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a b s t r a c t

This paper presents a theoretical study on the scaling laws of electromagnetic and
piezoelectric seismic vibration energy harvesters, which are assembled from discrete
components. The scaling laws are therefore derived for the so called meso-scale range,
which is typical of devices built from distinct elements. Isotropic scaling is considered for
both harvesters such that the shape of the components and of the whole transducers do
not change with scaling. The scaling analyses are restricted to the case of linearly elastic
seismic transducers subject to tonal ambient vibrations at their fundamental natural fre-
quency, where the energy harvesting is particularly effective. Both resistive-reactive and
resistive optimal electric harvesting loads are considered. The study is based on equivalent
formulations for the response and power harvesting of the two transducers, which employ
the so called electromagnetic and piezoelectric power transduction factors, P2

cm and P2
pe .

The scaling laws of the transduction coefficients and electrical and mechanical parameters
for the two transducers are first provided. A comprehensive comparative scaling analysis is
then presented for the harvested power, for the power harvesting efficiency and for the
stroke of the two harvesters. Particular attention is dedicated to the scaling laws for the
dissipative effects in the two harvesters, that is the Couette air losses and eddy currents
losses that develop in the electromagnetic harvester and the material, air and dielectric
losses that arise in the piezoelectric harvester. The scaling laws emerged from the study,
are thoroughly examined and interpreted with respect to equivalent mechanical effects
produced by the harvesting loads.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the past two decades a very large number of prototype seismic vibration energy harvesters have been presented
and investigated in scientific publications (e.g. see review articles in Refs. [1e9] and books in Ref. [10e14]). In general, seismic
vibration energy harvesters use three types of transducers: electromagnetic, piezoelectric and electrostatic [1e15]. Magne-
tostrictive transducers are also employed in some cases, but comparatively fewer practical applications have been investi-
gated up to present [5,9,15]. Several configurations, geometries and dimensions have been proposed over the years
[2e9,11,12,14,16] (for example see Tables A1, A2 in Ref. [16]). In general, the overall size of the proposed devices covers a rather
wide range that goes from characteristic dimensions of the order of few millimetres to a few decimetres. The smaller scale
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seismic harvesters (often calledmicro-scale harvesters [17]) are normally fabricated asmonolithic devices withMicro Systems
Technology (MST), which enables the shaping of micro-scale elements/layers forming the harvester (e.g. finger comb elec-
trostatic transducers, folded springs, piezoelectric films, etc., having micrometric dimensions) [10]. Typically, they are
fabricated on silicon substrates with deposition, patterning, etching processes followed by die preparation. Alternatively, the
larger scale seismic harvesters (often called meso-scale harvesters [17]) are assembled from discrete elements manufactured
with classical processes starting from raw materials (metal and plastic components, Printed Circuit Boards (PCB) and electric
components, electric wirings, etc.) [10,13]. Because of the large surface area to volume ratio, small scale (i.e. micro-scale) MST
seismic harvesters normally employ electrostatic transducers [10,13], although in some cases piezoelectric thin films have
also been successfully used [18,19]. Their dynamic response is largely affected by surface tension and viscous fluid effects.
Alternatively, larger scale (i.e. meso-scale) seismic harvesters are normally fabricated from discrete components and typically
incorporate electromagnetic [11,13,14] and piezoelectric-patch [10e13] transducers. The dynamic response of these systems
is often affected by hysteresis phenomena produced, for example, by eddy currents in the electromagnetic transducers
[20e22] or dielectric losses in the piezoelectric transducers [23e26]. Although the electromechanical responses of the
smaller scale MST seismic harvesters and larger scale assembled seismic harvesters present similarities and, thus, could be
studied considering similar electromechanical models (e.g. see Refs. [1,3,6e15,27e32]), the phenomena listed above draw a
separation line for the two types of devices, so that, as discussed in Ref. [17], specific physical models become necessary to
accurately describe their responses and energy harvesting properties. Furthermore, the comprehensive scaling analysis
carried out by Moss et al. [16] on a vast ensemble of prototype harvesters, clearly indicated that the responses and energy
harvesting properties of each type of harvester (i.e. electrostatic, electromagnetic, piezoelectric, magnetostrictive) may vary
substantially even for equivalent scale devices, depending on the specific design of the transducer.

Therefore, this paper presents a specific scaling study of typical larger scale (i.e. meso-scale) electromagnetic or piezo-
electric seismic vibration harvesters assembled from discrete components. More specifically, the electromagnetic harvester
encompasses a classical coil-magnet seismic transducer, which is formed by an inner cylindrical magnet and an outer
ferromagnetic ring and coil assembly connected via soft axial springs. Instead, the piezoelectric seismic transducer comprises
a cantilever composite beam, with a steel substrate and top and bottom piezoelectric layers, and a tip blockmass. The study is
based on detailed lumped parameter models andmathematical formulations of the constitutive electromechanical equations
for the two seismic transducers, which were derived and validated experimentally in Ref. [33]. More specifically, the two
models consider a mass-spring-damper-mass mechanical network and a resistive-inductive or a capacitive electrical mesh,
which are connected via ideal electromagnetic or piezoelectric transducers. As shown in Ref. [33], the lumped parameters are
derived from a detailed analysis of the electro-mechanical responses of two prototype transducers. For instance, themodel for
the electromagnetic transducer accurately takes into account the Couette air losses that develop in the air gap between the
inner magnet and outer coil-ferromagnetic ring assembly and the eddy currents losses that develop in the coil and in the
outer ferromagnetic ring [20e22]. Alternatively, the model for the piezoelectric transducer encompasses a modal mass, a
modal stiffness and modal transduction factor for the fundamental flexural mode of the composite cantilever beam and tip
mass assembly. Also, it incorporates the material, air and dielectric losses that arise in the beam and piezoelectric layers
respectively [12]. All these are rather important effects, which are normally modelled considering the static elastic effects or
simple viscoelastic and resistive dissipative effects (e.g. see Refs. [1,3,6e8,10e15,27e32]), although they are characterised by
quite specific features that play an important role in the electromechanical response of the transducers and thus in the energy
harvesting, particularly when the fundamental natural frequency of the transducers is set to match the frequency of tonal
base vibrations. In this respect, the models consider linear elastic effects only. In fact, energy harvesting from tonal vibrations
at the fundamental natural frequency of the transducer does not benefit from non-linear elastic effects, which would un-
necessarily broaden the frequency band of the transducer resonant response at the expenses of unstable (jump phenome-
non), and in some cases lower, peak responses. Indeed, non-linear elastic effects are normally employed to enhance vibration
energy harvesting from broad-band ambient vibrations [34]. Also, the models consider only the resonant response of the
transducer fundamental natural mode, which, as shown in Ref. [33], provides the maximum power harvesting effect. Again, a
multi-resonant transducer would be beneficial for broadband vibration energy harvesting only [34].

The scaling laws of the electromagnetic and piezoelectric seismic harvesters are obtained under the assumption of steady
state harmonic oscillations at the transducers fundamental natural frequencies, that is in condition of maximum energy
harvesting for harmonic ambient vibration. Two configurations of the harvesting circuits are considered, which are char-
acterised either by a complex or a purely real optimal impedance load set to maximise the harvested power. An isotropic
scaling is assumed for either transducers such that their shapes do not change as the dimension of the devices are scaled. The
notation described in Refs. [35e37] is used such that the scaling laws are obtained with reference to a single variable L, which
represents the linear scale of the whole device. Numerical simulations are performed starting from the geometries and
physical data of the prototype electromagnetic and piezoelectric seismic transducers modelled and studied in Ref. [33]. These
transducers were designed and built in such a way as they have similar weights and similar volumes, i.e. z 330 g and z

60 cm3, and about the same fundamental natural frequencies, i.e.z20 Hz. In this paper the scale L ¼ 1 is thus referred to the
characteristic dimension of these two prototypes, which can be assumed equal to 4 cm . Also, considering the dimensions of
typical transducers for energy harvesting applications reported in literature [5,16,38e43], the scaling range considered in this
study has been fixed between 4� 10�1 and 4� 101 cm. As proposed by Beeby et al. [43], the power scaling analysis is
performed by normalizing the harvested power to the total volume of the device and to the amplitude of the input
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acceleration squared. More specifically, this normalised power density function is assessed at the fundamental natural fre-
quency of the two seismic transducers to provide a practical figure of merit for the maximum energy that can be harvested by
the two types of harvesters.

The paper is structured in seven sections. Section 2 briefly describes the two seismic harvesters and recalls the lumped
parameter models and constitutive equations for the electromechanical responses of the two seismic transducers. Also, it
introduces the so called “power transduction factors” for the two transducers, which provide a figure for the ratio between
the electrical-to-mechanical and mechanical-to- electrical power exchange and the electrical and mechanical power input in
the two transducers at hand. The two coefficients are then effectively used to derive a unified formulation for the power
harvested and harvesting efficiency for the two harvesters. Sections 3 and 4 present equivalent scaling studies for the two
seismic harvesters. Hence, both sections start by introducing the energy formulations used to derive the power expressions
for the scaling study. They then present an overview of the scaling laws for the mechanical, electrical and transduction
physical effects that characterise the two seismic transducers. Finally, they provide comprehensive scaling studies for the
power harvesting and for power harvesting efficiency when the two harvesters implement optimal electric loads set to
maximise the harvested power. A comparative study is then proposed in Section 5 to contrast the power harvesting and the
power harvesting efficiency of the two devices, with reference to scale. Finally, section 6 produces a scaling study of the
strokes that characterise the two transducers, which also play a key role on the effective power harvesting with the two
devices. The geometry and physical characteristics of the reference electromagnetic and piezoelectric transducers with
characteristic scale L ¼ 1 are summarised in Appendix A. Also, Appendix B derives the frequency of maximum power har-
vesting with the two seismic transducers.

2. Seismic harvesters: lumped parameter models, constitutive equations and power transduction factors

This section describes the electromagnetic and piezoelectric harvesters and the lumped parameter models used to derive
their electromechanical responses and power functions. Also, it defines the constitutive equations that characterise the two
systems and provides spectral analyses to illustrate the principal properties of the harmonic response of the two transducers.
Finally, it introduces the so called power transduction factors, which provide the inherent power transfer properties for
electromagnetic and piezoelectric transductions.

2.1. Seismic harvesters and lumped parameter models

The top sketches in Fig. 1 show the electromagnetic and piezoelectric seismic transducers considered in this study, which
represent typical designs employed for energy harvesting applications. As indicated in sketch (a), the electromagnetic seismic
harvester is composed by a core cylindrical magnet and an outer ferromagnetic cylindrical ring (armature) with a double coil
on the inner side [44]. The two components are connected to each other via two spiral springs that produce a soft axial
Fig. 1. Sketches (a,c) and lumped parameter schematics (b,d), of the electromagnetic (left hand side) and piezoelectric (right hand side) seismic transducers
considered in this study.
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stiffness and a very high transverse stiffness. The relative axial motion between the magnet and the coil produces a back
electromotive force, i.e. a voltage, at the terminals of the coil. In some applications, the magnet is the moving component
whereas the coil is fixed to the base. Often, for this configuration, the magnet is connected to an external ferromagnetic ring
via a top ferromagnetic disc and the coil is housed in the gap between the inner cylinder and the outer ring (e.g. see Refs.
[14,45,46]). Nevertheless, as can be noticed from Refs. [33,47,48], despite these differences, the two configurations operate in
a very similar manner and are normally studied with equal lumped parameter models as that shown in Fig. 1b.

As shown in the sketch (c), the piezoelectric seismic harvester is made by a composite beamwith block masses fixed at the
base and free ends. The beam is formed by a thin steel substrate, of thickness hs, with piezoelectric layers, of thickness hpe,
bonded on the top and bottom faces, which are electrically connected in parallel. In this case, the relative motion between the
basemass and the tipmass generates a bending strain of the cantilever composite beam, which, in turn, produces a separation
of electric charges in the electrodes of the piezoelectric layers. Both transducers are equipped with an electric harvesting load
characterised by either a complex or a purely real impedance Zh.

As shown in Fig.1(b) and (d), the two transducers are modelled using lumped parameter electromechanical models, which
encompass a mechanical assembly and an electric mesh coupled via ideal transduction elements. Considering first the
lumped parameter model for the electromagnetic harvester shown in Fig. 1b, the mechanical assembly is formed by a base
massmb and a seismic massmm connected by a spring km and damper cm in parallel. The electric mesh is formed by a resistor
Re and lossy inductor ~Le in series. The two networks are connected to each other via a current-controlled ideal reactive force
generator and a relative velocity-controlled ideal voltage generator, which are characterised by the transduction coefficient jcm
[33]. The base mass accounts for the mass of the core cylindrical magnet component and half mass of the two spiral springs.
Also, the moving mass includes the mass of the outer ferromagnetic ring, the mass of the coil winding and half mass of the
two spiral springs. Thus, the two masses are given by:

mb ¼ rmVm þ rsVs; (1)

mm ¼ rrVr þ rcVc þ rsVs; (2)
where rm; rr , rc rs and Vm; Vr , Vc; Vs are de densities and volumes of themagnet, outer ring, coil and springs components. The

spring takes into account the aggregate bending stiffness of the two spiral springs and, according to Ref. [37], is given by:

km ¼2
3YkAk

hk
; (3)

where Yk is the material Young's modulus of elasticity, Ak is cross section area and hk is the length of the spirals. The damper

takes into account two effects: first the Couette air flow damping that develops in the thin gap between the inner magnetic
cylinder and the coil winding built in the outer ferromagnetic ring [37,49] and, second, the eddy currents damping due to the
eddy currents that develop in the ferromagnetic ring [50e52]. For the scale range considered in this study, the sky-hook air
damping that develops on the exterior surface of themoving ferromagnetic ring and thematerial energy loss that arises in the
flexible spiral springs are comparatively much smaller than the Couette airflow and eddy currents damping effects, therefore
they are neglected in the lumped model of Fig. 1b. Thus the damping coefficient cm can be written as the sum of the damping
coefficients for the Couette airflow and eddy currents damping:

cm ¼ ca þ cec: (4)
Considering first the Couette air flow damping, as shown in Refs. [1,49], a Newtonian viscous fluid contained between two
surfaces in relativemotion is subjected to a constant stress and undergoes a Couette laminar flow that varies linearly across the
two surfaces such that the Couette air flow damping coefficient is given by

ca ¼mc
Ac

dc
; (5)

where mc is the fluid viscosity, Ac is the lateral surface of the magnetic cylinder and dc is the radial gap between the inner

magnetic cylinder and the outer coil and ferromagnetic ring. Moving to the eddy currents damping, as discussed in Refs.
[40,53], provided the inner cylindrical magnet maintains the same aspect ratio, the magnitude Br and the field gradient VBr of
the magnetic field density remains constant and decreases as the dimension of the magnet is raised respectively. However,
the presence of a diffusion phenomenon, due to the interaction of the eddy currents with the magnetic field generated by the
magnet, produces an exponential decrement of the current density in radial direction of the outer ferromagnetic ring. In this
case, the eddy currents damping coefficient cec [50e52] can be derived with the following integral expression:

cec ¼2pse

ZHr2
�Hr

2

ZRiþd

Ri

rB2r ðr; zÞ drdz; (6)
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where Hr and Ri are the height and inner radius of the ferromagnetic ring, d is the so called skin depth [54] and r; z are the
radial and axial coordinates. The resistor encompasses the resistive effect of the coil winding, thus:

Re ¼ relr
Ar

; (7)

where re is the resistivity and Ar , lr are the cross section and the length of the wire. References [20e22] showed that the coil

winding is also affected by eddy currents such that a lossy inductor model should be employed, which is characterised by a
complex inductance given by

~LeðuÞ¼ L
0
eð1� jhLÞ; (8)

where
L
0
e ¼ Lesinðnp =2Þun�1; (9)

cosðnp=2Þ

hL ¼ sinðnp=2Þ: (10)
The inductance Le of a N-turns coil, with radius Rc and wire length lc, can be derived recalling that Le ¼ NF= i, where the
self-flux generated inside the coil is F ¼ NBxpR2c and the magnetic flux density generated by the current i is given by Bx ¼
meNi=lc, where me is the permeability of the magnet, such that [35]:

Le ¼me
N2pR2c

lc
: (11)
The factor n in Eqs. (9), (10) is normally derived from system identification of real coil elements and is comprised between
0 and 1. In general, for n ¼ 0 the inductor acts as a resistor whereas for n ¼ 1 it performs as a lossless inductor. Finally, the
electromagnetic transduction is characterised by a constant coefficient, which is given by the product between the radial
magnetic flux density B and the length of the coil winding lc [55e58]:

jcm ¼Blc: (12)
Moving to the piezoelectric transducer, as discussed in Ref. [33], the flexural response of the composite cantilever beam
and tip mass is characterised by the superposition of the second order responses of multiple flexural natural modes.
Nevertheless, for tonal ambient vibrations, to maximise the energy harvesting, the transducer is normally set in such away as
the resonance frequency of the fundamental flexural mode coincides with the frequency of the tonal ambient vibration.
Therefore, the transducer can be suitably modelled considering only the physical parameters that characterise the second
order response of the fundamental flexural natural mode of the composite cantilever beam and tip mass. Accordingly, as
shown in Fig. 1d, the lumped parameter model for the piezoelectric transducer encompasses a mechanical assembly, which is
formed by a base mass mb and a seismic mass mm connected to each other by a spring km and damper cm in parallel, and an

electric mesh, which is made by a lossy capacitor ~C
S
e. The seismic mass is also connected to a sky-hook damper cam. In this case

the two networks are connected via a current-controlled ideal reactive force generator and a relative velocity-controlled ideal
current generator, which are characterised by the transduction coefficients jpe. As discussed in details in Ref. [33], the base
mass is given by:

mb ¼ rbVb; (13)

where rb and Vb are de densities and volumes of the base block. The moving mass is given by the equivalent mass of the first

natural bending mode of the composite beam and tip block assembly, which was derived in Ref. [33] as follows:

mm ¼ 1
f2
1ðxÞ

8<
:
ZL
0

mf1ðxÞf1ðxÞdxþMtf
2
1ðLÞ

9=
;: (14)
Here m ¼ bðrshs þ2rpehpeÞ is the mass per unit length of the composite beam, which depends on the substrate and
piezoelectric layers densities rs, rpe, the thicknesses hs, hpe and the width b. Also, Mt is the tip mass, which is given by Mt ¼
rtVt , where rt and Vt are de densities and volumes of the tip block. Moreover, f1ðxÞ is the first bending mode of the clamped
composite beam and tipmass whose expression can be found in Ref. [33]. Finally, L is the length of the beam and x ¼ 0:9L. The
modal stiffness of the first bending mode of the composite beam and tip mass assembly is derived recalling that the natural
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frequency of the mode is given by the following expression un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
. The natural frequency was derived in Ref. [33] as

follows:

un ¼ l21
L2

ffiffiffiffiffi
B
m

r
; (15)

where B ¼ YsIs þ YE Ipe is the bending stiffness of the composite beam, which depends on the substrate and piezoelectric
pe

layers moduli of elasticity Ys and YE
pe and cross area second moment of inertia: Is ¼ bh3

s
12 and Ipe ¼ 2

3 b

"�
hs
2 þ hpe

�3

� h3
s
8

#
. The

coefficient l21 was calculated from the implicit characteristic equation derived assuming free flexural vibrations of the
cantilever beam and tipmass. Therefore the modal stiffness km for the first flexural mode of the clamped composite beam and
tip mass results:

km ¼u2
nmm: (16)
Finally, the damper cm includes the internal strain-rate damping due to the hysteresis effect caused by the relaxation and
creep phenomena of the steel and piezoelectric materials whereas the damper cam encompasses the external sky-hook
viscous air damping exerted on the beam. The strain-rate damping is normally modelled in terms of a complex stiffness
[59,60], which for the model at hand results kmð1 þ jhmÞ, where hm is the loss factor. However, for harmonic vibration, a
KelvineVoigt model with a spring and damper in parallel can be employed [12], where the damper is characterised by a
damping factor

cm ¼hm km
un

: (17)
For the scale range considered in this study, the damping effect generated by the air loading on the beam can be derived by
calculating the integral over the beam surface of the acoustic pressure exerted on the first flexural mode of the composite
beam and tip mass by the vibration of the same mode, where the radiated sound pressure is given by the Rayleigh integral
[61], so that:

cam ¼Re

8<
:jur0

2p

ZL
0

ZL
0

b2f2
1ðxÞ

e�jkjx�x0 j

jx� x0 j dxdx
0

9=
;: (18)
Here r0 is the density of air, k ¼ u
c0
is the acoustic wave number and c0 is the speed of sound in air. The capacitor is modelled

in terms of a complex capacitance ~C
S
e which takes into account both the capacitive and the dielectric losses effects that arise in

the piezoelectric layers [22e25]. More specifically the lossy capacitance is given by

~C
S
e ¼CS

e ð1� jhcÞ; (19)

where the capacitance of the piezoelectric layers under constant strain and the dielectric loss factor are given by
CS
e ¼CT

e

�
1� k231

�
(20)

spe

hCðuÞ¼

ε
S
33u

(21)
Here k231 is the 31 electromechanical coupling factor of the piezoelectric material [55], spe is the electrical conductivity of

the piezoelectric material and ε
S
33 ¼ ε

T
33ð1�k231Þ and ε

T
33 are the permittivity of the piezoelectric material in transverse di-

rection under constant strain and constant stress respectively. The latter value is normally provided in the datasheets of
piezoelectric materials. Also, CT

e is the capacitance of the piezoelectric layers under constant stress, which is given by

CT
e ¼2εT33

bL
hpe

; (22)

where b, L, hpe are the width, length and thickness of the piezoelectric layers. As shown in Ref. [33], the lossy complex
capacitance ~C
S
e ¼ CS

e ð1�jhcÞ can be modelled in terms of a capacitance and a resistance connected in parallel, such that ~C
S
e ¼
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CS
e þ Ge

ju , where Ge ¼ uCS
ehC ¼ 2spe bLhpe

is the conductance of the piezoelectric layers. To conclude, according to Ref. [33], the

piezoelectric transduction coefficient jpe is given by:

jpe ¼ e31bz: (23)
For the EulereBernoulli beam model the stress/charge constant is given by e31 ¼ YE
ped31, and YE

pe, d31 are the material
Young's modulus, assuming constant electric field, and the strain/charge constant [12]. Also, b is thewidth of the piezoelectric

layers and z ¼ ðhs þhpeÞ f
0
1ðLÞ

f1ðxÞ is the distance between the piezoelectric layers mid-planes weighted by the ratio f
0
1ðLÞ= f1ðxÞ

between the slope and amplitude of the first flexural mode of the composite beam and tip mass assembly with the base mass
clamped.

Tables A1 and A2 in Appendix A report the physical and geometrical properties of the reference electromagnetic and
piezoelectric transducers that were thoroughly studied in Ref. [33]. The two transducers have approximately the sameweight
of z330 g, the same volume of z60 cm3, and the same fundamental natural frequencies of z20 Hz. In this paper the scale
L ¼ 1 is thus referred to the characteristic dimension of the two prototypes, namely z4 cm .

2.2. Constitutive equations

The constitutive equations for the two transducers are set in the frequency domain with reference to the complex
amplitude f ðu) of time-harmonic functions given in the form f ðtÞ ¼ Reff ðuÞejut g, where j ¼

ffiffiffiffiffiffiffi
�1

p
and u is the circular

frequency in ½rad =s�. For simplicity, the frequency dependence of the complex functions is omitted throughout the paper. The
electromechanical response of the electromagnetic and piezoelectric seismic harvesters are derived in terms of the following
two-port network constitutive equations respectively:�

fh
eh

�
¼
�
Zmi Tfi
Tew Zei

��
_wh
ih

�
; (24)

�
fh
� �

Zme Tfe
��

_wh
�

ih
¼

Tiw Yei eh
: (25)
Here fh, _wh;eh, ih are the frequency-dependent complex amplitudes of the force and velocity at the base and the voltage
across and current through the terminals of the seismic transducers. Also, Tfi and Tew represent the electromechanical
transduction Frequency Response Functions (FRFs) for the electromagnetic seismic transducer, which give the base force
effect produced by the transducer per unit current flowing in the blocked seismic harvester, i.e. Tfi ¼ fh=ihj _wh¼0, and the
electromotive force generated at the terminals of the transducer per unit velocity at the base of the open circuit seismic
transducer, i.e. Tew ¼ eh= _whjih¼0. Alternatively, Tfe and Tiw represent the electromechanical transduction FRFs for the
piezoelectric seismic transducer, which provide the base force generated by the transducer per unit voltage imposed across
the electric circuit in the blocked seismic transducer, i.e. Tfe ¼ fh=ehj _wh¼0, and the current generated per unit velocity at the
base of the short circuited seismic transducer, i.e. Tiw ¼ ih= _whjeh¼0. Finally, Zei ¼ eh=ihj _wh¼0 and Yei ¼ ih=ehj _wh¼0 are the output
electrical impedance and admittance of the transducers blocked at their base, whereas Zmi ¼ fb= _whjih¼0 and Zme ¼ fb= _whjeh¼0

are the input mechanical impedance of the open and short circuit transducers respectively.
The mechanical impedance, electrical impedance and the two electromechanical transduction FRFs for the electromag-

netic transducer in Eq. (24) are given by the following expressions:

Zmi ¼
fh
_wh

				
ih¼0

¼ Zb þ
ZsZm
Zt

; (26)

Tfi ¼
fh
ih

				
_wh¼0

¼ jcm
Zm
Zt

; (27)

Tew ¼ eh
_wh

				
ih¼0

¼ �jcm
Zm
Zt

; (28)

Zei ¼
eh
ih

				
_wh¼0

¼ Ze þ j2
cm
Zt

; (29)

where
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Zm ¼ jumm; (30)

Zb ¼ jumb; (31)

Zs ¼ km
ju

þ cm; (32)

Zt ¼ Zs þ Zm ¼ km
ju

þ cm þ jumm; (33)

andmb,mm, km, cm are given in Eqs. (1)e(4) respectively. Also, the electrical impedance for the electromagnetic transducer is
given by:

Ze ¼Re þ ju~Le ¼Re þ juL
0
eð1� jhLÞ; (34)

where Re, ~Le, L
0
e, hL are given in Eqs. (7)e(10) respectively. Finally the transduction coefficient jcm is given in Eq. (12).

Considering now the piezoelectric transducer, the mechanical impedance, electrical impedance and the two electrome-
chanical transduction FRFs in Eq. (25) are given by the following expressions:

Zme ¼ fh
_wh

				
eh¼0

¼ Zb þ
ZsZm
Zt

; (35)

Tfe ¼
fh
eh

				
_wh¼0

¼ jpe
Zm
Zt

; (36)

Tiw ¼ ih
_wh

				
eh¼0

¼ �jpe
Zm
Zt

; (37)

Yei ¼
ih
eh

				
_wh¼0

¼ 1
Ze

þ j2
pe

Zt
; (38)

where

Zm ¼ jumm þ cam; (39)

Zb ¼ jumb; (40)

Zs ¼ km
ju

þ cm; (41)

Zt ¼ Zs þ Zm ¼ km
ju

þ cm þ cam þ jumm; (42)

andmb,mm, km, cm, cam are given in Eqs. (13), (14), (16)e(18) respectively. Also, the electrical impedance for the piezoelectric
transducer is given by:

Ze ¼ 1

ju~C
s
e

¼ 1
juCs

eð1� jhcÞ
; (43)

where ~C
s
e, C

s
e, hc are given in Eqs. (19)e(22) respectively. Finally, the transduction coefficient jpe is given in Eq. (23).

The four plots in Fig. 2 show the modulus-phase diagrams of the four FRFs that characterise the electromechanical
response of the electromagnetic seismic harvester. Plot (a) shows the typical base impedance FRF of a seismic electromagnetic
transducer in open circuit, which is characterised by mass laws proportional to the total mass and to base mass of the
transducer, respectively at low and high frequencies. Alternatively, between 10 Hz and 50 Hz, it is characterised by a reso-
nance peak, in correspondence of the 20 Hz fundamental natural frequency of the transducer, and an antiresonance trough, at
about 32 Hz, which are significantly smoothened by the Couette air damping and eddy currents damping effects. Plots (b) and



Fig. 2. Modulus-phase diagrams of the four characteristic FRFs for the electromagnetic seismic transducer introduced in Eq. (24) with (solid black line) and
without (dashed blue line) eddy currents losses.
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(c) show the two transduction FRFs, whose magnitude tends to increase proportionally to u2 up to the fundamental natural
frequency, where it peaks, and then remains constant and equal to Blc. The phase shifts from þ180o to 0o and from 0o to �
180o at frequencies close to the fundamental natural frequency. Again, the amplitude of the resonance peak is effectively
smoothened by the Couette air damping and eddy currents damping effects. Finally, Plot (d) shows the typical electrical
impedance function of a coil element, which is characterised by a low frequency resistive effect and, above the electrical cut-
off frequency uce at 805 Hz, a higher frequencies inductive effect. There is a peak at about the 20 Hz fundamental natural
frequency of the transducer, which is due to the coupled electromechanical response of the transducer. The amplitude of this
peak is also significantly smoothened by the Couette air damping and eddy currents damping effects. The inductive effect is
characterised by the eddy current losses, which however grow exponentially with frequency, and thus become relevant only
at higher frequencies, well above the fundamental natural frequency of the transducer at which the harvester is operating.
Therefore, the energy formulation derived below considers a lossless inductance, i.e. ~Le ¼ Le.

The four plots in Fig. 3 show the modulus-phase diagrams of the four FRFs that characterise the electromechanical
response of the piezoelectric seismic harvester. Plot (a) shows a similar base impedance FRF to that found for the electro-
magnetic seismic harvester, which is therefore characterised by a low frequencies mass law (proportional to the transducer
total mass), a resonance peak at about 20 Hz followed by an antiresonance trough at about 33Hz and then a high frequencies
mass law (proportional to the transducer base mass). The FRF is characterised by quite sharp resonance peak and anti-
resonance trough, which are only slightly smoothened by the air damping effect. Plots (b) and (c) show the two transduction
FRFs, which are also similar to those found for the electromagnetic transducer. Thus their magnitude rises proportionally to
u2 up to the transducer fundamental natural frequency, where it peaks, and then remains constant and equal to e31bz. Also,
their phase starts respectively from 0o and 180o and shifts respectively to �180o and 0o in correspondence to the transducer
fundamental natural frequency. At last, Plot (d) shows the electrical admittance function, which is dominated by the
capacitive effect of the piezoelectric layers. Indeed, the mechanical response of the transducer produces only a small glimpse
at the 20 Hz fundamental natural frequency of the transducer.



Fig. 3. Modulus-phase diagrams of the four characteristic FRFs for the piezoelectric seismic transducer introduced in Eq. (25) with (solid black line) and without
(dashed blue line) air damping. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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2.3. Power transduction factors

In this paper, the power transmission effects occurring in the electromechanical and piezoelectric transducers are
investigated considering time-harmonic base vibrations at the fundamental natural frequency of the transducers. To provide
neat mathematical formulations that separate the intrinsic power transmission propertied for the electromagnetic and
piezoelectric transductions from the physical effects produced by the second order mechanical responses and first order
electrical responses of the seismic transducers, the so called power transduction factors are first introduced in this section. To
this end, as shown in the sketches (a) and (c) of Fig. 4, the seismic components of the two transducers are assumed clamped.
Also, since the focus is on the power transmission, as shown in the lumped parameter models (b) and (d), the inertia and
stiffness mechanical effects as well as the inductive and capacitive electrical effects in the two transducers are not taken into
consideration.

The analysis considers the time-averaged total power input into the two transducers, which, for harmonic vibrations can
be derived from the following relation:

P¼ 1
T

ZT
0

PðtÞdt: (44)
Here T ¼ 2p
un

is the time period of the harmonic vibration and PðtÞ is the instantaneous power injected into the transducers,
which is given by:

PðtÞ¼ fhðtÞ _whðtÞ þ ihðtÞehðtÞ (45)



Fig. 4. Sketches (a,c) and lumped parameter schematics (b,d), of the electromagnetic (left hand side) and piezoelectric (right hand side) seismic transducers
considered for the derivation of the power transduction factors.
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2.3.1. Electromagnetic harvester
The constitutive equations for the electromagnetic transducer shown in the sketch a of Fig. 4 can be readily derived by

inspection of the lumped parameter model b:�
fh
eh

�
¼
�
cm �Blc
Blc Re

��
_wh
ih

�
: (46)
To derive the total input power defined in Eq. (45), the expression above is rewritten in the following form that considers
_wh and eh as independent variables:

�
fh
ih

�
¼

2
6664
cm

 
1þ ðBlcÞ2

cmRe

!
�Blc
Re

�Blc
Re

1
Re

3
7775
�

_wh
eh

�
: (47)
Substituting the expressions for the variables fh and ih given above into Eq. (45) and then into Eq. (44), the time-averaged
total power input into the transducer results given by:

P¼ PMM þ PEE þ PME þ PEM ¼1
2
cm

�
1þ j2

cm
cmRe

�
_w2
h þ

1
2

1
Re
e2h �

1
2
jcm
Re

_wheh �
1
2

jcm
Re

eh _wh: (48)
This expression is composed by four terms, which correspond to: a) the mechanical input power PMM ¼ 1
2cm

�
1þ j2

cm
cmRe

�
_w2
h

when the transducer is in short circuit, i.e. eh ¼ 0; b) the electrical input power PEE ¼ 1
2

1
Re
e2h when the transducer is blocked,

i.e. _wh ¼ 0; c) the mechanical to electrical power transmission PME ¼ � 1
2

jcm
Re

_wheh; and d) the electrical to mechanical power

transfer PEM ¼ � 1
2

jcm
Re
eh _wh. At this point, in analogy to what is normally done for the energy coupling factors of transducers

(e.g. see Ref. [62]), the following power transduction factor is defined
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P2
cm ¼ PMEPEM

PMMPEE
¼

j2
cm

cmRe

1þ j2
cm

cmRe

: (49)
This factor provides a figure of merit for the characteristic power transmissions, mechanical to electrical and vice versa,
with respect to the input mechanical and electrical powers of the electromagnetic transducer. More specifically it can be seen
as the geometric average of the power transmission, mechanical to electrical and vice versa, with respect to the geometric
average of the power input.

2.3.2. Piezoelectric harvester
Analogously to the electromagnetic transducer, the power transduction factor for the piezoelectric transducer can be

derived from the constitutive equations of the lumped parameter model depicted in the scheme of Fig. 4 (d):�
fh
ih

�
¼
�
cm �jpe
jpe Ge

��
_wh
eh

�
: (50)
Assuming voltage controlled transducer the electrical independent variables ih and eh can be interchanged. Thus Eq. (50)
can be rewritten as:

�
fh
eh

�
¼

2
6664
cm

 
1þ j2

pe

cmGe

!
�jpe

Ge

�jpe

Ge

1
Ge

3
7775
�

_wh
ih

�
: (51)
As done for the electromagnetic transducer, substituting the expressions for the variables fh and ih given above into Eq.
(45) and then into Eq. (44), the time-averaged total power input into the transducer results given by:

P¼ PMM þ PEE þ PME þ PEM ¼1
2
cm

 
1þ j2

pe

cmGe

!
_w2
h þ

1
2

1
Ge

i2h �
1
2
jpe

Ge
_whih �

1
2
jpe

Ge
ih _wh: (52)
The first term PMM ¼ 1
2cm

 
1þ j2

pe

cmGe

!
_w2
h can be identified as the mechanical power dissipated in the damper in open circuit

condition i.e. ih ¼ 0; PEE ¼ 1
2

1
Ge
i2h is the electrical power lost in the resistance assuming blocked moving mass i.e. _wh ¼ 0.

Finally, the term PME ¼ �1
2

jpe

Ge
_whih is the mechanical to electrical power transmission while PEM ¼ �1

2
jpe

Ge
ih _wh is the electrical

tomechanical power transmission. Similarly to the electromagnet device, the power transduction factorP2
pe is thus defined as

follows:

P2
pe ¼

PMEPEM
PMMPEE

¼
j2
pe

cmGe

1þ j2
pe

cmGe

: (53)
Again, this factor provides a figure of merit for the characteristic power transmissions, mechanical to electrical and vice
versa, with respect to the input mechanical and electrical powers of the piezoelectric transducer.

3. Electromagnetic harvester: scaling study

The scaling laws for the physical and energy harvesting properties of the electromagnetic seismic harvester are first
addressed in this section. To start with, the characteristic energy expressions are derived considering the harvester is con-
nected to the optimal complex and purely real harvesting loads. Then, the scaling laws of the principal mechanical and
electrical physical properties that characterise the harvester are thoroughly revised. Finally, the scaling of the harvested
power and the scaling of the power efficiency are systematically investigated assuming the harvester is excited at its
fundamental natural frequency, i.e. un, such that, as shown in Appendix B.1, the maximum power is harvested.
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3.1. Energy formulation

Considering first the harvested power, according to the sign convention used in the lumped parameter model shown in
Fig. 1b, the following relation holds for the voltage eh at the terminals of the harvesting electrical load having impedance Zh:

eh ¼ � Zhih: (54)
Substituting this equation into the matrix expression in Eq. (24) the following relation is derived:

ih ¼ � Tew
Zei þ Zh

_wh: (55)
Thus, the time-averaged harvested power (for brevity harvested power from here on) results:

Ph ¼
1
2
RefZhgjihj2 ¼

1
2
RefZhg

				� Tew
Zei þ Zh

				2j _whj2: (56)
As shown in Ref. [33], according to the Fermat's theorem [63], the complex electric load Zh, whichmaximizes the harvested
power at each frequency, is given by:

Zh;opt ¼ Z*ei; (57)

where * denotes the complex conjugate. Alternatively, if Zh is assumed purely real, the optimal electric load is given by

Ref. [33]:

ZhR;opt ¼ jZeij: (58)
Therefore, substituting Eqs. (57) and (58) into Eq. (56), the harvested power for the complex and real optimal loads are
derived as follows:

Ph ¼
1
8

jTewj2
RefZeig

j _whj2; (59)

1 jTewj2
PhR ¼4 jZeij þ RefZeig
j _whj2: (60)
Setting u ¼ un in Eqs. (59) and (60), the maximum power harvested with the complex and real optimal loads results given
by:

Ph ¼
1
8
kmmm

cm
P2

cmj _whj2; (61)

PhR ¼
1
8
kmmm

cm

P2
cm

acm
j _whj2; (62)

where P2
cm is the power transduction factor defined in Eq. (49). Also,

acm ¼1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2cm

q
2

; (63)

where bcm ¼ un
uce

ð1 � P2
cmÞ. Here, un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
is the transducer fundamental natural frequency and uce ¼ Re=Le is the cut-

off frequency where the coil electric impedance switches from resistive to inductive types.
Moving now to the input power, substituting in Eq. (24) the expression for the current ih derived in Eq. (55), the following

mechanical base impedance of the transducer can be derived:

Zmh ¼ Zmi �
TewTfi
Zei þ Zh

: (64)
Thus, the time-averaged input power (for brevity, input power from here on) results:
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Pi ¼ lim
T/∞

1
T

ZT
0

PiðtÞdt¼
1
2
RefZmhgj _whj2 ¼

1
2
Re


Zmi �

TewTfi
Zei þ Zh

�
j _whj2: (65)
Substituting Eqs. (57) and (58) in this equation, the input power for the complex and real optimal loads result:

Pi ¼
1
2
Re


Zmi �

TewTfi
2RefZeig

�
j _whj2; (66)

1



TewTfi
�

2
PiR ¼2
Re Zmi � Zei þ jZeij

j _whj : (67)
Considering u ¼ un, the two equations above reduce to the following expressions respectively for the optimal complex
Zh;opt and purely real ZhR;opt harvester loads:

Pi ¼
1
4
kmmm

cm

�
2�P2

cm

�
j _whj2; (68)

1 kmmm
�

4acm 2
�

2
PiR ¼4 cm
2�

4a2cm þ b2cm
Pcm j _whj : (69)
The power harvesting efficiency E, defined as the ratio between the harvested and input time-average powers,

E¼ Ph
Pi

; (70)
can now be derived using Eqs. (56) and (65):

E¼
RefZhg

				� Tew
ZeiþZh

				2

Re


Zmi � TewTfi

ZeiþZh

� : (71)
Considering the optimal complex and real impedances, Zh;opt ¼ Z*ei and ZhR;opt ¼ jZeij, the above expression becomes
respectively:

E¼1
4

jTewj2

RefZeigRe


Zmi � TewTfi

2RefZeig

� ; (72)

jTewj2
ER ¼
1
2

jZei jþRefZeig

Re


Zmi � TewTfi

ZeiþjZeij

� : (73)
Thus, assuming u ¼ un,

E¼1
2

P2
cm

2�P2
cm

; (74)

ER ¼
1
2

P2
cm
�
4a2cm þ b2cm



2acm

�
4a2cm þ b2cm � 2acmP

2
cm

 ; (75)

respectively for optimal complex and purely real harvesting loads.



P. Gardonio, L. Dal Bo / Journal of Sound and Vibration 476 (2020) 115290 15
3.2. Scaling laws of the lumped parameter elements

The scaling laws of the lumped parameter elements that compose the electromagnetic transducer shown in Fig.1a are first
revised in this section. The scaling laws can be readily derived recalling that the physical properties of the transducer
components (e.g. density, Young's modulus of elasticity, resistivity, magnetic flux density) do not vary with scale. For instance,
according to Eq. (2), the mass of the ferromagnetic ring and coil assembly mm is proportional to the densities (rr , rc) and
volumes (Vr , Vc) of the two components, thus it scales proportionally to the cube of the dimension, i.e. ½L3�. Also, the bending
stiffness km of the spiral springs [37] given in Eq. (3) is proportional to thematerial Young's modulus of elasticity, Ek, and to the
ratio between the cross section area, Ak, and the length of the spirals, hk, such that it scales proportionally to dimension, i.e.
½L1�. According to Eq. (12), the transduction coefficient, jcm ¼ Blc, is proportional to the magnetic flux density, B, and to the
length of the coil winding, lc [27,37]; thus it scales proportionally with dimension, i.e. ½L1�. The electrical resistance Re of the
coil wire given in Eq. (7) is proportional to the resistivity, re, and length, lr , of the wire and inversely proportional to the cross
section of the wire, Ar; thus it scales proportionally to the inverse of dimension, i.e. ½L�1�. Also, since the magnetic perme-
ability me is a property of thematerial and assuming that the numberN of the coil turns does not vary with the dimension [40],
it follows that the inductance given in Eq. (11) varies linearly with the dimension size of the transducer, i.e. ½L1�. According to
Eq. (5), the Couette air damping is proportional to the fluid viscosity mc and to the lateral surface of the magnetic cylinder Ac

and is inversely proportional to the radial gap between the inner magnetic cylinder and the outer coil and ferromagnetic ring
dc. Therefore, the Couette air damping coefficient scales proportionally to ½L1�. Numerical simulations have been performed in
order to evaluate how the eddy currents damping coefficient cec scales with reference to the device characteristic dimension.
The result shows that the radial magnetic field density Br generated by the inner permanent magnet does not increase in
value with the dimension of the device, provided the magnet maintains the same aspect ratio; i.e. the magnitude of the field
remains constant, whereas the field gradient VBr increases if the dimension is reduced ([40,53]). As a result, it can be proved
that cec scales with the volume of the transducer and thus as the cube of the characteristic length, i.e. [L3�. However, the
presence of the diffusion phenomenon, due to the interaction of the eddy currents with the magnetic field generated by the
inner cylindrical magnet, produces an exponential reduction in the distribution of the current density along the radial di-
rection of the outer ferromagnetic ring. In this case, the eddy currents damping coefficient cec is given by the expression
derived in Eq. (6). Therefore, if the electromagnetic harvester works at its natural frequency un, the skin depth can be

specified as d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
unmespe

q
, which implies that d scales as ½L0:5� since me and speare properties of thematerial and un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
scales inversely proportional to the dimension, i.e. ½L�1�. As a result the damping coefficient cec varies proportionally to ½L2:5�.
Thus, for small scale harvesters, damping is mainly due to the Couette airflow between the coil and inner cylindrical magnet,
whereas, for large scale harvesters, damping is principally controlled by the eddy currents losses that arise in the ferro-
magnetic outer ring.

In summary, as shown in Plot a of Fig. 5, as the size of the transducer is scaled up, the electric resistance Re tends to

decrease as [L�1], while the spring stiffness km, the Couette air damping coefficient ca, the electric inductance Le and the

electromagnetic transduction coefficient jcm rise proportionally to [L1]. Also, the eddy currents damping cec scales as [L2:5],

whereas the moving mass of the transducer mm scales proportionally to [L3]. Therefore, as shown in Plot b of Fig. 5, the
Fig. 5. (a) Scaling laws for the moving mass mm (black solid line), the stiffness km (blue solid line), the Couette air film damping coefficient ca (blue dashed line)
and eddy current damping cec (green solid line), the electrical resistance Re (red solid line), the inductance Le (blue thin solid line) and the transduction coefficient
jcm (blue dotted line). (b) Scaling laws for the mechanical natural frequency un (solid line) and the electrical cut-off frequency uce (dashed line). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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fundamental natural frequency of the transducer, un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
, scales with ½L�1�, wherereas the electrical cut-off frequency

uce ¼ Re=Le scales proportionally to ½L�2]. Thus, in principle, for large transducers the fundamental natural frequency may be
higher than the electrical cut-off frequency, i.e. un

uce
>1. Nevertheless, Plot b clearly indicates that this would occur for very

large transducers with characteristic dimension well outside the practical range considered in this study (e.g. characteristic
dimensions greater than 168cm).

The power expressions derived in Section 3.1 are based on the so called electromagnetic power transduction factor P2
cm,

which, as shown in Section 2.3.1, gives the ratio of the power transferwithin the transducer per input power to the transducer.

According to Eq. (49) this factor depends on: a) the square of the transduction coefficient j2
cm ¼ ðBlcÞ2, b) the damping factor

cm ¼ ca þ cec and c) the coil resistance Re. These parameters scale respectively proportionally to a) [L2], b) either [L1] (small

size) or [L2:5] (large size) and c) [L�1]. As shown in Fig. 6, the resulting scaling law is characterised by two asymptotes: for

small dimensions, it scales proportionally to [L2] whereas, for large dimensions, it tends to a constant value, that is it scales

proportionally to [L0]. The energy harvesting with a real harvesting impedance load also depends on the acm ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þb

2
cm

p
2

factor defined in Eq. (63). As shown in Fig. 5b, for the range of dimensions considered in this study, the cut-off frequency
where the electric impedance switches from resistive to inductive, is much greater than the mechanical fundamental natural
frequency, that is uce[un. Therefore, the electric impedance of the transducer is controlled by the resistive effect. As a result

the coefficient bcm ¼ un
uce

ð1�P2
cmÞ tends to 0 and acm is approximately equal to 2, i.e. it scales proportionally to [L0]. Therefore,

considering the power and efficiency expressions derived in Section 3.1, for practical harvesters, the harvested and input
powers and the efficiency with the optimal real and complex harvesting loads are about the same, that is: a) Phy PhRy
1
8

kmmm
cm

P2
cmj _whj2, b) PiRyPiy1

4
kmmm
cm

ð2 � P2
cmÞj _whj2, c) ERyEy1

2
P2

cm

2�P2
cm

. If the transducer were built with exceptionally large

dimensions grater than 168 cm, the cut-off frequency where the electric impedance switches from resistive to inductive
would be smaller than the mechanical fundamental natural frequency, that is uce≪un. In this case, the electric impedance of
the transducer would show an inductive effect in correspondence to the mechanical fundamental natural frequency and thus

acm whould scale proportionally to [L1] so that the harvested and input power and the efficiency with the optimal real load
would be smaller thanwith the complex harvesting load. This would be because the real harvesting load cannot compensate
the inductive effect of the coil and thus part of the energy absorbed by the transducer would be stored in the coil rather than
transferred to the harvesting load.
3.3. Scaling laws of the normalised power density and efficiency

The scaling laws for the normalised harvested power density and for the power harvesting efficiency are now examined.

The normalised harvested power density Ph ¼ Ph
Vh

				
€w¼1g

is given by the time-averaged harvested power Ph per unit volume of

the transducer Vh, assuming 1g base acceleration at u ¼ un. The 1g base acceleration is assumed independently from the
transducer scale. This implies that the mechanical characteristic impedance of the source of vibration is much greater than
the mechanical base impedance of the harvester in the whole scale range. In other words, the source of vibration is assumed
Fig. 6. Scaling laws of the electromagnetic power transduction factor P2
cm (solid line), the inductance effect coefficient acm (dashed line) and the bcm coefficient

(dotted line).



Fig. 7. Scaling laws of the normalised harvested power density Ph when (a) the optimal complex and (b) optimal purely real electrical loads are implemented and
the electromagnetic transducer is (solid line) or is not (dashed line) affected by eddy currents damping.
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much larger than the harvester in the whole scale range considered in this study. The scaling laws were derived numerically
from Eqs. (61), (62) and (74), (75) considering the scaling of the lumped elements shown in Figs. 5 and 6.

Fig. 7 shows the scaling laws of the normalised power density when the optimal complex, Plot a, and purely real, Plot b,
harvesting loads are implemented. Considering first Plot a for the optimal complex electric load, the solid line shows that the
harvested power monotonically rises as the scale of the harvester is increased. More specifically, the scaling law is char-
actrised by two asymptotes with respect to the 4cm reference harvester choses in this study: for small dimensions, it scales

proportionally to [L4] whereas, for large dimensions, it scales proportionally to [L0:5]. If the effect of eddy currents in the
ferromagnetic ring were removed, then, according to the dashed line, for large dimensions of the transducer, the harvested

power would rise proportionally to [L2] instead of [L0:5]. Moving to Plot b for the optimal real (i.e. resistive) electric load, the
solid and dashed lines show very similar scaling laws as those depicted in Plot a for the harvester with the optimal complex
electric load. In fact, with respect to the reference dimension 4cm, the harvested power of small harvesters scales propor-

tionally to [L4], whereas for large harvesters it scales proportionally either to [L0] or [L2] depending onwhether the outer ring
is or is not affected by eddy currents that further dampen the response of the harvester.

Comparing Plots a and b, it can be noted that, for large transducers affected by eddy currents, the harvested powerwith the

optimal real load scales proportionally to [L0:5] whereas with the optimal complex load scales proportionally to [L0]. This
small difference is probably due to the fact that the electrical cut-off frequency of large scale harvesters gets closer to their
fundamental natural frequency so that the electromechanical response of the transducer at its fundamental natural frequency
is affected more by the coil inductance. Overall, this results into a slightly smaller exponential factor for the scaling law. In
summary, contrasting the two plots in Fig. 7, it can be noticed that, as anticipated in Section 3.2, the complex and real har-
vesting loads produce very similar levels of harvested power in the whole scaling range. This is due to the fact that, for the
range of scales considered in this study, the electric response of the coil is primarily resistive and thus little difference is
produced when a complex load is implemented to compensate the inductive electrical effect of the coil. Also, the scaling plots
shown in Fig. 7 suggest that the harvested power tends to grow at a greater rate than the volume of the harvester. Therefore,
the electromagnetic transduction is better suited for the construction of large scale harvesters. However, special care should
be taken in the design stage to avoid eddy currents develops in the ferromagnetic components, which would greatly increase
the effect of damping and weaken the amount of power that can be harvested.

Moving to the efficiency analysis, Fig. 8 shows how the effectiveness to absorb power from ambient imposed vibrations
varies with the dimension of the electromagnetic harvester when the optimal complex (Plot a) and the optimal real (Plot b)
electric loads are implemented. The solid lines in the two plots show that the efficiency scales with very similar “S-type” laws
for the two types of harvesting loads, which for small dimensions tend to zero and for large dimensions tend to 0.5. Also, the
dashed lines in the two plots indicate that, when the transducer is not affected by eddy currents damping, the transitions to
the maximum 0.5 efficiency occurs at smaller scales.

Considering first the case where the optimal complex harvesting load Zh;opt is implemented, according to Eq. (74), the

energy harvesting efficiency solely depends on the electromagnetic power transduction factor P2
em. In-depth analysis of Eq.

(74) and of the scaling plot forP2
em shown in Fig. 6 indicates that, indeed, for small dimensions of the transducer, only a small

amount of the input power can be converted into harvested power. Instead, for large dimensions of the transducer, a
maximum of 50% of the input power can be converted into harvested power. Thus, the “S-type” scaling law arises from



Fig. 8. Scaling laws of the power harvesting efficiency when (a) the optimal complex and (b) optimal purely real electrical loads are implemented and the
electromagnetic transducer is (solid line) or is not (dashed line) affected by eddy currents damping.

Fig. 9. Sketches of the equivalent mechanical effects produced by the electrical components of small scale and large scale electromagnetic harvesters with
optimal complex (a) and real (b) impedance harvesting loads.
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intrinsic physical properties of the harvester, which, as shown in Fig. 9, can be studied considering the equivalent mechanical
effects [48] produced by the coil impedance Ze ¼ Re þ juLe and by the harvesting complex impedance load Zh;opt , where,

according to Eqs. (29) and (58), Zh;opt ¼ Z*ei ¼ Re þ j2
cm
cm � juLe. As shown in sketch a, the electrical effects of the coil and

harvesting complex load produce three equivalent mechanical damping effects in series associated respectively to the

resistance of the coil, j2
cm=Re, and to the resistance of the harvesting load, j2

cm=Re and cm, which have been enbossed in a
dashed rectangle to indicate they are generated by the harvesting load. According to the scaling laws presented in Fig. 5a, as

depicted in the centre sketch of Fig. 9a, the two damping coefficients j2
cm=Re scale proportionally to ½L3�, whereas the damping
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coefficient cm scales proportionally to ½L1� (small scales) and ½L1�, ½L2:5� (large scales without and with eddy currents damping).
Therefore, for small scale harvesters, the damping coefficient cm becomes sensibly much larger than the damping coefficients

j2
cm=Re. As a result the damper cm acts as a solid element such that, as shown in the lumped parameter model for small scale

harvesters, only the dampers due to the resistive effect of the coil, j2
cm=Re, and to resistive effect of the harvesting load, j2

cm=

Re, are in fact effective. For small scales, these two elements are characterised by very small damping coefficients so that little
energy can be harvested, even for the relatively large strokes that occur for u ¼ un. Moving to the large scale harvesters, the

phenomenon is reversed. In fact, the damping coefficients j2
cm=Re become sensibly much larger than the damping coefficient

cm, particularly when there are no eddy currents damping effects. Therefore, now, the two dampers j2
cm=Re act as solid el-

ements such that, as shown in the lumped parameter model for the large scale harvesters, only the damper due to the
resistive effect of the harvesting load, cm is effective. This equivalent damping effect is actually equal to the intrinsic me-
chanical damping of the harvester. Therefore, recalling the maximum power transfer theorem for electric networks [63], it
can be noticed that this is indeed the configuration to have maximum power transfer from the source, i.e. the transducer, to
the harvesting load, i.e. the equivalent damper cm. This condition is charactrised by an equal power dissipation by the
transducer mechanical damping and the harvesting equivalent damping effect. Therefore, for large scale electromagnetic
harvesters, the efficiency is bounded to 50%. This is an intrinsic property of seismic harvesters.

Considering now the casewhere the optimal real harvesting load ZhR;opt is implemented, as anticipated in Section 3.1, since
for the scaling range considered in this study the transducer natural frequency is much lower than the electrical cut-off
frequency where the coil inductive effect becomes relevant, i.e. un ≪ uce, the expression for the efficiency given in Eq.

(75) reduces to the same expression found for the complex harvesting load in Eq. (74), i.e. ERyEy1
2

P2
cm

2�P2
cm

. Therefore, also in

this case the efficiency depends on the electromagnetic power transduction factorP2
cm such that, for small dimensions of the

transducer, only a small amount of the input power can be converted into harvested power whereas, for large dimensions of
the transducer, a maximum of 50% of the input power can be converted into harvested power. Also in this case the “S-type”
scaling law depends on the physical properties of the harvester, which, as shown in Fig. 9b, can be examined considering the
equivalent mechanical effects [48] produced by the coil impedance Ze ¼ Re þ juLe and by the optimal complex impedance

load ZhR;opt , where, according to Eqs. (29) and (58), ZhR;opt ¼ jZeij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Re þ j2

cm
cm

�2

þ ðunLeÞ2
s

. In this case, as shown in sketch b,

these electrical effects produce an equivalent stiffness and two equivalent damping effects connected in series, which are

associated respectively to the inductance and resistance of the coil, j2
cm=Le and j2

cm=Re, and to the resistance of the harvesting

load, j2
cmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Reþj2cm
cm

�2

þðunLeÞ2
s . Again, considering the scaling laws shown in Fig. 5a, as depicted in the centre sketch of Fig. 9b, the

stiffness j2
cm=Le and damping j2

cm=Re coefficients scale proportionally to ½L1� and ½L3� respectively. Taking into consideration

that the transduction is defined with respect to velocity, and recalling that u ¼ un, the effect of the spring results j2
cm= ðunLeÞ,

which scales proportionally to ½L2�. The spring produces a rather large elastic force in the whole scale range so that it can be
considered as a solid element and thus it can be neglected in the lumped parameter model. The scaling of the damping term

j2
cmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Reþj2cm
cm

�2

þðunLeÞ2
s is somewhat more complex. Nevertheless, considering the scaling laws reported in the sketch, for small

scales it can be approximated in terms of a damping coefficient j2
cm
Re
, which scales proportionally to ½L3�. Alternatively, for large

scales it can be approximated in terms of the damping coefficient cm, which scales proportionally to ½L2:5�; ½L1� depending
whether the transducer is or is not affected by eddy currents damping. Therefore, as shown in the lumped parameter model,

small scale harvesters are characterised by the coil equivalent damping, j
2
cm
Re
, and the harvesting load equivalent damping j2

cm
Re
.

Both terms are very small and thus little energy can be harvested so that the efficiency tends to 0. In contrast, large scale
harvesters are affected only by the harvesting load equivalent damping effect cm. Therefore, as seen for the optimal complex
load, this configuration leads to the maximum energy harvesting possible, which according to the maximum power transfer
theorem for electric networks [63], is actually 50% of the input power, so that the efficiency tends to 0.5.
4. Piezoelectric harvester: scaling study

The scaling laws for the physical and energy harvesting properties of the piezoelectric seismic harvester are now
addressed. As done for the electromagnetic harvester, first, the characteristic energy expressions are derived considering the
harvester is connected to the optimal complex and purely real harvesting loads. Then, the scaling laws of the principal
mechanical and electrical physical properties that characterise the harvester are revised. Finally, the scaling of the harvested
power and the scaling of the power efficiency are investigated assuming the harvester is excited at its fundamental natural
frequency, i.e. un, such that, as shown in Appendix B.2, the maximum power is harvested.
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4.1. Energy formulation

Considering first the harvested power, according to the sign convention used in the lumped parameter model shown in
Fig. 1d, the following relation holds for the current ih at the terminals of the harvesting electrical load with admittance Yh:

ih ¼ � ehYh: (76)
Substituting this equation into the matrix expression in Eq. (25), the following relation is derived:

eh ¼
�Tiw

Yei þ Yh
_wh: (77)
Thus the time averaged power harvested with a generic load results:

Ph ¼ lim
T/∞

1
T

ZT
0

PhðtÞdt¼
1
2
RefYhgjehj2 ¼

1
2
RefYhg

				 �Tiw
Yei þ Yh

				2j _whj2: (78)
Also in this case, using Fermat's theorem [63], the complex electric load Yh, which maximizes the harvested power at each
frequency results given by Ref. [33]:

Yh;opt ¼Y*
ei; (79)

where * denotes the complex conjugate. Alternatively, if Y is assumed purely real, the optimal electric load results given by
h
Ref. [33]:

YhR;opt ¼ jYeij: (80)
Substituting Eqs. (79), (80) into Eq. (78), the following expressions are derived for the maximum power harvested for the
complex and real optimal loads respectively:

Ph ¼
1
8

jTiwj2
RefYeig

j _whj2; (81)

1 jT j2

PhR ¼4

iw

jYeij þ RefYeig
j _whj2: (82)
As will be shown in the following section, the sky-hook air damping effect can be neglected for most of the scaling range
considered in this study. Thus, setting cam ¼ 0 and u ¼ un in Eqs. (81), (82), the maximum power harvested with the complex
and real optimal loads results:

Ph ¼
1
8
kmmm

cm
P2

pej _whj2; (83)

PhR ¼
1
8
kmmm

cm

P2
pe

ape
j _whj2; (84)

where P2
pe is the power transduction factor defined in Eq. (53). Also, the ape factor in Eq. (84) is given by:

ape ¼
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2pe

q
2

; (85)

where bpe ¼ un
uce

ð1 �P2
peÞ. Here, un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
is the transducer fundamental natural frequency whereas uce ¼ Ge

CS
e
¼ spe

ε
s
33
is the

electrical cut-off frequency where the electric response of the piezoelectric material switches from resistive to capacitive
types.

Moving now to the input power, substituting in Eq. (25) the expression for the voltage eh derived in Eq. (77), the following
mechanical base impedance of the transducer can be derived:
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Zmh ¼ Zme �
TfeTiw
Yei þ Yh

: (86)
Therefore, for harmonic vibrations, the time-averaged mechanical input power results given by:

Pi ¼
1
2
RefZmhgj _whj2 ¼

1
2
Re


Zme �

TfeTiw
Yei þ Yh

�
j _whj2: (87)
Substituting Eqs. (79), (80) in this equation, the input power for the complex and real optimal loads result:

Pi ¼
1
2
Re


Zme �

TfeTiw
2RefYeig

�
j _whj2; (88)

1



TfeTiw
�

2
PiR ¼2
Re Zme �Yei þ jYhj

j _whj : (89)
Considering cam ¼ 0 and u ¼ un, the two equations above reduce to the following expressions respectively for the optimal
complex Yh;opt and purely real YhR;opt harvester loads:

Pi ¼
1
4
kmmm

cm

�
2�P2

pe

�
j _whj2; (90)

1 k m
 

4ape
!

PiR ¼4
m m

cm
2�

4a2pe þ b2pe
P2

pe j _whj2: (91)
The power efficiency E ¼ Ph=Pi can now be specified for the piezoelectric energy harvester using Eq. (78) and Eq. (87):

E¼
RefYhg

				 Tiw
YeiþYh

				2

Re


Zme � TfeTiw

YeiþYh

� : (92)
Thus, considering the optimal complex and real admittances Yh;opt ¼ Y*
ei and YhR;opt ¼ jYeij derived in Eqs. (79), (80), the

above expression results:

E¼1
4

jTiwj2

RefYeig Re


Zme � TfeTiw

2RefYeig

� ; (93)

ER ¼
1
2

jTiwj2

ðjYeij þ RefYeigÞ Re


Zme � TfeTiw

YeiþjYh j

� ; (94)

which, assuming cam ¼ 0 and u ¼ un, become

E¼1
2

P2
pe

2�P2
pe

; (95)

ER ¼
1
2

P2
pe

�
4a2pe þ b2pe

�
2ape

�
4a2pe þ b2pe � 2apeP

2
pe

� ; (96)

respectively for optimal complex and purely real harvesting loads.



Fig. 10. Scaling laws of (a) moving mass mm (black solid line), stiffness km (blue solid line), air damping coefficient cam (green solid line) and material damping cm
(blue dashed line), transduction coefficient jpe (blue dotted line), capacitance CS

e (blue thin solid line), dielectric conductance Ge (blue thin dashed line), dielectric
resistance Re (red solid line), (b) mechanical natural frequency un (solid line), electrical cut off frequency uce (dashed line). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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4.2. Scaling laws of the characteristic physical parameters

The scaling laws of the lumped parameter elements that compose the piezoelectric transducer shown in Fig. 1c are now
revised. Also in this case, the scaling laws can be readily derived recalling that the physical properties of the transducer (e.g.
density, Young's modulus of elasticity for the substrate and piezoelectric layers, permittivity, electrical conductivity, strain/
charge transduction constant for the piezoelectric layers) do not varywith scale. For instance, according to Eq. (14) the seismic
mass of the piezoelectric transducer mm scales with the cube of dimension, i.e. ½L3�. Also, recalling Eq. (15), the natural fre-
quency for the fundamental bendingmode of the clamped composite beam and tipmass scales with the inverse of dimension,
i.e. ½L�1�. Therefore the modal stiffness km given in Eq. (16) scales proportionally to the dimension, that is ½L1�. Considering Eq.
(17), the strain-rate damping coefficient is proportional to the material loss factor hm and modal stiffness km and inversely
proportional to the fundamental natural frequency. Brantley et al. [64], showed that the material loss factor hm for the
fundamental vibration natural mode of clamped beams scales with the inverse of dimension, i.e. ½L�1�. Therefore, the
equivalent viscous damping coefficient for strain-rate damping scales proportionally to ½L1�. The damping ratio xm ¼ cm

2
ffiffiffiffiffiffiffiffiffiffi
kmmm

p ¼
hm
2 will thus scale proportionally to the inverse of dimension, i.e. ½L�1�: For the scale range considered in this study, the
damping effect generated by the air loading on the beam is given by Eq. (18). Therefore, the air damping factor cam scales with
the second power of dimension, i.e. ½L2�. Considering the expression for the piezoelectric transduction coefficient given in Eq.
Fig. 11. Scaling laws of piezoelectric power transduction factor P2
pe (solid line), capacitance effect coefficient ape (dashed line), bpe coefficient (dotted line).
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(23), it can be readily concluded that jpe scales proportionally to dimension, i.e. ½L1�. As discussed in Section 2.1, the lossy
capacitance of the piezoelectric harvester under constant strain is given by Eq. (20), which indicates that it scales propor-
tionally to dimension, i.e. ½L1�. The dissipative effect is actually expressed in terms of the conductance of the piezoelectric
layers, which, according to the formulation presented in Section 2.1, is given by Ge ¼ 2spe bLhpe

and thus scales proportionally to

dimension, i.e. with ½L1].
In summary, as shown in Plot a of Fig. 10, as the size of the transducer is scaled up, the dielectric conductance of the

piezoelectric material Ge, the modal stiffness km, the mechanical strain-rate damping cm, the piezoelectric transduction

coefficient jpe and the constant strain capacitance CS
e rise proportionally to [L1]. Also, the air damping cam rises with the

power of [L2], whereas the modal massmm scales proportionally to the cube of dimension, i.e. [L3]. Finally, the resistance Re ¼
1=Ge is bound to scale proportionally to [L�1]. Therefore, as shown in Plot b of Fig. 10, the fundamental natural frequency of
the transducer, un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
, scales with ½L�1�, whereas the electrical cut-off frequency uce ¼ Ge=CS

e does not change with

dimension, i.e. scale with ½L0]. According to this Plot, when the transducer is about 30 times larger than the reference
transducer considered in this study, which has characteristic dimension of 4 cm, the fundamental natural frequency even-
tually becomes smaller than the electrical cut-off frequency.

The power expressions derived in Section 4.1 are based on the so called piezoelectric power transduction factor P2
pe,

which, as shown in Section 2.3.2, gives the ratio of the power transfer within the transducer per input power to the trans-

ducer. Considering Eq. (53), this factor depends on: a) the square of the transduction coefficient j2
pe ¼ ðe31bzÞ2, b) the

damping factor cm and c) the conductance of the piezoelectric layers Ge. All these parameters scale proportionally to [L1].

Thus, as shown in Fig.11, the piezoelectric coupling factorP2
pe does not changewith the dimension of the transducer, that is, it

scales proportionally to [L0]. The energy harvestingwith a real harvesting impedance load also depends on the ape ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
1þb

2
pe

p
2

and bpe ¼ un
uce

ð1�P2
peÞ factors defined in Eq. (85), which, as discussed above, take into account the conductance effect of the

piezoelectric material. As can be noticed in Fig. 10b, the cut-off frequency where the electric impedance switches from
resistive to capacitive is substantially much smaller than the mechanical fundamental natural frequency, that is uce≪ un, up
to about the 4cm reference dimension of the transducer considered in this study. For larger dimensions the two characteristic
frequencies become progressively similar and, eventually, for scales slightly larger than the range considered here, would
even switch such that uce[un. This implies that for scales up to about the 4cm reference dimension, the transducer is
characterised by a capacitive electric response, whereas, for larger scales it is characterised by a resistive and capacitive

response. As a result, for scales up to about 4cm, the coefficient bpe scales proportionally to [L�1] whereas the ape factor scales

proportionally to [L�1]. Alternatively for larger scales than 4cm, the apefactor remains constant, that is scales proportionally to

[L0]. Therefore, considering the power and efficiency expressions derived in Section 4.1, for harvesters having about the same
or greater dimension than the 4cm reference dimension, the harvested and input powers and the efficiency produced with

the optimal real and complex harvesting loads are about the same, i.e.: a) PhRyPhy
1
8

kmmm
cm P2

pej _whj2, b) PiRy Piy 1
4

kmmm
cm ð2 �

P2
peÞj _whj2, c) ERyEy1

2
P2

pe

2�P2
pe

. For harvesters with smaller size than the 4cm reference dimension, the electric impedance of the
Fig. 12. Scaling laws of the normalised harvested power density Ph when (a) the optimal complex and (b) optimal purely real electrical loads are implemented
and the piezoelectric transducer is (solid line) or is not (dashed line) affected by eddy currents damping.



Fig. 13. Scaling laws of the power harvesting efficiency when (a) the optimal complex and (b) optimal purely real electrical loads are implemented and the
piezoelectric transducer is (solid line) or is not (dashed line) affected by air damping.
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transducer would show a capacitive impedance, which cannot be compensated by the purely real harvesting load. As a result,
part of the input power would be stored in the piezoelectric capacitive layers and not transmitted to the harvesting load. From

the mathematical point of view, this reflects into an ape factor that scales proportionally to [L�1] such that the harvested and
input power and the harvesting efficiency produced by the optimal real harvesting load are smaller than those generatedwith
the complex harvesting load.
4.3. Scaling laws of the normalised power density and efficiency

The scaling laws for the normalised harvested power density and for the power harvesting efficiency of the piezoelectric

harvester are now analysed. As seen for the electromagnetic harvester, the normalised harvested power density Ph ¼ Ph
Vh

				
€wh¼1g

is given by the time-averaged harvested power Ph per unit volume of the transducer Vh, assuming 1g base acceleration at u ¼
un. As done for the electromagnetic harvester, the scaling laws were derived numerically from Eqs. (83), (84) and (95), (96),
considering the scaling of the lumped elements shown in Figs. 10 and 11.

Fig. 12 shows the scaling laws of the normalised power density for both complex and purely real optimal electric loads
when the contribution of the air damping is neglected (dashed line) and when is taken into account (solid line). Plots a and b
indicate that for both optimal harvesting loads the normalised power density monotonically rises as the size of the device is
increased. More precisely, considering the case with optimal complex harvesting load, the scaling of the harvested power
density is characterised by two asymptotes with respect to the 4cm reference harvester considered in this study: for small
dimensions, it scales proportionally to ½L2�, whereas, for large dimensions, it scales proportionally to ½L0�. Alternatively,
considering the casewith optimal real harvesting load, for small dimensions, it scales proportionally to ½L3�, whereas, for large
dimension, it scales proportionally to ½L0�. If the harvesters were operated in vacuum such that no air damping acted on the
cantilever beam, as shown by the dashed lines, the scaling laws would vary particularly at the higher end of the scaling range.
Indeed, considering the case with optimal complex harvesting load, the scaling of the harvested power density would be
proportional to ½L2� in the whole range considered. Alternatively, for the case with optimal real harvesting load, the scaling
would be proportional to ½L3� for small dimension and proportional to ½L2� for large dimensions. In general, contrasting the two
diagrams, it can be noticed that, for small scales, the optimal complex harvesting load absorbs more power than the optimal
real load. In contrast, for large scales, the two harvesting loads produce about the same levels of harvested power.

Moving to power efficiency, Plot a in Fig. 13 shows that, when the optimal complex impedance load given in Eq. (79) is
implemented, the piezoelectric seismic harvester is characterised by a somewhat constant efficiency of 0.4, which eventually
drops proportionally to ½L�1� for very large scales. If the air damping effect is neglected, the efficiency becomes constant and
equal to 0.4 in the whole scaling range considered in this study. Moving to Plot b, when the optimal purely real electric load
derived in Eq. (80) is implemented, the efficiency of the device is characterised by an “S-type” law. Thus it increases with
dimension and, in case of solely material damping contribution, according to the dashed line, it converges to the same
constant value obtained in Plot a for the complex impedance loadwhen the effect of the air damping is not taken into account.
If the contribution of the air damping is also considered, the solid line indicates that the efficiency has a maximumvalue for a
scale about 5 times greater than the 4cm reference dimension and then falls down at larger scales.



Fig. 14. Sketches of the equivalent mechanical effects produced by the electrical components of small scale and large scale piezoelectric harvesters with optimal
complex (a) and real (b) impedance harvesting loads.

Fig. 15. Scaling laws of the power harvesting efficiency when (a) the optimal complex and (b) optimal purely real electrical loads are implemented assuming the
piezoelectric transducer is not affected by air damping and, assuming spe ¼ 4:5,10�8 S=m, the conductivity of the piezoelectric layers is equal to 1spe (solid line),
0:5spe (dash dotted line), 0:3spe (dashed line), 0spe (dotted line).
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Considering first the case where the optimal complex harvesting load Zh;opt is implemented, according to Eq. (95), the

energy harvesting efficiency solely depends on the piezoelectric power transduction factor P2
pe. In-depth analysis of Eq. (95)

and of the scaling plot for P2
pe shown in Fig. 11 confirms that the efficiency is bound to a constant value, whose amplitude

depends on the physical properties of the harvester. As done for the electromagnetic harvester, the intrinsic physics of the
harvester can be unfolded by considering the equivalent mechanical effects produced by the admittance of the piezoelectric



P. Gardonio, L. Dal Bo / Journal of Sound and Vibration 476 (2020) 11529026
layers Ye ¼ 1
Ze
¼ ju~C

s
e ¼ juCs

e þ Ge and the admittance of the optimal complex load, which, according to Eqs. (79) and (38) is

given by Yh;opt ¼ Y*
ei ¼ � juCs

e þ Ge þ j2
pe

cm . Here, C
S
e ¼ 2εS33

bL
hpe

ð1 � k231Þ, Ge ¼ 2spe bLhpe
and jpe ¼ e31bz. As shown in sketch a of

Fig. 14, the electrical effects of the piezoelectric layers and harvesting complex load produce three equivalent mechanical

damping effects in series, j2
pe=Ge, j2

pe=Ge, cm, associated respectively to the resistance of the piezoelectric layer 1= Ge and to
the resistances of the harvesting load 1=Ge and cm, which have been embossed in a dashed rectangle to indicate they are
generated by the harvesting load. According to the scaling laws presented in Fig. 10a, as depicted in the centre sketch of
Fig. 14a, all three elements scale proportionally to ½L1�. Therefore, they all play a role in the energy harvesting, which can be
conveniently identified by considering first the case in which the piezoelectric layers were not affected by dielectric losses

such that j2
pe=Ge/∞. In this case the electric effects of the piezoelectric layers and harvesting complex loadwould reduce to a

mere damping term cm, so that, according to maximum power transfer theorem for electric networks, the maximum power
harvesting would be produced, which is actually 50% of the input power since the other 50% would be absorbed by the
mechanical damping cm of the transducer. Therefore, in case the piezoelectric layers were not affected by dielectric losses, the
efficiency would be bounded to maximum level of 0.5 for all scales. In practice, the harvester is also characterised by a sky-
hook mechanical damping due to the air load acting on the harvesting beam cam, which, as shown in the sketch a, scales
proportionally to ½L2� and thus becomes relevant for large scales. In this case, as can be observed in plot a of Fig. 13, the
harvesting efficiency remains constant up to about the 4cm reference dimension considered in this study and then mono-
tonically drops proportionally to ½L�1�. Now, if the piezoelectric layers are also affected by dielectric losses, then there would

be an extra loss of power in the layers themselves, which is proportional to j2
pe=Ge. Therefore, the efficiency would still remain

constant for small scales, but would be smaller than 0.5. Fig. 15a shows exactly how, in absence of air damping, the constant
efficiency level would shift down from the limiting value of 0.5 to about 0.38 as the electric conductivity spe of the dielectric

material in the piezoelectric layers rises from 0 to 4:5,10�8S=m.
As anticipated in Section 4.2, for scales equal to or larger than the 4cm reference dimension considered in this study, the

power harvesting efficiency with the real optimal load is actually about the same as that for the optimal complex harvesting

load and thus depends only on the piezoelectric coupling factor P2
pe. Alternatively, for small scales up to the 4 cm reference

dimension, it also depends on the ape and bpe factors defined in Eq. (85), which include the conductance effect of the
piezoelectric material. As shown in Plot b of Fig. 13, this give rise to quite a different efficiency scaling law than that shown in
Plot a for the complex harvesting load. Once again this results from the intrinsic physics of the harvester, which can be
analysed considering the equivalent mechanical effects produced by the admittance of the piezoelectric layers Ye ¼ 1

Ze
¼

ju~C
s
e ¼ juCs

e þ Ge and the admittance of the optimal complex load, which, according to Eqs. (80) and (43) is given by YhR;opt ¼

jYeij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðunCs

eÞ2 þ
 
Ge þ j2

pe

cm

!2
vuut . In this case, as shown in the centre sketch of Fig. 14b, these electrical effects produce an

equivalent stiffness and two equivalent damping effects connected in series, which are associated respectively to the
Fig. 16. Electromagnetic and piezoelectric harvesters power harvested ratios for (a) the optimal complex and (b) the real electrical loads considering the
following cases: i) thin-solid line, with eddy currents damping and with beam air damping; ii) thick-solid line, with eddy currents damping and without beam air
damping; iii) thin-dashed line, without eddy currents damping and with beam air damping; iv) thick-dashed line, without eddy currents damping and without
beam air damping.



Fig. 17. Electromagnetic and piezoelectric harvesters efficiency ratios for (a) the optimal complex and (b) the real electrical loads considering the following cases:
i) thin-solid line, with eddy currents damping and with beam air damping; ii) thick-solid line, with eddy currents damping and without beam air damping; iii)
thin-dashed line, without eddy currents damping and with beam air damping; iv) thick-dashed line, without eddy currents damping and without beam air
damping.
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capacitance and conductance of the piezoelectric layers, j2
pe=C

s
e and j2

pe=Ge, and to the resistance of the harvesting load,
j2
peffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðunC
s
eÞ2þ

 
Geþ

j2pe
cm

!2
vuut

. Again, considering the scaling laws shown in Fig.10a, the stiffness j2
pe=C

s
e and damping j2

pe= Ge coefficients

scale proportionally to ½L1�. Taking into consideration that the transduction is defined with respect to velocity, and recalling

that u ¼ un, the effect of the spring results j2
pe=ðunCs

eÞ, which scales proportionally to ½L2�. The scaling of the damping term
j2
peffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðunC
s
eÞ2þ

 
Geþ

j2pe
cm

!2
vuut

requires instead a more involved analysis. For instance, considering the scaling laws of the terms in the

expression shown in the sketch, for small scales it can be approximated in terms of a damping coefficient j2
pe= ðunCs

eÞ, which

scales proportionally to ½L2�. Alternatively, for large scales it can be approximated in terms of the damping coefficient cm,
which scales proportionally to ½L1�. Therefore, as shown in the lumped parameter model, small scale harvesters are char-

acterised by the equivalent stiffness,
j2
pe

Cs
e
and the harvesting load equivalent damping

j2
pe

unCs
e
, which scale proportionally to ½L1�

and ½L2� respectively. Thus, the equivalent damping term produced by the harvesting load scales down at a greater rate than
the mechanical damping of the transducer cm, which instead scales proportionally to ½L1�. Therefore, most of the input power
is dissipated by the transducer and only a smaller portion by the harvesting load. As a result, the harvesting efficiency is
relatively low, as shown in Plot b of Fig. 13. Alternatively, as shown in the lumped parameter model, large scale harvesters are

characterised by three dampers in series: the damper
j2
pe

Ge
produced by the dielectric conductance of the piezoelectric layers

and the dampers
j2
pe

Ge
and cm generated by the harvesting load. All three damping effects scale proportionally to ½L1�. Therefore

in this case the equivalent damping effect produced by the harvesting load scales with the same rate than the intrinsic
mechanical damping cm of the transducer. However, part of the input energy to the transducer is also dissipated by the

dielectric conductivity of the piezoelectric layer, which produces an equivalent damping effect
j2
pe

Ge
. Therefore, overall, for large

scale harvesters the maximum efficiency of 0.5 cannot be reached. Actually, as can be noticed in plot b of Fig. 13, it is further
limited by the additional loss produced by the air damping cam, which scales proportionally to ½L2� and thus becomes relevant
for large scales producing a peak efficiency value for harvesters about 5 times larger than the 4cm reference one. Once more,
all these effects are strongly influenced by the dielectric losses. For instance, as shown in Fig. 15b, the peak efficiency would
shift down from about 0.5 to about 0.38 as the electric conductivity spe of the dielectric material in the piezoelectric layers

rises from 0 to 4:5,10�8S=m.



P. Gardonio, L. Dal Bo / Journal of Sound and Vibration 476 (2020) 11529028
5. Comparative analysis

Comparative scaling studies are now presented for the harvested power and for the power harvesting efficiency with the
electromagnetic and piezoelectric seismic transducers. The studies assume the two transducers have the same seismic mass
mm and the same stiffness km. Therefore they also have equivalent fundamental natural frequency un.

Figs.16 and 17 show respectively the ratio of the harvested powers Ph;cm

Ph;pe

and the ratio of the power harvesting efficiencies Ecm
Epe

assuming either the optimal complex (Plots a) or the optimal real (Plots b) electrical loads are implemented. The following
four cases are considered for the damping effects in the two transducers: i) with eddy currents damping and with beam air
damping (thin-solid line); ii) with eddy currents damping and without beam air damping (thick-solid line) iii) without eddy
currents damping and with beam air damping (thin-dashed line); iv) without eddy currents damping and without beam air
damping (thick-dashed line).

The ratio of the harvested powers shown in Fig. 16 is first considered. Assuming the optimal complex harvesting load is
implemented, the thick-solid and thin-solid lines in Plot a show that, when the electromagnetic harvester is affected by high
eddy currents damping, regardless whether or not the piezoelectric beam is affect by air damping, the electromagnetic
harvester collects comparatively much less power than the piezoelectric harvester, particularly at the higher end of the
scaling range considered in the study. However, the thick-dashed and the thin-dashed lines indicate that, when the elec-
tromagnetic harvester is designed in such a way as to avoid eddy currents damping, for larger dimensions than the 4 cm
reference scale, the electromagnetic harvester collects about the same amount of power than the piezoelectric harvester
without air damping (thick-dashed line), or even an increasingly larger amount of power than the piezoelectric harvester
with air damping (thin-dashed line). In contrast, for increasingly smaller dimensions of the transducers than the 4 cm
reference scale, the electromagnetic harvester accumulates progressively less power than the piezoelectric harvester
regardless the piezoelectric transducer is or is not affected by air damping. Modelling damping is always a challenging task
and thus it is important to specify that the results presented in Fig. 16a are based on the damping factors identified in Ref. [33]
for the 4 cm reference harvesters considered in this study. Nevertheless, these results provide a realistic qualitative com-
parison of the power harvested by equal size electromagnetic and piezoelectric harvesters. Thus, in general it can be
concluded that, when the harvesters are connected to optimal complex loads, eddy currents greatly limits the power that can
be harvested with the electromagnetic transducer. Alternatively, when the electromagnetic harvester is not affected by eddy
currents, for small scales than the reference 4 cm dimension, it still produces less power than the piezoelectric harvester
whereas, for larger scales than the 4cm dimension, it produces about the same level of power than the piezoelectric harvester
in vacuum such that there is no air damping, and, comparatively more power than the piezoelectric harvester in air such that
there is a significant air damping effect.

Considering now the case where the optimal real harvesting loads are implemented, the thick-solid and thin-solid lines in
Plot b show that, when the electromagnetic harvester is affected by high eddy currents damping, regardless the piezoelectric
beam is or is not affect by air damping, for the smaller end of the scale range considered in this study, the electromagnetic
harvester absorbs about the same level of power than the piezoelectric harvester. Alternatively for scales equal or greater that
the reference 4cm dimension, the electromagnetic harvester absorbs much less power than the piezoelectric harvester.
Moving to the case where the electromagnetic harvester is not affected by eddy currents damping, the thick-dashed and the
thin-dashed lines indicate that, in general, the electromagnetic harvester outperforms the piezoelectric harvester regardless
the latter is or is not affected by air damping. More specifically, when the piezoelectric transducer is not affected by air
damping, the electromagnetic harvester results comparatively much more effective for scales about one tenth than the
reference 4cm dimension. Also, for larger scales than the reference 4cm dimension, it tends to produce about the same level of
power than the piezoelectric harvester, which actually corresponds to that found for the complex optimal load. Alternatively,
when the piezoelectric harvester is affected by air damping, the electromagnetic harvester tends to collect muchmore power
also for large scales. In general, these results indicate that, when the optimal real loads are implemented, apart from the case
where the electromagnetic harvester is affected by eddy currents damping, the electromagnetic harvester absorbs
comparatively more power than the piezoelectric harvester, particularly when the latter is affected by air damping. There is
therefore quite a significant difference when the two harvesters are operated with the optimal complex or optimal real
harvesting loads. This is principally due to the fact that, at the fundamental natural frequency of operation un, the electro-
mechanical response of the piezoelectric transducer is strongly affected by a capacitive electric effect of the piezoelectric
layers, which tend to store energy and thus prevent the energy transfer to the load. Therefore, the optimal complex load
compensates this capacitive effect and thus avoids energy is stored in the transducer rather than transferred to the electric
load. The electromagnetic harvester is instead characterised by a resistive effect at the fundamental natural frequency of
operation un. Therefore, there is maximum power transfer to the electric load regardless the optimal complex or optimal real
loads are implemented.

To conclude this analysis, it is interesting to note that, for the cases where the piezoelectric harvester is not affected by air
damping, the harvested power ratio considering the optimal complex and optimal real loads can be simply expressed with
the following laws:
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Ph;cm
Ph;pe

¼ cm;pe

cm;cm

P2
cm

P2
pe

; (97)

P c a P2

hR;cm

PhR;pe
¼ m;pe pe

cm;cmacm
cm

P2
pe

: (98)
The ratio of the harvesting efficiencies shown in Fig. 17 is now considered. Assuming the optimal complex harvesting load
is implemented, the thick-solid and thin-solid lines in Plot a show that, when the electromagnetic harvester is affected by
high eddy currents damping, regardless whether or not the piezoelectric beam is affect by air damping, the electromagnetic
harvester is less efficient in absorbing power than the piezoelectric harvester. The thin line indicates that for large scales than
the 4cm reference scale, the electromagnetic harvester is actually slightly more efficient than the piezoelectric harvester
affected by air damping. Alternatively, the thick-dashed and the thin-dashed lines indicate that, when the electromagnetic
harvester is designed in such a way as to avoid eddy currents damping, for larger dimensions than about half the 4cm
reference scale, the electromagnetic harvester is slightly more efficient than the piezoelectric harvester, regardless the latter
is or is not affected by air damping. Actually, when the piezoelectric harvester is affected by damping, for scales greater than
three times the 4cm reference dimension, the electromagnetic harvester shows a much larger efficiency. Thus, it can be
concluded that, for smaller scales compared to the 4cm reference dimension, the electromagnetic harvester is generally much
less efficient than the piezoelectric transducer. Alternatively, for larger scales compared to the 4cm reference dimension, the
electromagnetic harvester has about the same or slightly greater efficiency than the piezoelectric harvester. Actually, when
the piezoelectric transducer is affected by air damping, the electromagnetic harvester results significantly more efficient than
the piezoelectric harvester at the higher end of the considered scaling range.

Considering now the case where the optimal real harvesting loads are implemented, the whole set of curves in Plot b
indicate that, the electromagnetic harvester is more efficient than the piezoelectric harvester. More specifically, for smaller
scales than the 4cm reference diemension, depending whether or not the electromagnetic harvester is affected by high eddy
currents damping, it results about two times or four timesmore efficient than the piezoelectric transducer with or without air
damping. Alternatively, for larger scales than the 4cm reference dimension, the electromagnetic harvester tends to about the
same or to about twice efficiency than the piezoelectric transducer. Also in this case, for larger scales than the 4cm reference
dimension, the efficiency of the electromagnetic harvester becomes even more larger when the piezoelectric harvester is
affected by air damping. As discussed above for the harvested power, these results spring up from the fact that, at the
fundamental natural frequency of operation un, the electromechanical response of the piezoelectric transducer is charac-
terised by a capacitive dielectric effect of the piezoelectric layers, which tends to store energy and thus prevents the energy
transfer to the load. The real harvesting load cannot compensate this capacitive effect and thus the efficiency of the piezo-
electric harvester falls down. This is not the case for the electromagnetic harvester, which is instead characterised by a
resistive electrical effect at the fundamental natural frequency of operation un and thus can be effectively set to transfer
power to both the complex and real optimal loads.

As seen above, also for the ratio of the efficiencies the harvested power ratio considering the optimal complex and optimal
real loads can be simply expressed with the following laws when the piezoelectric harvester is not affected by air damping:
Fig. 18. Scaling laws for the stroke per unit base displacement at u ¼ un of the electromagnetic seismic harvester with (solid line) and without (dashed line) the
effect of the eddy currents and connected to (a) the optimal complex and (b) the optimal real harvesting loads.



Fig. 19. Scaling laws for the stroke per unit base displacement at u ¼ un of the piezoelectric seismic harvester with (solid line) and without (dashed line) the
effect of air damping and connected to (a) the optimal complex and (b) the optimal real harvesting loads.
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6. Transducers stroke: scaling study

As discussed for example in Refs. [37,46,65], to properly characterise the response of seismic transducers, the stroke, that is
the displacement of the moving mass with respect to the base mass, should also be investigated. Therefore, to fully char-
acterise the energy harvesting with the two systems considered in this study, the scaling laws are now discussed for the
strokes of the electromagnetic and piezoelectric seismic transducers excited by a base harmonic displacement at the
fundamental natural frequency un. The study assumes that the harvesters can withstand any displacement, although in
practice the stroke is normally limited by geometrical constrains (e.g. end stops for the coil magnet harvester) or stiffening
effects of the elastic component (e.g. non linear bending deformation of the beam harvester).

Considering first the electromagnetic transducer, inspection of the lumped parameter scheme shown in Fig.1b leads to the
following equation of motion for the seismic mass and Kirchhoff equation for the electric mesh:

Zmð _wm � _whÞ¼ � Zsð _wm � _whÞþjcmih � Zm _wh; (101)

eh ¼jcmð _wm � _whÞ þ Zeih: (102)
Inspection of the lumped parameter element scheme in Fig. 1d provides two similar equations for the piezoelectric
harvester

Zmð _wm � _whÞ¼ � Zsð _wm � _whÞþjpeih � Zm _wh; (103)

ih ¼jpeð _wm � _whÞ þ Yeeh: (104)



Table 1
Scaling properties for the electromagnetic harvester.

Parameter Symbol e Expression Case Small Scale Ref.ce Scale
4 cm

Large Scale

Suspended comp. mass mm ½L3� ½L3�
Springs stiffness km ½L1� ½L1�
Natural frequency un ½L�1� ½L�1�
Couette air flow damping ca ½L1�
Eddy currents damping cec ½L2:5�
Coil resistance Re ½L�1� ½L�1�
Coil inductance Le ½L1� ½L1�
Cut-off frequency resistive-inductive uce ½L�2� ½L�2]
Electromagnetic transduction coefficient jcm ½L1� ½L1�
Electromagnetic power transduction factor P2

cm Eq. (49) ½L2� ½L0�

Harvested power density per 1 g base acceleration
Complex optimal load

Ph
Vh

				
€wh¼9:81 m=s2

Eqs. (59,61)
with eddy currents ½L4� ½L0:5�
without eddy currents ½L4� ½L2�

Harvested power density per 1 g base acceleration
Real optimal load

PhR
Vh

				
€wh¼9:81 m=s2

Eqs. (60,62)
with eddy currents ½L4� ½L0�
without eddy currents ½L4� ½L2�

Power harvesting efficiency
Complex optimal load

E Eqs. (72,74) with eddy currents z0 z0:25 z0:5
without eddy currents z0 z0:5 z0:5

Power harvesting efficiency
Real optimal load

ER Eqs. (73,75) with eddy currents z0 z0:25 z0:5
without eddy currents z0 z0:5 z0:5

Transducer stroke per unit base displacement
Complex & real loads

wm �wh
wh

Eq. (105) with eddy currents ½L1� ½L�0:5�
without eddy currents ½L1� ½L1�

P. Gardonio, L. Dal Bo / Journal of Sound and Vibration 476 (2020) 115290 31
Also, according to the notation shown in Fig. 1b and d, the relations in Eqs. (54) and (76) hold for the impedances and
admittances of the harvesting loads respectively. After some mathematical manipulations Eqs. (101), (102) and Eqs. (103),
(104) combined respectively with Eq. (54) and Eq. (76) give the following relations for the stroke per unit base displace-
ment of the electromagnetic and piezoelectric harvesters respectively

wm �wh

wh
¼ � Zm

Zt þ jcmjcm
ZeþZh

; (105)

wm �wh ¼ � Zm
: (106)
wh Zt þ jpejpe

YeþYh
Figs.18 and 19 show the simulated scaling laws of the stroke per unit base displacement for the two transducers, assuming
they are connected to the optimal complex loads (Plots a), given in Eqs. (57), (79), and to the optimal real loads (Plots b), given
in Eqs. (58), (80). The simulations are performed assuming that the transducers operate at their fundamental natural fre-
quency un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
. The graphs for the electromagnetic seismic transducer depicted in Fig. 18 show very similar scaling

laws when the optimal complex (Plot a) and purely real (Plot b) harvesting loads are implemented. Considering first the case
where the transducer is affected by eddy currents damping, as shown by the solid lines, the stroke amplitude grows pro-
portionally to the first power of dimension i.e. ½L1�, reaches a peak value at about half the 4cm reference dimension considered
in this study, and then, at larger scales, it progressively decreases and falls down with power �0:5 of dimension, i.e ½L�0:5�.
Instead, when the transducer is not affected by eddy currents damping, according to the dashed lines, the stroke is char-
acterised by amonotonically rising law, which for small scales is proportional to ½L1� and for large scales is proportional to ½L1�.
In general, when the transducer is affected by eddy currents damping, the maximum stroke in the considered scaling range is
about twice the amplitude of the base displacement. Instead, when the transducer does not show eddy currents damping, the
stroke monotonically rises with scale, such that, for the largest dimension considered in study, the stroke of the transducer is
about 50 times the base displacement. This is a very large value, which, indicate, large electromagnetic harvesters can
function correctly only with small amplitude ambient vibrations.

Moving to the piezoelectric seismic transducer, the dashed lines in the two plots of Fig. 19 show that, when the transducer
is not affected by air damping, the strokes growmonotonically, proportionally to ½L1� both when the complex and real optimal
loads are implemented. At the lower scale end, the stroke is about 2 and 5 times the base displacement, whereas at the higher
scale end, it is about 200 times the base displacement. The solid lines in the two plots, indicate that when the transducer is
affected by air damping the scaling laws rise at a smaller rate that eventually for very large scales levels to ½L0�, both when the
complex and real optimal loads are implemented. As a result, at the higher scale end, the strokes result about 110 times



Table 2
Scaling properties for the piezoelectric harvester.

Parameter Symbol e Expression Case Small Scale Ref.ce Scale
4 cm

Large Scale

Suspended comp. mass mm ½L3� ½L3�
Beam flexural stiffness km ½L1� ½L1�
Natural frequency un ½L�1� ½L�1�
Strain-rate damping cm ½L1� ½L1�
Sky-hook air samping cam ½L2� ½L2�
Piezo-layers resistance Re ½L�1� ½L�1�
Piezo-layers conductance Ge ½L1� ½L1�
Piezo-layers capacitance CS

e ½L1� ½L1�
Cut-off frequency resistive-capacitive uce ½L0� ½L0]
Piezoelectric transduction coefficient jpe ½L1� ½L1�
Electromagnetic power transduction factor P2

pe Eq. (53) ½L0� ½L0�
Harvested power density per 1 g base acceleration
Complex optimal load

Ph
Vh

				
€wh¼9:81 m=s2

Eqs. (81,83)
with air damping Eq. (81) ½L2� ½L0�
without air damping ½L2� ½L2�

Harvested power density per 1 g base acceleration
Real optimal load

PhR
Vh

				
€wh¼9:81 m=s2

Eqs. (82,84)
with air damping Eq. (82) ½L3� ½L0�
without air damping ½L3� ½L2�

Power harvesting efficiency
Complex optimal load

E Eqs. (93,95) with air damping Eq. (93) z0:4 z0:4 z0:33
without air damping z0:4 z0:4 z0:4

Power harvesting efficiency
Real optimal load

ER Eqs. (94,96) with air damping Eq. (94) z0 z0:2 z0:25
without air damping z0 z0:2 z0:4

Transducer stroke per unit base displacement
Complex & real loads

wm �wh

wh
Eq. (106) without air damping ½L1� ½L0�

with air damping ½L1� ½L1�
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greater than the base displacements. In summary, very large transducer strokes are necessary to obtain the large power
harvesting effects at the higher scale range considered in this study. Therefore, as seen for the electromagnetic harvester, large
piezoelectric harvesters can function correctly only with small amplitude ambient vibrations.

7. Conclusions

This paper has presented a theoretical study on the scaling laws that characterise the electromechanical response and
vibration energy harvesting of meso-scale seismic electromagnetic and piezoelectric transducers assembled from discrete
components, which are connected to either complex or purely real optimal harvesting loads and are exposed to harmonic
base vibrations at their fundamental natural frequency. The study is based on detailed lumped parameter models, which
include the damping effects produced by eddy currents in the electromagnetic transducer and the electrical losses and sky-
hook air damping in the piezoelectric transducer, which usually are not taken into consideration. The study has provided
equivalent formulations for the responses and for the power harvesting with the two transducers, which, as summarised in
Tables 1 and 2, have led to simple formulae that can be used straightforwardly to identify the principal scaling laws that

characterise the two harvesters. To this end, the so called electromagnetic and piezoelectric power transduction factors, P2
cm

and P2
pe, have been defined in Section 2.3, which characterise the electro-mechanical power transmission of the two

transducers with respect to the electrical and mechanical power input into the two transducers.
For conciseness, the principal results of the scaling studies performed on the two harvesters are summarised in Tables 1

and 2. Among themany data produced, it is noteworthy to emphasise that the power transduction factors, which characterise
the mechanical to electrical power conversion of the two transducers, are characterised by rather different scaling laws. For
instance, the electromagnetic power transduction factor scales proportionally to ½L2� and to ½L0� respectively for small and
large scales compared to the 4cm reference scale considered in this paper. In contrast, the piezoelectric power transduction
factor scales proportionally to ½L0�, i.e. it remains constant, in the whole scaling range. These are rather important observa-
tions, which indicate that, in general, the electromagnetic transduction is more suited for large scale harvesters, whereas the
piezoelectric transduction can be effectively used over a wide scale range.

A second important aspect that has emerged from this study is that, in general, the power harvested with seismic
transducers undergoing imposed base vibrations, tends to grow with scale, regardless whether the electromagnetic or the
piezoelectric transducer is employed. This is linked to the fact that large scale transducers can actually be characterised by
large strokes that thus enables the conversion of larger amount of power per unit base vibration. Of course, this is true for
transducer designs capable of withstanding rather large oscillations of bulky suspended masses and for applications where
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the source of vibrations has a comparatively much larger mechanical impedance than the base impedance of the transducer.
For example large civil constructions (buildings, towers, etc.), transportation infrastructures (e.g. bridges, train tracks, etc.),
industrial plants (e.g. heavy machinery, framework structures, cranes, etc.).

A third general conclusion that has emerged from this study is that, eddy currents damping and sky-hook air damping
tend to limit the energy harvesting of large electromagnetic and piezoelectric harvesters respectively. Eddy currents damping
in electromagnetic harvesters is actually a critical problem even for ordinary scales as the 4cm reference scale considered in
this paper. Thus, special care must be devoted to the design of the transducer ferromagnetic components to minimise the
development of eddy currents. Instead, sky-hook air damping becomes relevant only for very large piezoelectric harvesters.

A final general conclusion regards the efficiency in transforming vibration input power into harvested electrical power.
The study has shown that the power harvesting efficiency with the electromagnetic transducer is characterised by an “s-type”
scaling law, such that, for small scales, it tends to 0 whereas for large scales it tends to 0.5. This is the result of the intrinsic
physics of mechanical to electrical power transfer with electromagnetic transducers, which, as noticed in the analysis of the
power transduction factor, tends to 0 for small scales and to a constant value for large scales. When the transducer is affected
by eddy currents damping the transition to the limiting value of 0.5 occurs for comparatively larger scales. The power har-
vesting efficiency with the piezoelectric transducer is instead constant, except for very large scales where it drops because of
the sky-hook air damping effect. For perfectly dielectric piezoelectric layers the efficiency is actually equal to 0.5. In practice,
in presence of small conductance effects, the efficiency drops to smaller values of the order of 0.3e0.4.

In general, for time-harmonic vibrations at the fundamental natural frequency of the transducers, the energy harvesting
with the electromagnetic transducer connected either with the optimal complex or optimal real electric loads produce very
similar results. In contrast, a piezoelectric transducer connected to the optimal real electric load harvests comparatively less
power than if it were connected to the optimal complex load, particularly for small scales devices. This is due to the fact that,
at the fundamental natural frequency, the transducer is characterised by a capacitive electric impedance. Thus, with a real
optimal load, the harvester tends to store part of the absorbed energy in the capacitive piezoelectric layers, thus reducing the
power harvesting effect. The optimal complex harvesting load compensates exactly this effect, thus allowing the maximum
possible power harvesting effect, which is indeed 50% of the power injected in the transducer.
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Appendix A. Physical and geometrical properties of the reference harvesters

Tables A1 and A2 below report the physical and geometrical properties of the reference electromagnetic and piezoelectric
transducers studied in Ref. [33] and used in this paper as reference transducers with characteristic dimension L ¼ 1.
Table A1
Parameters for the electromagnetic seismic harvester.

Parameters Value

Base mass and volume (inner magnet) mb ¼ 115� 10�3 kg Vb ¼ 1:206� 10�5 m3

Proof mass and volume (outer ring and coil) mm ¼ 185� 10�3 kg Vm ¼ 3:240� 10�5m3

Transducer total mass and total volume mcm ¼ 300� 10�3 kg Vcm ¼ 4:446� 10�5m3

Transducer footprint area Acm ¼ 1:5$10�3m2

Magnet radius and length Rm ¼ 0:0153m hm ¼ 0:0165m
Outer ring volume Vy ¼ 2:926� 10�5m3

Outer ring electrical conductivity sy ¼ 1:2� 107S=m
Magnet magnetization per unit length M0 ¼ 106A=m
Spiral springs equivalent stiffness km ¼ 2777 N=m
Fundamental natural frequency fn ¼ 19:5 Hz
Viscous damping coefficient/ratio ca ¼ 0:91 Ns=m xa ¼ 0:02
Eddy current damping coefficient/ratio cec ¼ 8:61 Ns=m xec ¼ 0:19
Equivalent damping coefficient/ratio cm ¼ 9:52 Ns=m xm ¼ 0:21
Electromagnetic transduction factor jcm ¼ 22:5 N=A
Coil resistance Re ¼ 22 U

Coil lossy inductance constant and exponent Ke ¼ 0:034
n ¼ 0:78

Coil lossy inductance loss factor hL ¼ 0:36



Table A2
Parameters for the piezoelectric seismic harvester

Parameters Value

Steel substrate Width and thickness b ¼ 20mm
hs ¼ 2 mm

Length L ¼ 140 mm
Density rs ¼ 7800 kg=m3

Young's modulus Ys ¼ 20� 1010N=m2

Mass and volume ms ¼ 44� 10�3 kg Vs ¼ 0:56� 10�5 m3

Piezoelectric layers Width and thickness b ¼ 20mm
hpe ¼ 0:15 mm

length Lp ¼ 100 mm
Density rpe ¼ 5440 kg=m3

Young's modulus YE
pe ¼ 3� 1010 N=m2

Strain/charge constant d31 ¼ � 170� 10�12 m=V
Permittivity under constant stress ε

T
33 ¼ 6:3� 10�9 F=m

Electrical conductivity spe ¼ 4:5� 10�8 S=m
Electromechanical coupling factor k231 ¼ 0:14
Mass and volume m2l ¼ 3:9� 10�3 kg V2l ¼ 0:06$10�5 m3

Lumped elements Base (block) mass and volume mb ¼ 126� 10�3 kg Vb ¼ 1:76� 10�5 m3

Proof (block) mass and volume mm ¼ 189� 10�3 kg Vm ¼ 2:64� 10�5 m3

Transducer total mass and total volume mpe ¼ 363� 10�3 kg Vpe ¼ 5:03� 10�5 m3

Transducer footprint area Ape ¼ 3:4$10�3 m2

Equivalent proof mass mm ¼ 215� 10�3 kg
Equivalent stiffness with the piezo-electrodes in short circuit km ¼ 3369 N=m
Fundamental natural frequency (short circuit) fn ¼ 20 Hz
Equivalent viscoelastic damping coefficient and ratio cm ¼ 0:7 Ns=m xm ¼ 0:013
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Appendix B. Frequency of maximum power transfer

This Appendix presents closed form analytical formulations for the derivation of the frequency at which time-harmonic
power harvesting with electromagnetic and piezoelectric seismic harvesters connected to the optimal complex loads is
maximised. For both harvesters, the frequency of maximum power harvesting results equal to the fundamental natural
frequency of the transducer: i.e. ujPh¼max ¼ un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
. No close form analytical formulation can be derived for the

frequency of maximum power harvesting when the two transducers are connected to optimal real loads. However, numerical
results have shown that also in this case ujPh¼max ¼ un ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
.

B.1. Electromagnetic Harvester

Considering first the electromagnetic harvester, when the optimal complex impedance Zh;opt ¼ Z*ei is implemented, the
frequency dependent harvested power is given by the expression derived in Eq. (59), which can rewritten as follows with
respect to the transduction and electrical FRFs Tew and Zei given in Eqs. (28,29):

Ph ¼
1
8

u3mmjcm

Re
�
u2mm � km


2 þ u2cm
�
j2
cm þ Recm


j _whj2: (B.1)
As discussed in Section 2.2, at low frequencies below the electrical cut-off frequency uce ¼ Re=Le, the lossy inductive effect

of the coil can be neglected. Thus, setting vPh
vu ¼ 0 gives:

mmjcm
8

3u2
h
Re
�
u2mm � km


2 þ u2cm
�
j2
cm þ Recm


i� u3�4Re�u2mm � km


umm þ 2ucm

�
j2
cm þ Recm


�
Re
�
u2mm � km


2 þ u2cm
�
j2
cm þ Recm


 ¼0: (B.2)
After some mathematical manipulations, this equation can be rewritten in the following form:

½Recm�u4 þ
h
2u2

n

�
Recm

�
1�2x2

�
þ2x2j2

cm

�i
u2 �3Recmu4

n ¼0; (B.3)
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whereun ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
and x ¼ cm=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmmm

p
Þ are themechanical natural frequency and damping ratio of themechanical part

of the transducer. For damping ratios x lower than 1=2, the terms in x2 can be neglected so that Eq. (B.3) can be simplified into
the following expression:

u4 þ
�
2u2

n

�
u2 �3u4

n ¼0: (B.4)
Solving Eq. (B.4) with respect to frequency, the only physically meaningful solution for the frequency of maximum power
harvesting results:

ujPh¼max ¼un: (B.5)
B.2 Piezoelectric Harvester

Considering now the piezoelectric harvester, when the optimal complex admittance Yh;opt ¼ Y*
ei is implemented, the

frequency dependent harvested power is given by the expression derived in Eq. (81), which can rewritten as follows with
respect to the transduction and electrical FRFs Tiw and Yei given in Eqs. (37,38):

Ph ¼
1
8

u3�mmjpe

2

CS
ehc
�
u2mm � km


2 þ u2c2mCS
ehc þ ucmj

2
pe

j _whj2: (B.6)
In this case, setting vPh
vu ¼ 0 gives:

4u3
h
Ge
�
u2mm � km


2 þ u2c2mGe þ u2cmj
2
pe

i
� u4

h
4Ge

�
u2mm � km



umm þ 2uc2mGe þ 2ucmj2

pe

i
h
Ge
�
u2mm � km


2 þ u2c2mGe þ u2cmj
2
pe

i2 ¼0; (B.7)

Dividing Eq. (B.7) by 4kmmmu2 and assuming us0, after some mathematical manipulations it follows:
 
xj2

pe

unmm

!
u2 �Ge

�
1�2x2

�
u2 þGeu

2
n ¼0; (B.8)

where, as seen above, un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm

p
and x ¼ cm=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmmm

p
Þ are the mechanical natural frequency and damping ratio of the
mechanical part of the transducer. Also in this case, for damping ratio x lower than 1=2, the terms in x2 can be neglected and
thus Eq. (B.8) becomes approximately equal to:

 
xj2

pe

unmm

!
u2 �Geu

2 þGeu
2
n ¼0: (B.9)

xj2
Since the term pe

unmm
is two orders of magnitude lower with respect to Ge, the above equation can be rewritten as follows:

Ge

�
u2
n �u2

�
¼0: (B.10)
Solving Eq. (B.10), the only physically meaningful solution results:

ujPh¼max ¼un: (B.11)
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