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Abstract—Data-driven saliency has recently gained a lot of
attention thanks to the use of Convolutional Neural Networks for
predicting gaze fixations. In this paper we go beyond standard
approaches to saliency prediction, in which gaze maps are
computed with a feed-forward network, and we present a novel
model which can predict accurate saliency maps by incorporating
neural attentive mechanisms. The core of our solution is a
Convolutional LSTM that focuses on the most salient regions
of the input image to iteratively refine the predicted saliency
map. Additionally, to tackle the center bias present in human eye
fixations, our model can learn a set of prior maps generated with
Gaussian functions. We show, through an extensive evaluation,
that the proposed architecture overcomes the current state of the
art on two public saliency prediction datasets. We further study
the contribution of each key components to demonstrate their
robustness on different scenarios.

Index Terms—Saliency, Human Eye Fixations, Convolutional
Neural Networks, Deep Learning

I. INTRODUCTION

ISUAL cognition science has shown that humans, when

observing a scene, do not focus on each region with
the same intensity. Instead, selective mechanisms guide their
gazes on salient and relevant parts of the image, focusing on
different elements [I]. An intensive research effort aimed to
emulate such selective visual mechanisms, as computational
saliency can be applied to a wide range of applications
like image retargeting [2]], [3]], object recognition [4]], video
compression [3]], tracking [6]] and other data-dependent tasks
such as image captioning [[7].

Traditional saliency prediction methods have followed bio-
logical evidences by defining features that capture low-level
cues such as color, contrast and texture or semantic concepts
such as faces, people and text [8], [9], [10], [11]. However,
these techniques have failed to capture the wide variety of
causes that contribute to define visual saliency maps.

With the advent of deep neural networks, saliency prediction
has achieved strong improvements both thanks to specific
architectures and to large annotated datasets [12]], [13]], [14],
[15]. Although these approaches went beyond the limitations
of hand-crafted models, no one has yet investigated the incor-
poration of neural attentive models [[16] in saliency prediction.
Neural attention is a computational paradigm which aims, with
neural networks, at emulating the human attentive behavior.
Human attention can be task driven (e.g. during driving or
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Fig. 1. Our Saliency Attentive Model (SAM) is composed of three main
parts: a Dilated Convolutional Network (DCN), an Attentive Convolutional
LSTM, and a set of learnable priors. We show some examples of saliency
maps predicted by the DCN (a), the DCN with the Attentive ConvLSTM (b),
and the DCN with the Attentive ConvLSTM and learned priors (c).

reading) or non-task driven, i.e. spontaneously driven by the
observed scene. In this last non task-driven context, neural at-
tention has been successfully applied to image captioning [16]
and machine translation to selectively focus on different
parts of a sentence, and to action recognition to focus on
the relevant parts of a spatio-temporal volume. We claim that
neural attention can be effective also for saliency prediction, as
a powerful way to process saliency-specific features, extracted
from a Convolutional Neural Network (CNN), to obtain an
enhanced prediction.

In this paper we propose a novel saliency prediction ar-
chitecture that incorporates an Attentive Convolutional Long
Short-Term Memory network (Attentive ConvLSTM) that can
iteratively focus on relevant locations of the image to refine
saliency features. This architecture is particularly original,
because the LSTM model is used to achieve a refinement over
an image, instead of handling a temporal sequence.

Since the rescaling caused by max-pooling and strides in
convolutional layers deteriorates the performance of saliency
prediction, we present an extension of two popular CNNs
(namely, VGG-16 [19] and ResNet-50 [20]) which can reduce
the downscaling effect and maintain spatial resolution. This
expedient allows us to preserve detailed visual information
and obtain improved feature extraction capabilities.

Moreover, in order to handle the tendency of humans to fix
the center region of an image, we also introduce an explicit



center prior component. In fact, many studies conducted with
eye-tracking devices have shown that eye fixations are biased
toward the center of the scene [21], [22]. Unlike previous
approaches that include handcrafted priors [10], [23], [12]],
[24], [25], our module keeps the architecture trainable end-to-
end and can learn priors in an automatic way.

Figure [T] shows examples of saliency predictions obtained
with our proposed solution, which we call Saliency Attentive
Model (SAM), and with only some of its main components
with respect to the groundtruth. We quantitatively validate
our approach on three publicly available benchmark datasets:
SALICON, MIT300 and CAT2000. Experimental results show
that the proposed solution, by incorporating an attentive archi-
tecture and learned priors, significantly improves prediction.
To sum up, the contributions of this paper are threefold:

e We propose a novel Attentive ConvLSTM that sequen-
tially enhances predicted saliency maps. To the best of
our knowledge, this is the first work that incorporates
attentive models in a saliency prediction architecture.

e Our network is able to learn the bias present in eye
fixations, without the need to integrate this information
manually.

o The proposed solution overcomes by a big margin the
current state of the art on the largest dataset available
for saliency prediction, the SALICON dataset. Moreover,
on MIT300 and CAT2000 datasets our method achieves
state of the art results showing competitive generalization
properties.

We make the source code of our method and pre-trained
models publicly availabl

II. RELATED WORK

Pioneering works on saliency prediction were based on the
Feature Integration Theory proposed by Treisman et al. [26]]
in the eighties. Itti ef al. [27] defined the first computational
model to predict saliency on images: this work, inspired
by Koch and Ullman [28], computed a set of individual
topographical maps representing low-level cues such as color,
intensity and orientation and combined them into a global
saliency map. After this seminal work, a large variety of
methods explored the same idea of combining complementary
low-level features [29], [8]], [30]], [31] and often included addi-
tional center-surround cues [32]], [[L1]. Other methods enriched
predictions exploiting semantic classifiers for detecting higher
level concepts such as faces, persons, cars and horizons [33]],
(101, 1341, 191, [35].

A. Saliency and Deep Learning

Only recently, thanks to the large spread of deep learning
techniques, the saliency prediction task has achieved a consid-
erable improvement. One of the first proposals has been the
Ensemble of Deep Networks (eDN) model by Vig et al. [23].
This model consists of three convolutional layers followed
by a linear classifier that blends feature maps coming from
the previous layers. After this work, Kiimmerer et al. [12],
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[24] proposed two deep saliency prediction networks: the first,
called DeepGaze I, based on the AlexNet model [36], while
the second, DeepGaze I1, built upon the VGG-19 network [19].
Liu et al. [37] presented a multi-resolution CNN (Mr-CNN)
fine-tuned over image patches centered on fixation and non-
fixation locations.

It is well known that deep learning approaches strongly de-
pend on the availability of sufficiently large datasets. The pub-
lication of a large-scale eye-fixation dataset, SALICON [38]],
indeed contributed to a big progress of deep saliency prediction
models. Huang ef al. [[13] introduced an architecture consisting
of a deep neural network applied at two different image scales.
They compared different standard CNN architectures such as
AlexNet [36], VGG-16 [19] and GoogleNet [39]] showing the
effectiveness especially of the VGG network.

After this work, several deep saliency models based on the
VGG network have been published 23], [40], [14], [41]], [15],
[42], [43], [44]. Accordingly, we proposed a new architecture,
called ML-Net [15], which improved previous attempts by
using features coming from multiple layers of a CNN and
adding a learned prior map. In particular, we learned a matrix
of weights which was applied to the output saliency map with
a pixel-wise multiplication. The usage of centered priors has
also been investigated in [23]], where multiple predefined priors
were fed to a convolutional layer.

In this work, instead, we model the center bias present
in human gazes using multiple learned prior maps. This is
completely different from the approaches of [15] and [23],
since we let the network learn a set of Gaussian parameters,
keeping it trainable end-to-end without predefined information.

Recently, Pan et al. [43] introduced SalGAN, a deep network
for saliency prediction trained with adversarial examples. As
all other Generative Adversarial Networks, it is composed by
two modules, a generator and a discriminator, which combine
efforts to produce saliency maps.

In this work, we also employ the ResNet [20] model to
extract feature maps from the input image. The only other
saliency model that exploits this network is that proposed by
Liu et al. [43] and called DSCLRCN. This model simulta-
neously incorporates global and scene contexts to infer image
saliency thanks to a deep spatial contextual LSTM which scan
the image both horizontally and vertically.

B. Salient Object Detection

For the sake of clarity, salient object detection is slightly
related to the topic of this work, even though it is a signifi-
cantly different task. Salient object detection consists, indeed,
in identifying a binary map indicating the presence of salient
objects [46], [47], [48], [49]. In saliency prediction, instead,
the objective is to predict a density map of eye fixations.

A saliency detection approach which is in some aspects
related to our work is that of Kuen et al. [50], in which a
recurrent (non convolutional) network provides salient object
detection. At each timestep, their recurrent network outputs
the parameter of a spatial transformation which is used to
focus on a particular location of the image, and build the
binary prediction for that location. Our recurrent network is,
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Fig. 2. Overview of our Saliency Attentive Model (SAM). After computing a set of feature maps on the input image through a new architecture called Dilated
Convolutional Network, an Attentive Convolutional LSTM sequentially enhances saliency features thanks to an attentive recurrent mechanism. Predictions are
then combined with multiple learned priors to model the tendency of humans to fix the center region of the image. During the training phase, we encourage
the network to minimize a combination of different loss functions, thus taking into account different quality aspects that predictions should meet.

instead, convolutional, and is used to process saliency features
by iteratively refining the prediction.

III. MODEL ARCHITECTURE

In this section we present the architecture of our complete
model, called SAM (Saliency Attentive Model).

The main novelty of our proposal is an Attentive Convo-
lutional model, which recurrently process saliency features
at different locations, by selectively attending to different
regions of a tensor. This architecture, that for the first time
uses an LSTM without the concept of time, is described in
Section [M=Al

Predictions are then combined with multiple learned priors
which are used to model the human-gaze center bias (Sec-
tion [lII-B)). To extract feature maps from input images, we
employ a Convolutional Neural Network model. Instead of
using a pre-defined CNN, we propose a Dilated Convolutional
Network to limit the rescaling effects which can worse saliency
prediction performance (Section[[II-C)). A new combination of
different loss functions is finally used to train the whole net-
work by simultaneously taking into account different quality
aspects (Section [[II-D). The overall architecture of our model
is shown in Figure 2]

A. Attentive Convolutional LSTM

Long Short-Term Memory networks [51] have achieved
good performances on several tasks in which time dependen-
cies are a key component [52]], [S3]], [54], [S5], but they can not
be directly employed for saliency prediction, as they work on
sequences of time varying vectors. We extend the traditional
LSTM to work on spatial features: formally this is achieved by
substituting dot products with convolutional operations in the
LSTM equations. Moreover, we exploit the sequential nature
of LSTM to process features in an iterative way, instead of

using the model to deal with temporal dependencies in the
input.

To explain our proposal of the attentive model, let’s consider
the LSTM scheme on the left part of Fig. 2} Here the LSTM
takes as input a stack of features extracted from the input
image (X in Fig. 2) and produces a refined stack of feature
maps (X’ in Fig. entering in the learned prior module.
The LSTM works by sequentially updating an internal state,
according to the values of three sigmoid gates. Specifically,
the update is driven by the following equations

L =o(W;« Xy + U« H_1 + b)) (1)
Fy=0(W;* X, +Upx Hy_y +by) )
Oy = 0(W, % Xy + Uy % Hy_1 +b,) 3)
Gy = tanh(W, « X, + U, % H;_y + b,) 4)
Ci=F 001+ 0G: )
H; = O; ® tanh(Cy) (6)

here, the gates I, F;, Oy, the candidate memory G, memory
cell C;, C;_1, and hidden state H;, H;_1 are 3-d tensors, each
of them having 512 channels. * represents the convolutional
operator, all W and U are 2-d convolutional kernels, and all
b are learned biases.

The input of the LSTM layer X, is computed, at each
timestep (i.e. at each iteration), through an attentive mech-
anism which selectively focuses on different regions of the
image. In particular, the LSTM computes an attention map
which is generated by convolving the previous hidden state
H;_; and the input X, feeding the result to a tanh activation
function and finally convolving with a one channel convolu-
tional kernel

Zy = Vy s tanh(W, x X + Uy« Hi_1 +by).  (7)



Fig. 3. Progressive refinement of predictions performed by the Attentive
ConvLSTM. The first and the second row show a progressive change of focus
in the saliency map, so that regions which were wrongly predicted as salient
are progressively corrected, and truly salient regions are correctly identified.
The third and the fourth row, instead, respectively show an increase and a
reduction of saliency in regions of the image that have been (or have not
been) considered as salient at the first timestep. In all cases, the result is a
progressive approach of the saliency map to the groundtruth.

The output of this operations is a 2-d map from which we
can compute a normalized spatial attention map through the
softmax operator

exp(Z;’)
> 2 exp(Z)
where Aij is the element of the attention map in position (, j).
The attention map is applied to the input X with an element-

wise product between each channel of the feature maps and
the attention map

A? = p(att¢j|X, Htfl) = (8)

X, = 4,0 X. 9)

Fig. 3] shows saliency predictions on four sample images,
when using the output of the ConvLSTM module at different
timesteps as input of the rest of the model. As can be noticed,
predictions are progressively refined by modifying the initial
map given by the CNN: this refinement results in an significant
enhancement of the predictions.

B. Learned Priors

Psychological studies have shown that when observers look
at images, their gazes are biased toward the center [21]],
[22]. This phenomena is mainly due to the tendency of
photographers to position objects of interest at the center of
the image. Also, when people repeatedly watch images with
salient information placed in the center, they naturally expect
to find the most informative content of the image around its
center [22]. Another important reason that encourages this
behavior is the interestingness of the scene [56]. Indeed, when
there are not highly salient regions, humans are inclined to
look at the center of the image.

We integrate a module which can learn multiple prior maps
from data, keeping the architecture trainable end-to-end. We
model the center bias by means of a set of Gaussian func-
tions with diagonal covariance matrix. Means and variances

are learned for each prior map, according to the following

equation:
_ 1 (z —pa)?® | (y—py)?
f,y) = 2mog0y xp ( < 202 + 207 '
(10)

Our network learns the parameters of /N Gaussian functions
(in our experiments N = 16) and generates the relative prior
maps. These maps are then concatenated with the output
tensor of the Attentive ConvLSTM. Since this tensor has 512
channels, after the concatenation with learned prior maps, we
obtain a tensor with 528 channels. The resulting tensor is
fed through a convolutional layer with 512 filters. The entire
learning prior module is replicated two times.

C. Dilated Convolutional Network

One of the main drawbacks of using CNNs to extract
features for saliency prediction is that they considerably
rescale the input image during the feature extraction phase,
thus worsening the prediction accuracy. In the following, we
describe a technique to limit the rescaling phenomena, and
thus improve performance, on two recent feature extraction
networks: the VGG-16 [19] and the ResNet-50 [20]. The same
ideas could be applied, in principle, to any CNN architecture.

The VGG-16 network is composed by 13 convolutional
layers and 3 fully connected layers. The convolutional layers
are divided in five convolutional blocks where, each of them
is followed by a max-pooling layer with a stride of 2.

The ResNet-50, instead of having a series of stacked layers
that process the input image as in common CNNs, performs
a series of residual mappings between blocks composed by a
few stacked layers. This is obtained using shortcut connections
that realize an identity mapping, i.e. the input of the block
is added to its output. Residual connections help to avoid
the accuracy degradation problem [37] that occurs with the
increase of the network depth, and are beneficial also in
the saliency prediction case, since they improve the feature
extraction capabilities of the network.

In particular, the ResNet-50 network consists of five con-
volutional blocks and a fully connected layer. The first block
is composed by one convolutional layer followed by a max-
pooling layer, both of them having a stride of 2, while the
remaining four blocks are fully convolutional. All of these
blocks, except the second one (conv?2), reduce the dimension
of feature maps with strides of 2.

Since the purpose of our network is to extract feature
maps, we only consider convolutional layers and ignore fully
connected layers which are present at the end of both networks.
Moreover, it can be noticed that the downscaling factor of
both of these architectures is particularly critical. For example,
with an input image having a size of 240 x 320, the output
dimension is 8 x 10, which is relatively small for the saliency
prediction task. For this reason, we modify network structures
to limit the rescaling phenomena.

For the VGG-16 model, we remove the last max-pooling
layer and we set the stride to 1 in the last but one (as in
Figure [4a). Besides, we introduce dilated convolutions [58]
in the last convolutional block. This ensure that filters of the



o o [} [} o o o, o o o
. =) = = = = = = = = =
Image o ) — I%m:»m:ﬁzlﬁm:»m:»m:ﬁ:l m: m: m:
| |
3x240x320 3 3 £ x Q@ © © ] ] o
= e oF [ o |t |0 512x30x40
| Il [ J1 | Il |
convl pooll conv2  pool2 conv3 pool3 conv4 poold conv5
(a) Dilated VGG Convolutional Network
x3 x6
rrrrrrrrrrrrrr 1T
.
/ ] I o
S = 2 1S 1S S S S S 1Tl
. o ~ H o ] “ ~ — — i - — - ; | e |
image ~ > o e s \—1: RSN -—«: m: .—q: e > .—q: m: .—q: e .-c: -l m:: =5
3x240x320 < < ¢ 9 - ® | ® o e igl S
© S| el S =5 5 AN §iRg 512x30x40
1
[ 1
[}
| Il I Il Il La
convl pooll conv2 conv3 conv4 conv5

(b) Dilated Residual Convolutional Network

Fig. 4. Overall architectures of Dilated Convolutional Networks based on the VGG-16 and ResNet-50 models. Convolutional and pooling blocks are respectively

expressed in terms of channels_kernel_stride_holes and kernel__

stride. On top of the ResNet model, we report the number of repetitions for

each block. Red dashed edges indicate modified layers with respect to the original networks.

final block operate on the same receptive field for which they
were originally conceived, and that pre-trained weights can be
properly fine-tuned. In particular, we introduce holes of size
1 in the kernels of the block convb5.

For the ResNet-50, instead, we remove the stride and we
introduce dilated convolutions in the last two blocks for the
same reason (see Figure [db). In particular, we introduce holes
of size 1 in the kernels of the block conv4 and holes of size
22 — 1 = 3 in the kernels of the block conv5. The output of
the residual network is a tensor with 2048 channels. To limit
the number of feature maps, we fed this tensor into another
convolutional layer with 512 filters.

The use of dilated convolutions allows the layer to have
a larger receptive field without increasing the number of
parameters. Thanks to these expedients, our saliency maps are
rescaled by a factor of 8 instead of 32 as in the original VGG-
16 and ResNet-50 models.

We include dilated convolutions also in prior layers, thus
obtaining two convolutional layers with large receptive fields
that allows us to capture the saliency of an object with respect
to its neighborhood. We set the kernel size of these layers to
5 and the holes size to 3 achieving therefore a receptive field
of 17 x 17.

The last layer of our model is a convolutional operation
with one filter and a kernel size of 1 that extracts the final
saliency map. Finally, the predicted saliency map is brought
to its original size with a bilinear upsampling.

D. Loss function

Saliency predictions are usually evaluated through different
metrics, in order to capture several quality factors. Inspired
by this evaluation protocol, we introduce a new loss function
given by a linear combination of three different saliency
evaluation metrics. We define the overall loss function as

follows:

L(g,y*", y'") =

aLi(7,y77) + BLa(F, y*") + vL3(F, y*™)

Y

where ¥, y?™ and y/** are respectively the predicted saliency
map, the groundtruth density distribution and the groundtruth
binary fixation map, while o, S and  are three scalars
which balance the three loss functions. L1, Lo and L3 are
respectively the Normalized Scanpath Saliency (NSS), the
Linear Correlation Coefficient (CC) and the Kullback-Leibler
Divergence (KL-Div) which are commonly used to evaluate
saliency prediction models.

The NSS metric was defined specifically for the evaluation
of saliency models [59]. The idea is to quantify the saliency
map values at the eye fixation locations and to normalize it
with the saliency map variance

1 Yi — n(y)
N Y

where i indexes the i pixel, N = > yzf % is the total number
of fixated pixels and y is normalized to have a zero mean and
unit standard deviation.

The CC, instead, is the Pearson’s correlation coefficient and
treats the saliency and groundtruth density maps, y and y e, »
as random variables measuring the linear relationship between
them. It is computed as

den
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where o (7, y%") is the covariance of ¥ and y“°".
The KL-Div evaluates the loss of information when the
distribution ¥ is used to approximate the distribution y?°"
therefore taking a probabilistic interpretation of saliency and
groundtruth density maps. Formally
) (14)
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where 7 indexes the i*" pixel and ¢ is a regularization constant.
The KL-Div is a dissimilarity metric and a lower value
indicates a better approximation of the groundtruth by the
predicted saliency map.

In Section [V-A] we quantitatively justify the choice of our
loss combination comparing our results with those obtained
using single evaluation metrics as loss function.

IV. EXPERIMENTAL SETUP

In this section we describe datasets and metrics used to
evaluate the proposed model, and provide implementation
details.

A. Datasets

Evaluation is carried out on four of the most popular
saliency datasets which differ in terms of both image content
and experimental settings.

- SALICON [38]: This is the largest available dataset for
saliency prediction. It contains 10,000 training images, 5,000
validation images and 5,000 testing images, taken from the
Microsoft COCO dataset [60]. Eye fixations are simulated with
mouse movements: as shown in [38]], there is an high degree
of similarity between mouse-contingent saliency annotations
and fixations recorded with eye-tracking systems. Groundtruth
maps of the test set are not publicly available and predictions
must be submitted to the SALICON challenge websiteE] for
evaluation.

- MIT1003 [[LO]: The MIT1003 dataset contains 1003 images
coming from Flickr and LabelMe. Saliency maps have been
created from eye-tracking data of 15 observers.

- MIT300 [61]: The MIT300 dataset is a collection of 300
natural images with saliency maps generated from eye-tracking
data of 39 users. Saliency maps of this entire dataset are
held out and we used the MIT Saliency benchmark [62] for
evaluating our predictions.

- CAT2000 [56]: This dataset contains 4,000 images coming
from a large variety of categories such as Cartoons, Art,
Satellite, Low resolution images, Indoor, Outdoor, Line draw-
ings, ect. It is composed of 20 different categories with 200
images for each of them. Saliency maps of the testing set,
composed by 2,000 images, are not available and also in this
case we submitted our saliency maps to the MIT Saliency
benchmark [62].

B. Evaluation Metrics

There exists a large variety of metrics to evaluate saliency
prediction models and the main difference between them
concerns the ground-truth representation. In fact, saliency
evaluation metrics can be categorized in location-based and
distribution-based metrics [63], [64], [65]. The first category
considers saliency maps at discrete fixation locations, while
the second treats both ground-truth fixation maps and predicted
saliency maps as continuous distributions.

The most widely used location-based metrics are the Area
under the ROC curve, in its different variants of Judd (AUC)
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and shuffled (sAUC), and the Normalized Scanpath Saliency
(NSS). The AUC metrics do not penalize low-valued false
positives giving an high score for high-valued predictions
placed at fixated locations and ignoring the others. Besides,
the sAUC is designed to penalize models that take into account
the center bias present in eye fixations. The NSS, instead, is
sensitive in an equivalent manner to both false positives and
false negatives.

For the distribution-based category, the most used evaluation
metrics are the Linear Correlation Coefficient (CC), the Sim-
ilarity (SIM) and the Earth Mover Distance (EMD). The CC
treats both false positives and false negatives symmetrically,
differently from the SIM that instead measures the intersection
between two distributions and for this reason it is very sensi-
tive to missing values. The EMD is a dissimilarity metric that
penalizes false positives proportionally to the spatial distance
from the groundtruth.

C. Implementation Details

We evaluate our model on SALICON, MIT300 and
CAT?2000 datasets. For the first dataset, we train the network
on its training set and we use the 5,000 validation images
to validate the model. For the second and the third dataset,
we pre-train the network on SALICON and then fine-tune
on MIT1003 and CAT2000 respectively as suggested by the
MIT Saliency benchmark organizers. In particular, we use
903 randomly selected images of the MIT1003 to fine-tune
the network and the remaining 100 as validation set. For the
CAT2000 dataset, instead, we randomly choose 1,800 images
of training set for the fine-tuning and we use the remaining
200 (10 for each category) as validation set.

For the SALICON, MIT1003 and MIT300 datasets, we
resize input images to 240 x 320. Since images from MIT1003
and MIT300 have different sizes, we carry out a zero padding
bringing images to have an aspect ratio of 4:3 and we then
resize them to have the selected input size. Images from
CAT2000 dataset, instead, have all the same input size of
1080 x 1920. For this reason, we resize all images of this
dataset to 180 x 320.

Predictions of all datasets are slightly blurred with a Gaus-
sian filter. After a validation process, we set the standard
deviation of the Gaussian kernel to 7.

Weights of the Dilated Convolutional Networks are initial-
ized with those of the VGG-16 and ResNet-50 models trained
on ImageNet [66]]. For the Attentive ConvLSTM, we initialize
the recurrent weights matrices U;, Uy, U, and U, as random
orthogonal matrices. All W matrices and U, are initialized by
sampling each element from the Gaussian distribution of mean
0 and variance 0.052. The matrix V; and all bias vectors are
initialized to zero. Weights of all other convolutional layers of
our model are initialized according to [67].

At training time, we randomly sample a minibatch contain-
ing K training saliency maps (in our experiments K = 10),
and encourage the network to minimize the proposed loss
function through the RMSprop optimizer [68].

Loss parameters «, 8 and v are respectively set to —1,
—2 and 10 balancing the contribution of each loss function.
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TABLE I
ABLATION ANALYSIS OF SAM-VGG AND SAM-RESNET MODELS ON SALICON VALIDATION SET [38].

SAM-VGG
CC sAUC

SAM-ResNet

AUC NSS CC sAUC AUC NSS

Plain CNN 0.743

0.765

0.870 2.333 | 0.771 0.762 0.876 2.404

0.801

Dilated Convolutional Network

0.786

0.876  3.122 | 0.823 0.774 0.879 3.187

DCN + Attentive ConvLSTM 0.809

0.784

0.878 3.142 | 0.841 0.786 0.885 3.256

DCN + Attentive ConvLSTM + Learned Priors | 0.830

0.782

0.883 3.219 | 0.844 0.787 0.886 3.260

Differently from the KL-Div that is a dissimilarity metric and
its value should be minimized, the CC and the NSS are to be
maximized to predict better saliency maps. To this end, we set
« and [ as negative weights.

During the training phase, we set the initial learning rate to
10~* and we decrease it by a factor of 10 every two epochs
for the model based on the ResNet, and every three epochs
for that based on the VGG network.

V. EXPERIMENTAL EVALUATION

In this section we perform analyses and experiments to
validate the contribution of each component of the network.
We also show quantitative and qualitative comparisons with
other state of the art models.

A. Comparison between different loss functions

In Fig. 5] we compare results obtained by using single loss
functions (KL-Div, CC, NSS) and our combination proposed
in Section [[II-D| Results are reported for both versions of
our model. We call SAM-VGG the model based on the VGG
network and SAM-ResNet that based on the ResNet network.

As it can be seen, our combined loss achieves on average
better results on all metrics. In particular, when the model is
trained using the KL-Div or the CC metrics as loss function,
the performance are good especially on the CC, while the
model fails on the NSS. When the model is trained using
the NSS metric, instead, it achieves better results only on
the NSS and fails on all other metrics. Our combined loss
reaches competitive results on all metrics differently from the
other loss functions. For this reason, results of all following
experiments are obtained by training the network with our
combination of loss.

B. Model Ablation Analysis

We evaluate the contribution of each component of the ar-
chitecture, using the SALICON validation set. To this end, we
construct four different variations: the plain CNN architecture
without the last fully convolutional layer (as a baseline), the
Dilated Convolutional Network (DCN), the DCN with the
proposed ConvLSTM model and the final version of our model
with all its components.

Table [I] shows the results of the ablation analysis using
both versions of our model. The results empathize that the
overall architecture is able to predict better saliency maps
in both SAM-VGG and SAM-ResNet variants and each

0.90}|EEE KL-Div
= cC

3 NSS
BN Ours 0.79

0.85

o

@

=)
e
o
®

CC Score
°
3
&
SAUC Score
o
3

0.70

0.65 0.76

SAM-VGG SAM-ResNet SAM-VGG

(b) sSAUC

SAM-ResNet

(a) CC

14
©
=)

3.45

o 14
®  ®
®  ©
w
i
7

AUC Score
14 o

©

& 3
NSS Score
~

&

o
®
4]

0.84 2.55

SAM-VGG SAM-ResNet SAM-VGG

(d) NSS

SAM-ResNet

(c) AUC
Fig. 5. Comparison between different loss functions on SALICON validation
set [38]]. Each plot corresponds to a different evaluation metric (CC, sAUC,
AUC and NSS). The four color bars represent the performance of our model

trained with the considered loss functions. We report results of both SAM-
VGG and SAM-ResNet models.

proposed component gives an important contribution to the
final performance. There is a constant improvement on all
metrics. For example, the VGG baseline achieves a result of
0.743 in terms of CC, while the DCN achieves a relative
improvement of 2800743 — 7.8%. This result is further
improved by a 1% when adding the Attentive ConvLSTM;
finally, the learned priors add another important improvement
of 2.6%. The ResNet baseline, instead, achieves a CC result
of 0.771 that is improved by a 6.7% when adding the dilated
convolutions. The Attentive ConvLSTM add an improvement
of 2.2%, while learned priors slightly improve predictions by
a 0.4%.

It is also noteworthy that, with our pipeline, a VGG-based
network and a ResNet-based network achieve almost the same
performance, so one of the two model can be equally chosen
according to speed and memory allocation needs, without
considerably affecting prediction performance.

C. Contribution of the attentive model and learned priors

Table |lI| reports the performance of our model when using
the output of the Attentive ConvLSTM module at different
timesteps as input for the rest of the model. Results clearly



TABLE II
RESULTS ON SALICON VALIDATION SET [38] WHEN USING THE OUTPUT
OF THE ATTENTIVE CONVLSTM MODULE AT DIFFERENT TIMESTEPS AS
INPUT OF THE REST OF THE MODEL.

[ T| CC  sAUC AUC NSS
SAM-VGG | 1] 0.821 0.777 0.884 3.168
SAM-VGG | 2 | 0.827 0.777 0.883 3.224
SAM-VGG | 3 | 0.828 0.781 0.883 3.226
SAM-VGG | 4 | 0.830 0.782 0.883 3219
SAM-ResNet | 1 | 0.785 0.737 0.879 3.050
SAM-ResNet | 2 | 0.829 0.764 0.886 3.214
SAM-ResNet | 3 | 0.842 0.779 0.886 3.256
SAM-ResNet | 4 | 0.844 0.787 0.886 3.260

TABLE III

COMPARISON RESULTS BETWEEN OUR LEARNED PRIORS AND THAT
PROPOSED IN [15]] ON SALICON VALIDATION SET [38]].

cC sAUC AUC NSS
SAM-VGG (prior of [13]) 0.811 0.783 0.878 3.150
SAM-VGG (learned priors) 0.830 0.782 0.883 3.219
SAM-ResNet (prior of [13]) 0.840 0.785 0.884 3.249
SAM-ResNet (learned priors) | 0.844  0.787 0.886 3.260

show that the refinement carried out by the Attentive model
results in better performance. No further significant improve-
ments were observed for ¢ > 4.

To assess the effectiveness of our prior learning strategy, we
compare it with the approach in [[15], in which a low resolution
prior map is learned and applied element-wise to the predicted
saliency map, after performing a bilinear upsampling. We
chose to compare our solution to that in [15] because it is
the only other attempt to incorporate the center bias in a deep
learning model without the use of hand-crafted prior maps.
Results are reported in Table using multiple and Gaussian
learned priors, instead of learning an entire prior map, with
no pre-defined structure, shows to be beneficial according to
all metrics.

D. Comparison with state of the art

We quantitatively compare our method with state of the
art models on SALICON, MIT300 and CAT2000 test sets.
We decide to sort model performances by the NSS metric as
suggested by the MIT Saliency Benchmark [62]], [64], [65].

Table[[Vlshows the results on the SALICON dataset in terms
of CC, sAUC, AUC and NSS. As it can be observed, our SAM-
ResNet solution outperforms all competitors by a big margin
especially on CC and NSS metrics and obtains the best result
also on the sAUC. In particular, our method overcomes the
other ResNet-based model [45] with an improvement of 1.5%
according to NSS metric, 1.3% and 0.4% according to CC
and sAUC. For a fair comparison with other methods, we
include also the results achieved by our SAM-VGG model.
The improvement with respect all other VGG-based methods
is even more important than that obtained by the SAM-ResNet

TABLE IV
COMPARISON RESULTS ON SALICON TEST SET [38]]. THE RESULTS IN
BOLD INDICATE THE BEST PERFORMING METHOD ON EACH EVALUATION
METRIC. (*) INDICATES CITATIONS TO NON-PEER REVIEWED TEXTS.
METHODS ARE SORTED BY THE NSS METRIC.

| CC sAUC AUC  NSS
SAM-ResNet 0.842 0779 0.883 3.204
DSCLRCN [@3] (*) | 0.831 0.776 0.884 3.157
SAM-VGG 0.825 0.774 0.881 3.143
ML-Net [13] 0743 0768 0.866 2.789
MixNet [44] (¥) 0730 0771 0.861 2.767
SU [41] 0780 0.760 0.880 2.610
SalGAN [43] (*) 0781 0772 0.781 2.459
SalNet [40] 0622 0724 0858 1.859
DeepGazell [24] (*) | 0.509 0.761 0.885 1336

model. In detail, our SAM-VGG overcomes all other VGG-
based methods with an improvement of 12.7% and 5.6%
according to NSS and CC metrics.

The results on MIT300 and CAT2000 datasets are respec-
tively reported in Tables [V|and Our method achieves state
of the art results on all metrics, except for the SAUC, on the
CAT2000 dataset surpassing other methods by an important
margin especially on SIM, CC, NSS and EMD metrics. On
the MIT300 dataset, instead, we obtain results very close to
the best ones.

Our model does not obtain a big gain in performance espe-
cially on the AUC metrics. This can be explained considering
that the AUC metrics are primarily based on true positives
without significantly penalizing false positives. For this reason,
hazy or blurred saliency maps like the ones predicted by [24]
achieve high AUC values [69]], [34]], despite being visually
very different from the groundtruth annotations, as we will
show in the following.

Qualitative results obtained by our models on SALICON
and MIT1003 validations sets, together with those of other
state of the art models, are shown in Figure @ As it can be
noticed, our network is able to predict high saliency values
on people, faces, objects and other predominant cues. It also
produces good saliency maps when images do not contain
strong saliency regions, such as when saliency is concentrated
in the center of the scene or when images portray a landscape.
Moreover the proposed solution is able to infer the importance
of different people present in the scene. In fact, people and
faces are normally considered to be highly salient but, when
there is more than one person, not all people have the same
importance [70].

VI. CONCLUSION

We described a novel Saliency Attentive Model which
can predict human eye fixations on natural images. The
main novelty of the proposal is an Attentive Convolutional
LSTM specifically designed to sequentially enhance saliency
prediction. The same idea could be potentially employed
in other tasks in which an image refinement is profitable.
Furthermore, we captured an important property of human
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Fig. 6. Qualitative results and comparison with other state of the art models. Left images are from SALICON validation set [38]], while right images are

from MIT1003 validation set [[10].

TABLE V
COMPARISON RESULTS ON MIT300 DATASET . THE RESULTS IN BOLD
INDICATE THE BEST PERFORMING METHOD ON EACH EVALUATION
METRIC. (*) INDICATES CITATIONS TO NON-PEER REVIEWED TEXTS.
METHODS ARE SORTED BY THE NSS METRIC.

TABLE VI
COMPARISON RESULTS ON CAT2000 TEST SET [56]. THE RESULTS IN
BOLD INDICATE THE BEST PERFORMING METHOD ON EACH EVALUATION
METRIC. (*) INDICATES CITATIONS TO NON-PEER REVIEWED TEXTS.
METHODS ARE SORTED BY THE NSS METRIC.

| SIM cC  sAUC AUC NSS EMD | | | SIM  CC  sAUC AUC NSS EMD
DSCLRCN *) | 0.68 080 0.72 087 235 217 SAM-ResNet 077 089 058 088 238 1.04
SAM-ResNet 0.68 078 070 0.87 234 215 SAM-VGG 0.76 089 058 088 238 1.07
SAM-VGG 0.67 077 071 087 230 214 DeepFix 23] (*) | 0.74 0.87 0.58 0.87 228 1.15
DeepFix *) 0.67 078 071 0.87 226 2.04 MixNet [44] (*) 0.66 076 058 086 192 1.63
SALICON 0.60 074 074 087 212 2.62 iSEEL [42] (*) 0.62 066 059 084 1.67 1.78
PDP 0.60 070 073 0.85 2.05 2.58 BMS 0.61 067 059 085 1.67 195
ML-Net 0.59 067 070 0.85 2.05 2.63 eDN 0.52 054 055 085 130 264
SalGAN ) 0.63 073 072 086 2.04 229 GBVS 0.51 050 058 080 123 299
iSEEL ) 057 065 068 0.84 1.78 2.72
SalNet 052 058 069 083 151 331 (SACHER). We acknowledge the CINECA award under the
BMS [ 051 055 065 083 141 335 ISCRA initiative, for the availability of high performance
Mr-CNN (37 048 048 069 079 137 371 | computing resources and support.
DeepGazell [24] () | 0.46 0.52 0.72 0.88 129 3.98
GBVS 048 048 063 081 1.24 351 REFERENCES
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