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The trapping force originates from

plasmonic nanomaterials under

illumination
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(�2 nm) in solution by using an adjustable plasmonic optical nanogap, which

opens an avenue to manipulate single molecules and other objects in the size

range of primary interest for physics, chemistry, and life and material sciences

without the limitations of strong bonding group, ultra-high vacuum, and ultra-low

temperature, and makes possible controllable single-molecule manipulation and

investigation as well as bottom-up construction of nanodevices and molecular

machines.
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Progress and Potential

The volume of the object that can

be trapped in solution has been

continuously pushed toward an

ultimate goal of the single-

molecule level over the past 50

years, and is considered as the key

step for investigating single-

molecule processes as well as

construction of nanodevices and

molecular machines. However,

until now no technique has been

able to achieve this goal due to

the significant Brownian motions.

Here, we demonstrate that a free

single molecule of �2 nm can be

directly trapped, investigated,
SUMMARY

The volume of the object that can be manipulated in solution is contin-
uously decreasing toward an ultimate goal of a single molecule. How-
ever, Brownian motions suppress the molecular trapping. To date,
free-molecule trapping in solution has not been accomplished. Here,
we develop a strategy to directly trap, investigate, and release single
molecules (�2 nm) in solution by using an adjustable plasmonic optical
nanogap, which has been further applied for selective single-molecule
trapping. Comprehensive experiments and theoretical simulations
demonstrated that the trapping force originated fromplasmonic nano-
materials. This technique opens an avenue to manipulate single mole-
cules and other objects in the size range of primary interest for physics,
chemistry, and life and material sciences without the limitations of
strong bonding group, ultra-high vacuum, and ultra-low temperature,
and makes possible controllable single-molecule manipulation and
investigation as well as bottom-up construction of nanodevices and
molecular machines.
and released in solution using

plasmonic nanomaterials, pushing

the volume of a free object that

can be manipulated in solution

down to an unprecedented 2 nm,

thus offering an approach for the

trapping of single molecules or

other objects in the size range of

primary interest to physics,

chemistry, and life and material

sciences without the limitations of

strong bonding group, ultra-high

vacuum, and ultra-low

temperature.
INTRODUCTION

The manipulation of free molecules is critical for investigating single-molecule pro-

cesses in physics, chemistry, and material and life sciences, as well as construction of

nanodevices and molecular machines. However, molecular trapping is strongly sup-

pressed by Brownian motions. Three strategies have been developed to trap single

molecules. One strategy is to bind molecules to microstructures to scale up trapping

forces and then manipulate them using optical tweezers,1–4 magnetic tweezers,5,6 or

a scanning probe microscope7,8, which is greatly limited by strong interactions be-

tween molecules and microstructures while it is challenging to achieve controllable

trapping and release. Another strategy is based on laser cooling in an ultra-high vac-

uum (UHV) condition to reduce thermal fluctuations,9,10 which has been used to

directly trap cesium dimer and strontium monofluoride.11,12 However, it is difficult

to extend this technique to more complex molecules, and the required UHV system

limits its applications. The third approach, anti-Brownian electrokinetic (ABEL) trap-

ping, was also able to overcome Brownian motion in a 2D plane by combining a fast

detection scheme with real-time feedback. However, the molecules trapped by an

ABEL trap should be fluorescent and are randomly moving in an area of several hun-

dreds of nanometers.13,14 Until now, the trapping of a free object with a size of

several nanometers in solution has remained a major challenge. It is highly desirable

to develop a method to trap free single molecules directly (Supplemental Informa-

tion shows the main techniques currently used for single-molecule manipulation

and the evolution of optical trapping, Figures S1 and S2).

Optical trapping is a promising way to achieve this goal. Since the first report of the

use of optical force to trap micrometer-sized materials in 1970,1 it has been
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Figure 1. Schematic of Direct Single-Molecule Plasmonic Optical Trapping Compared with Other Optical Trapping Methods

(A) Conventional optical trapping relies on the field gradients near the focus of a laser beam and are commonly used for trapping microspheres.

(B) Plasmonic optical trapping is based on the enhanced electromagnetic field by SPs and have two typical modes: one mode is using the focused laser

to trap plasmonic nanoparticles while the other mode is using the plasmonic nanostructure to trap dielectric nanoparticles.

(C) Single-molecule plasmonic optical trapping is composed of two gold nanotips under illumination to provide a substantial localized electromagnetic

field due to the SP effect. During the single-molecule trapping experiments, the tunneling current through the nanogap is measured by a lab-built

mechanically controllable break junction with high mechanical stability. Two laser beams (514 nm, 691 nm) were used to match the interband transition

and surface plasmon resonance, respectively. The setup allows us to change the wavelength, polarization, and intensity of the incident light. The default

light intensity is 50 mW (~106 W/m2).
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commonly used to manipulate dielectric microspheres, single cells, or other objects

(Figure 1A).6,15–18 However, conventional optical trapping, which depends on the

field gradients near a focused laser beam, have a diffraction-limited trapping vol-

ume.1,19–21 Around the year 2000, through theoretical simulations, several groups

proposed to trap nanosized particles, and even single molecules, based on the

enhanced electromagnetic field by surface plasmons (SPs), which offers an opportu-

nity to overcome the diffraction limit of conventional optical trapping.22–24 Soon

afterward, plasmonic optical trapping was experimentally demonstrated to trap par-

ticles with sub-wavelength volumes (10–250 nm), including trapping dielectric nano-

particles with the assistance of a plasmonic nanostructure25–28 and trapping plas-

monic nanoparticles in diffraction-limited laser beams (Figures 1B and S2).29–31

Plasmonic optical trapping was then extended to filtrate dielectric particles with

different dimensions,32 trap proteins,33,34 generate enantioselective optical

forces,35 drive a nanorotary motor,36 and trap a gold nanoparticle in a plasmonic

nanohole for single-molecule detection.37 Using surface enhanced single-molecule

spectroscopy, several previous works also emphasized the effects of plasmonic op-

tical trapping.23,38 However, the ultimate goal of directly trapping single chemical

molecules has not yet been accomplished. According to theoretical investigations,

a localized and sufficient optical force, arising from an electromagnetic field

gradient, is required to overcome the Brownian motions.22–24,39 Moreover, an in

situ single-molecule identification technique is essential to detect single-molecule

trapping events.

Here, we achieved direct single-molecule (�2 nm) optical trapping and release in so-

lution using two coupled plasmonic nanotips controlled by a mechanically control-

lable break junction setup,40–43 which supplies a strong electric field in the gap un-

der illumination wherein the individual molecule is trapped. Meanwhile, the
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tunneling current through the nanogap was used to distinguish the trapping states

of the target single molecule. On the other hand, single-molecule plasmonic optical

trapping brings new opportunities to the field of molecular electronics,44–47 such as

constructing optically controlled single-molecule junction and increasing the detec-

tion efficiency. By changing the wavelength, polarization, and intensity of the inci-

dent light, we proved that the SP-enhanced electromagnetic field plays a critical

role in the single-molecule trapping, which was also supported by theoretical simu-

lations of the electromagnetic field, local heating, and optical forces generated by

SPs. Benefiting from the localized enhancement of the electromagnetic field by

SPs, single-molecule trapping can be performed under non-focused illumination

(50 mW, �106 W/m2), in contrast to conventional optical trapping systems (109–

1012 W/m2). Moreover, the SP-based trapping effect is universal for other molecules

and even can be further applied for selective single-molecule trapping.
RESULTS

Single-Molecule Plasmonic Optical Trapping

As shown in Figure 1C, the experimental setup includes the application of an optical

trapping force to trap a single molecule in solution and the use of a tunneling current

to distinguish the trapping states of the target molecules (Figure S3).48–50 To

generate a large electromagnetic field and gain sufficient trapping force for sin-

gle-molecule manipulation, we placed two gold tips in proximity to form a nanogap

with an adjustable size of 0–3 nm.51–54 In addition, the current through the nanotips

was measured under ambient conditions using a lab-built current-voltage converter

with a sensitivity of 1 pA and a sampling rate of 30 kHz. During the measurement, the

two electrodes were repeatedly moved together and apart with a sub-angstrom res-

olution in the solution containing the target molecules by controlling the movement

of the underlying piezo stacks.50 When a molecule is picked up by the nanotips, the

molecule bridges the separated electrodes to form a Au-molecule-Au junction. A

discernible plateau can then be observed in the recorded conductance-distance

traces,55 which can be used to distinguish single-molecule trapping events within

the nanogap. Moreover, the formation probability of molecular junction can be

calculated from the distribution of plateau length,42,56 which provides an indicator

to show whether the SPs’ effects induce the molecular trapping.

To investigate the effect of illumination on the single-molecule trapping probability,

we chose OPE3-SMe (1,4-bis((4-(methylthio)phenyl)ethynyl)benzene) was chosen as

a model molecule (Supplemental Information and Figure S4), as OPE3-SMe does not

absorb the selected laser (Figure S5) and its conductance remains constant under

illumination.57 Moreover, there is no chemisorption between it and the gold surface.

Thus it is difficult to be trapped by other methods. Figure 2A displays typical conduc-

tance-distance traces recorded by a lab-built mechanically controllable break junc-

tion (MCBJ) with 100-mV bias. The curves show clear steps at integer multiples of

G0 = 23 102/h, i.e., the fundamental quantum conductance.40,41 Without the probe

molecule, an abrupt conductance decrease over several orders of magnitude ap-

peared during the stretching process of the two nanotips and no conductance

plateau was observed in the range lower than 1 G0 (Figure 2A, black). With probe

molecules (Figure 2A, gray), some conductance traces show well-defined plateaus

in the range of 10�4 to 10�5 G0, suggesting the formation of single-molecule junc-

tions between the two gold tips. Under illumination, the conductance plateaus of

the molecular junctions appear in a similar range (Figure 2A, green and orange).

For all experiments, thousands of individual traces were recorded, and the corre-

sponding all-data-point two-dimensional (2D) conductance-distance histograms
1352 Matter 3, 1350–1360, October 7, 2020



Figure 2. Detection of the Single-Molecule Trapping and Release

(A) Typical individual conductance-distance traces from break junction measurements of OPE-SMe molecules, where black represents the solvent

without the probe molecule, gray represents OPE3-SMe without illumination, green represents OPE3-SMe under 514-nm illumination, and orange

represents OPE3-SMe under 691-nm illumination. Two typical individual traces are shown for every condition.

(B) 2D conductance-distance histograms of OPE3-SM measured under different conditions.

(C) Relative displacement distributions of conductance-distance traces from the measurements corresponding to (B). Gaussian fitting is used to find the

probability of molecular junction formation, where the peak marked T comes from the tunneling traces and that marked M is from the molecular junction

traces.

(D) Wavelength-controlled single-molecule trapping.

(E) Single-molecule trapping and release under chopped incident light (691 nm), which shows high repeatability. The concentration of OPE3-SMe

molecules is 0.001 mM. Displacement distributions were determined from 10�0.3 to 10�6 G0.
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were constructed to extract statistical results (Figure 2B). Without the probe mole-

cule, the histogram shows no conductance cloud below 1G0. When the probe mole-

cule was added, a conductance cloud emerged at approximately 10�4 to 10�5 G0,

which is consistent with the previous report.57 The probable single-molecule

conductance remained constant in all measurements, which was also further sup-

ported by the one-dimensional (1D) conductance histograms (Figure S6). However,

under 691-nm laser illumination the cloud becomes more pronounced, consistent

with the increased intensity of molecule conductance in 1D conductance histograms

(Figure S6), compared with that without illumination or with 514-nm laser illumina-

tion, which suggests that the formation probability of the molecular junction

increased.

The single-molecule trapping probability can be quantitatively determined from the

relative displacement distribution.42,56 In addition to the solvent experiment, where

a single peak represents the tunneling current through the solvent within the nano-

gap (T in Figure 2C), two peaks appeared in the displacement distribution in the
Matter 3, 1350–1360, October 7, 2020 1353
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presence of target molecules (T and M). Thus, the single-molecule trapping proba-

bility can be determined from the peak area ratio of the molecular junction peak (M)

(Figure 2C). Without illumination, the formation probability is approximately 30%,

which represents the background probability to pick up a molecule (P0). This prob-

ability is mainly based on the free diffusion of molecules and the interaction between

the molecule and electrode. When exposed to 691-nm laser, the formation proba-

bility improved to 65%, indicating it became easier for the nanotips to pick up a sin-

gle molecule. Moreover, the minor effect on the trapping probability under 514-nm

illumination demonstrates that the trapping probability depends on the wavelength

of the incident light, suggesting that the trapping effect is driven by the SPs’ effect.

The incident light in the SP region leads to significant localized electromagnetic

enhancement; in contrast, the enhancement at the interband transition region of

gold is limited.52,54,58

Next, we carried out real-time single-molecule trapping and release by lasers with

different wavelengths (Figures S7 and S8) and the chopped 691-nm laser (Figures

S9–S11). Figure 2D shows the wavelength-controlled single-molecule trapping

and release. Similar to the steady-state experiments, the formation probability of

a single-molecule junction does not change under 514-nm illumination. When the

incident light was adjusted from 514 nm to 691 nm, the trapping probability

increased from�30% to over 60%. When the incident light was switched off, the for-

mation probability reverted to the initial state, which indicates the release of the

trapped molecule. Figure 2E demonstrates continuous trapping and release cycles

whereby the trapping probability remains constant without any attenuation after six

cycles lasting for more than 60 min, suggesting the trapping and release of a single

molecule were highly reversible, reproducible, and robust.

Theoretical Calculation of the Electromagnetic Field and Optical Force

To reveal the driving force of the single-molecule trapping and release, we simu-

lated the photothermal effect, electromagnetic field, and optical forces generated

by SPs by using the finite element method.23,52,59 As the quantized conductance

steps occurring at integer multiples ofG0 suggest the atomic shape of the gold elec-

trodes, we constructed a calculation model with 0.25-nm surface roughness (details

are shown in section 5 of Supplemental Information, Table S1, and Figure S12, and

the roles of surface roughness and gap size are also discussed in Figures S20–S22).53

Firstly, the calculated plasmonic spectra of the coupled nanotips showed a reso-

nance at about 680 nm (Figures S13 and S14), which agreed well with the trapping

effect observed under 691-nm illumination.We then calculated the photothermal ef-

fect under 514-nm and 691-nm illumination. This revealed that the temperature in-

creases near the electrodes are both negligible (<0.2 K, Figure S15), demonstrating

that a photothermal effect is not responsible for the molecular trapping. Figure 3A

displays the spatial distribution of the electromagnetic field around the gold tips un-

der 691-nm illumination with horizontal polarization. An electromagnetic hotspot is

located in the nanogap, with a large field enhancement approaching 2,000. As

shown in Figures 3B and 3C, within the hotspot region the electromagnetic gradient

generates an optical force as large as several piconewtons, which is able to over-

come thermal fluctuations (kT) and thus enables the optical trapping of single mol-

ecules at room temperature, consistent with previous theoretical reports (Table

S2).22–24 The optical force vector shown in Figure 3D further confirms the force

flow and the optical trapping, where the molecules in the vicinity of the nanogap

are attracted to the hotspot region, increasing the formation probability of the mo-

lecular junction (Figure S16). We further introduced the trapping potential (U) to

describe the decreased energy due to the interaction of the optical field (details
1354 Matter 3, 1350–1360, October 7, 2020



Figure 3. Theoretical Calculation of the Electromagnetic Field and Optical Force under

Illumination (Front View, X-Z Plane)

(A) Spatial distribution of the logarithm of the electric field enhancement.

(B) The X component of the gradient forces (in the polarization direction) shows a negative force

(from +X to �X) on the left side of the hotspot and a positive force on the right side, which indicates

that the molecules tend to move to the surface of the tip.

(C) The Z component of the gradient forces shows a negative force (from +Z to �Z) at the top of the

hotspot and a positive force at the bottom, which indicates that molecules will be drawn inside the

hotspot.

(D) Mapping of the optical force vector, which shows that molecules in the vicinity of the junction

will be attracted to the hotspot due to the gradient force. The intensity is normalized to show the

complete vector flow.

(E) Spatial distribution of the trapping potential (U) in units of kT0 (T0 = 300 K), under 691-nm laser

illumination.

(F) Calculated trapping potential along the red line shown in (E) under light of different wavelengths

and different polarizations to the nanotip couple, specifically, 691 nm with horizontal polarization

(red line), 514 nm with horizontal polarization (black line), and 691 nm with vertical polarization (blue

line). The insets give the top view of the nanotips and the polarization of the incident light.
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are shown in Section 5.2 of Supplemental Information and Figure S17). Figure 3E

shows the spatial distribution of the trapping potential in units of kT0, where k is

Boltzmann’s constant and T0 is �300 K. Based on the Boltzmann distribution, the

enhancement of trapping probability can be described as Ep = exp(�U/kT0). The

trapping probability (P) can be described as Ep∙P0 = P0 exp(�U/kT0), where U is

linear with the light intensity. Under 691-nm laser illumination, the trapping potential

is approximately �0.6 kT0, and thus the trapping probability can be improved by

approximately 2-fold, which agrees well with the experimental result, i.e., the

enhancement of trapping probability from about 30% to 60%. In contrast, a limited

electromagnetic enhancement is found under 514-nm laser illumination, which lies in

the interband transition region of gold nanotips. The amplitude decreased consid-

erably, which is consistent with the unchanged trapping probability in experiments

(see Figure S18 for details). The calculation also demonstrates that incident light with

vertical polarization would provide a small negative potential in the gap, which

cannot improve the molecular trapping (Figures 3F and S19).

Single-Molecule Trapping and Release Depending on the Laser Polarization

and Intensity

To further validate the SP-induced trapping effect, we performed single-molecule

trapping experiments under the incident light (691 nm) with different polarizations,
Matter 3, 1350–1360, October 7, 2020 1355



Figure 4. Single-Molecule Trapping and Release by Varying the Laser Polarization and Intensity

(A) Polarization-controlled single-molecule trapping and release. The black arrows represent the polarization of the incident light.

(B) Trapping probability as a function of the laser intensity (691 nm). This can be well fitted with a single exponential function, where P0 and A are

constants, and P0 is the trapping probability without illumination. The error bars represent the relative deviation.
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as shown in Figure 4A (the laser power is 25 mW, see Section 6 in Supplemental

Information and Figures S23 and S24). The incident light with horizontal polariza-

tion to the nanotip couple significantly improved the formation probability of the

molecular junction from 30% to 45%. In contrast, under illumination with vertical

polarization, the formation probability of the molecular junction was similar to

that without illumination, which agrees well with the calculations. These results

further proved that the trapping effect was mainly from SPs. Figure 4B shows

the trapping probability as a function of the laser intensity, which can be fitted

with a single exponential function. The excellent fitting of the experimental data

to the derived equations in theory supports our conclusion that the trapping force

originates from the enhanced local electromagnetic field of SPs (Supplemental In-

formation; Figures S25 and S26). Similar trapping and release phenomena were

observed in experiments with different molecules (Supplemental Information; for

more details, see Figures S27–S33), suggesting that the SP-induced trapping

effect is universal for different molecules.
Single-Molecule Plasmonic Optical Trapping for Selective Single-Molecule

Trapping

Theoretically, the optical trapping force is decided by the molecular polarizability,

which is highly related to the molecular volume (see Section 5 in the Supplemental

Information for more details). Generally, for molecules with similar structures, the

larger size would lead to a larger polarizability. Thus, this specificity can be exploited

to achieve a trapping selectivity for different molecular sizes. To demonstrate the

potential of our method for selective molecular trapping, we investigated two mol-

ecules with different lengths and the same anchoring groups (Figure 5A; Section 8 in

Supplemental Information; Figures S34–S37). Figure 5B shows the schematic of se-

lective single-molecule optical trapping. If the optical force can only trap one mole-

cule of the two, the formation probability of the molecular junction will increase

selectively. Figures 5C and 5D show the all-data-point 2D conductance-distance his-

tograms without and with 691-nm illumination. Under illumination, the conductance

cloud of OPE3-SMe (the cloud emerged in the range of 10�4 to 10�5 G0) became

more pronounced, while the intensity of the conductance cloud of OPE2-SMe (the

cloud emerged in the range of 10�3 to 10�4G0) showed no change, even with a slight

decrease. These findings indicated the selective increase of single-molecule trap-

ping probability, which is further proved by the 1D conductance histograms (Figures

5E and S37). Quantitatively, the relative formation probability of OPE3-SMe junction

over OPE2-SMe junction increased from 52% to 80% under 691-nm illumination
1356 Matter 3, 1350–1360, October 7, 2020



Figure 5. Selective Single-Molecule Trapping

(A) Structures of the OPE3-SMe (~2 nm) and OPE2-SMe (~1.5 nm) that were used for the selective

trapping experiment.

(B) Schematic of selective single-molecule plasmonic optical trapping.

(C) 2D conductance-distance histograms in dark conditions.

(D) 2D conductance-distance histograms under 691-nm illumination.

(E) 1D conductance histograms of the mixed solution including OPE2-SMe and OPE3-SMe in dark

conditions (gray) and under 691-nm illumination (orange).
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(details are shown in Section 8 of Supplemental Information and Table S3). This

experiment not only shows the capability of our method in selective single-molecule

trapping but also proves that the optical forces make the main contribution to the

trapping event.

DISCUSSION

This single-molecule plasmonic optical trapping technique provides the first demon-

stration that a free single molecule of�2 nm can be directly trapped and released in

solution using a plasmonic optical nanogap, pushing the volume of a free object that

can bemanipulated in solution down to an unprecedented 2 nm. Comprehensive ex-

periments and theoretical calculations revealed that the trapping force originates

from the enhanced localized electromagnetic field generated by plasmonic nanoma-

terials. This SP-inducedmass transport also brings further insight to plasmonic appli-

cations, e.g., sensors, enhanced spectroscopy, and chemistry, as well as molecular

electronics. It offers an approach for the controllable trapping of single molecules

or other objects in the size range of primary interest to physics, chemistry, and nano-

technology life and material sciences without the limitations of strong bonding

group, UHV, and ultra-low temperature, thus assisting explorations at the single-

molecule level, for example, investigating molecule-protein interactions, controlling

single-molecule reactions, or constructing nanodevices and molecular machines.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Prof. Zhong-Qun Tian (zqtian@xmu.edu.cn).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All data supporting the main findings of the paper are available within the main pa-

per and its Supplemental Information files and from the Lead Contact upon reason-

able request.
Experimental

The single-molecule trapping was performed by the home-built setup combined

with light control component and single-molecule detection system. The light con-

trol component consists of lasers with different wavelengths, reflector, polarizer, and

chopper. Single-molecule measurements were performed using a home-built MCBJ

setup. For single-molecule trapping, a coupling of two gold nanotips supplying

extremely strong electric field enhancement was used as the single-molecule twee-

zers; meanwhile they were used as the electrodes of the MCBJ setup to distinguish

the trapping state of the single molecule. The test-molecule solution (0.001 mM in

mixture solvent of tetrahydrofuran/mesitylene 1:4) was pumped into the liquid cell

(100 mL). During the measurement, the molecule can be picked up by the tips to

form the Au-molecule-Au junction. The entire traces, as acquired during the opening

and closing process, were recorded for further data analysis. The above cycle was

repeated about1,000 times at each set of experimental conditions. In data process-

ing for constructing the conductance histogram, the total counts at each condition

were normalized by 1,000 traces unless otherwise noted. The complete data analysis

is based on a lab-developed program (WA-BJ code), which runs under LabVIEW

2011.
Theoretical

The simulation of optical forces is performed using commercial finite elements

method software COMSOL Multiphysics. The single molecule is considered as a

point-like dipole with isotropic dipolar polarizability a(u) = a0(u) + {a00(u). The polar-

izability a is a parameter describing the induced electronic dipolar transition from

the highest occupied to lowest unoccupied molecular orbitals, and thus is related

to transition strength. In this case, the optical force F upon molecules is the sum

of gradient force Fg = 0.5a0V|E|2 and scattering force Fs = 0.5ka00V|E|2, where E is

the electric field and k is wave vector. A stable trap requires that gradient forces

should be much greater than scattering force. In our experiments, we choose non-

resonant molecules (a0 >> a00) to ensure a minor contribution from scattering force.

The other criterion for stable trapping is that the trapping forces must be greater

than Brownianmotion forces to beat the thermal fluctuation. Since the gradient force

is a conserve force, one can introduce a trapping potential U =�0.5a0|E|2 to describe

the decreased energy due to the interaction of optical field. By introducing trapping

potential, we can directly compare the trapping potential U with thermal fluctuation

energy kT0, and the enhanced probability of trapping molecules is written as Ep = P/

P0 = exp(�U/kT0), where k is the Boltzmann constant and T0 is the temperature (300

K). P0 is the trapping probability without illumination. Thus the trapping probability

under illumination can be expressed as P = P0 exp(�U/kT0). So a single exponential

function can be used to express the relationship between the trapping probability

and light intensity, P = P0 exp(0.5a0|E|2/kT0). It should be emphasized that if the

molecule is completely free, P0 is mainly related to the molecular concentration.

While even without chemical adsorption, molecules often interact with metal sur-

faces. So we believe that P0 is also related to the interaction between the molecule
1358 Matter 3, 1350–1360, October 7, 2020
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and metal surface, such as the adsorption effect, in single-molecule plasmonic opti-

cal trapping.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.matt.

2020.07.019.
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