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a b s t r a c t

This study proposes a novel estimation-based approach to solving asset pricing models
for both stationary and time-varying observations. Our method is robust to misspecifica-
tion errors while inheriting a closed-form solution. By representing the Euler equation
into a well-posed integral equation of the second kind, we propose a penalized two-
stage nonparametric estimation method and establish its optimal convergence under
mild conditions. With the merit of penalized splines, our estimate is less sensitive
to the spline setting and we also design a fast data-driven algorithm to effectively
tune the key smoother, i.e. the penalty amount. Our approach exhibits excellent finite
sample performance. Using the US data from 1947 to 2017, we reinvestigate the return
predictability and find that the estimated implied dividend yield significantly predicts
lower future cash flows and higher interest rates at short horizons.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work by Lucas (1978), Euler equations have been widely adopted as a main vehicle in finance
nd macroeconomics to investigate the connection between agent preferences, asset prices, and economic fundamen-
als (Cochrane, 2009). Enormous efforts have been seen on the development of asset pricing models and there is a pressing
nterest in evaluating different models’ explanation powers on market anomalies. Whereas, the price–dividend (P/D) ratio
unction, which is a function of state variables and recursively specified in Euler equations, plays an indispensable role
n constructing test statistics and moment conditions. An unsatisfactory solution of the P/D ratio function from the Euler
quations may lead to incomplete or misleading information about its accounting identity, and may thereby contaminate
he predictability of the dividend yields on stock returns, cash flows, and short-term interest rates (Ang and Bekaert,
006; Elliott et al., 2015; Xu, 2018). Therefore, among others, the P/D function from a given Euler equation, is one of the
entral quantities to solve (Mehra and Prescott, 1985; Campbell and Cochrane, 2000). Given the fact that economic theory
sually does not suggest a concrete functional form of the state dynamics and unknown P/D ratios, one goal of this strand
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f literature is to strike a balance between solution accuracy and robustness of the distributional assumption imposed on
he state variables.

The literature on the solution of Euler equations begins with numerical approaches, which impose auxiliary assump-
ions on the unknown functions, or state dynamics, or both for ease of computation. Traditional perturbation methods
ight miss nonlinear patterns or curvature for the P/D ratio function (Pohl et al., 2018). Given a pre-specified data
enerating process (DGP), global approximations of the P/D ratio function are considered, but few theoretical derivations
n the approximation bounds exist, and the practical choice of the series order is considerably subjective (Calin et al.,
005). By assuming autoregressive (AR) processes with Gaussian shocks on the state variables, discretization methods
o not rely on the functional-form assumption, but may induce interpolation biases. Meanwhile, the widely used AR(1)
ssumption on the consumption growth rates might be inadequate, since Cecchetti et al. (2000) find strong evidence for
hresholding models in reflecting different evolutions of the state dynamics in different states of the economy, and Bansal
nd Yaron (2004) and Andrei and Hasler (2014) show that the equity premium puzzle may be better explained when
onsidering autoregressive conditional heteroscedasticity (ARCH) and time-varying processes. Traditional regression-
ased methods, such as the parametrized expectation algorithm (PEA), might be among the few methods that do not
equire distributional assumptions on the state variables (Den Haan and Marcet, 1990). However, they require the pre-
pecified functional form of the P/D ratio, and the approach may not converge during iterations as they attempt to treat
he Euler equation as the integral equation of the first kind (Type I) (Canay et al., 2013). Calin et al. (2005) directly estimate
he P/D ratio by assuming that it is an analytic nonparametric function, but the existence of the solution is not always
uaranteed for some chosen stochastic discount factors (SDFs).
In this paper, we propose a nonparametric estimation-based solution method for Euler equations, which enjoys a

losed-form solution without numerical integrations and avoids misspecification errors from the traditionally imposed
uxiliary assumptions made on latent transition densities or unknown functional forms. We add insights of our novel
egression method by representing the Euler equation as a well-posed integral equation of the second kind (Type II) and
iew it from a regression perspective. Due to the recursive occurrences of the unknown function over two time periods,
e adopt the two-stage nonparametric regression to solve the endogeneity issue. By establishing an equivalence between
ur estimation-based procedure and the projection method widely used in solving Type II equations, we demonstrate that
ur proposed estimator can achieve the optimal convergence rate, as opposed to the slower one of a general ill-posed
ype I problem. By adopting series estimation and regression techniques,1 our estimation method inherits a closed-form
olution and we avoid solving the more involved Perron–Frobenius eigenfunction representation as that in Escanciano
t al. (2020) and Christensen (2017). In particular, we recommend the use of the B-splines basis rather than other global
asis functions, such as the power series and the Chebyshev series, because the B-splines basis has an appealing local
odification scheme2 and is more numerically stable.
Our paper further contributes to the literature by establishing the large sample properties of our proposed two-stage

stimation with and without the penalization smoother to control the roughness of the fitted curve. A closely related work
s Chen and Pouzo (2015), who propose estimating a general nonparametric conditional moment model via penalized sieve
inimum distance. However, our work differs essentially from theirs as we focus more on adopting the penalization to
lay the key role of smoothing. Since we do not rely on the number of the spline basis for regularization, the impact
rom the spline setting is substantially reduced, which frees us from worrying about the choice of the spline basis and the
lacement of knots. There are relatively few other studies that investigate how to tune the penalty so that the estimate
ould achieve the optimal convergence rate. Exceptions include Li and Ruppert’s (2008) and Claeskens et al.’ (2009)
tudies on simple univariate nonparametric regressions, and Chen et al. (2015)’s work on varying coefficient models
ith an integrated regressor. However, to the best of our knowledge, we are the first to establish theoretical results

or nonparametric regressions with endogeneity. We enjoy the advantages of our proposed smoothing via a combined
egularization scheme, where we can achieve undersmoothing in the first stage while maintaining the optimal smoothing
n the second stage.

Our theoretical contributions also shed light on its practical implementation. As Newey and Powell (2003) point out,
t is very important to choose the smoothing parameters in two-stage nonparametric regression. To ensure the reliable
erformance of our new methodology, we propose a fast-implemented generalized cross-validation (GCV) algorithm to
elect the key smoother, namely, the penalty parameter in the two-stage regression. Normally, the calculation of GCV for
ach given penalty requires the matrix inversion, which, in turn, requires a computation cost of K 3, where K is equivalent
o the total number of spline basis. However, our implemented algorithm can further reduce this computation to O(K 2),
hus allowing for a faster search for the optimal smoother. It is worth mentioning that our newly proposed GCV algorithm
s not limited to asset pricing modeling. Moreover, such an approach can be extended to allow for multivariate state
ariables with the use of tensor product B-splines.
Simulation studies confirm the excellent performance of our estimation even when the sample size is not large, say 100

n univariate cases or 500 in bivariate cases. Our simulation are carried out based on three main objectives. First, given true
/D ratio functions, which are designed to be periodic, non-periodic or multivariate, we examine the solution accuracy of
ur proposed estimator under an extensive class of stationary and time-varying state dynamics. Second, under Mehra and

1 Unlike local smoothing methods, we do not require a proper choice of steady states that might be difficult to determine (Juillard, 2011).
2 When adding or changing very few observations, one could modify the fitted curve locally without globally changing the whole shape.
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rescott’s (1985) path-breaking model wherein an analytic solution may exist under certain circumstances, we conduct a
et of comparison studies with current popular numerical methods. Specifically, when the imposed DGP specification of
he state dynamics is correct, we find that our method still demonstrates competitive performance, in terms of accuracy,
omputational time, and number of iterations, with existing numerical methods. When allowing possible misspecifications
n the state dynamics, simulation studies confirm that our method is more robust against misspecification errors. Third,
n line with Mehra and Prescott (1985) and Campbell and Cochrane (1999), we relax all auxiliary assumptions on the
ynamics of state variables, and reinvestigate these models’ economic implications and economically significant benefits
hat the real data could offer in general equilibrium asset pricing models beyond these models’ current findings. By doing
o, we find that the correlation between the model-implied risk-free and risky returns is largely reduced and document
egatively skewed equity premiums, which are both closer to real data counterparts.
In the real data analysis, we obtain a data-driven nonparametric estimate of the P/D function and its reciprocal, called

mplied dividend yields under Mehra and Prescott’s (1985) and Campbell and Cochrane’ (1999) models. This implied
ividend yield offers a clean reflection of the rational model-implied measure for discounted future cash flows without
isspecifications. Using this measure, we re-examine and reinvestigate the predictability of dividend yields on stock

eturns. Our main empirical findings are as follows. First, in line with Ang and Bekaert (2006), we confirm that the rational
odel-implied dividend yield is not a direct predictor for excess returns, but we do document significant predictability

or dividend growth at short horizons. At short horizons, high implied dividend yields predict low future cash flows
nd high short-term interest rates significantly. Second, implied and observed dividend yields have opposite impacts on
ash flow predictions. We think these two predictors might contain different sets of information; specifically, the former
eflects discounted future cash flows in a fully rational model setting, whereas the latter may contain information about
imited rationality and disagreement in beliefs. Note that Ang and Bekaert (2006) and Lettau and Ludvigson (2005) obtain
positive predictability relationship between dividend growth and dividend yields. The authors attribute this theory-
ontradictory result to the omitted nonlinearity feature of the present value model. Our findings confirm the existence
f this positive predictability, but we further explain the importance of solving Euler equations without misspecification
rrors.
The remaining study is organized as follows. In Section 2, we establish the model and estimation method. We also

resent the asymptotic results and the data-driven implementation procedure. In Section 3, we report the simulation
esults, and in Section 4, we present the empirical study. In Section 5, we conclude our study. All mathematical proofs
re presented in Appendix A.

. Methodology

.1. Model setup

We first begin by reviewing a general Euler equation framework in an exchange economy that has been extensively
tudied by Lucas (1978), Hansen and Singleton (1982), Grossman and Shiller (1981), and Borovička et al. (2016) in the
conometric and theoretical asset pricing literature: in arbitrage-free environments, there exists a positive SDF process
uch that

f (x) = E
{
m(Xt+1)[f (Xt+1) + 1]

⏐⏐Xt = x
}
, (1)

here Xt is a Markov state vector that summarizes the law of motions,3 m(Xt+1) is a function of SDF based on state
ariables,4 Pt is the date-t price, Dt is the date-t dividend, E{·} denotes rational expectations,5 and f (Xt ) ≡ Pt/Dt is the
nknown price–dividend (P/D) ratio function to be solved such that Eq. (1) is satisfied.
We assume that the Markov state vector, being either stationary or time-varying non-stationary, is observable to

conometricians. Let π (Xt+1|Xt ) and π (Xt ) denote the underlying transition density function and probability density
unction, whose data generating processes are not known or constrained to any parametric from. Following Gagliardini
t al. (2011) and Christensen (2017), we also assume that m(·) is an observable process given a completely known
DF, but our method still could also shed light on more complicated cases when SDF is a given function of unknown
odel parameters that can be calibrated or first estimated from empirical data. For example, we can consider Mehra
nd Prescott’s (1985) rational asset pricing model, where we obtain m(Xt+1) = βe(1−γ )Xt+1 with Xt = log(Ct/Ct−1), the
ogarithm consumption growth rate, as the Markov state variable. β , the time discount factor, and γ , the risk aversion
evel, are often first estimated by generalized method of moments (GMM) using empirical asset returns (Hansen and
ingleton, 1982). Note that the parametric estimator has a faster convergence rate than the nonparametric part. Hence,
e expect that the theoretical conclusions of this paper to hold even when we have a parametric model for the SDF.6

3 Examples of Xt often include log consumption-, dividend-, and income growth rates.
4 Note that m(Xt+1) in our paper is not a SDF, but a SDF multiplied by the gross dividend growth rate, which is often a state variable.
5 Rational expectations coincide with mathematical ones. Irrational expectations occur when subjective expectations differ from objective

expectations. One can convert the subjective expectation back to the mathematical expectation using the Radon–Nikodym theory.
6 Even though the last two decades have witnessed many studies on the development of consumption-based asset pricing theory, all the current

asset pricing models, such as habit persistence proposed by Campbell and Cochrane (1999) and recursive preferences adopted by Epstein and Zin
(1989), could be derived as specifications of (1) instead of as alternatives to it (Campbell and Cochrane, 2000).
3
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The general Euler equation (1) can be rewritten as an integral equation of the second kind (Type II), for which
identification has been carefully studied by Kress (1989). Specifically, we have:

f (Xt ) − (Af )(Xt ) = ϱ(Xt ), (2)

where A is a linear operator that (Af )(Xt ) ≡
∫
m(Xt+1)f (Xt+1)π (Xt+1|Xt )dXt+1 and ϱ(Xt ) = E[m(Xt+1)|Xt ]. For identification

purposes, we first review some notations in the linear integral equation literature: A is a bounded operator if A maps
bounded sets into bounded sets, and A is compact if A maps bounded sets into relatively compact sets.

Assumption 2.1. Assume (A1) There exists a unique nonzero f satisfying Eq. (2); (A2) A is a compact linear operator.

Assumption 2.1(A1) is an essential condition for the existence and uniqueness of a solution f to (2). (A1) holds under
some primitive conditions, such as I − A is injective, or 1 is not an eigenvalue of A given that A is a self-adjoint compact
operator,7 both of which imply that the homogeneous equation g − Ag = 0 only has the trivial solution g = 0. In the
asset pricing literature, A is an integral operator defined according to some positive SDF and plays a discounting role. If
A is a contraction, then (A1) is also satisfied.

Assumption 2.1(A2) further implies that (I − A)−1 is bounded by Theorem 3.4 in Kress (1989), and thus the solution f
depends continuously on ϱ, which frees us from the ill-posed problem. There are several ways to guarantee (A2). For ex-
ample, if the domain of interest has finite dimensional range, or, if the Hilbert–Schmidt condition is satisfied (Christensen,
2017).

2.2. Two-stage B-splines estimation-based solution

Existing methods that solve f often require a correct specification and precise estimation of the conditional density
function π (Xt+1|Xt ) (Carrasco et al., 2007). To avoid numerical integrations and adverse impacts from these potentially
misspecified auxiliary assumptions, we propose an estimation-based solution for f via our newly proposed two-stage
penalized estimation method.

To consistently estimate the unknown function f in the Euler equation, we view Eq. (2) from a regression framework
and connect it with the following nonlinear time series model:

yt+1 = f (Xt ) − yt+1f (Xt+1) + εt+1, (3)

where yt+1 = m(Xt+1) and E(εt+1|Xt ) = 0. Note that Eq. (3) does not require specifying the conditional distribution, and
can thus accommodate the flexible dependence structure of Xt . However, due to the occurrence of the dependent variable
on the right hand side of (3) and the recursive specification of the unknown function f over two time periods, t and t +1,
we encounter endogeneity issue as a by-product. In other words, suppose we approximate f (x) by fa(x) =

∑q
j=1 φj(x)bj

using some basis functions, and transform (3) into a linear regression as

yt+1 =

q∑
j=1

[φj(Xt ) − yt+1φj(Xt+1)]bj + εt+1. (4)

However, the coefficients bj, j = 1, . . . , q, cannot be directly estimated by regressing yt+1 on ψj(Xt+1) = φj(Xt ) −

yt+1φj(Xt+1), j = 1, . . . , q, because ψj(Xt+1) is correlated with εt+1.
To eliminate endogeneity biases, we need instrumental variables (IV) to conduct a two-stage regression. Note

that E(εt+1|Xt ) = 0 and cov(Xt , ψj(Xt+1)) ̸= 0, therefore basis functions of Xt , which form the vector φ(Xt ) =(
φ1(Xt ), . . . , φq(Xt )

)′, can be employed as valid IVs. Correspondingly, we can estimate the unknown function f that
uniquely satisfies (1) via a nonparametric two-stage regression in a similar way in which the traditional two-stage
least-square regression is carried out: in the first stage, for each of the endogenous variable ψj(Xt+1), we regress it on
φ(Xt ) to obtain the fitted value, denoted as ψ̂j(Xt+1); in the second stage, we regress yt+1 on ψ̂j(Xt+1), j = 1, . . . , q, to
obtain estimates of coefficients bj’s. Therefore, an estimation-based solution for the Euler equation can be constructed as
f̂ (x) =

∑q
j=1 φj(x)b̂j. A detailed Algorithm is included at the end of this section.

The above two-stage regression procedure is also popularly employed in the nonparametric instrumental variable
(NPIV) literature, however, we emphasize that our two-stage regression can be proven equivalent to solving a well-
posed Type II equation via projection instead of being a potentially ill-posed Type I problem in the general NPIV setup.
Particularly, we let Πq be a projection based on some basis functions {φj(Xt )}

q
j=1, and we have

ΠqAf (Xt ) = E[yt+1f (Xt+1)|φ1(Xt ), . . . , φq(Xt )] = φ′(Xt )γ ,

7 The self-adjoint assumption ensures that the eigenvalues of A are real and eigenelements to different eigenvalues are different and orthogonal.
A self-adjoint compact operator is widely used in the econometric literature, such as Horowitz (2011), Darolles et al. (2011) and Christensen (2017),
etc.
4
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w
here γ = [Eφ(Xt )φ′(Xt )]−1
[Eφ(Xt )yt+1φ

′(Xt+1)]b. By replacing the expectation with its sample analogue, the left-hand
side of the projected Type II equation becomes

f (Xt ) −ΠqAf (Xt ) =
{
φ′(Xt ) − φ′(Xt )[

∑
t

φ(Xt )φ′(Xt )]−1
[

∑
t

φ(Xt )yt+1φ
′(Xt+1)]

}
b =: ψ̃ ′(Xt+1)b.

A close investigation shows that ψ̃ ′(Xt+1) is identical to ψ̂ ′(Xt+1), whose jth component ψ̂j(Xt+1) is the fitted value in
the first stage obtained by regressing ψj(Xt+1) on φ(Xt ). Therefore, due to such an equivalence, we point out that our
described two-stage regression approach can achieve the well-posed convergence rate under Assumption 2.1 rather than
the well-acknowledged slower convergence rate in a general NPIV framework which typically solves a Type I equation.

Despite the theoretical feasibility to attain the optimal large sample properties via two-stage nonparametric regression,
the literature has been aware of several subtle issues from a practical perspective. For example, it may be difficult to find a
proper choice of basis functions that can guard stable numerical performance in finite samples, though a large set of basis
functions could ensure the optimal convergence rate in general. Moreover, in the two-stage nonparametric regression
literature, it remains unclear how to conduct the appropriate smoothing in both stages. If we consider the classical two-
stage approach (without penalty), the smoothing parameter is the order of basis functions q, which controls the flexibility
of a projection/approximation procedure. However, the order of basis functions in the first stage could not exceed that in
the second for parameter estimation identification purposes. Therefore, if solely relying on the order of basis functions q
for regularization, the bias resulted from the first stage could not be negligible compared to that in the second stage.

In this paper, we are motivated to propose a new penalized two-stage nonparametric regression procedure, where
we use a large number of basis for undersmoothing in the first stage, but let the penalty term conduct the appropriate
smoothing in the second stage. Hence our estimate could achieve the optimal rate without worrying about the bias in
the first stage. In particular, we recommend using the B-splines with the difference penalty. The B-splines have excellent
numerical stability and they are piecewise polynomials defined by a set of control points, also called knots, c̃i, such that
c̃0 ≤ c̃1 ≤ · · · ≤ c̃K . The B-splines basis can be completely determined once the degree of the polynomial p and the knots
points are given, and it leads to a total of q = K + p basis functions.8 A relatively large K may result in a complicated
model with excess variability. To better control for the roughness, we include a penalty term on the total variation defined
by the difference operator ∆bj = bj − bj−1 and ∆ν = ∆(∆ν−1) for some positive integer, ν. Then our penalized two-stage
regression estimate the B-splines coefficients b by minimizing

T−1∑
t=1

{yt+1 −

q∑
j=1

ψ̂(Xt+1)bj}2 + λ∗

q∑
k=ν+1

{∆ν(bk)}2, λ∗
≥ 0. (5)

Our new estimation procedure above can be summarized using the matrix form, and it has an appealing closed-form
solution. Let y = (y2, . . . , yT )′, ε = (ε2, . . . , εT )′ and b = (b1, . . . , bq)′. Define the control variable matrix Ψ = (Ψ2, . . . ,ΨT )′

with Ψt = ψ(Xt ) =
(
ψ1(Xt ), . . . , ψq(Xt )

)′ and the IV matrix Φ = (Φ2, . . . ,ΦT )′ with Φt = φ(Xt ) =
(
φ1(Xt ), . . . , φq(Xt )

)′,
where in both cases we suppress the dependence of Φt and Ψt on X for ease of notations. Then the auxiliary regression
(without penalization in the first stage) yields the fitted values while the penalized coefficients obtained in the second
stage satisfies

b̂ = (Ψ̂ ′Ψ̂ + λ∗DT
νDν)

−1Ψ̂ ′Y ,

where Dν is the νth order differencing matrix with dimension (p + K − ν) × (p + K ). Then the estimated P/D ratio f
function based on our newly proposed penalized two-stage regression procedure is f̂ (x) =

∑q
j=1 φj(x)b̂j.

We formally summarize our new nonparametric penalized B-splines method in Algorithm 1.

Algorithm 1: The nonparametric penalized spline method for solving Euler equations
1 Start with the Euler equation:

f (Xt ) = E{m(Xt+1)[f (Xt+1) + 1]|Xt}.

2 Define yt+1 = m(Xt+1) and conduct the transformation:
yt+1 = f (Xt ) − yt+1f (Xt+1) + εt+1.

3 Implement the two-stage penalized B-splines regression:
3.1 Stage 1: Ψ̂ = Φ(Φ ′Φ)−1Φ ′Ψ ,
3.2 Stage 2: f̂λ(x) =

∑q
j=1 φj(x)b̂j, where b̂ = (b̂1, . . . , b̂q)′ = (Ψ̂ ′Ψ̂ + λ∗DT

νDν)
−1Ψ̂ ′Y .

Notes: λ∗ is the penalty parameter, ∆ is the difference operator that ∆bj = bj − bj−1 and
∆ν = ∆(∆ν−1) for any positive integer ν. Ψ = (Ψ2, . . . ,ΨT )′ with Ψt =

(
ψ1(Xt ), . . . , ψq(Xt )

)′
and Φ = (Φ2, . . . ,ΦT )′ with Φt =

(
φ1(Xt ), . . . , φq(Xt )

)′. {φi}
q
i=1 are the B-splines basis and

ψj(Xt ) = φj(Xt ) − yt+1φj(Xt+1) for j = 1, . . . , q.

8 The formula and property for the pth degree B-splines can be found in Eilers and Marx (1996).
5
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As demonstrated in our theoretical investigation and simulation analysis, our penalized two-stage splines approach is
robust against the choice of the spline degree and the placement of knots if we let the penalty amount play the optimal
smoothing in the second stage. We also provide thorough discussions, theoretically and empirically, on how to effectively
select the appropriate penalty parameter in the rest of this paper, which makes our approach more operational in practice.

3. Large sample properties

In this section, we discuss the asymptotics for both the unpenalized and penalized two-stage B-splines estimators. The
first nonparametric estimation strategy falls into the traditional series estimation literature, in which the performance
of the estimator crucially depends on the order of series expansion, equivalently the number of knots K in our setup.
he other strategy is the one our paper promotes: instead of relying on the order of series expansion, we introduce the
enalty parameter λ∗, which takes the leading role in balancing model complexity and goodness of fit. Besides theoretical
nvestigation, we also provide guidance for practical implementation of our methods in the end of this section.

First, let us consider the state variables, Xt , and the unobservable aggregate pricing shock, εt+1.

ssumption 3.1. (i) The state variable Xt is stationary and has a positive and continuous density function π (x) which is
ounded away from 0 and ∞. (ii) {π (x)} has a bounded support X.

The boundedness assumption is applicable to some state variables in economics and finance. Such a boundedness
ssumption is also used in Newey and Powell (2003) and Ai and Chen (2003), based on which they study nonparametric
egression models with instrumental variables and conditional moment estimation. It is possible to further relax this
ssumption for unbounded state variables using a simple monotonic transformation. Specifically, suppose X̃t is the
riginal time series with unbounded support, then one could instead consider Xt defined as Xt = 1/[1 + exp(−X̃t )].

Such a transformation is recommended as it will not lose information as shown in Hong and White (2005). Darolles
et al. (2011) also explain the generality of a bounded support up to some monotone transformations in nonparametric
regression analysis. Alternatively, one may also consider other different basis functions like Hermite polynomials as used
in Aït-Sahalia (2002) and Xiu (2014) on state variables with unbounded support, but it is beyond the scope of this paper.

Assumption 3.2. For all t and j, there exists some δ > 0 and 0 < ∆̃ < ∞ such that {εt} is an α-mixing sequence with
mixing coefficients α(j) so that

∑
∞

j=1 α(j)
δ

4+δ < ∆̃, and E|εt |
4+δ< ∆̃.

Note that the assumptions imposed on the behavior of state variables are flexible, and they could further help embrace
situations involving conditional heteroskedasticity, nonlinear time series processes and so forth.

Next, we impose conditions that hold under both smoothing strategies, namely the unpenalized and penalized
two-stage B-splines estimation, respectively.

3.1. The unpenalized two-stage B-splines estimator

Assumption 3.3. The actual solution f o is differentiable up to order 2ν. We use the pth degree B-splines series with
equi-distanced K knots to approximate f o.

The smoothness assumption is a typical condition in the nonparametric literature. Note that we are flexible in choosing
the B-splines basis, since its degree need not be higher than the smooth order of f o. Together with properties of B-splines,
one can conclude that the best approximated function of f o, denoted as fa(x), in the space spanned by the B-splines basis
assumed in Assumption 3.3 must satisfy fa(x)− f o(x) = O(K−min(1+p,2ν)). This conclusion could be extended for unequally
spaced knots if the maximum knot distance is O(K−1).

Assumption 3.4. K → ∞ and K = o(T ).

Assumption 3.4 implies that the order of basis should grow with the sample size so that the approximation errors
converge to 0. As we can show later, the asymptotic variance of the unpenalized estimate is of order K/T . Hence it is
necessary to assume K = o(T ).

Assumption 3.5. T = o(K 2min(1+p,2ν)+1).

It will be shown in the rest of this paper that the approximation errors are O(K−min(1+p,2ν)). Hence Assumption 3.5
further implies that K−2min(1+p,2ν)

= o(K/T ), i.e. the square of the maximum rate of the modeling bias is negligible
compared with K/T , which is the asymptotic variance in the unpenalized case. Therefore, the unpenalized estimate is
undersmoothing if K grows fast enough such that Assumption 3.5 is satisfied.

Assumption 3.6. Denote M = T/K . We assume that both stages use the same number of spline basis and use the
notations of Φ and Ψ to denote the design matrices as described in Section 2.2. Assume that there exists some finite

positive constant C such that dmin

(
Φ ′Ψ /M

)
≥ C(1 + op(1)), where dmin(A) denotes the minimum singular value of A.
6
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Note that Assumption 3.6 implies that the minimum singular value of Φ ′Ψ /M is bounded away from 0, and hence Φ
is a valid instrument matrix. It may be possible to further relax Assumption 3.6 to allow for different numbers of basis
in each stage. However, we do not pursue this as we recommend using the same number of basis functions and let the
penalty term play a key role of smoothing. More discussions will be provided after we derive the asymptotics for the
penalized case in Theorem 3.3.

Theorem 3.1 (Consistency). Suppose Assumptions 2.1–3.6 hold. Then there exists a unique solution f o(x) to Eq. (1), and the
nonparametric 2SLS series estimator f̂a(x) satisfies:

EX [f̂a(x) − f o(x)]2 = Op(K/T ) for any x ∈ X, where EX is the conditional expectation when the observed data X =

(x1, . . . , xT ) are given.

Theorem 3.1 implies that our nonparametric estimator is consistent without specifying a particular model for the DGP
of state variables. This appealing property cannot be attained by existing numerical solution methods which may thus
suffer from model misspecification.

For rigorous statistical inference, such as confidence interval estimation and hypothesis testing, we shall derive the
asymptotic distribution of the series estimator, f̂a(x).

Theorem 3.2 (Asymptotic Normality). Suppose Assumptions 2.1–3.6 hold. Conditioning on the observed X , we have

f̂a(x) − f o(x)√
var(f̂a(x)|X )

d
→ N(0, 1). (6)

Because of Assumption 3.5, the bias of the series estimator is negligible compared with the standard deviation.
herefore, the estimate is undersmoothing and does not achieve the optimal convergence rate.
Our method is also applicable to hidden Markov processes. Suppose the state variables, Xt , are not directly observable,

but can be estimated by methods such as Kalman filters. Intuitively, the estimated state variables, x̂, converge in probability
to the point x at a parametric rate, T−1/2, which is faster than the convergence rate of the nonparametric series estimator,
f̂a(x) to f o(x). As a result, the sampling errors of the estimator, x̂, of x do not have an impact on the asymptotic distribution
of f̂a(x̂).

For conducting inference, we need to estimate the asymptotic variance Mvar(f̂a(x)) in practice. To take into account
the dependence among the error terms, we propose the following estimator given the observed data:

VT = (
Ψ̂ ′Ψ̂

M
)−1WT (

Ψ̂ ′Ψ̂

M
)−1,

where WT is the Newey and West (1987) estimator

WT =
1
T

T∑
t=1

Ψ̂ ′

t Ψ̂t û2
t +

1
T

L∑
l=1

T∑
t=l+1

(1 −
l

L + 1
)ût ût−l(Ψ̂ ′

t Ψ̂t−l + Ψ̂ ′

t−lΨ̂t ),

ˆ t = Ψ̂t (yt − ϕ(xt )′b̂), and b̂ is the unpenalized estimate of the coefficients. Note that for each element of WT , wij − w̃ij =

p(1), where w̃ij is the (i, j)th element of W̃T =
Ψ̂ ′E(εε′)Ψ̂

M . It is straight forward to show that each element of VT also satisfies

ij − ṽij = op(1), where ṼT = ( Ψ̂
′Ψ̂
M )−1W̃T ( Ψ̂

′Ψ̂
M )−1. The B-splines basis φ(x) has only a finite number of nonzero elements.

Therefore, φ(x)′VTφ(x) − Mvar(f̂a(x)|X ) = op(1).
We have established the asymptotics for the unpenalized two-stage B-splines estimator and the results indicate

that the number of the spline basis K plays the key role of smoothing. However, such an approach could encounter
several difficulties in practical implementation, as the degree of spline, the number of spline basis/knots as well as the
placement of the knots specified in each stage will affect the finite sample performance (Eilers and Marx, 1996). In the
next subsection, we introduce a solution to resolve these empirical difficulties.

3.2. The penalized two-stage B-splines estimator

Now we consider the penalized splines case, which adopts a penalty term to control overfitting. When the penalty
term λ, rather than the number of knots K , plays the key role of smoothing, the estimate could be more robust against
the choice of the spline setting.

Assumption 3.7. The penalty matrix is of the form λ∗D′
νDν . Define λ = λ∗/M and let h = λ1/(2ν)/K . Then λ∗ is chosen

uch that h → 0 and Th → ∞.

The term h defined in Assumption 3.7 is the equivalent bandwidth in the nonparametric smoothing procedure.
ssumption 3.7 is used to prove the consistency of the estimator, since it guarantees that the bias and the variance of the
stimator both shrink to zero.
7
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heorem 3.3 (Consistency). Suppose Assumptions 2.1–3.6 and 3.7 hold. Then there exists a unique solution f o(x) to Eq. (1).
he 2SLS estimator with penalization f̂λ(x) satisfies:
EX [f̂λ(x) − f o(x)]2 = Op( 1

Th + h4ν), for any x ∈ X.
In particular, the optimal convergence rate is achieved when h ∼ T−1/(4ν+1), or equivalently, λ = λ∗/M grows exactly at

he rate of K 2ν(T−2ν/(4ν+1)).

When K is beyond some minimum bounds such that Assumption 3.5 holds, it is no longer crucial for smoothing because
he penalty parameter will play the key role in avoiding overfitting. Note that there is no penalization in the first stage.
large choice of K without penalty implicitly conducts undersmoothing. Hence, the modeling bias in the first stage is
egligible and will not affect the regression in the second stage.

.3. Discussion on the time-varying nonstationary dynamics

So far, we have carefully examined the theoretical properties of our proposed estimation-based solution method under
he stationary framework, which is commonly assumed in the asset pricing literature (Christensen, 2017). However, we
re aware that the widely imposed stationarity assumption may be strong for macroeconomic variables that often span a
onger time period (Hansen, 2001). Therefore, we consider establishing the consistency of our estimators under a further
elaxed condition.

ssumption 3.8. (i) The state variable Xt has a positive and continuous density function πt (x), which may depend on
. (ii) {πt (x)} share a common bounded support X. (iii) For all t and x ∈ X, there exist two positive continuous functions
L(x) and πU (x) such that πL(x) ≤ πt (x) ≤ πU (x), and πL(x) and πU (x) are bounded away from 0 and ∞.

Assumption 3.8 allows the state variable to exhibit time varying patterns, especially when the mean and variance
function slowly change along time, thus being more suitable to empirical analysis. It also embraces cases when there is
a potential structural break in the state variable, though it rules out situations when the state variable is integrated. In
such a case, we recommend a transformation, such as differencing, to make it stationary.

Theorem 3.4 (Consistency). Suppose Assumptions 2.1, 3.2–3.6, and 3.8 hold. Then there exists a unique solution f o(x) to Eq. (1).
(i) Define the nonparametric 2SLS estimator without penalty as f̂a(x). Then for any given x ∈ X,

EX [f̂a(x) − f o(x)]2 = Op(K/T );

ii) Further suppose Assumption 3.7 holds and defines the 2SLS estimator with penalization as f̂λ(x). Then for any given x ∈ X,

EX [f̂a(x) − f o(x)]2 = Op(
1
Th

+ h4ν),

where in the latter case, the optimal convergence rate is achieved when h ∼ T−1/(4ν+1), or equivalently, λ = λ∗/M grows
xactly at the rate of K 2ν(T−2ν/(4ν+1)).

In the simulation study, we examine the finite sample performance for both the unpenalized and penalized two-stage
-splines estimator in the presence of abrupt structural breaks and smooth changes. The robust performance obtained
onfirms the superiority of our method in the time-varying framework.

.4. Data-driven implementation

Section 3.3 presents the theoretical recommendations for the selection of the smoothing parameter. In practice, a
ata-driven procedure might be more useful. Based on the theoretical investigation, we shall let the number of knots, K ,
row sufficiently large, and then use the generalized cross-validation (GCV) method to select the penalty amount in order
o prevent overfitting. Since K is not the crucial smoothing parameter, the choice of the degree of the B-splines basis,
s well as the placement of the knots, is not important as is confirmed in our simulation studies below. Any choice of a
ower degree p, say 0, 1, 2, or 3, together with a relatively large number of equidistance knots, will suffice. The penalty
rder ν reflects one’s belief about the smoothness of the estimated function. The common choices of ν are 1 or 2, though

one may further increase ν if higher order derivatives exist.
The penalty parameter, λ∗, is important. To reduce the burden of computation, we propose using the GCV approach

to determine its value.

Theorem 3.5. Let Y , Φ , Ψ , Ψ̂ and Dν be defined as in sub Section 2.2. Define Σ = Ψ ′Φ(Φ ′Φ)−1Φ ′Ψ . Denote rj as the jth
eigenvalues of Σ−

1
2 D′

νDνΣ
−

1
2 . Then the GCV value equals

GCV (λ∗) =

∑T
i=1 y

2
i − 2

∑K+p
i=1

z1,iz2,i
1+λ∗ri

+
∑K+p

i=1 z23,i(λ
∗)

(T − tr)2
, (7)

where tr =
∑K+p 1 , z , z are provided under Eq. (A.8), and z (λ∗) are provided under Eq. (A.9).
j=1 1+λ∗rj 1,i 2,i 3,i

8
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The derivation of the GCV value is slightly more involved than that in standard nonparametric regressions, since the
predicted values are calculated by Ψ b̂ rather than Ψ̂ b̂, where b̂ = (Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1Ψ̂ ′Y . Note that we can pre-calculate

erms such as
∑T

i=1 y
2
i , z1,i, z2,i, ri, and r̃i. Then, in each evaluation, we could directly calculate GCV (λ∗) using Eq. (7). Since

e need not calculate the inverse of a matrix of order q × q, where q = K + p, we reduce the computation from, O(K 3),
o O(K 2).

Our approach could be extended to multivariate state variables by using tensor product B-splines. In the spirit of
enalized splines, appropriate penalties can be imposed by putting a separate difference penalty along each dimension
f the state variables. Taking the two-dimensional smoothing as an example, we could approximate the P/D ratio by

f (x1, x2) =

q1∑
k1=1

q2∑
k2=1

φk1 (x1)φ̃k2 (x2)bk1,k2 ,

where all bk1,k2 ’s form the (K1 + p1)(K2 + p2) dimensional coefficient vector b. We still use the notation Φ to denote the
design matrix, but its element now is defined by φk1 (x1)φ̃k2 (x2) and its dimension is T × (K1 + p1)(K2 + p2). Note that we
could similarly define Ψ and we still have Y = Ψ b + ε. In terms of penalization, we could define the row and column
penalties as P1 = I ⊗ (D′

ν1
Dν1 ) and P2 = (D′

ν2
Dν2 ) ⊗ I . The solution satisfies that b̂ = (Ψ̂ ′Ψ̂ + λ∗

1P1 + λ∗

2P2)
−1Ψ̂ ′Y . To

reach the appropriate amount of smoothing, one could adopt an iterative approach, where in each step, we fix one of the
penalty term, and reduce the problem into searching the optimal choice of the other penalty. A similar fast calculation of
GCV could also be derived.

4. Simulation studies

In this section, we evaluate the finite sample performance of our estimation. Our simulation studies are based on three
main objectives: Monte Carlo simulations when the true P/D function is known; comparison with numerical and analytic
solutions; and evaluation of general equilibrium asset pricing models. Codes are available upon request.

4.1. Monte Carlo simulations

We now examine the finite sample performance of our proposed B-splines estimation method in solving functions
with different smoothness under different conditional distributions of state variables. Designs of the unknown function
and state dynamics are illustrated as follows:

DGP F.1 [a periodic case]: f (Xt ) = 3 + 0.5sin(20Xt + 1.2) + cos(10Xt + 2).
DGP F.2 [a non-periodic case]: f (Xt ) = exp(Xt ).
DGP F.3 [a multiplicative case]: f (Xt ) = 3 + (Xt,1 + 1) ∗ cos(Xt,2 + 0.2).
DGP F.4 [an additive case]: f (Xt ) = 3 + sin(5 ∗ Xt,1) + cos(Xt,2 + 0.2).
The first designed function DGP F.1 is a periodically non-monotonic function with changing curvatures. The second

designed function, DGP F.2, is non-periodically monotone in its domain. DGPs F.3 and F.4 are used to examine the
performance of our method with multivariate state variables. The dynamics of state variables Xt is crucial in shaping
the Euler equation. Since the empirical data of Xt often span a relatively long period of time, to examine the applicability
of our method, we consider both stationary and time-varying non-stationary dynamics of Xt as follows.

DGP S.1 [a stationary homoscedastic state variable]: We have

Xt+1 = Γ Xt + ϵt+1, ϵt ∼ i.i.d.N(0, σ 2
s ).

where in DGP S.1.1, we assume Γ = 0.1 with σs = 0.1; in DGP S.1.2, we assume Γ = 0.8 with σs = 0.5.
DGP S.2 [a stationary conditional heteroskedastic state variable]: We have⎧⎨⎩

Xt = zt
√
ht

ht = ω0 + ω1X2
t−1 + ω2ht−1

zt ∼ i.i.d.N(0, 1)

where in DGP S.2.1, ht = 0.05 + 0.2X2
t−1 + 0.6ht−1; in DGP S.2.2, ht = 0.05 + 0.5X2

t−1 + 0.3ht−1.
DGP S.3 [a nonstationary state variable with multiple structural breaks]: We have

Xt+1 =

{
0.1 + 0.5Xt + ϵt , if t ≤ 0.4T ,
Xt + ϵt , otherwise,

here ϵt ∼ i.i.d.N(0, σ 2
s ) with σs = 0.5.

DGP S.4 [a nonstationary state variable with smooth structural changes]: We have

Xt = F (τt )(1 + 0.5X̄t ) + ϵt ,

here τ = t/T , F (τ ) = 1.5 − 1.5 exp[−3(τ − 0.5)2], X̄ ∼ i.i.d.N(0, 1), and ϵ ∼ i.i.d.N(0, 0.52).
t t t t t

9
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DGP S.5 [multivariate state variables]: Define Xt = (X1,t , X2,t ) such that X1,t is a GARCH(1,1) process and X2,t is a AR(1)
process. In particular, we have{

X1,t = h1/2
t z1,t

ht = 0.01 + 0.64ht−1 + 0.05z21,t−1

and

X2,t = 0.01 + 0.5X2,t−1 + z2,t ,

where (z1t , z2,t ) are bivariate normally distributed with parameters (0, 0, 1, 1, 0.2).
In DGP S.1, we first explore the finite sample performance under a popularly used AR(1) process with two scenarios:

specifically in DGP S.1.1, the serial dependency fades out exponentially fast as the time distance between state variables
increases; in DGP S.1.2, the numerical solution methods, especially the projection method, face challenges. However,
a stronger dependency between two consecutive state observations is favorable for our method because it leads to
a tightened relationship between instruments and endogenous variables in the nonparametric two-stage regression
procedure. In DGP S.2, we examine finite sample performance under a general conditional heteroskedastic data generating
process for the state variable Xt using a GARCH specification. In DGP S.3, we consider a scenario with an abrupt structural
break, which makes Xt a nonstationary process. In DGP S.4, we examine the finite sample performance of our method
when the state variable exhibits smooth structural changes in time. Finally, in DGP S.5, we provide an evaluation of the
solution accuracy given there are multiple state variables.

For each Monte Carlo study in the univariate case, we generate samples with sizes of 100, 250 and 500, and
implement our new two-stage B-splines regression with and without penalization. In each study, we also examine the
estimation performance under 35 knots and 50 knots using piecewise-linear, piecewise-quadratic and piecewise-cubic
B-splines, namely p = 1, 2, 3. Overall, our newly proposed penalized two-stage B-splines estimator works uniformly
well for conditional homoscedastic, heteroscedastic and time-varying non-stationary processes with different levels of
serial dependencies. Comparing with the true P/D ratio functions, we can visualize the estimation results with and
without penalties in Figs. 1–4. The penalized B-splines will generally enhance the estimation results, especially when
solving smoother functions. The outstanding accuracy of small samples demonstrates how our method offers significant
advantages for current asset pricing and macroeconomic general equilibrium modeling, where state variables are mostly
available at quarterly frequency.

In addition, we also examine the bivariate case with a larger sample size, 500 or 1000. We also consider spline degrees
from 1 to 3. In each direction, we consider imposing 10 or 15 equally spaced knots. The integrated mean squared error
(IMSE) has been widely used in nonparametric series estimations to evaluate finite sample performance (Hansen, 2015).
Thus, the IMSE of the estimator, f̂ (x), is

IMSE =

∫
E[f̂ (x) − f (x)]2dF (x), (8)

where F (x) is the cumulative distribution function for the state variable. To evaluate the goodness of fit, we calculate the
IMSE for each Monte Carlo study by implementing the estimation method 100 times for both the univariate case and the
multivariate case. The mechanism can be clearly seen from Tables 1–4. For the unpenalized case, the IMSE varies among
different choices of the degree of the splines p and the number of the knots K . In contrast, the choice of the degree of the
splines does not affect the penalized estimate much. When a larger number of knots are used, our fast GCV algorithm will
automatically generate a larger penalty to correct for the potential overfitting problem. This simulation evidence further
demonstrates the superiority of our new method.

4.2. Comparison with numerical and analytic solutions

We confine the scope of this section to scenarios wherein analytic solutions of the P/D ratios exist (Burnside,
1998). We provide a detailed comparison of our nonparametric penalized B-splines series regression method with
some representative and popularly used numerical solution methods. For the numerical solution methods, we consider
perturbation, projection, and discretization, as well as the PEA and the improved PEA algorithms. Except for the original
PEA algorithm, all these numerical solution methods require complete knowledge of the dynamics of state variables,
whereas the true DGP of state variables in the real world is not completely known by empirical practitioners, possibly
because of limited skill, time, or noisy observations. In this section, we examine how asset pricing models could be affected
when DGPs of state variables are misspecified.

Analytic solutions based on Mehra and Prescott’s (1985) model are obtainable under special circumstances (Burnside,
1998). In this exchange economy, there is an infinitely lived representative agent who wishes to maximize his or her
expected lifetime utility at time zero:

max
{Ct }

E
∞∑
t=0

β t−1 C1−γ
t

1 − γ
s.t. Ct + Pt+1θt+1 + Qtbt+1 = bt + (Dt + Pt )θt ,
10
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Fig. 1. Solution accuracy of P/D ratios with homoscedastic state dynamics. This figure plots the estimated P/D ratio with and without a penalty
when the state variable exhibits conditional homoskedasticity. In the first two rows, the true P/D ratio function is assumed to follow F.1 (a periodic
function) and the state variable follows DGP S.1.1 in the top row and DGP S.1.2 in the second row. In the last two rows, the true P/D ratio function
is assumed to follow F.2 (a non-periodic function) and the state variable follows DGP S.1.1 in the third row and DGP S.1.2 in the fourth row. For
each case, the sample size for the left, middle and right ones are 100, 250 and 500 respectively. In each plot, the red solid line represents the true
unknown function to be estimated, the dotted black line represents the estimation from the two-stage B-splines method without any penalty and
the blue dotted line represents the estimation from the penalized two-stage B-splines method, where the associated optimal penalty is reported in
the parenthesis. For simplicity, our nonparametric two-stage B-splines estimation results have p = 1, K = 35 with equally spaced knots and the
optimal penalty is determined via the proposed fast GCV algorithm. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
11
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Fig. 2. Solution accuracy of P/D ratios with heteroscedastic state dynamics. This figure plots the estimated P/D ratio with and without a penalty
hen the state variable exhibits conditional heteroskedasticity. In the first two rows, the true P/D ratio function is assumed to follow F.1 (a periodic

unction) and the state variable follows DGP S.2.1 in the top row and DGP S.2.2 in the second row. In the last two rows, the true P/D ratio function
s assumed to follow F.2 (a non-periodic function) and the state variable follows DGP S.2.1 in the third row and DGP S.2.2 in the fourth row. For
ach case, the sample size for the left, middle and right ones are 100, 250 and 500 respectively. In each plot, the red solid line represents the true
nknown function to be estimated, the dotted black line represents the estimation from the two-stage B-splines method without any penalty and
he blue dotted line represents the estimation from the penalized two-stage B-splines method, where the associated optimal penalty is reported in
he parenthesis. For simplicity, our nonparametric two-stage B-splines estimation results have p = 1, K = 35 with equally spaced knots and the
optimal penalty is determined via the proposed fast GCV algorithm. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
12
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Fig. 3. Solution accuracy of P/D ratios for state dynamics with abrupt structural breaks. This figure plots the estimated P/D ratio with and without a
penalty based on our penalized two-stage B-splines approach, where p = 1, K = 35 with equally spaced knots and the optimal penalty is determined
ia the proposed fast GCV algorithm. The sample size for the left, middle and right ones are 100, 250 and 500 respectively. The true P/D ratio function
nd the state variable are assumed to follow F.2 (a nonperiodic function) under DGP S.1.1 (graphs in the top row) or DGP S.1.2 (graphs in the second
ow) or DGP S.2.1 (graphs in the third row) or DGP S.2.2 (graphs in the bottom row), respectively. For each case, the red solid line represents the
rue unknown function to be estimated, the dotted black line represents the estimation from the two-stage B-splines method without any penalty
nd the blue dotted line represents the estimation from the penalized two-stage B-splines method, where the associated optimal penalty is reported
n the parenthesis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

here Xt = ln(Ct/Ct−1), Ct is the consumption at time t; Dt is the dividend payment at time t; Pt is the current value
hat reflects future dividend payments; Qt is the price of a risk-free asset that pays 1 in period t + 1; bt and θt are the
holdings of the risky and risk-free asset at time t . In this simple economy, the dividend payment, Dt , is equal to the
optimal consumption, Ct , in equilibrium. Let ft = Pt/Dt , and the Euler equation can be derived as follows:

ft = βE[e(1−γ )Xt+1 (ft+1 + 1)|Xt ].

We consider two numerical studies to examine the performance of our newly proposed estimation method for finite
and small samples. The first scenario is one where the DGP of state variable, Xt , is known and correctly specified. In the
second, economists only have empirical observations of state variables, Xt , and do not know their conditional distributions.
These DGPs are given below:

DGP B.1 [a correctly specified DGP]: We have

Xt+1 − µ = Γ (Xt − µ) + ϵt+1,

where ϵt ∼ IIDN(0, σ 2). For ease of comparisons, we set β = 0.96, γ = 2.5, E(Xt ) = 0.0179, and σ = 0.0379 with
Γ = −0.139 in DGP B.1.1 and Γ = 0.8 in DGP B.1.2.
13
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Fig. 4. Solution accuracy of P/D ratios for state dynamics with smooth structural changes. This figure plots the estimated P/D ratio with and without
a penalty based on our penalized two-stage B-splines approach, where p = 1, K = 35 with equally spaced knots and the optimal penalty is
etermined via the proposed fast GCV algorithm. The sample size for the left, middle and right ones are 100, 250 and 500 respectively. The true P/D
atio function and the state variable are assumed to follow F.2 (a nonperiodic function) under DGP S.1.1 (graphs in the top row) or DGP S.1.2 (graphs
n the second row) or DGP S.2.1 (graphs in the third row)) or DGP S.2.2 (graphs in the bottom row), respectively. For each case, the red solid line
epresents the true unknown function to be estimated, the dotted black line represents the estimation from the two-stage B-splines method without
ny penalty and the blue dotted line represents the estimation from the penalized two-stage B-splines method, where the associated optimal penalty
s reported in the parenthesis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

DGP B.2 [a misspecified DGP]: We have

Xt+1 =

{
µ+ Γ1Xt + u∗

1,t+1, u
∗

1,t ∼ i.i.d.N(0, σ 2
1 ) if Xt > 0,

µ+ Γ2Xt + u∗

2,t+1, u
∗

2,t ∼ i.i.d.N(0, σ 2
2 ) if Xt ≤ 0

X̃t+1 − µ = Γ̄ (X̃t − µ) + vt+1, and vt+1 ∼ i.i.d.N(0, σ 2
v ),

here Xt is the true underlying DGP with σ1 = 3.48%, σ2 = 2σ1, β = 0.96, γ = 2.5, Γ1 = 0.8, and Γ2 = −0.139, but
not known by econometricians, who fit the data with X̃t with Γ̄ and σ 2

v chosen to match the autocorrelation with the
true process. DGP B.2 explores a threshold structure whose importance has been widely acknowledged in many economic
studies (Hong and Li, 2005).

Fig. 5 compares the approximated P/D ratio function from different solution methods under DGPs B.1 and DGP
B.2 for sample sizes of 100, 250 and 500 respectively. Specifically, DGP B.1.1 shows small serial correlation of state
variables in absolute values and the true P/D ratio behaves as a linear function. Therefore, as shown in Fig. 5, all
studied numerical methods can provide accurate approximations. However, the performance of our regression-based
nonparametric penalized B-splines method is enhanced dramatically when the sample size increases. In DGP B.1.2, where
the serial dependency is large, we first confirm that the projection method with low-order serial expansions fails (Calin
et al., 2005). The perturbation method faces problems when approximating tails. Our penalized B-splines method always
exhibits superior performance compared to the PEA method. It is worth mentioning that discretization and improved PEA
methods work well when the DGP of state variables is correctly specified.
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wo-stage B-splines solution accuracy under AR distributed state variable.

Sample size = 100 Sample size = 250 Sample size = 500

IMSE λ∗ IMSE λ∗ IMSE λ∗

Unpenalized Penalized penalty Unpenalized Penalized penalty Unpenalized Penalized penalty

DGP F.1 DGP S.1.1
p = 1, K = 35 0.049 0.029 2.225 0.018 0.013 2.532 0.009 0.007 2.877
p = 1, K = 50 0.108 0.034 2.837 0.024 0.015 3.528 0.012 0.008 4.269
p = 2, K = 35 0.067 0.029 2.135 0.022 0.013 2.200 0.010 0.007 2.493
p = 2, K = 50 0.173 0.035 2.699 0.034 0.015 3.252 0.012 0.007 3.842
p = 3, K = 35 0.055 0.029 1.982 0.020 0.013 2.026 0.010 0.007 2.285
p = 3, K = 50 0.104 0.035 2.664 0.043 0.015 3.095 0.013 0.007 3.568

DGP F.1 DGP S.1.2
p = 1, K = 35 0.090 0.077 0.084 0.067 0.083 0.208 0.062 0.063 0.208
p = 1, K = 50 0.097 0.075 0.140 0.069 0.063 0.274 0.030 0.039 0.336
p = 2, K = 35 0.253 0.065 0.049 0.083 0.065 0.100 0.075 0.063 0.161
p = 2, K = 50 0.112 0.069 0.108 0.056 0.055 0.199 0.025 0.031 0.223
p = 3, K = 35 0.083 0.060 0.033 0.042 0.039 0.026 0.043 0.042 0.036
p = 3, K = 50 0.437 0.069 0.086 0.196 0.029 0.084 0.016 0.016 0.078

DGP F.2 DGP S.1.1
p = 1, K = 35 0.034 0.011 19.362 0.013 0.004 28.854 0.007 0.002 37.307
p = 1, K = 50 0.062 0.014 21.030 0.018 0.005 35.058 0.009 0.003 45.771
p = 2, K = 35 0.054 0.011 20.258 0.015 0.005 28.920 0.007 0.002 38.375
p = 2, K = 50 0.095 0.014 22.439 0.020 0.0053 34.832 0.009 0.003 48.047
p = 3, K = 35 0.039 0.011 20.199 0.014 0.004 29.976 0.007 0.002 38.320
p = 3, K = 50 0.090 0.014 23.001 0.022 0.005 38.085 0.010 0.003 50.074

DGP F.2 DGP S.1.2
p = 1, K = 35 0.053 0.041 0.879 0.034 0.073 2.239 0.015 0.051 2.376
p = 1, K = 50 0.071 0.048 1.102 0.044 0.081 3.070 0.019 0.058 3.514
p = 2, K = 35 0.082 0.040 0.807 0.035 0.071 2.154 0.030 0.050 2.309
p = 2, K = 50 0.175 0.044 0.932 0.045 0.079 2.924 0.020 0.057 3.349
p = 3, K = 35 0.073 0.036 0.698 0.024 0.020 0.578 0.011 0.011 0.483
p = 3, K = 50 0.137 0.042 0.913 0.061 0.024 0.873 0.017 0.013 0.799

Notes: DGPs of state variables are described in DGP S.1.1 and DGP S.1.2. The unknown function satisfies DGP F.1 and DGP F.2. K is the number
of knots and these knots are equally spaced on the entire range of the state variable. p is the degree of B-splines. Specifically, p = 1 is piecewise
linear B-spline, and p = 2 is piecewise quadratic B-splines and p = 3 is a cubic B-spline. We calculate the IMSE for each Monte Carlo study by
implementing the estimation without and with penalty 100 times and λ∗ is the average optimal penalty for the penalized case.

Therefore, in DGP B.2, where the analytic solution does not exist (Burnside, 1998), we first assume that the DGP is given,
and use discretization methods with sufficiently fine grids to generate an accurate proxy for the true unknown P/D ratios
for the purpose of comparison. As Fig. 5 shows, except for the PEA algorithm, all other numerical solution methods fail in
the presence of a misspecified DGP. A critical issue with the PEA algorithm is that the optimal order for the parametric
series expansion is unknown, and a large order may result in an ill-conditioned problem. Therefore, the PEA algorithm
provides improved, but sub-optimal, approximations. In contrast, by using our penalized B-splines regression, we can
obtain a consistent, unbiased, and efficient estimation of the unknown P/D ratios in the presence of an unknown DGP.

In Table 5, we further report and compare the number of iterations, real computational time, and mean squared errors
for the simulation studies above. Our method is a speedy one-step procedure with an optimized level of penalization. It
has stable performance when the state variable has both small and large serial dependencies. We find that, under correctly
specified cases, the penalized B-splines regression performs reasonably well compared with this large set of representative
numerical solution methods. Under the misspecified case, only our new method can provide accurate model solutions
because it does not depend on distributional assumptions.

Using these two empirically relevant situations, we find that, in the presence of misspecified dynamics of state
variables, current numerical solution methods can lead researchers to incorrectly interpret model implications. Therefore,
when the DGP of state variables is not fully specified, the newly proposed method will become an indispensable approach
for obtaining a consistent estimate of the P/D ratio function and for constructing the most reliable and accurate model
implications.

4.3. Model implied equity returns

In this section, we investigate the role that the misspecification plays on model implied asset returns by removing the
distributional assumptions on the state dynamics in two prevailing asset pricing models, namely Mehra and Prescott’s
(1985) and Campbell and Cochrane’s (1999) models. We first quickly review the model setup of Campbell and Cochrane
15
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wo-stage B-splines solution accuracy under GARCH distributed state variable.

Sample size = 100 Sample size = 250 Sample size = 500

IMSE λ∗ IMSE λ∗ IMSE λ∗

Unpenalized Penalized Penalty Unpenalized Penalized Penalty Unpenalized Penalized Penalty

DGP F.1 DGP S.2.1
p = 1, K = 35 0.052 0.051 0.174 0.026 0.025 0.169 0.022 0.021 0.197
p = 1, K = 50 0.069 0.058 0.284 0.026 0.025 0.313 0.015 0.014 0.327
p = 2, K = 35 0.072 0.047 0.134 0.022 0.021 0.121 0.015 0.015 0.120
p = 2, K = 50 0.166 0.055 0.237 0.027 0.024 0.264 0.013 0.013 0.274
p = 3, K = 35 0.072 0.045 0.112 0.040 0.020 0.094 0.013 0.013 0.086
p = 3, K = 50 0.133 0.053 0.208 0.026 0.023 0.223 0.014 0.012 0.232

DGP F.1 DGP S.2.2
p = 1, K = 35 0.066 0.056 0.171 0.045 0.044 0.162 0.60 0.059 0.245
p = 1, K = 50 0.083 0.052 0.260 0.029 0.028 0.256 0.023 0.023 0.215
p = 2, K = 35 0.084 0.052 0.134 0.046 0.038 0.117 0.044 0.043 0.118
p = 2, K = 50 0.115 0.050 0.227 0.252 0.025 0.202 0.017 0.016 0.158
p = 3, K = 35 0.064 0.049 0.108 0.033 0.033 0.072 0.043 0.042 0.071
p = 3, K = 50 0.117 0.048 0.190 0.309 0.023 0.170 0.018 0.015 0.129

DGP F.2 DGP S.2.1
p = 1, K = 35 0.044 0.020 2.819 0.018 0.009 2.677 0.009 0.006 2.969
p = 1, K = 50 0.056 0.022 0.326 0.023 0.010 3.474 0.011 0.007 4.321
p = 2, K = 35 0.063 0.019 2.911 0.018 0.009 2.396 0.009 0.006 2.694
p = 2, K = 50 0.090 0.022 3.119 0.026 0.010 3.275 0.012 0.006 3.792
p = 3, K = 35 0.268 0.019 2.664 0.018 0.009 2.220 0.009 0.006 2.431
p = 3, K = 50 0.012 0.006 3.544 0.024 0.010 3.005 0.012 0.006 3.544

DGP F.2 DGP S.2.2
p = 1, K = 35 0.072 0.072 2.453 0.076 0.025 1.984 0.036 0.023 1.261
p = 1, K = 50 0.089 0.082 2.662 0.033 0.093 2.545 0.028 0.041 2.053
p = 2, K = 35 0.128 0.061 2.325 0.076 0.025 1.889 0.032 0.024 1.205
p = 2, K = 50 2.598 0.089 2.615 0.033 0.082 2.323 0.026 0.041 1.733
p = 3, K = 35 0.071 0.073 2.301 0.026 0.075 1.683 0.024 0.036 1.083
p = 3, K = 50 0.269 0.081 2.684 0.067 0.084 2.343 0.026 0.039 1.680

Notes: DGPs of state variables are described in DGP S.2.1 and DGP S.2.2. The unknown function satisfies DGP F.1 and DGP F.2. K is the number
of knots and these knots are equally spaced on the entire range of the state variable. p is the degree of B-splines. Specifically, p = 1 is piecewise
linear B-spline, and p = 2 is piecewise quadratic B-splines and p = 3 is a cubic B-spline. We calculate the IMSE for each Monte Carlo study by
implementing the estimation without and with penalty 100 times and λ∗ is the average optimal penalty for the penalized case.

(1999) as follows:

max
{Ct }

E
∞∑
t=0

β t (Ct − Ht )1−γ − 1
1 − γ

,

where Ht is the level of habit. The consumption habit, St = (Ct − Ht )/Ct , is assumed to be exogenous and determined
by the history of aggregate consumption rather than the history of individual consumption. The log surplus consumption
ratio st ≡ lnSt evolves as a heteroskedastic AR(1) process as follows:

st+1 = (1 − Γ )s̄ + Γ st + l(st )(ct+1 − ct − gc),

where s̄ is the steady state level and l(st ) is called the sensitivity function, specified as

l(st ) =

{
1
S̄

√
1 − 2(st − s̄) − 1, if st ≤ smax = ln(S̄) +

1
2 (1 − S̄)2,

0, if st ≥ smax.

he price–dividend ratio ft is embedded in the Euler equation9

f (Xt ) = E{βe−γ gc e−γ ((Γ−1)(Xt−s̄)+(1−l(Xt ))∆ct+1)e∆dt+1 [1 + f (Xt+1)]|Xt},

where ct = log(Ct ), dt = log(Dt ), ∆ct = ct − ct−1, ∆dt = dt − dt−1, gc = E(∆ct ) and Xt = st is the state variable.
In Campbell and Cochrane (1999), the model-implied P/D ratio also directly depends on the distributional assumption
with respect to the dynamics of consumption and dividend growth. The authors first assume that the consumption and
dividend processes are identical and also investigate the scenario with imperfectly correlated consumption and dividend
processes, that (∆ct ,∆dt ) ∼ i.i.d.N(gc, σ 2

c , gd, σ
2
d , ρ). However, in this section, we remove such assumptions and study

how the true dynamics of consumption and dividend shocks affect equity returns.

9 More details on the derivation of the Euler equation with consumption habit could be referred at Campbell and Cochrane (1999).
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wo-stage B-splines solution accuracy under nonstationary state variable.

Sample size = 100 Sample size = 250 Sample size = 500

IMSE λ∗ IMSE λ∗ IMSE λ∗

Unpenalized Penalized Penalty Unpenalized Penalized Penalty Unpenalized Penalized Penalty

DGP F.1 DGP S.3
p = 1, K = 35 0.299 0.107 1.345 0.086 0.062 1.082 0.046 0.046 0.689
p = 1, K = 50 0.271 0.125 1.722 0.092 0.071 1.635 0.059 0.047 1.171
p = 2, K = 35 0.206 0.106 1.206 0.175 0.062 0.917 0.101 0.041 0.603
p = 2, K = 50 0.586 0.126 1.600 0.173 0.067 1.463 0.494 0.045 1.047
p = 3, K = 35 0.196 0.107 1.163 0.394 0.059 0.877 0.045 0.040 0.517
p = 3, K = 50 0.529 0.127 1.498 0.124 0.070 1.408 0.046 0.045 0.964

DGP F.2 DGP S.3
p = 1, K = 35 3.233 0.042 15.584 0.095 0.090 15.866 0.085 0.070 19.971
p = 1, K = 50 0.119 0.049 17.677 0.095 0.073 20.330 0.553 0.129 30.878
p = 2, K = 35 0.139 0.043 15.488 0.125 0.091 16.154 2.633 0.106 20.858
p = 2, K = 50 0.714 0.051 19.165 0.104 0.088 21.410 0.622 0.201 31.926
p = 3, K = 35 0.106 0.044 16.151 0.208 0.085 15.567 0.292 0.095 21.010
p = 3, K = 50 0.355 0.052 18.822 0.151 0.090 22.182 0.088 0.076 30.227

DGP F.1 DGP S.4
p = 1, K = 35 0.273 0.151 0.991 0.126 0.077 1.527 0.054 0.044 2.189
p = 1, K = 50 0.318 0.166 1.234 0.179 0.080 2.086 0.064 0.046 3.268
p = 2, K = 35 1.166 0.151 0.904 0.183 0.073 1.327 0.061 0.042 1.994
p = 2, K = 50 0.445 0.168 1.102 0.268 0.079 1.941 0.108 0.045 3.029
p = 3, K = 35 0.370 0.147 0.824 0.836 0.073 1.249 0.061 0.040 1.813
p = 3, K = 50 1.045 0.168 1.075 0.228 0.078 1.851 0.090 0.044 2.891

DGP F.2 DGP S.4
p = 1, K = 35 0.225 0.052 6.537 0.070 0.021 14.169 0.030 0.011 30.840
p = 1, K = 50 0.243 0.063 5.760 0.120 0.025 15.286 0.036 0.012 36.475
p = 2, K = 35 0.584 0.054 6.635 0.899 0.021 14.225 0.034 0.012 30.830
p = 2, K = 50 0.235 0.069 5.513 0.710 0.025 16.346 0.251 0.012 38.260
p = 3, K = 35 0.314 0.053 6.790 0.796 0.022 14.946 0.032 0.012 31.267
p = 3, K = 50 0.977 0.068 6.679 0.170 0.025 17.129 0.057 0.012 39.239

Notes: DGPs of state variables are described in DGP S.3 and DGP S.4. The unknown function satisfies DGP F.1 and DGP F.2. K is the number of
nots and these knots are equally spaced on the entire range of the state variable. p is the degree of B-splines. Specifically, p = 1 is piecewise
inear B-spline, and p = 2 is piecewise quadratic B-splines and p = 3 is a cubic B-spline. We calculate the IMSE for each Monte Carlo study by
mplementing the estimation without and with penalty 100 times and λ∗ is the average optimal penalty for the penalized case.

able 4
wo-stage B-splines solution accuracy under multivariate state variables.

Sample size = 500 Sample size = 1000

IMSE λ∗ IMSE λ∗

Unpenalized Penalized Penalty1 Penalty2 Unpenalized Penalized Penalty1 Penalty2

DGP F.3 DGP S.5
p = 1, K = 10 0.243 0.038 0.359 9.109 0.243 0.017 0.407 11.484
p = 1, K = 15 0.641 0.061 0.406 12.676 0.690 0.026 0.496 16.449
p = 2, K = 10 7.119 0.043 0.348 6.833 1.914 0.018 0.374 9.245
p = 2, K = 15 9.576 0.069 0.387 10.399 2.187 0.028 0.470 13.842
p = 3, K = 10 5.583 0.046 0.329 5.679 5.044 0.018 0.364 7.501
p = 3, K = 15 8.347 0.074 0.374 9.119 6.897 0.029 0.437 11.921

DGP F.4 DGP S.5
p = 1, K = 10 0.271 0.040 0.425 2.332 0.247 0.017 0.482 3.065
p = 1, K = 15 0.607 0.073 0.510 3.423 0.710 0.029 0.622 4.422
p = 2, K = 10 7.031 0.044 0.397 1.288 1.936 0.018 0.463 2.497
p = 2, K = 15 9.675 0.076 0.479 2.664 4.947 0.031 0.567 3.717
p = 3, K = 10 6.023 0.046 0.380 1.529 2.419 0.018 0.451 1.905
p = 3, K = 15 8.453 0.080 0.446 2.385 6.712 0.032 0.541 3.125

Notes DGPs of state variables are described in DGP S.5. The unknown function satisfies DGP F.4 and DGP F.5. K is the number of knots and these
knots are equally spaced on the entire range of the state variable. p is the degree of B-splines. Specifically, p = 1 is piecewise linear B-spline, and
p = 2 is piecewise quadratic B-splines and p = 3 is a cubic B-spline. We calculate the IMSE for each Monte Carlo study by implementing the
estimation without and with penalty 100 times and λ∗ is the average optimal penalty for the penalized case.

We consider the returns on S&P500 and a three-month Treasury bill for market returns and risk-free returns. The
consumption growth rate is obtained from the personal consumption expenditures on non-durable goods per capita
from the US National Income and Product Accounts. Our data are in quarterly frequency and span from 1947 to 2017.
All the empirical returns are deflated by a fixed base consumption price index. We fit Mehra and Prescott’s (1985)
17
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Fig. 5. P/D ratios solution comparison under known or unknown DGPs. This figure plots the P/D ratios solved from the Mehra and Prescott (1985)’s
odel from different solution methods given the state variable follows some known or unknown dynamics. The first two rows evaluate the solution
ccuracy under some known DGPs, where the analytic solution is constructed by Burnside (1998)’s method. Specifically, we assume the state variable
ollows DGP B.1.1 in the first row and DGP B.1.2 in the second. The third row compares the solution accuracy for the case with unknown DGP
s specified in DGP B.2 and we proxy the analytic solution with the discretization method under the correct DGP and sufficiently fine grids. For
ur penalized two-stage B-splines approach, we report the results under p = 1 and K = 35 with equally spaced knots and the optimal penalty is

determined via the proposed fast GCV algorithm. For the perturbation, projection, PEA and improved PEA methods, we report their associated results
with order equal to three to encourage possible nonlinearity in unknown P/D ratios. For the PEA and Improved PEA algorithms, the depreciation
parameter is set to be 0.5. For the analytic and numerical solution methods which require iterations, we set the tolerance level equal to 1e−7. For
each row, the sample size is 100 for the left column, 250 for the middle one and 500 for the right one.

and Campbell and Cochrane’s (1999) models with the above empirical data. When solving the P/D ratio numerically using
the perturbation, projection, discretization, and parametrized expected algorithm methods, a conventional protocol is to
fit the empirical consumption growth data with an AR(1) process in addition to a parametric functional form of the P/D
ratio. Therefore, we set the order of the Taylor expansion or series expansion in numerical solution methods to be 3 in
order to incorporate possible non-linearities, given that there is no available data-driven order suggestion criterion for
all these numerical solution methods. We then apply our newly proposed penalized two-stage nonparametric B-splines
estimation method for the unknown P/D ratios for each model.

Table 6 reports the first two moments of the risk-free and risky assets using different solution methods for the P/D
ratios in Mehra and Prescott’s (1985) model. Except for the PEA method, because all the numerical solution methods
listed above are subject to the same type of possible misspecification errors on the conditional distribution of state
dynamics, the mean and variance of the risk-free asset from these methods are identical. In contrast to the results from
the numerical solution methods above, when we incorporate the true dynamics of the consumption process using our
penalized two-stage B-splines method, the model is able to generate a much lower correlation between the risk-free and
risky assets.

For the Campbell and Cochrane’s (1999) model, we first pin down the value of the persistence coefficient Γ = 0.948
such that it matches the annual serial correlation of the empirical log(P/D) ratios. We set the subjective discount factor
β = 0.9728 to match the risk-free rate with the average annual nominal return on Treasury bills to be around 1.15%. gc ,
δc , gd and σd are the mean and standard deviation of log consumption and dividend growth from a normal distribution
fitting of the consumption and dividend data, and ρ = 0.147 matches their correlation. We solve the model above with
perfectly and imperfectly correlated consumption and dividend growth rates, respectively. For each numerical solution
method, we first solve the model and obtain approximated P/D ratios based on the distributional assumptions stated
above. We then obtain the model-implied P/D ratios for the empirical data using our newly proposed penalized two-stage
B-splines regression without distributional assumptions on consumption and dividend processes, and without parametric
form assumptions on the unknown P/D ratio function. We further compute the sample moments of equity returns
based on the empirical data from 1947 to 2017. Table 7 compares the results from the discretization, perturbation, and
18
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omparisons of solution accuracy with known and unknown DGP.
Solution method Sample size = 100 Sample size = 250 Sample size = 500

Number of Computation IMSE Number of Computation IMSE Number of Computation IMSE
iterations time iterations time iterations time

Panel A: with Known DGP
DGP B.1.1
Perturbation 1 0.022 <0.001 1 0.028 <0.001 1 0.002 <0.001
Projection 1 6.961 <0.001 1 6.912 <0.001 1 7.285 <0.001
Discretization 276 5.188 <0.001 276 5.297 <0.001 276 5.289 <0.001
PEA
(order = 1) 203 0.112 0.097 197 0.113 0.038 195 0.131 0.002
(order = 2) 203 0.120 0.097 196 0.113 0.059 195 0.138 0.005
(order = 3) 204 0.116 0.125 197 0.116 0.055 195 0.136 0.006
Improved PEA
(order = 1) 3169 2.654 <0.001 3169 6.930 <0.001 3169 18.600 <0.001
(order = 2) 3169 7.904 <0.001 3169 17.167 <0.001 3169 47.229 <0.001
(order = 3) 3169 13.077 <0.001 3169 24.335 <0.001 3169 80.182 <0.001
Penalized two-stage
B-splines
(p = 1) 1 0.410 0.251 1 0.410 0.109 1 0.470 0.025
(p = 2) 1 0.410 0.367 1 0.410 0.116 1 0.490 0.028
(p = 3) 1 0.410 0.216 1 0.533 0.106 1 0.490 0.027

DGP B.1.2
Perturbation 1 0.043 45.056 1 0.041 51.657 1 0.044 22.507
Projection 1 7.358 1500 1 7.164 1810 1 7.411 1550
Discretization 477 9.815 <0.001 514 19.710 <0.001 481 8.777 <0.001
PEA
(order = 1) 325 0.208 48.054 230 0.130 156.726 244 0.296 71.586
(order = 2) 337 0.178 45.269 230 0.135 155.739 244 0.159 70.081
(order = 3) 345 0.176 44.572 230 0.1249 153.630 244 0.155 70.058
Improved PEA
(order = 1) 5527 5.174 6.604 5979 11.659 0.412 5563 22.129 5.574
(order = 2) 5946 15.201 0.064 5928 31.768 0.011 5936 52.081 0.035
(order = 3) 5876 23.972 <0.001 5939 47.175 <0.001 5886 82.132 <0.001
Penalized two-stage
B-spline
(p = 1) 1 0.420 22.831 1 0.420 10.857 1 0.450 4.746
(p = 2) 1 0.420 15.231 1 0.420 6.808 1 0.420 5.300
(p = 3) 1 0.410 20.149 1 0.411 8.756 1 0.420 6.432

Panel B: with unknown DGP
DGP B.2
Perturbation 1 0.043 75.839 1 0.025 9.939 1 0.004 7.155
Projection 1 0.793 76.665 1 1.052 10.273 1 0.785 7.395
Discretization 439 11.076 76.555 403 7.895 10.354 393 9.967 7.485
PEA
(order = 1) 254 0.252 16.536 251 0.173 3.295 243 0.286 3.416
(order = 2) 255 0.223 16.416 251 0.186 1.846 244 0.220 2.319
(order = 3) 256 0.196 17.021 251 0.187 1.917 260 0.199 2.208
Improved PEA
(order = 1) 4624 5.567 76.527 3609 10.340 10.346 3564 18.672 7.4775
(order = 2) 4624 15.138 76.528 3609 28.000 10.347 3564 43.758 7.480
(order = 3) 4624 24.276 76.528 3609 41.380 10.347 3564 64.608 7.479
Penalized two-stage
B-splines
(p = 1) 1 0.522 1.427 1 0.530 1.267 1 0.890 0.684
(p = 2) 1 0.610 1.859 1 0.530 1.057 1 0.510 0.718
(p = 3) 1 0.524 1.593 1 0.530 1.179 1 0.510 0.677

Notes: in Panel A, we evaluate the solution accuracy under some known DGPs as described in DGP B.1.1 and DGP B.1.2, where the analytic solution is
constructed by Burnside (1998)’s method. In Panel B, we consider an unknown DGP as specified in DGP B.2 and proxy the analytic solution with the
discretization method under the correct DGP and sufficiently fine grids. For our penalized two-stage B-splines approach, we report the results under
p = 1, 2 and 3 with equally spaced knots K = 35. The optimal penalty is determined via the proposed fast GCV algorithm. For the perturbation and
projection methods, we report the results with order equal to 3 and for the PEA and improved PEA methods, we report their associated results with
order up to three and the involved depreciation parameter is set to 0.5. For the analytic and numerical solution methods which require iterations,
we set the tolerance level equal to 1e−7. For each case, we report the number of iterations, computation time (in seconds) and the IMSE for the
ample size equal to 100, 250 and 500. Computation time is measured in seconds.

mproved PEA and the penalized two-stage regression methods. We omit the results from the projection and the PEA
ethods because the former renders undesirable performance, given a near one Γ , while the latter yields a solution
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sset returns comparisons under different solution methods based on Mehra and Prescott’s (1985) model.
Solution method The Mehra and Prescott (1985)’s model

Parametric assumptions on The first two moments of asset returns

State Functional µf σf µR σR ρf ,R
dynamics form

Perturbation Yes Yes 5.410 0.790 5.380 1.414 0.567
Projection Yes Yes 5.410 0.790 5.407 1.732 0.527
Discretization Yes Yes 5.410 0.790 5.338 1.416 0.565
PEA No Yes 5.421 0.892 5.426 1.370 0.880
Improved PEA Yes Yes 5.410 0.790 5.380 1.417 0.566
Penalized two-stage B-splines
(p = 1) No No 5.419 0.799 5.417 1.422 0.130
(p = 2) No No 5.419 0.799 5.417 1.422 0.125
(p = 3) No No 5.419 0.799 5.417 1.426 0.128

Notes: this table compares the first two moments of asset returns based on the P/D ratios solved from the Mehra and Prescott (1985)’s model
from different solution methods. All returns are in annual percentage. µR and σR are the mean and standard deviation of the risky return; µf and
σf are the mean and standard deviation of the risk-free return; ρf ,R is the correlation of the risk-free and risky returns. For numerical solution
methods, which require a complete specification of the conditional distribution, we assume the state variable follows an AR(1) process with mean
and variance estimated from the U.S. 1947–2017 quarterly data. For the perturbation, projection, PEA and improved PEA methods, we report the
results with order equal to 3 (a complete table with numerical solution results based on high order expansions is available upon request). For the
PEA and Improved PEA methods, the depreciation parameter is set to be 0.5. For the studied numerical solution methods which require iterations,
we set the tolerance level equal to 1e−7. For our penalized two-stage B-splines approach, we report the results under p = 1, 2 and 3 with equally
spaced knots K = 35. The optimal penalty is determined via the proposed fast GCV algorithm.

with unconvergence because of the ill-posed problem.10 First, after relaxing the normality assumption on consumption
growth rates, we find that the data-driven model-implied risk-free rate has a negative average return. This may be because
of our method’s allowance of true asymmetric consumption shocks in the pricing procedure. Second, when pricing the
imperfectly correlated consumption and dividend claims, we relax the bivariate normal assumption on consumption and
dividend growth. By doing so, the true dynamics reveal a negative skewness for the equity premiums. Allowing the true
data to determine equilibrium asset prices largely enhances the explanatory powers of Campbell and Cochrane’s (1999)
model.

5. Empirical applications

We now reinvestigate the present value of future dividends, equity returns, and stock predictability in a
misspecification-free environment using our newly proposed penalized two-stage estimation method. In line with Ang and
Bekaert (2006), consumptions and dividends are summed over the past one year to alleviate seasonality effects that are
especially pronounced in the dividend payment process. We thus represent the annualized consumptions and dividends
by C4

t = Ct + Ct−1 + Ct−2 + Ct−3 and D4
t = Dt + Dt−1 + Dt−2 + Dt−3.

5.1. Predictability of equity returns

The determination of the predictability of future stock returns is important. Unfortunately, no consensus has been
reached in theory and empirical evidence (Campbell and Yogo, 2006; Phillips and Lee, 2013). The path-breaking theory
developed by Campbell and Shiller (1988), which is based on a rational consumption-based asset pricing model and is
under log linearization, suggests that high dividend yields predict high future excess returns, low dividend growth, or
both. Ang and Bekaert (2006) relax log linearization treatment, and thus obtains an astonishingly different predictive
relationship that states that dividend yield is not a natural predictor for returns, but is one for time-varying discount
rates. Although both theories expect a negative predictive relationship between dividend yields and cash flows, scant
empirical evidence has been found to confirm this expectation (Lettau and Ludvigson, 2005; Campbell and Yogo, 2006;
Cujean and Hasler, 2017).

Built on equilibrium asset prices under full rationality in Euler equations, the implied dividend yields, log(1/ft ),
reflect consumption-based rational forecasts of future returns and dividend growth. In this section, we investigate how
nonparametrically estimated implied dividend yields predict future excess returns and dividend growth.

We consider the following multivariate regression model to investigate the predictability relationship.

ỹt+j = β0 + βj,1log(1/ft ) + βj,2dy4t + βj,3rf ,t + ϵt , (9)

where ỹt+j = (4/j)[(rt+1 − rf ,t ) + · · · + (rt+j − rf ,t+j−1)] is the annualized j-period excess log return for the US aggregate
market, rf ,t is the log return on short interest rates and dy4t is the annualized observed dividend yields from quarterly

10 A full table is available upon request.
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sset returns comparisons under different solution methods based on Campbell and Cochrane’s (1999) model.

Pricing the consumption claim

Discretization Perturbation Improved Penalized B-spline Postwar

PEA p = 1 p = 2 p = 3 sample

σ (Rf ) 0.000 0.000 0.000 17.707 17.719 17.869 0.844
E(R − Rf ) 6.259 63.178 0.518 3.427 3.732 3.565 6.604
σ (R − Rf ) 26.024 10.695 27.714 33.798 30.905 33.257 29.065
skewness(R − Rf ) 0.552 1.694 0.397 1.087 1.523 1.139 −1.126
Kurtosis(R − Rf ) 7.541 7.078 8.123 16.318 13.404 14.528 3.400

Distributional assumptions Yes Yes Yes No No No No
∆ct = ∆dt ∼ i.i.d.N(gc , σ 2

c )

Functional form assumption No Yes Yes No No No No

Imperfectly correlated consumption and dividend claims

Discretization Perturbation Improved Penalized B-spline Postwar

PEA p = 1 p = 2 p = 3 sample

σ (Rf ) 0.000 0.000 0.000 17.439 17.719 17.869 0.844
E(R − Rf ) 5.372 51.094 2.133 5.578 4.388 6.862 6.604
σ (R − Rf ) 25.730 7.487 26.74 42.130 43.687 41.243 29.065
skewness(R − Rf ) 0.552 1.724 0.522 −0.733 −1.879 −1.405 −1.126
Kurtosis(R − Rf ) 7.830 6.691 8.369 7.185 7.573 5.871 3.400

Distributional assumptions Yes Yes Yes No No No No
(∆ct ,∆dt ) ∼ ii.d.N(gc , gd, σ 2

c , σ
2
d , ρ)

Functional form assumption No Yes Yes No No No No

Notes: this table compares the implications of asset returns based on the P/D ratios solved from the Campbell and Cochrane (1999)’s model from
different solution methods. We set the subjective discount factor β = 0.9728 to match the risk-free rate with the average annual nominal return
n Treasury bills to be around 1.15%. All returns are in annual percentage. R is the simple return of the risky asset. Rf is the simple return of the
isk-free asset. For the perturbation and improved PEA methods, we only report the results with order equal to 2. For the improved PEA methods,
he depreciation parameter is set to be 0.5. For the studied numerical solution methods which require iterations, we set the tolerance level equal
o 1e−7. We omit the results from the projection and PEA methods because the former renders undesirable performance given a near one Γ and
he latter has a diverging solution due to the ill-posed problem (a complete table with numerical solution results based on higher order expansions
s available upon request). For our penalized two-stage B-splines approach, we report the results under p = 1, 2 and 3 with equally spaced knots

= 35. The optimal penalty is determined via the proposed fast GCV algorithm.

&P500 data. We also conduct two other sets of regression analysis, that the dependent variable represents dividend
rowth and short interest rates, respectively. To properly address the strong serial dependency in explanatory variables
nd the dependent variables, we follow the literature by reporting standard deviations with various treatments, including
he Newey and West (1987) corrected standard deviation, the Hodrick-type standard errors and the Cochrane–Orcutt-type
tandard errors.
Table 8 displays the predictive power that short interest rates, observed dividend yield, and implied dividend yield

xhibit on excess returns. First, our result confirms the short-horizon forecastability phenomenon when we use the
odrick-type correct covariance estimation. We confirm that the implied dividend yield from a rational model is not
natural and significant predictor for excess returns. We find that the significant forecastability from observed dividend
ields mainly arises from the component that is beyond rational models.
We also investigate forecasts of short-horizon dividend growth. Table 9 reports the forecasting results for the future

ividend growth from the same exercise. The accounting identity of the P/D ratio indicates a negative relationship
etween dividend yields and future dividend growth (Lettau and Ludvigson, 2005). However, dividend yields have been
ocumented to have little or mixed forecastability of dividend growth. By proposing a proxy through a counteraction
inear regression model, Lettau and Ludvigson (2005) find that consumption-based dividend yields exhibit a reversed
orecastability for dividend growth, that is, high dividend payments relative to prices predict higher dividend growth, not
ower. In our empirical study, Table 9 shows that true implied dividend yields have negative predictability for dividend
rowth, but they are still a short-horizon phenomenon. When implied dividend yields are controlled, observed dividend
ields exhibit significant positive predictability on dividend growth. Therefore, we provide an alternative explanation for
his positive forecastability, namely, it is the component that is orthogonal to the rational dividend yields that leads to the
ositive forecastability in dividend growth. Our results provide clear evidence for time-varying facts of dividend growth,
hich has long been treated in the literature as a process with a constant growth rate.
Our study also investigates the forecastability relationship between dividend yields and short interest rates. Table 10

eports predictive regression coefficients and their t-statistics for future annualized short interest rates on implied
ividend yields, lagged short interest rates and observed dividend yields. First, we find that short interest is also a highly
ersistent process. Therefore, as suggested by Ang and Bekaert (2006), to address highly correlated regression residuals in
21
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j = 4

) (1) (2) (3) (4)
0.267 0.320 0.344
(0.083) (0.086) (0.085)
[0.154] [0.155] [0.155]
{0.347} {0.348} {0.343}

3.222 −10.348 −8.403 −3.764
.863) (4.525) (4.478) (4.453)
.751] [6.950] [6.930] [6.625]
1.487} {17.511} {17.222} {16.778}
2.565 −4.500 −4.037
.185) (1.330) (1.363)
.151] [2.298] [2.472]
.117} {5.375} {5.579}
7.496 1.177 1.474 −12.022 −11.858
.577) (0.288) (0.313) (4.001) (4.114)
.466] [0.513] [0.547] [6.983] [7.433]
2.399} {1.165} {1.218} {16.316} {16.831}

7 276 276 276 276
022 0.036 0.054 0.093 0.037
015 0.033 0.047 0.083 0.030

j = 4

) (1) (2) (3) (4)

0.267 0.320 0.320
(0.083) (0.086) (0.086)
[0.154] [0.155] [0.156]
{0.347} {0.348} {0.348}

4.582 −10.348 −10.410 −5.875
.839) (4.525) (4.521) (4.458)
.735] [6.950] [6.936] [6.675]
1.501} {17.511} {17.559} {17.087}
089 0.109 0.108
.079) (0.089) (0.091)
.079] [0.094] [0.093]
.180} {0.248} {0.250}
419 1.177 1.474 1.685 0.534
.161) (0.288) (0.313) (0.358) (0.186)
.166] [0.513] [0.547] [0.597] [0.192]
.363} {1.165} {1.218} {1.355} {0.506}

(continued on next page)
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Table 8
Predictability on excess returns.

j-period regression: ỹt+j=β0 + β ′

j zt + ϵt,t+h

ft estimated from the Mehra and Prescott (1985)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4
dy4t 0.079* 0.097** 0.100** 0.150 0.180 0.188* 0.211 0.253 0.269

(0.039) (0.041) (0.041) (0.058) (0.061) (0.061) (0.072) (0.074) (0.074)
[0.043] [0.042] [0.040] [0.082] [0.081] [0.080] [0.119] [0.118] [0.118]
{0.040} {0.041} {0.039} {0.119} {0.118} {0.114} {0.224} {0.223} {0.219}

rf ,t −3.500 −3.271 −1.894 −5.887 −5.239 −2.661 −8.144 −6.874 −

(2.132) (2.152) (2.096) (3.186) (3.205) (3.144) (3.915) (3.911) (3
[2.403] [2.461] [2.440] [4.427] [4.522] [4.453] [5.841] [5.901] [5
{2.283} {2.331} {2.284} {6.501} {6.643} {6.585} {11.594} {11.684} {1

log(1/ft ) −0.525 −0.390 −1.495 −1.240 −2.928 −

(0.642) (0.645) (0.955) (0.966) (1.164) (1
[1.093] [1.151] [1.722] [1.832] [2.005] [2
{1.001} {1.034} {2.604} {2.696} {3.972} {4

Constant 0.337** 0.438*** −1.136 −1.085 0.643 0.814** −3.669 −3.575 0.918 1.154 −7.629 −

(0.135) (0.148) (1.931) (1.948) (0.202) (0.221) (2.872) (2.917) (0.249) (0.272) (3.500) (3
[0.143] [0.146] [3.331] [3.463] [0.275] [0.282] [5.244] [5.510] [0.398] [0.415] [6.106] [6
{0.136} {0.143} {3.046} {3.113} {0.398} {0.406} {7.938} {8.112} {0.751} {0.776} {12.112} {1

T 279 279 279 279 278 278 278 278 277 277 277 27
R2 0.014 0.024 0.026 0.005 0.023 0.035 0.044 0.010 0.030 0.045 0.067 0.
Adjusted R2 0.011 0.017 0.016 −0.002 0.020 0.028 0.033 0.003 0.027 0.038 0.057 0.

ft estimated from the Campbell and Cochrane (1999)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4

dy4t 0.079* 0.097** 0.098** 0.150 0.180 0.180 0.211 0.253 0.253
(0.039) (0.041) (0.040) (0.058) (0.061) (0.060) (0.072) (0.074) (0.074)
[0.043] [0.042] [0.042] [0.082] [0.081] [0.081] [0.119] [0.118] [0.119]
{0.040} {0.041} {0.041} {0.119} {0.118} {0.118} {0.224} {0.223} {0.224}

rf ,t −3.500 −3.504 −2.089 −5.887 −5.944 −3.347 −8.144 −8.198 −

(2.132) (2.128) (2.063) (3.186) (3.180) (3.102) (3.915) (3.913) (3
[2.403] [2.412] [2.432] [4.427] [4.425] [4.416] [5.841] [5.829] [5
{2.283} {2.287} {2.267} {6.501} {6.532} {6.551} {11.594} {11.643} {1

log(1/ft ) 0.060 0.059 0.093 0.092 0.091 0.
(0.041) (0.042) (0.063) (0.064) (0.077) (0
[0.037] [0.038] [0.066] [0.067] [0.079] [0
{0.037} {0.036} {0.088} {0.088} {0.178} {0

Constant 0.337** 0.438*** 0.556*** 0.203*** 0.643 0.814** 0.994** 0.345* 0.918 1.154 1.329 0.
(0.135) (0.148) (0.168) (0.084) (0.202) (0.221) (0.252) (0.130) (0.249) (0.272) (0.310) (0
[0.143] [0.146] [0.169] [0.077] [0.275] [0.282] [0.317] [0.140] [0.398] [0.415] [0.450] [0
{0.13} {0.143} {0.164} {0.073} {0.398} {0.406} {0.456} {0.182} {0.751} {0.776} {0.894} {0
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j = 4

(4) (1) (2) (3) (4)

277 276 276 276 276
0.010 0.036 0.054 0.060 0.011
0.002 0.033 0.047 0.049 0.004

og(1/ft ))′ in (4). ỹt+j = (4/j)
∑j

i=1(rt+i − rf ,t+i−1) is the
P/D ratios. For each regression, the table reports OLS

the Hodrick-type standard errors in the curly brackets.
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Table 8 (continued).
ft estimated from the Campbell and Cochrane (1999)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3)

T 279 279 279 279 278 278 278 278 277 277 277
R2 0.014 0.024 0.031 0.011 0.023 0.035 0.043 0.012 0.030 0.045 0.050
Adjusted R2 0.011 0.017 0.021 0.004 0.020 0.028 0.032 0.004 0.027 0.038 0.040

Notes: for all forecasting horizon j, we have zt = (1, dy4t )
′ in (1), zt = (1, dy4t , rf ,t )

′ in (2) , zt = (1, dy4t , rf ,t , log(1/ft ))
′ in (3) and zt = (1, rf ,t , l

annualized cumulative excess return, dy4t is the observed dividend yields, rf ,t is the log return on short interest rates and ft is the estimated
estimates and the associated standard deviation in the parenthesis, Newey and West (1987) corrected standard deviation in the brackets and
The significance level marked by ∗ is based on the Hodrick-type t-statistics.
*p < 0.1.
**p < 0.05.
***p < 0.01.
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j = 4

(4) (1) (2) (3) (4)

0.028 0.029 0.030
(0.008) (0.008) (0.008)
[0.020] [0.022] [0.022]
{0.038} {0.041} {0.040}

0.197 −0.279 −0.238 0.163
(0.339) (0.444) (0.448) (0.442)
[0.642] [1.030] [0.972] [0.896]
{0.915} {1.863} {1.734} {1.559}
−0.105 −0.094 −0.054
(0.104) (0.133) (0.135)
[0.192] [0.263] [0.277]
{0.333} {0.611} {0.639}
−0.276 0.154 0.162 −0.121 −0.106
(0.314) (0.028) (0.031) (0.400) (0.408)
[0.572] [0.070] [0.083] [0.798] [0.826]
{0.995} {0.132} {0.154} {1.852} {1.910}

277 276 276 276 276
0.004 0.041 0.043 0.045 0.001
−0.003 0.038 0.036 0.034 −0.006

j = 4

(4) (1) (2) (3) (4)

0.001 0.005 0.004
(0.011) (0.011) (0.011)
[0.024] [0.023] [0.023]
{0.049} {0.048} {0.048}

−0.330 −0.669 −0.659 −0.595
(0.437) (0.580) (0.579) (0.557)
[0.846] [1.016] [1.007] [1.099]
{1.278} {1.925} {1.906} {1.995}
−0.014 −0.017 −0.017
(0.009) (0.011) (0.011)
[0.009] [0.011] [0.011]
{0.014} {0.020} {0.020}
0.009 0.046 0.065 0.033 0.017
(0.018) (0.037) (0.040) (0.046) (0.023)
[0.022] [0.077] [0.074] [0.078] [0.029]
{0.033} {0.157} {0.160} {0.167} {0.050}

(continued on next page)
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Table 9
Predictability on dividend growth.

j-period regression: dt+j − dt = β0 + β ′

j zt + ϵt,t+h

ft estimated from the Mehra and Prescott (1985)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3)

dy4t 0.008*** 0.008*** 0.008*** 0.015 0.015 0.016 0.022 0.022 0.023
(0.002) (0.002) (0.002) (0.004) (0.004) (0.004) (0.006) (0.006) (0.006)
[0.004] [0.004] [0.004] [0.009] [0.010] [0.010] [0.015] [0.016] [0.016]
{0.002} {0.003} {0.003} {0.010} {0.011} {0.01} {0.022} {0.024} {0.023}

rf ,t −0.045 −0.010 0.107 −0.103 −0.046 0.175 −0.178 −0.119
(0.118) (0.118) (0.116) (0.232) (0.233) (0.230) (0.342) (0.344)
[0.207] [0.196] [0.180] [0.461] [0.437] [0.400] [0.740] [0.700]
{0.126} {0.119} {0.109} {0.497} {0.468} {0.421} {1.086} {1.019}

log(1/ft ) −0.080** −0.069** −0.130 −0.108 −0.137
(0.035) (0.036) (0.070) (0.071) (0.102)
[0.050] [0.051] [0.113] [0.116] [0.184]
{0.033} {0.033} {0.133} {0.137} {0.318}

Constant 0.042*** 0.043*** −0.197** −0.193* 0.081** 0.084** −0.306 −0.298 0.118 0.123 −0.287
(0.007) (0.008) (0.106) (0.108) (0.015) (0.016) (0.209) (0.214) (0.022) (0.024) (0.308)
[0.014] [0.017] [0.151] [0.151] [0.032] [0.038] [0.341] [0.345] [0.051] [0.060] [0.559]
{0.009} {0.010} {0.098} {0.099} {0.034} {0.041} {0.403} {0.411} {0.076} {0.090} {0.967}

T 279 279 279 279 278 278 278 278 277 277 277
R2 0.045 0.046 0.063 0.014 0.043 0.043 0.056 0.009 0.042 0.043 0.049
Adjusted R2 0.042 0.039 0.053 0.007 0.039 0.037 0.045 0.002 0.038 0.036 0.038

impdy estimated from the Campbell and Cochrane (1999)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3)

dy4t 0.0002 0.0004 0.0003 0.001 0.002 0.002 0.001 0.003 0.003
(0.003) (0.003) (0.003) (0.006) (0.006) (0.006) (0.008) (0.009) (0.009)
[0.005] [0.005] [0.005] [0.011] [0.011] [0.011] [0.018] [0.017] [0.017]
{0.003} {0.003} {0.003} {0.013} {0.013} {0.013} {0.029} {0.028} {0.028}

rf ,t −0.026 −0.026 −0.021 −0.162 −0.156 −0.130 −0.385 −0.377
(0.168) (0.168) (0.161) (0.316) (0.316) (0.303) (0.456) (0.455)
[0.253] [0.251] [0.264] [0.529] [0.525] [0.559] [0.791] [0.784]
{0.167} {0.166} {0.171} {0.603} {0.599} {0.625} {1.228} {1.218}

log(1/ft ) −0.005** −0.005** −0.009 −0.009 −0.014
(0.003) (0.003) (0.006) (0.006) (0.009)
[0.003] [0.003] [0.006] [0.006] [0.009]
{0.002} {0.002} {0.007} {0.007} {0.013}

Constant 0.011 0.012 0.002 0.001 0.024 0.029 0.011 0.004 0.036 0.047 0.021
(0.011) (0.012) (0.013) (0.007) (0.020) (0.022) (0.025) (0.013) (0.029) (0.032) (0.036)
[0.017] [0.017] [0.018] [0.007] [0.037] [0.036] [0.037] [0.015] [0.057] [0.055] [0.057]
{0.011} {0.012} {0.012} {0.005} {0.043} {0.044} {0.045} {0.017} {0.093} {0.094} {0.097}
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j = 4

(4) (1) (2) (3) (4)

277 276 276 276 276
0.010 0.00004 0.005 0.013 0.012
0.003 −0.004 −0.002 0.002 0.005

1/ft ))′ in (4). dy4t is the observed dividend yields, rf ,t is
standard deviation in the parenthesis, Newey and West
y ∗ is based on the Hodrick-type t-statistics.

25
Table 9 (continued).
impdy estimated from the Campbell and Cochrane (1999)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3)

T 279 279 279 279 278 278 278 278 277 277 277
R2 0.00002 0.0001 0.008 0.008 0.0001 0.001 0.009 0.009 0.0001 0.003 0.011
Adjusted R2

−0.004 −0.007 −0.003 0.001 −0.004 −0.006 −0.002 0.002 −0.004 −0.005 0.0001

Notes: for all forecasting horizon j, we have zt = (1, dy4t )
′ in (1), zt = (1, dy4t , rf ,t )

′ in (2) , zt = (1, dy4t , rf ,t , log(1/ft ))
′ in (3) and zt = (1, rf ,t , log(

the log return on short interest rates and ft is the estimated P/D ratios. For each regression, the table reports OLS estimates and the associated
(1987) corrected standard deviation in the brackets and the Hodrick-type standard errors in the curly brackets. The significance level marked b
*p < 0.1.
**p < 0.05.
***p < 0.01.
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Table 10
Predictability on short interest rates.

j-period regression:
∑j

i=1 rf ,t+i = β0 + β ′

j zt + ϵt,t+h

j = 4

(1) (2) (3) (4)

0.002 0.002 0.001
(0.004) (0.002) (0.002)
[0.012] [0.003] [0.003]
{0.019} {0.006} {0.006}
⟨0.004⟩ ⟨0.004⟩ ⟨0.004⟩

25*** −0.225*** −0.203** −0.203**
2) (0.092) (0.088) (0.086)
3] [0.166] [0.162] [0.171]
9} {0.541} {0.558} {0.593}
4⟩ ⟨0.086⟩ ⟨0.086⟩ ⟨0.086⟩
4 0.041** 0.042**
9) (0.026) (0.026)
5] [0.039] [0.039]
5} {0.115} {0.113}
8⟩ ⟨0.021⟩ ⟨0.020⟩
8* 0.052* 0.053 0.174** 0.173**
7) (0.015) (0.006) (0.078) (0.079)
5] [0.043] [0.010] [0.116] [0.118]
9} {0.071} {0.019} {0.342} {0.344}
7⟩ ⟨0.031⟩ ⟨0.034⟩ ⟨0.069⟩ ⟨0.069⟩

276 276 276 276
1 0.098 0.857 0.873 0.870
0 0.095 0.856 0.871 0.869

j = 4

(1) (2) (3) (4)

0.002 0.002 0.002
(0.004) (0.002) (0.002)
[0.012] [0.003] [0.003]
{0.019} {0.006} {0.006}
⟨0.004⟩ ⟨0.004⟩ ⟨0.004⟩

27*** −0.225*** −0.233*** −0.234***
4) (0.092) (0.092) (0.090)
0] [0.166] [0.166] [0.166]
8} {0.541} {0.542} {0.570}
3⟩ ⟨0.086⟩ ⟨0.086⟩ ⟨0.086⟩
1** −0.001 −0.001
1) (0.002) (0.002)
3] [0.003] [0.003]
3} {0.005} {0.005}
1⟩ ⟨0.001⟩ ⟨0.001⟩
9* 0.052* 0.053 0.052 0.046
3) (0.015) (0.006) (0.007) (0.004)
2] [0.043] [0.010] [0.012] [0.003]
7} {0.071} {0.019} {0.022} {0.010}
1⟩ ⟨0.031⟩ ⟨0.034⟩ ⟨0.034⟩ ⟨0.032⟩

(continued on next page)
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ft estimated from the Mehra and Prescott (1985)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

dy4t −0.0002 0.0005 0.0004 −0.003 0.002** 0.002* −0.002 −0.002 −0.003
(0.001) (0.0004) (0.0004) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001)
[0.002] [0.0003] [0.0003] [0.005] [0.001] [0.001] [0.008] [0.002] [0.002]
{0.001} {.0003} {0.0003} {0.005} {0.001} {0.001} {0.011} {0.003} {0.003}
⟨0.003⟩ ⟨0.0003⟩ ⟨0.0003⟩ ⟨0.003⟩ ⟨0.001⟩ ⟨0.001⟩ ⟨0.003⟩ ⟨0.003⟩ ⟨0.003⟩

rf ,t 0.955*** 0.948*** 0.953*** 1.704*** 1.713*** 1.741*** −0.240*** −0.226*** −0.2
(0.023) (0.023) (0.022) (0.044) (0.043) (0.042) (0.066) (0.063) (0.06
[0.033] [0.032] [0.032] [0.070] [0.067] [0.068] [0.111] [0.109] [0.11
{0.051} {0.053} {0.055} {0.162} {0.171} {0.180} {0.302} {0.318} {0.33
⟨0.017⟩ ⟨0.017⟩ ⟨0.016⟩ ⟨0.053⟩ ⟨0.050⟩ ⟨0.048⟩ ⟨0.074⟩ ⟨0.074⟩ ⟨0.07

log(1/ft ) 0.018*** 0.019*** 0.060*** 0.063*** 0.025 0.02
(0.007) (0.007) (0.013) (0.013) (0.019) (0.01
[0.006] [0.006] [0.014] [0.014] [0.025] [0.02
{0.010} {0.010} {0.035} {0.034} {0.066} {0.06
⟨0.005⟩ ⟨0.005⟩ ⟨0.015⟩ ⟨0.015⟩ ⟨0.018⟩ ⟨0.01

Constant 0.011 0.002* 0.057*** 0.057*** 0.011 0.011*** 0.191*** 0.191*** 0.029 0.030 0.103* 0.10
(0.004) (0.002) (0.021) (0.021) (0.007) (0.003) (0.039) (0.039) (0.011) (0.005) (0.057) (0.05
[0.008] [0.001] [0.018] [0.018] [0.018] [0.003] [0.041] [0.041] [0.030] [0.006] [0.074] [0.07
{0.005} {0.001} {0.029} {0.029} {0.018} {0.004} {0.103} {0.104} {0.040} {0.010} {0.198} {0.19
⟨0.009⟩ ⟨0.001⟩ ⟨0.015⟩ ⟨0.015⟩ ⟨0.015⟩ ⟨0.004⟩ ⟨0.044⟩ ⟨0.044⟩ ⟨0.022⟩ ⟨0.026⟩ ⟨0.058⟩ ⟨0.05

T 279 279 279 279 278 278 278 278 277 277 277 277
R2 0.082 0.863 0.868 0.867 0.088 0.871 0.880 0.878 0.093 0.871 0.883 0.88
Adjusted R2 0.079 0.862 0.866 0.866 0.085 0.870 0.878 0.878 0.090 0.871 0.882 0.88

ft estimated from the Campbell and Cochrane (1999)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

dy4t −0.0002 0.0005 0.0005 −0.003 0.002** 0.002** −0.002 −0.002 −0.002
(0.001) (0.0004) (0.0004) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001)
[0.002] [0.0003] [0.0003] [0.005] [0.001] [0.001] [0.008] [0.002] [0.002]
{ 0.001} {0.0003} {0.0003} {0.005} {0.001} {0.001} {0.011} {0.003} {0.003}
⟨0.003⟩ ⟨0.0003⟩ ⟨0.0003⟩ ⟨0.003⟩ ⟨0.001⟩ ⟨0.001⟩ ⟨0.003⟩ ⟨0.003⟩ ⟨0.003⟩

rf ,t 0.955*** 0.955*** 0.962*** 1.704*** 1.707*** 1.749*** −0.240*** −0.229*** −0.2
(0.023) (0.023) (0.022) (0.044) (0.044) (0.043) (0.066) (0.066) (0.06
[0.033] [0.033] [0.032] [0.070] [0.070] [0.069] [0.111] [0.111] [0.11
{0.051} {0.051} {0.052} {0.162} {0.163} {0.169} {0.302} {0.302} {0.31
⟨0.017⟩ ⟨0.017⟩ ⟨0.016⟩ ⟨0.053⟩ ⟨0.053⟩ ⟨0.051⟩ ⟨0.074⟩ ⟨0.074⟩ ⟨0.07

log(1/ft ) −0.0003 −0.0003 −0.0003 −0.0003 0.001** 0.00
(0.0004) (0.0005) (0.001) (0.001) (0.001) (0.00
[0.001] [0.001] [0.001] [0.001] [0.003] [0.00
{0.001} {0.001} {0.002} {0.002} {0.003} {0.00
⟨0.0004⟩ ⟨0.0004⟩ ⟨0.001⟩ ⟨0.001⟩ ⟨0.001⟩ ⟨0.00

Constant 0.011 0.002* 0.002 −0.0001 0.011 0.011*** 0.010** 0.002 0.029 0.030 0.031 0.03
(0.004) (0.002) (0.002) (0.001) (0.007) (0.003) (0.004) (0.002) (0.011) (0.005) (0.005) (0.00
[0.008] [0.001] [0.002] [0.001] [0.018] [0.003] [0.004] [0.001] [0.030] [0.006] [0.008] [0.00
{0.005} {0.001} {0.002} {0.001} {0.018} {0.004} {0.006} {0.004} {0.040} {0.010} {0.012} {0.00
⟨0.009⟩ ⟨0.001⟩ ⟨0.001⟩ ⟨0.001⟩ ⟨0.015⟩ ⟨0.004⟩ ⟨0.004⟩ ⟨0.002⟩ ⟨0.022⟩ ⟨0.026⟩ ⟨0.026⟩ ⟨0.02
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j = 4

(4) (1) (2) (3) (4)

277 276 276 276 276
0.868 0.098 0.857 0.857 0.852
0.867 0.095 0.856 0.855 0.851

1/ft ))′ in (4). dy4t is the observed dividend yields, rf ,t is
standard deviation in the parenthesis, Newey and West
n the Cochrane–Orcutt-type standard deviation marked

27
Table 10 (continued).
ft estimated from the Campbell and Cochrane (1999)’s model

j = 1 j = 2 j = 3

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3)

T 279 279 279 279 278 278 278 278 277 277 277
R2 0.082 0.863 0.863 0.862 0.088 0.871 0.872 0.870 0.093 0.871 0.871
Adjusted R2 0.079 0.862 0.862 0.861 0.085 0.870 0.870 0.869 0.090 0.871 0.870

Notes: for all forecasting horizon j, we have zt = (1, dy4t )
′ in (1), zt = (1, dy4t , rf ,t )

′ in (2) , zt = (1, dy4t , rf ,t , log(1/ft ))
′ in (3) and zt = (1, rf ,t , log(

the log return on short interest rates and ft is the estimated P/D ratios. For each regression, the table reports OLS estimates and the associated
(1987) corrected standard deviation in the brackets, the Hodrick-type standard deviation in the curly brackets. The significance level is based o
in ⟨·⟩.
*p < 0.1.
**p < 0.05.
***p < 0.01.
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hort-run predictions, as a robustness check, we also report the t-statistics based on Cochrane–Orcutt-type standard errors.
onsistent with the results obtained in Ang and Bekaert (2006), we find no evidence for the predictability of observed
ividend yields for future interest rates. However, when we include the implied dividend yields as an additional predictor,
e find that those from a rational model have significant positive forecastability on future short interest rates. This result
trongly supports the theory that discount rates play a critical role in determining dividend yields.

. Conclusion

We have proposed a general framework to solve the Euler Equation via a penalized B-splines procedure. When
olving Euler equations, compared to existing numerical solution methods that often impose auxiliary assumptions on
he state dynamics and functional form of unknown functions for ease of implementation, our method avoids potential
isspecification while inheriting a closed-form solution. By transforming the Euler equation into a regression model

with endogeneity), our estimate enjoys computational advantages, as well as the optimal theoretical convergence rate
nd robust finite sample performance. Our newly designed penalized splines regression also distinguishes itself in the
onparametric literature by weakening the impact of the spline setting and instead letting the penalty play the key role
n smoothing. Through empirical analysis on return predictability, we find that higher implied dividend yields predict
ower future cash flows, but predict higher future interest rates at short horizons. Moreover, the implied and the observed
ividend yields have opposite impacts on cash flow predictions, which may indicate that they represent different sets of
nformation.

Our work opens several avenues for future research. Although our method is designed to solve asset pricing models
ith time-separable preferences, it may be extended to recursive preference models. With the use of iteration, we may
nable estimation of multiple unknown policy functions without solution misspecification and accumulative approxima-
ion errors. However, it may exclude the availability of a closed-form solution. Moreover, we point out that our new
olution method is built upon a well-posed linear Type-II integral equation framework and it is interesting to consider
xtending it for solving the general Type I equation.
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ppendix A. Proofs of theorems

.1. Proof of Theorem 3.1

Recall that the unpenalized estimator is expressed as f̂a(x) = φ(x)′b̃, where b̃ = (Ψ̂ ′Ψ̂ )−1Ψ̂ Y . Note that

b̃ − b = (Ψ̂ ′Ψ̂ )−1Ψ̂ ′ε + (Ψ̂ ′Ψ̂ )−1Ψ̂ ′(Y − ε) − b. (A.1)

First consider the variance part, which is associated with the first term in Eq. (A.1). Because of Lemmas B.1 and B.2,
we have

var(f̂a(x)|X ) =
1
M
φ(x)′(

Ψ̂ ′Ψ̂

M
)−1 Ψ̂

′E(εε′)Ψ̂
M

(
Ψ̂ ′Ψ̂

M
)−1φ(x)

≤ d−4
min(

Ψ̂ ′Ψ̂

M
)EX [(

φ(x)′Ψ̂ ′ε

M
)2] = Op(

1
M

),

or the bias term, note that Ψ̂ ′Ψ̂ = Ψ ′Φ(Φ ′Φ)−1Φ ′Ψ = Ψ̂ ′Ψ . As maxx|f (x)− fa(x)|= O(K−min(1+p,2ν)) and yt = Op(1), we
ave

y − ε − ψ ′(X )b = f (X ) − φ′(X )b + y (f (X ) − φ′(X )b) = O (K−min(1+p,2ν)).
t t t t t t+1 t t p

28
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ince the B-splines basis φ(x) has no more than p + 1 nonzero elements, φ(x)′Ψ̂ ′(Y − ε − Ψ b)/M = Op(K−min(1+p,2ν)).
herefore,

φ(x)′(
Ψ̂ ′Ψ̂

M
)−1 Ψ̂

′(Y − ε)
M

− φ(x)′b = φ(x)′(
Ψ̂ ′Ψ̂

M
)−1 Ψ̂

′(Y − ε − Ψ b)
M

= Op(K−min(1+p,2ν)).

By Assumption 3.5, the square of the bias term is negligible compared with the variance term. Therefore we conclude
that

EX [(f̂a(x)) − f o(x)]2 = Op(K−2min(1+p,2ν)) + Op(
1
M

) = Op(
1
M

) = Op(
K
T
). □

A.2. Proof of Theorem 3.2

Note that var[f̂ (x)|X ] = Op(1/M). By Assumption 3.5, EX [f̂a(x)−f o(x)] = op{
√
var[f̂a(x)|X ]}. Thus it suffices to show that

condition on X , f̂a(x)−EX [f̂a(x)]√
var[f̂a(x)|X ]

d
→ N(0, 1). Note that f̂a(x)−EX [f̂a(x)] =

∑T
i=1 aiεi, where ai = φ(x)′(Ψ̂ ′Ψ̂ )−1Ψ ′Φ(Φ ′Φ)−1φ(Xi).

Following Fan (1992) and Huang (2003), it suffices to verify the Lindeberg condition such that

max
1≤i≤T

a2i /var[f̂a(x)|X ] = δT (1 + op(1)),

where δT → 0 as T → ∞.
Note that the B-splines basis satisfies φi(x) ≥ 0 and

∑q
i=1 φi(x) = 1. Hence 0 < φ(x)′φ(x) ≤ 1 for any x. Therefore,

a2i M
2

= φ(x)′(
Ψ̂ ′Ψ̂

M
)−1Ψ

′Φ

M
(
Φ ′Φ

M
)−1φ(Xi)φ′(Xi)(

Φ ′Φ

M
)−1Φ

′Ψ

M
(
Ψ̂ ′Ψ̂

M
)−1φ(x)

≤ φ(x)′φ(x)φ′(Xi)φ(Xi)d−4
min(Ψ̂

′Ψ̂ /M)d2max(Ψ̂
′Ψ̂ /M)d−2

min(Φ
′Φ/M).

Together with Assumption 3.6 and Lemma B.1, a2i is of order 1/M2. Since var[f̂a(x)|X ] is of order 1/M , we conclude there
exists some constant c6 such that max1≤i≤T a2i /var[f̂a(x)|X ] ≤

c6
M (1 + op(1)). Therefore, Theorem 3.2 holds. □

.3. Proof of Theorem 3.3

Recall that the penalized estimator is expressed as f̂λ(x) = φ(x)′b̂, where

b̂ = (Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1Ψ̂ Y = (

Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1 Ψ̂

′Y
M

.

b̂ − b = (Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1Ψ̂ ′ε + (Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1Ψ̂ ′(Y − ε) − b.

First consider the variance part. Note that

var(f̂λ(x)|X ) = φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1 Ψ̂

′E(εε′)Ψ̂
M2 (

Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1φ(x).

s in Lemma B.2, d2max{
Ψ̂ ′E(εε′)Ψ̂

M2 } = Op(1/M). Since T = MK , it suffices to show that

φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1(

Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1φ(x) = Op(

1
Kh

). (A.2)

Denote V (c) = φ(x)′(cIq+λD′
νDν)

−1(cIq+λD′
νDν)

−1φ(x), and let aij be the (i, j)th element of (Iq+λD′
νDν)

−1. When λ ∼ (Kh)2ν
and i satisfies i/K → x, Li and Ruppert (2008) and Xiao (2019) show that aij, j = 1, . . . , q are asymptotically equivalent
to K Nadaraya–Watson kernel weights yielded by the 2νth order kernel function Hν(z)11 using the equivalent bandwidth
h. Hence for any constant 0 < c < ∞, V (c) = O(

∑q
i=1 a

2
ij) = O( 1

Kh ).
By Lemma B.1, we have

V (c̄2)(1 + op(1)) ≤ φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1(

Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1φ(x) ≤ V (c2)(1 + op(1)). (A.3)

herefore, Eq. (A.2) holds and hence we prove var(f̂λ(x)|X ) = Op( 1
Kh )Op( 1

M ) = Op( 1
Th ).

11 The kernel function is defined as Hν (z) =
1
2ν

∑ν

l=1 exp(−ζl|z|), and ζ1, . . . , ζν are the ν complex roots of z2ν + (−1)ν = 0 such that all ζl ,
1 ≤ l ≤ ν have positive real parts.
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For the bias term, using the fact that Ψ̂ ′Ψ̂ = Ψ̂ ′Ψ , we have

φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1 Ψ̂

′(Y − ε)
M

− φ(x)′b

= φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1 Ψ̂

′(Y − ε − Ψ b)
M

− φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1λD′

νDνb. (A.4)

Similar as in the proof of Theorem 3.1, we have φ(x)′Ψ̂ ′(Y − ε − Ψ b)/M = Op(K−min(1+p,2ν)). Note that d2max(
Ψ̂ ′Ψ̂
M +

λD′
νDν)

−1
≤ d2min(

Ψ̂ ′Ψ̂
M )−1

≤ c−1
2 (1 + op(1)). Hence the first term in Eq. (A.4) is Op(K−min(1+p,2ν)). Note that φ(x)′D′

νDνb =

O(K−2ν). Together with Assumption 3.7,

φ(x)′(
Ψ̂ ′Ψ̂

M
+ λD′

νDν)
−1λD′

νDνb ≤ λdmin(
Ψ̂ ′Ψ̂

M
)−1φ(x)′D′

νDνb = (Kh)2νOp(K−2ν) = Op(h2ν).

ince Assumption 3.7 also implies that h2ν dominates the spline approximation bias K−min(1+p,2ν), we conclude that

EX [(f̂λ(x)) − f o(x)]2 = Op[(
1
Th

+ h4ν)].

Correspondingly, the optimal convergence rate will be achieved when the rate of the square of the bias, h4ν , grows
t the same rate as the variance, 1

Th . Suppose hopt ∼ cT−1/(4ν+1) for some positive constant c . Then the optimal rate of
= (Khopt )2ν ∼ c2νK 2νT−2ν/(4ν+1). □

.4. Proof of Theorem 3.4

First, we show that Lemma B.1 still holds if Assumption 3.1 is replaced by Assumption 3.8.
According to de Boor (1978), we have

c0U (1 + o(1))(
q∑

i=1

a2i /K ) ≤

∫
s2(x)πU (x)dx ≤ c̄0U (1 + o(1))(

q∑
i=1

a2i /K ), (A.5)

c0L(1 + o(1))(
q∑

i=1

a2i /K ) ≤

∫
s2(x)πL(x)dx ≤ c̄0L(1 + o(1))(

q∑
i=1

a2i /K ). (A.6)

y Assumption 3.8, we have

c0L(1 + op(1))(
q∑

i=1

a2i /K ) ≤
1
T

T∑
i=1

s2(Xi) ≤ c̄0U (1 + op(1))(
q∑

i=1

a2i /K ). (A.7)

Note that the relationship 1
T

∑T
i=1 s

2(Xi) = a′Φ ′Φa/M holds for any a = (a1, . . . , aq) with norm 1, if we define s(x)
such that its ith coefficient associated with φi(x) is

√
Kai.

Hence Eq. (B.1) still holds. Similarly, we could also conclude that Eq. (B.2) holds.
Then using the same arguments as in Theorems 3.1 and 3.3, we could conclude that Theorem 3.4 holds. □

A.5. Proof of Theorem 3.5

Recall that Ψ̂ = Φ(Φ ′Φ)−1Φ ′Ψ . Hence Ψ̂ ′Ψ̂ = Ψ̂ ′Ψ = Ψ ′Ψ̂ = Σ . Let Iq be the q × q identity matrix with
q = K + p. Let UΓ U ′ be the eigendecomposition of Σ−1/2D′

νDνΣ
−1/2. Note that ri is the ith diagonal element of Γ .

Define H = Ψ (Ψ̂ T Ψ̂ + λ∗D′
νDν)

−1Ψ̂ ′. Then

trace(H) = trace[Ψ̂ ′Ψ (Ψ̂ T Ψ̂ + λ∗D′

νDν)
−1

]

= trace[(I + λ∗Σ−1/2D′

νDνΣ
−1/2)−1

]

=

K+p∑
j=1

1
1 + λ∗rj

,

nd it follows immediately that

(Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1

= Σ−1/2(Iq + λ∗Σ−1/2D′

νDνΣ
−1/2)−1Σ−1/2

= Σ−1/2U(I + λ∗Γ )−1U ′Σ−1/2.
q
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Define Z1 = U ′Σ−1/2Ψ ′Y and Z2 = U ′Σ−1/2Ψ̂ ′Y . Then

Y ′Ŷ = Y ′HY

= Y ′ΨΣ−1/2(IK+p + λ∗Σ−1/2D′

νDνΣ
−1/2)−1Σ−1/2Ψ̂ ′Y

=

K+p∑
i=1

1
1 + λ∗ri

z1,iz2,i.

(A.8)

where z1,i and z2,i are the ith element of Z1 and Z2 respectively. Moreover,

∥Ŷ∥
2

= Ŷ ′Ŷ
= Y ′Ψ̂ (Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1Ψ ′Ψ (Ψ̂ ′Ψ̂ + λ∗D′

νDν)
−1Ψ̂ ′Y

= Y ′Ψ̂Σ−1/2U(Iq + λ∗Γ )−1U ′Σ−1/2Ψ ′ΨΣ−1/2U(Iq + λ∗Γ )−1U ′Σ−1/2Ψ̂ ′Y

= Z ′

2(Iq + λ∗Γ )−1ŨΓ̃ Ũ ′(Iq + λ∗Γ )−1Z2

= ∥

√
Γ̃ Ũ ′(Iq + λ∗Γ )−1Z2∥2

where ŨΓ̃ Ũ ′ is the eigendecomposition of the matrix U ′Σ−1/2Ψ ′ΨΣ−1/2U .

Note that the (i, j)th element of
√
Γ̃ Ũ ′(Iq +λ∗Γ )−1 is wi,j(λ∗)Ũj,i, where wi,j(λ∗) =

√
Γ̃i,i

1+λ∗Γj,j
. Define W (λ∗) be the matrix

hose (i, j)th element iswi,j(λ∗). Then
√
Γ̃ Ũ ′(Iq+λ∗Γ )−1

= W (λ∗)⊙Ũ ′, where ⊙ is the Hadamard product which calculate
elementwise product. Define Z3(λ) such that

Z3(λ∗) = (W (λ∗) ⊙ Ũ ′)Z2. (A.9)

Let z3,i(λ∗) be the ith element of Z3(λ∗). Then we have ∥Ŷ∥
2

= ∥Z3(λ∗)∥2
=
∑K+p

i=1 z23,i(λ
∗).

Together with Eq. (A.8), we prove that Theorem 3.5 holds. □

Appendix B. Lemmas with proofs

We state some technical lemmas. The first lemma is about the design matrix Φ ′Φ , Ψ ′Ψ , and Ψ̂ ′Ψ̂ .

Lemma B.1. Let M = T/K. Suppose Assumptions 2.1–3.3 hold. Then there exist positive constants c1, c̄1, c2, c̄2 such that

(a)

c1(1 + op(1)) ≤ d2min[
Φ ′Φ

M
] ≤ d2max[

Φ ′Φ

M
] ≤ c̄1(1 + op(1)) (B.1)

(b)

c2(1 + op(1)) ≤ d2min[
Ψ̂ ′Ψ̂

M
] ≤ d2max[

Ψ̂ ′Ψ̂

M
] ≤ c̄2(1 + op(1)), (B.2)

where d2min(A) and d2max(A) denote the minimum and maximum singular values of A respectively.

Proof of Lemma B.1. Follow the proof of Zhou et al. (1998), we first establish the following results: There exist constants
0 < c0 < c̄0 < ∞ such that, for any s(x) =

∑q
i=1 aiφi(x),

c0(1 + op(1)) ≤
1
T

T∑
i=1

s2(Xi) ≤ c̄0(1 + op(1)), (B.3)

According to de Boor (1978), there exist constants c̃L and c̃U such that

c̃L
q∑

i=1

a2i /K ≤

∫
s2(x)dx ≤ c̃U

q∑
i=1

a2i /K . (B.4)

Denote QT (x) as the empirical density of X . According to Glivenko–Cantelli theorem, maxx|QT (x) − Q (x)|= Op(T−1/2) and
hence

1
T

T∑
s2(Xi) =

∫
s2(x)dQT (x) =

∫
s2(x)dQ (x) + op(1)(

q∑
a2i /K ).
i=1 i=1
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ogether with Eq. (B.4), we conclude Eq. (B.3) holds because

(min
x
π (x)c̃L + op(1))(

q∑
i=1

a2i /K ) ≤
1
T

T∑
i=1

s2(Xi) ≤ (max
x
π (x)c̃U + op(1))(

q∑
i=1

a2i /K ).

Note that d2min
Φ′Φ
M = min∥a∥=1 a′Φ ′Φa/M , d2max

Φ′Φ
M = max∥a∥=1 a′Φ ′Φa/M . For any a = (a1, . . . , aq) with norm 1, we could

define a specific function s(x) such that its ith coefficient associated with φi(x) is
√
Kai. Then a′Φ ′Φa/M =

1
T

∑T
i=1 s

2(Xi).
Hence Eq. (B.1) holds.

Recall that Ψ̂ ′Ψ̂ = Ψ ′Φ(Φ ′Φ)−1Φ ′Ψ . Hence d2min
Ψ̂ ′Ψ̂
M ≥ d2min

Ψ ′Φ
M (d2max

Φ′Φ
M )−1. Together with Assumption 3.6

nd Eq. (B.1), the left hand side of Eq. (B.2) holds. To prove the right hand side of Eq. (B.2), note that the maximum
igenvalue of Φ(Φ ′Φ)−1Φ ′ is 1. It suffices to show that d2max

Ψ ′Ψ
M ≤ c2(1 + op(1)) for some positive constant c2.

For any s(x) =
∑q

i=1 aiφi(x), we have (s(Xi) − yi+1s(Xi+1))2 ≤ 2s2(Xi) + y4i+1 + s4(Xi). Similar as Eq. (B.3), there exists
ome constant c3 such that 1

T

∑T
i=1 s

4(Xi) ≤ c3(1 + op(1)). By Law of large numbers, 1
T

∑T
i=1 y

4
i+1 ≤ c̄3(1 + op(1)) for some

constant c̄3. Hence

1
T

T∑
i=1

(s(Xi) − yi+1s(Xi+1))2 ≤ (2c̄1 + c3 + c̄3)(1 + op(1)), (B.5)

herefore, d2max
Ψ ′Ψ
M ≤ (2c̄1 + c3 + c4)(1 + op(1)), and the right hand side of Eq. (B.2) also holds. Therefore, Lemma B.1 is

roved. □

Our second lemma facilitates us to control the bound for the variance similarly as the dependence among the errors
s not very strong.

emma B.2. Assume Assumptions 3.2 and 3.4. Then

(a) There exists a finite positive constant c4 such that E(εε′) ≤ c4IT ;
(b) EX [(φ(x)′Ψ̂ ′ε/M)2] = Op( 1

M ).

Proof of Lemma B.2. First, we prove part (a). Suppose an arbitrary vector b̄ = (b̄1, . . . , b̄T ) and a finite number c4 > 0
so that c4 ≥ c5, where c5 = ∆̃

2
4+δ
∑

∞

τ=0
22−2/(4+δ)(4+δ)

2+δ α(τ )1−
2

4+δ for some δ > 0, and α(τ ) is the mixing coefficients. Then
e have

b̄′(c4IT − Eεε′)b̄ = c4
T∑

t=2

b̄2t −

T∑
t=2

T∑
s=2

b̄t b̄sE(εtεs)

≥ c4
T∑

t=2

b̄2t −
1
2

T∑
t=2

T∑
s=2

(b̄2t + b̄2s )E|εtεs|

= c4
T∑

t=2

b̄2t −

T∑
t=2

b̄2t

T∑
s=2

E|εtεs|

≥ c4
T∑

t=2

b̄2t −

∞∑
τ=0

22−2/(4+δ)(4 + δ)
2 + δ

α(τ )1−
2

4+δ (E|εt |
4+δ)

2
4+δ

T∑
t=2

b̄2t

≥ (c4 − c5)
T∑

t=2

b̄2t .

ence, c4IT −E(εε′) is positive semi-definite. Recall that the B-splines basis φ(x) has no more than p+1 nonzero elements
nd hence φ(x)′φ(x) = O(1). Together with Lemma B.1, we have

EX {

(
φ(x)′Ψ̂ ′ε

M

)2

} =
1
M

[φ(x)′(
Ψ̂ ′E(εε′)Ψ̂

M
)φ(x)] ≤

φ(x)′φ(x)
M

d2max(
Ψ̂ ′Ψ̂

M
)d2max(Eεε

′) = Op(
1
M

). □
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