ρ β(2, 2) ρ β(2, 0.5) ρ

20 1140 146 - 154 - 222 -
40 9880 630 4.3 658 4.3 914 4.1
80 82160 2485 3.9 2583 3.9 3659 4.0

160 669920 10342 4.2 10398 4.0 14728 4.0
320 5410240 40315 3.9 41185 4.0 59098 4.0
640 43486080 161418 4.0 165431 4.0 232610 3.9

1280 348706560 650200 4.0 661346 4.0 938734 4.0
2560 2792926720 2632878 4.0 2655056 4.0 3559253 3.8
5120 22356515840 10598903 4.0 10609394 4.0 12028831 3.4
ratio - 2109× - 2107× - 1859× -

Table 5: Statistics for various distributions of the random costs. Averages over
1000 instances for each value of n.

7.2 Random points in the Euclidean space

In this experiment we consider graphs embedded in the Euclidean space Rd (the
experiments reported in this section refer mostly to the dimension d = 2, i.e.,
the graph lies in the plane. The choice of d = 2 is representative of the situation
for each fixed dimension). Each instance, which we call a Euclidean instance, is
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created by generating n points x1, . . . , xn ∈ Rd, where each coordinate xji , for
i = 1, . . . , d, j = 1, . . . , n, is drawn, independently from the others, according
to a fixed distribution D (such as uniform, Normal, etc.). We then take as
lengths of the edges Lij = ||xi − xj ||. Clearly for Euclidean instances the
edge lengths are not independent random variables, and, most importantly,
the triangle inequality holds. The triangle inequality has implications on our
algorithm (for instance, if in a triangle two of the edges are bad, the probability
that also the third one is bad is larger than when the lengths are independent).

We start by analyzing the uniform Euclidean instances, which turn out to
be the most difficult instances for our algorithm. Let us denote by U∆(d) the
instances where each coordinate xik is a uniform random variable in [0, 1]. We
have the following result:

Theorem 4 For any constant d ∈ N, the average running time of Ah on in-
stances in U∆(d) is Θ(n3).

Proof: The maximum distance between two points in [0, 1]d is
√
d and it

is achieved by any pair of opposed vertices of the hypercube, i.e., two points
a, b ∈ {0, 1}d such that ai = 1 − bi for i = 1, . . . , d. Notice that for each point
p ∈ [0, 1]d there is at most one point q ∈ [0, 1]d such that ||p − q|| =

√
d and

therefore for each triangle (i, j, k) it is ∆(i, j, k) < 3
√
d. Let l be the value of

the largest triangle possible in [0, 1]d. Then l/3 <
√
d.

Consider then two open balls, one centered in (0, . . . , 0) and the other in
(1, . . . , 1), of radius r = (

√
d − l/3)/2 each. Let A and B be the (non-empty)

intersections of these balls with the unit cube. Notice that for each i ∈ A and
j ∈ B it is ||i − j|| > l/3. Let v be the volume of A (equal to the volume of
B). The value v is a constant depending only on d. For each instance in U∆(d),
vn = Θ(n) points are expected to fall in A (respectively, in B) on average. By
construction, each edge ij with i ∈ A and j ∈ B is good at any stage of the
algorithm and hence there are Θ(n) × Θ(n) = Θ(n2) expansions for a total of
Θ(n3) triangles evaluated. �

Notice that, while there are Euclidean instances that require cubic time to
be solved, there are also instances which are solved in time O(n2). One case
is when the points are not spread uniformly, but most of them lie within a
small-radius ball. The following lemma gives an example.

Lemma 3 Let k be a constant. Denote by Lmax := maxi,j Lij. The set of
Euclidean instances for which there exists an open ball B of radius Lmax/6 which
contains all points except for at most k points can be solved by O(n) expansions.

Proof: Notice that a triangle of value > Lmax is found at the first expansion.
At this point, the only edges which can be expanded are either the

(
k
2

)
= O(1)

edges between points out of B, or the k(n − k) = O(n) between a point i /∈ B
and j ∈ B. �
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n
(
n
3

)
U∆(2) ρ U∆(dlog ne) ρ Ũ∆(2) ρ

20 1140 203 - 143 - 135 -
40 9880 925 4.6 542 3.8 513 3.8
80 82160 4716 5.1 2021 3.7 2026 3.9

160 669920 26398 5.6 7372 3.6 8170 4.0
320 5410240 158352 6.0 27844 3.8 33207 4.1
640 43486080 1017851 6.4 99199 3.9 130057 3.9

1280 348706560 6969994 6.8 382551 3.9 536533 4.1
2560 2792926720 49394123 7.1 1422908 3.7 2128656 4.0
5120 22356515840 362727298 7.3 5292483 3.7 8404913 3.9
ratio - 62× - 4224× - 2660× -

Table 6: Statistics for Euclidean uniform instances.

There is also the possibility of Euclidean instances which require the evalua-
tion of only O(n) triangles (e.g., when there is only one expansion). For example,
consider an instance in which 3 points P,Q,R are vertices of an equilateral tri-
angle of side 1, while all other points lie within a circle of radius (

√
3 − 1)/

√
3

centered at the triangle’s centroid. The triangle PQR is found at the first ex-
pansion. Then the threshold for a good arc is set at 1, but there are no edges
ij such that Lij > 1.

In Table 6 we report the results for Euclidean instances with uniform distri-
bution. The column labeled U∆(2) shows the cubic behavior of the algorithm,
which, however, is still much better than complete enumeration with respect to
the multiplicative constant. Indeed, the algorithm Ah evaluates about 1/60th
of all triples when n ' 5000. While for fixed d the algorithm is cubic, we no-
ticed (results not documented here) that the savings with respect to complete
enumeration are increasing with d. We have then considered the case in which
d is not a constant, but it depends on n. In particular, we have set d := dlog ne.
The results, reported under the column U∆(dlog ne), show that Ah performs
very well and appears again to be quadratic.

Furthermore, in order to assess the importance of this particular type of
Euclidean costs and of the dependance between the variables, we have then
performed the following experiment. After having generated n random points,
and the corresponding m := n(n − 1)/2 random lengths l1, . . . , lm, we have
assigned these lengths randomly to the m edges of the graph. We call this type
of instance a shuffled Euclidean instance. In column Ũ∆(2) we see the effect
of shuffling the edge costs on a Euclidean instance: the algorithm ceases to be
cubic and resumes its quadratic behavior.

When the coordinates are generated according to some distribution other
than the uniform, the algorithm Ah performs again very well and shows a
quadratic time complexity. In particular, we have considered the Normal, Log-
normal, and Beta distributions and have generated the coordinates of each point
by using these distributions in turn. The results are reported in Table 7 for var-
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ious parameters of the distributions. It is clear from the tables that on all
instances the algorithm shows a quadratic, or near-quadratic, complexity. The
hardest instances appear to be when the coordinates are generated with the
Lognormal distribution for µ = 1, σ = 2. Still, in this case the number of triples
evaluated for n ' 5000 is about 1/1200 of the total. The easiest instances ap-
pear to be the standard Normal and Lognormal with µ = 0, σ = 0.1, which
show an almost identical behavior.

n
(
n
3

)
N∆(0, 1) ρ LN∆(1, 0.1) ρ LN∆(1, 2) ρ

20 1140 131 - 130 - 214 -
40 9880 484 3.7 497 3.8 894 4.2
80 82160 1873 3.9 1894 3.8 3727 4.2

160 669920 7074 3.8 7108 3.8 14978 4.0
320 5410240 26362 3.7 27861 3.9 62409 4.2
640 43486080 99278 3.8 107456 3.9 263701 4.2

1280 348706560 389880 3.9 403978 3.8 1074510 4.1
2560 2792926720 1500265 3.8 1574061 3.9 4231876 3.9
5120 22356515840 5788300 3.9 6178092 3.9 17733492 4.2

ratio - 3862× - 3617× - 1261× -

n
(
n
3

)
β∆(0.5, 2) ρ β∆(2, 2) ρ β∆(2, 0.5) ρ

20 1140 152 - 138 - 152 -
40 9880 557 3.7 519 3.8 562 3.7
80 82160 2034 3.7 1978 3.8 2024 3.6

160 669920 7446 3.7 7424 3.8 7534 3.7
320 5410240 29713 4.0 28299 3.8 29807 4.0
640 43486080 119650 4.0 108981 3.9 121715 4.1

1280 348706560 490836 4.1 441010 4.0 494952 4.1
2560 2792926720 2011397 4.1 1770901 4.0 1941702 3.9
5120 22356515840 8186154 4.1 6918339 3.9 8002915 4.1

ratio - 2731× - 3231× - 2794× -

Table 7: Statistics for Euclidean instances in R2 with various distributions of
the random coordinates.

8 Conclusions

In this paper we have described and analyzed a deterministic algorithm Ah
for finding the largest triangle in a graph. This problem is believed to be
inherently cubic for a worst-case algorithm, and it is subcubic equivalent to
many important graph problems. Our algorithm is based on selecting edges
and expanding them into triples. By selecting the edges in decreasing order of
length and expanding them only if they pass the test of being good, we have
shown that Ah takes on average a quadratic time to find the largest triangle in a
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graph of uniformly random edge lengths. This is the best possible complexity for
this problem. Besides the theoretical analysis focused on the uniform random
costs, we have performed extensive experimental tests which show how our
algorithm maintains its optimal, quadratic, complexity over a wide range of
random instance classes. One important exception to this optimal behaviour is
represented by the class of Euclidean instances, on which the algorithm takes
average cubic time. Finally, we have described a randomized algorithmAr which
also appears to behave very well for this problem and which is much simpler to
implement.

A A review of useful probabilistic results

A.1 Order statistics from uniform random variables

We briefly recall some well-known results on order statistics obtained, in par-
ticular, from a sample of independent uniform random variables (for a more
comprehensive overview on order statistics, see, for example, David and Na-
garaja, 2003).

Theorem A1 Let X1, . . . , Xm, m ≥ 1, be independent random variables with
common distribution function F (x), x ∈ R. The distribution function of the
maximum X(m) = max{X1, . . . , Xm} is FX(m)

(x) = F (x)m, x ∈ R. If the
random variables are continuous with density f(x), x ∈ R, then X(m) has density
fX(m)

(x) = mf(x)F (x)m−1, x ∈ R.

Theorem A2 If the independent random variables X1, . . . , Xm follow a con-
tinuous uniform distribution with support [0, 1], then X(m) follows a Beta dis-
tribution with parameters m and 1 and the associated mean value is E(X(m)) =
m/(m + 1). More generally, the k-th order statistic X(k), k = 1, . . . ,m, that
is the k-th-smallest value in the initial sample, follows a Beta distribution with
parameters k and m+ 1− k and E(X(k)) = k/(m+ 1).

Notice that, as expected, limm→+∞E(X(m)) = 1.

A.2 The maximum of triangular random variables

We consider the random variables X1, . . . , Xm defined as Xv = Xav + Xbv,
v = 1, . . . ,m, with Xw,v, w = a, b, v = 1, . . . ,m, independent uniform random
variables in [0, 1]. Since Xv, v = 1, . . . ,m, follows a triangular distribution,
which is a particular instance of the Irwin-Hall distribution (Hall, 1927; Irwin,
1927), from Theorem A1 we state that the maximum X(m) has density

fX(m)
(x) =

 mx (x2/2)m−1 if x ∈ [0, 1]
m (2− x){1− (2− x)2/2}m−1 if x ∈ (1, 2]
0 if x 6∈ [0, 2].

A useful lower bound for the associated expected value is given by the following
theorem.
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Theorem A3 The expected value of the maximum of m ≥ 1 independent tri-
angular random variables is

E(X(m)) = 2− 2−m

2m+ 1
−
∫ 1

0

(1− x2/2)mdx, (A1)

and the following inequality holds

E(X(m)) ≥ 2− 2−m

2m+ 1
−
√
π/(2m). (A2)

Proof: Since

E(X(m)) =

∫ 1

0

mx2(x2/2)m−1 dx+

∫ 2

1

mx (2− x){1− (2− x)2/2}m−1dx,

using integration by parts, we easily obtain equation (A1). Notice that the
integral in (A1) corresponds to a suitable Gaussian or ordinary hypergeometric
function (see, for example, Abramowitz and Stegun, 1972). Moreover, since

(1− x2/2)m ≤ e−mx2/2, x ∈ [0, 1], we have that∫ 1

0

(1− x2/2)mdx ≤
∫ 1

0

e−mx
2/2dx =

√
2π/m

∫ 1

0

√
mφ(x

√
m)dx

=
√

2π/m
{

Φ(
√
m)− 1/2

}
≤
√
π/(2m),

where φ(·) and Φ(·) are, respectively, the density and the distribution function
of a standard normal random variable. The last inequality follows from the fact
that Φ(

√
m)− 1/2 ≤ 1/2, for m ≥ 1, and that the limit 1/2 is rapidly attained

for moderate values of m. Using this result we immediately obtain the lower
bound specified in equation (A2). �

Furthermore, it is quite immediate to prove that, if we introduce an upper
boundary condition on the original uniform random variables, the conditional
expectation for the maximum X(m) corresponds to the unconditional one mul-
tiplied by the boundary level ξ ∈ (0, 1), namely

E(X(m)|Xwv ≤ ξ, w = a, b, v = 1, . . . ,m) = ξ E(X(m)). (A3)

A further useful result concerns the expectation of the maximum under the
condition that it is itself greater than a suitable lower bound.

Theorem A4 Let us consider the maximum X(m) of m ≥ 1 independent tri-
angular random variables. Then, for each β ∈ (1, 2),

E(X(m)|X(m) > β) ≥ 2− 1

1− {1− (2− β)2/2}m

[√
π

2m

{
2Φ
(
(2− β)

√
m
)

−1} +(β − 2)

{
1− (2− β)2

2

}m]
. (A4)
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Proof: Since the conditional density function of X(m) given X(m) > β is

fX(m)|X(m)>β(x) =

{
m (2− x){1− (2− x)2/2}m−1/P (X(m) > β) if x ∈ (β, 2]
0 if x 6∈ (β, 2],

where
P (X(m) > β) = 1− {1− (2− β)2/2}m, (A5)

the conditional expectation is given by

E(X(m)|X(m) > β) =
1

1− {1− (2− β)2/2}m

∫ 2

β

mx (2−x){1−(2−x)2/2}m−1dx.

Using the same approach considered before for the unconditional case, we obtain
the following lower bound for the conditional expectation

E(X(m)|X(m) > β) =
1

1− {1− (2− β)2/2}m

[
2− β

{
1− (2− β)2

2

}m
−
∫ 2−β

0

(1− x2/2)m dx

]

≥ 1

1− {1− (2− β)2/2}m

[
2− β

{
1− (2− β)2

2

}m
−
√

π

2m

{
2Φ
(
(2− β)

√
m
)
− 1
}]
.

The last term on the right hand side corresponds to the lower bound specified
in (A4). �
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