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HIGHLIGHTS

Selectivity for the reduction of

bioplatforms depends on

exposed facets of TiO2

Coupling products as fuel

precursors are produced in high

yields

Surface-oxygen vacancies play

pivotal roles in controlling the

selectivity

Density of oxygen vacancies

governs electronic structure of

adsorbed species
Wang and colleagues found that the selectivity for photocatalytic transformations

of lignocellulose-derived platform chemicals including furfural, methyl furfural,

and vanillin depended strongly on the exposed facet of TiO2. They demonstrated

that the facet-dependent density of oxygen vacancies governs the charge

distribution and adsorption strength of surface species, and thus determines

product selectivity. Hydrogenation products such as fine chemicals and coupling

products as biofuel precursors can be produced in high yields over oxygen-

vacancy-rich and oxygen-vacancy-free TiO2 surfaces, respectively.
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Selectivity Control in Photocatalytic Valorization
of Biomass-Derived Platform Compounds
by Surface Engineering of Titanium Oxide

Xuejiao Wu,1,2 Jieqiong Li,1,2 Shunji Xie,1,2 Pengbo Duan,1 Haikun Zhang,1 Jun Feng,1

Qinghong Zhang,1,* Jun Cheng,1,* and Ye Wang1,3,*
The Bigger Picture

Photocatalysis has emerged as a

useful approach to the sustainable

production of value-added

products from biomass, in which

selectivity is the key issue because

a number of transformations are

possible when multifunctional

biochemicals are the reactants. As

one of the most popular

photocatalysts, TiO2 has mainly

been applied to reactions like

pollutant degradation that

concern more about activity than

selectivity. The knowledge about

selectivity-controlling principles

for TiO2 is limited. Here, we report

the first illustration of TiO2-based

photocatalysis that succeeds in

modulating product selectivity in

bioplatform transformations. Fine

chemicals or jet-fuel precursors

have been produced in high yields

by controlling the density of

oxygen vacancies on TiO2, which

governs surface adsorption and

reaction and thus determines the

product selectivity. This work

offers useful insights into the

design of selective photocatalysts

for biomass valorization by surface

engineering.
SUMMARY

Photocatalysis has offered a promising opportunity for selective
transformation of biomass to high-value chemicals or fuels under
mild conditions. Whereas titanium oxide has been widely used for
photocatalytic pollutant degradation, H2 evolution, and CO2 reduc-
tion, few studies have been devoted to TiO2-based photocatalytic
valorization of biomass or biomass-derived platform compounds.
Here, we report on surface-controlled photocatalysis of TiO2 for
selective valorization of furfurals and vanillin that are lignocellu-
lose-derived key platform compounds. The reaction can be switched
from hydrogenation of aldehyde group to C–C coupling by manipu-
lating exposed facets; furanic and aromatic alcohols or coupling
products, which are fine chemicals or jet-fuel precursors, could be
produced with high selectivity. Our studies elucidate that the
facet-dependent density of oxygen vacancies governs the charge
distribution and adsorption strength of surface species and thus
controls product selectivity. The present work offers an example
of selectivity control by engineering TiO2 surfaces for valorization
of biomass-derived feedstocks.

INTRODUCTION

As one of the most popular photocatalysts, titanium dioxide (TiO2) has triggered

broad interest for decades and is still the focus of current intensive studies.1 Besides

strategies such as doping, sensitization, and heterojunction construction to facilitate

the light absorption and charge-carrier separation, much recent attention has been

paid to TiO2 surface engineering, because the interfacial charge-transfer process,

the substrate adsorption, activation, and reactions are dominated by surface prop-

erties.2–4 For examples, anatase TiO2 with high-energy {001} facet mainly exposed

was successfully fabricated,5 and the high-energy surface was found to favor the ac-

tivity in a number of photocatalytic reactions.3,6 However, so far only limited studies

have been devoted to surface-dependent selectivity control in TiO2 photocatalysis.
7

This is partially because TiO2 has mainly been studied for pollutant degradation, H2

evolution, and CO2 reduction,1–4,6–8 and most of the studies in these fields have

been concerned more about activity than selectivity.

Recently, photocatalysis has shown great potential in the valorization of biomass or

biomass-derived platform compounds (bioplatforms).9,10 Thermocatalysis for

biomass transformations usually requires harsh reaction conditions such as elevated

temperatures and high pressures, which inevitably lead to undesirable side reactions

and low selectivity of target products. In contrast, photocatalysis can be performed
3038 Chem 6, 3038–3053, November 5, 2020 ª 2020 Elsevier Inc.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chempr.2020.08.014&domain=pdf


ll
Article
under mild conditions and thus is capable of avoiding side reactions. Further, photo-

catalysis has the potential to accomplish reactions that are difficult to realize by ther-

mocatalysis owing to unique reactionmechanisms induced by photogenerated elec-

trons and holes.11 A few recent studies have utilized TiO2 for photocatalytic

oxidation of monosaccharides into the corresponding carboxylates or C2–C5 oxy-

genates.12,13 However, the studies on TiO2-catalyzed reductive transformations of

bioplatforms, which play crucial roles in biomass valorization, are very scarce.9,10

Therefore, the development of new photocatalytic systems for reductive valorization

of bioplatforms using the cheap, stable, and environmental friendly TiO2 would offer

promising routes for sustainable production of high-value biobased chemicals and

fuels under mild conditions.

Selectivity control is one of the most important issues in the valorization of bio-

platforms because of multiple functional groups in bioplatform molecules and

many possible reaction channels to different products. For example, furfural, methyl

furfural, and vanillin are key feedstocks easily produced from lignocellulosic biomass

(Scheme S1),14–16 and the reductive transformations of these bioplatform molecules

can offer both furanic and aromatic primary alcohols, which are important fine chem-

icals in the fragrance and resin industries, as well as C–C coupling products with 10–

18 carbons, which are potential precursors for high-quality diesel or jet fuel (Fig-

ure 1).17 In addition, reactions such as hydrogenation of furanic/aromatic rings or de-

carbonylation may also take place under thermocatalytic conditions. It is noteworthy

that the selective production of fuel precursors by homo-coupling or cross-coupling

of bioplatforms is particularly difficult by thermocatalysis and only very limited suc-

cess has been achieved in spite of the significance of this type of reactions.18,19

Reductive coupling of bioplatforms with high selectivity remains one of the most

challenging goals in biomass valorization.

Here, we report that TiO2 nanocrystals efficiently catalyze photoreductive transfor-

mations of furfurals and vanillin, two types of important bioplatforms, into corre-

sponding alcohols and coupling products under mild conditions. We discovered

that the selectivity toward hydrogenation of aldehyde group to alcohols or reductive

coupling to coupling products can be easily controlled by engineering exposed fac-

ets of TiO2 nanocrystals. We uncovered that the facet-controlled selectivity is deter-

mined by the density of surface-oxygen vacancies generated in situ. Different reac-

tion mechanisms in the presence and absence of surface-oxygen vacancies have

been elucidated on the molecular level. To the best of our knowledge, this is the first

example of success in modulating product selectivity in photocatalytic reductive

transformations of bioplatforms and in the achievement of high yields of coupling

products. The present work would inspire the design of photocatalytic systems for

biomass valorization with controlled reaction pathways and product selectivity

through surface engineering of semiconductor catalysts.
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RESULTS

Furfural Conversion over TiO2 with Different Facets

We fabricated three types of TiO2 nanocrystals with different morphologies and

exposed facets (Figure S1), including bipyramid-shaped anatase with {101} facets

mainly exposed (denoted as A-bipyramid), anatase nanosheet dominated by {001}

facets (denoted as A-sheet), and rod-shaped rutile enclosed mainly by {110} facets

(denoted as R-rod). Photocatalytic conversion of furfural over the A-bipyramid, the

most available anatase TiO2 nanocrystal,
3 has been investigated in detail. No prod-

uct was observed without light irradiation or in the absence of catalyst. Furfural
Chem 6, 3038–3053, November 5, 2020 3039
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Figure 1. Transformations of Lignocellulose-Derived Platforms

Furfural, 5-methyl furfural, and vanillin can be derived from hemicellulose, cellulose, and lignin,

which are three major components of lignocellulosic biomass, respectively.
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alcohol, a product by hydrogenation of the aldehyde group, as well as hydrofuroin

and furoin, which could be formed by reductive coupling of furfural (Figures 2A and

S2), were formed over the A-bipyramid (Figure 2B). We adopted mmolfuranic ring g
�1

as the unit of the yield of each product, and it is noteworthy that one mole of hydro-

furoin or furoin contains two moles of furanic ring. Formaldehyde was also formed in

a considerable amount (Table S1; Figure S2F). The analysis of the reactions induced

by photogenerated electrons and holes suggests that furfural undergoes both alde-

hyde-group hydrogenation to furfural alcohol and reductive coupling to hydrofuroin

and furoin by photogenerated electrons on the A-bipyramid, whereas formaldehyde

is the product from methanol, the solvent, by photogenerated holes (Table S1;

Scheme S2). We found that the reaction completely stopped when the solvent

was changed from methanol to a proton-free solvent, e.g., acetonitrile. The inten-

tional addition of Na2S/Na2SO3 (4 mM Na2S + 2 mM Na2SO3) as sacrificial agents

to help the consumption of holes could not cause the formation of reduction prod-

ucts with acetonitrile solvent. These findings indicate that methanol also functions as

the proton source in combination with photogenerated electrons for the reductive

transformation of furfural (Scheme S2). Using methanol, a cheap solvent that can

be derived from biomass,20 as the hydrogen donor can avoid the use of high-pres-

sure H2 or corrosive formic acid, rendering the current process safe and environmen-

tally friendly.21,22

The selectivity of products strongly depended on the exposed facet. Unlike the A-

bipyramid, the A-sheet was highly selective toward the hydrogenation of aldehyde

group, offering furfural alcohol as the dominant product with a selectivity reaching

90% after a 4-h reaction (Figure 2C). On the other hand, the R-rod was very specific

for the formation of coupling products, i.e., hydrofuroin and furoin, and the forma-

tion rate of coupling products reached 32 mmolfuranic ring g�1 h�1 with nearly

100% selectivity (Figure 2D).This rate is more than twice that reported over a Ru-

doped ZnIn2S4 photocatalyst, which showed a formation rate of 13 mmolfuranic ring

g�1h�1 for coupling products in the photocatalytic conversion of methylfurans that

could be produced from furfurals by further hydrodeoxygenation.23 Further, as

compared with some typical thermocatalytic systems for furfural reduction (Table
3040 Chem 6, 3038–3053, November 5, 2020



Figure 2. Photocatalytic Conversion of Furfural over TiO2 Nanocrystals

(A) Structures of products from hydrogenation of aldehyde group and reductive coupling of furfural.

(B) Changes of product yield and selectivity with time over A-bipyramid.

(C) Changes of product yield and selectivity with time over A-sheet.

(D) Changes of product yield and selectivity with time over R-rod. The yields of products is presented in mmolfuranic ring gcatalyst
�1. Note that 1 mole of

hydrofuroin or furoin contains 2 moles of furanic ring. The inset models show the morphologies of TiO2 with the mainly exposed facet.
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S2), the present TiO2-based photocatalytic system showed better activity under mild

conditions. Moreover, the by-products that are usually formed in thermocatalysis

such as tetrahydrofurfuryl alcohol by hydrogenation of furanic rings and furan by

decomposition of aldehyde groups have not been observed in our system. The

mild reaction conditions may contribute to the perseveration of valuable functional

groups. Therefore, the present simple TiO2-based photocatalytic system is very

promising for valorization of furfural, and in particular, not only furfural alcohol but

also reductive coupling products can be formed with high selectivity and a high for-

mation rate.

It is noteworthy that while the yield of coupling products increased almost linearly

with reaction time from the beginning (Figure 2D), the formation of furfural alcohol

proceeded quite slowly in the initial stage (< 0.5 h) and then accelerated after an in-

duction period over both the A-bipyramid and A-sheet (Figures 2B and 2C). The se-

lectivities of furfural alcohol were 4.6% and 63% at a reaction time of 0.5 h for A-

bipyramid and A-sheet, respectively, and they increased significantly to 35% and

87% after 3 h of reaction (Figures 2B and 2C). The existence of induction period

for the formation of furfural alcohol suggests the evolution of surface structures of

the A-bipyramid and A-sheet during the reaction.

Characterizations and Structure-Performance Relationship

The band-gap energies of A-sheet, A-bipyramid, and R-rod before reaction esti-

mated from UV-vis diffuse reflectance spectra (Figure 3A) were 3.24, 3.22, and

3.03 eV, respectively. These values are consistent with the band-gap energies of

anatase (~3.2 eV) and rutile (~3.0 eV) TiO2.
1 The UV-vis spectra for the A-sheet

and A-bipyramid catalysts after photocatalytic reactions showed shifts of absorption

edges to longer wavelengths corresponding to band-gap narrowing and additional

absorption tails extending to the visible-light region (Figure 3A). This observation

corresponded well to the change in color from white to grayish blue for these two

catalysts after reaction.24,25 The band-gap narrowing and UV-vis spectrum-tailing

phenomena may be contributed by the generation of oxygen vacancies (VO)
26 or
Chem 6, 3038–3053, November 5, 2020 3041



Figure 3. Characterizations of TiO2 Nanocrystals

(A) UV-visible diffuse reflectance spectra. The inset pictures show the color of TiO2 after

photocatalytic reaction.

(B) Low-temperature EPR spectra measured at 77 K.

(C) Ti 2p XPS spectra for A-sheet.

(D) Ti 2p XPS spectra for A-bipyramid.

(E) Ti 2p XPS spectra for R-rod.

(F) Consumption of thionine versus photo-irradiation time.

(G) Density of oxygen vacancies.
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structural disorders27 on the A-sheet and A-bipyramid. The irradiation of TiO2 in

methanol, the solvent, may create surface VO sites (Scheme S3).28 In contrast, the

UV-vis spectrum and color of the R-rod did not undergo significant changes after
3042 Chem 6, 3038–3053, November 5, 2020
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the photocatalytic reaction. Electron paramagnetic resonance (EPR) and X-ray

photoelectron spectroscopy (XPS) measurements provided further evidence for

the presence of VO on the A-sheet and A-bipyramid and the absence of VO on the

R-rod after reaction. EPR measurements performed at 77 K showed a signal at g

value of 1.98, which could be ascribed to Ti3+ in TiO2,
29 for the A-sheet and A-bipyr-

amid after photocatalytic reaction, whereas this signal was insignificant for the used

R-rod catalyst (Figure 3B). It is widely accepted that Ti3+ is a charge-compensation

species accompanying the appearance of VO sites on TiO2.
30 While not distinct, a

weak signal at g = 2.01 also appeared. EPR measurements conducted at 298 K for

the catalysts after photocatalytic reactions showed a decrease in the intensity of

signal at g = 1.98, which is assignable to Ti3+, whereas the signal at g = 2.01 became

significantly stronger for the A-sheet and A-bipyramid (Figure S3). The change in EPR

spectra may result from the interaction of O2 with the surface Ti3+ and VO site, form-

ing O� on the surface at the expense of Ti3+.31 The Ti 2p core-level spectra obtained

by XPS for the A-sheet or A-bipyramid before reaction were dominated by peaks at

458.6 and 464.4 eV, assignable to Ti 2p3/2 and Ti 2p1/2 of Ti
4+, whereas two shoul-

ders at 457.4 and 463.1 eV, attributable to those of Ti3+ accompanying the surface

VO sites, appeared after reactions (Figures 3C and 3D).32,33 On the other hand, no

significant differences in Ti 2p spectra for the R-rod catalyst before and after reac-

tions were observed (Figure 3E). The O 1s XPS results for all the samples exhibited

two peaks; the peak at 529.7 eV could be ascribed to the lattice oxygen, while that at

531.5 eV was assignable to the Ti-OH species or defective oxygen species associ-

ated with VO sites.32,34 No significant differences were observed in the O 1s spectra

before and after reactions (Figure S4). This is possibly because the VO density is low

and the peak at 531.5 eV may mainly be contributed by the Ti-OH species. There-

fore, these characterization results demonstrate the generation of VO sites on the

A-sheet and A-bipyramid but not on the R-rod during the photocatalysis.

We have measured the surface VO sites quantitatively by electron titration with thi-

onine, the consumption of which corresponds to the amount of electrons trapped

in VO sites.35 While the consumption of thionine over the R-rod irradiated with

different times was negligible, considerable amounts of thionine were consumed

over the A-sheet and A-bipyramid (Figure 3F). The consumption of thionine was

faster over the A-sheet than over the A-bipyramid in the initial stage, suggesting

that the VO site was easier to form on the A-sheet under light irradiation. The density

of VO sites evaluated from the consumption of thionine decreased in the order of A-

sheet (145 mmol g�1) > A-bipyramid (61.5 mmol g�1) > R-rod (2.52 mmol g�1)

(Figure 3G).

In short, our characterizations suggest that the VO can be generated on catalyst sur-

faces during photocatalytic conversion of furfural in methanol and the density of VO

sites depends on the exposed facets, decreasing in the order of anatase {001} >

anatase {101} > rutile {110}. This trend is in agreement with the surface energy of

these facts.2–4 As displayed in Scheme S3, we propose that the VO site is generated

through the stoichiometric reaction between methanol and TiO2. It should be noted

that the density of VO sites and the amount of methanol consumed for the genera-

tion of VO sites are remarkably lower than the amounts of furfural alcohol formed

in the hydrogenation of aldehyde group of furfurals. The yields of furfural alcohol

were 72 and 152 mmol g�1 over the A-bipyramid and A-sheet with VO densities of

61.5 and 145 mmol g�1 during the photocatalytic conversion of furfural for 3 and 4

h, respectively (Figures 2B and 2C). The turnover numbers for furfural alcohol forma-

tion per VO site are both >1,000 over the A-bipyramid and A-sheet. Therefore, the

reduction of furfural to furfural alcohol proceeds catalytically over the VO site. We
Chem 6, 3038–3053, November 5, 2020 3043
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further confirmed that the catalyst could be used repeatedly. Recycling tests of the

A-bipyramid for photocatalytic conversion of furfural showed only a slight change in

performance in the second cycle, and the performance could almost be sustained in

the third and fourth cycles (Figure S5).

The structure-performance correlation suggests that the surface VO site plays a

crucial role in aldehyde-group hydrogenation, whereas the VO-free TiO2 surface is

responsible for the coupling reaction. It is noteworthy that the density of VO sites

mainly determines the selectivity, and the activity may be influenced by many factors

such as the light absorption, the ability of photogenerated electron-hole separation

and the surface reaction. For the series of A-bipyramid, A-sheet, and R-rod catalysts,

the light absorption (Figure 3A) and the ability of electron-hole separation as re-

flected by the photocurrent density (Figure S6) do not have big differences. We

found that the specific surface areas of this series of catalysts, which may influence

the catalytic performance, are quite different (Table S3). We speculate that the larger

surface area of the A-bipyramid results in its higher yield of coupling products as

compared with the R-rod (Figure 2), although the selectivity of coupling products

is lower over the A-bipyramid than that over the R-rod.

We further studied the commercial TiO2 (Degussa P25) for the photocatalytic con-

version of furfural. Furfural alcohol and coupling products (hydrofuroin and furoin)

were formed with selectivities of 19% and 81%, respectively (Figure S7). The surface

VO density measured by electron titration was 34 mmol g�1 for P25, and thus the VO

density increased in the sequence of R-rod < P25 < A-bipyramid < A-sheet. It is of

interest that both the selectivity and the yield of furfural alcohol change in the

same order (Figure S7; Table S3). On the other hand, the selectivity of coupling

products decreased in the sequence of R-rod > P25 > A-bipyramid > A-sheet, con-

firming that the VO-free TiO2 surface plays a crucial role in the formation of coupling

products. However, the yield of coupling products based on specific surface area

over P25 was relatively lower than that over the A-bipyramid. This is probably

because of the lower ability of P25 in electron-hole separation (Figure S6). We further

prepared P25-based TiO2 samples with increased VO densities by treatment with

NaBH4, a strong reductant that is known to be capable of creating surface VO sites

on TiO2 under mild conditions.36 The catalysts denoted as P25-0.5, P25-0.75, and

P25-1, which had almost the same specific surface area (51–55 m2 g�1), were ob-

tained by treating P25 with different concentrations of NaBH4 aqueous solutions.

It is of interest that both the furfural alcohol selectivity (Figure S7B) and the surface

VO density (Figure S7C) increased with the concentration of NaBH4. This result pro-

vides further evidence that the VO site favors the hydrogenation of aldehyde group

of furfural to furfural alcohol. However, the yield of total products per either catalyst

weight or surface area for the P25-1 catalyst with the highest VO density rather

decreased (Figure S7D). This is possibly because of the decreased electron-hole

separation ability of this deeply reduced catalyst (Figure S7E).
DFT Calculations and Roles of Oxygen Vacancies

To understand the role of VO sites in determining the reaction channel, we per-

formed density functional theory (DFT) calculations for the conversion of furfural

on catalyst surfaces with and without VO. The optimized geometries indicate a tilted

h1-(O) configuration of furfural adsorbed on both VO-free and VO-rich surfaces (Fig-

ures S8 and S9). As compared with other adsorption modes, the h1-(O) adsorption

mode, with the carbonyl oxygen bound to Ti cation and the furan ring repulsed

away from the surface, is beneficial to the selective activation of aldehyde group.
3044 Chem 6, 3038–3053, November 5, 2020



Figure 4. DFT Calculations for Furfural Conversion on TiO2

(A) Reaction pathways of hydrogenation of aldehyde group and reductive coupling.

(B) Total-energy-change profiles for furfural reduction on VO-free anatase {101} surface.

(C) Total-energy-change profiles for furfural reduction on VO-rich anatase {101} surface.
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For example, the h2-(C,O) configuration would cause the decarboxylation or hydro-

genation of the furan ring.37

Generally, for photocatalytic reduction, electron and proton transfer may occur not

only through stepwise proton transfer followed by electron transfer (PT-ET)38 or elec-

tron transfer followed by proton transfer (ET-PT)39 but also through a concerted pro-

ton-electron transfer (CPET)40–42 manner (Figure S10). We have studied the reaction

mechanism with a total-energy-change approach (the energy difference between

product and reactant), regardless of the detailed proton-electron transfer process.

Therefore, the above transfer mechanisms are uniformly expressed as (e� + H+)

transfer hereafter. Two possible reduction pathways exist for the hydrogenation of

adsorbed furfural in the first step (Figure 4A): (1) the addition of (e� + H+) to the O

atom of the carbonyl group, resulting in the formation of a C radical ($C–OH) (I/

II); and (2) the addition of (e� + H+) to the C atom of the carbonyl group, leading

to an O radical (CH–O$) (I/IV). In the second step, the $C–OH intermediate may

either be coupled with a second C radical to produce hydrofuroin (II/III) or be

further reduced by the addition of (e� + H+) to form furfural alcohol (II/V). The
Chem 6, 3038–3053, November 5, 2020 3045
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CH–O$ intermediate can only result in furfural alcohol by addition of another (e� +

H+) (IV/V).

The DFT calculation reveals that on the VO-free anatase {101} surface, the hydroge-

nation energy for the attack of (e� + H+) to O atoms of carbonyl to form the $C-OH

intermediate (I/II) is 0.61 eV, which is more favorable by 0.54 eV than the hydroge-

nation through the attack of (e� + H+) to the C atom of carbonyl (Figure 4B). The $C–

OH subsequently undergoes coupling with an energy decrease of 2.06 eV (II/III),

which is more favorable than the hydrogenation by 0.8 eV. In contrast, on the VO-

rich anatase {101} surface, the formation of CH–O$ (I/IV) is an exothermic reaction,

whereas the formation of $C–OH (I/II) is endothermic (Figure 4C), and thus, furfural

prefers to undergo a two-step hydrogenation mechanism to furfural alcohol. Similar

conclusions have been obtained on the VO-free and VO-rich anatase {001} (Fig-

ure S11) as well as VO-free and VO-rich rutile {110} surfaces (Figure S12). Therefore,

our DFT calculations on the energetics of reaction pathways have confirmed the

experimental findings that the presence of VO on TiO2 surfaces favors the hydroge-

nation of aldehyde group in furfural, whereas coupling products are formed prefer-

entially on VO-free surfaces.

Further DFT calculations were performed to gain in-depth insights into the differ-

ence in selectivity on the VO-free and VO-rich TiO2 surfaces. For the VO-free surface,

the charge-difference analysis reveals that there is no significant charge transfer be-

tween TiO2 and furfural (green panel in Figure 5A). Instead, a small amount of charge

rearrangement occurs inside furfural molecules (Figure S13A). Because of the higher

electronegativity of O, the O and C atoms of carbonyl are negatively and positively

charged, respectively (green panel in Figure 5B). Thus, the O atom of carbonyl is

more favorably hydrogenated, leading to the $C–OH intermediate. On the other

hand, when furfural is adsorbed on the VO-rich TiO2 surface via the filling of the

VO site by the O atom of carbonyl, a significant charge transfer occurs from the

two Ti3+ ions neighboring to the VO site to furfural (orange panel in Figure 5A; Fig-

ure S13B). The charge redistribution may induce negative charges around the C

atom of carbonyl group (orange panel in Figure 5B). Moreover, the embedded

carbonyl O atom is coordinatively saturated by Ti, and consequently the (e� + H+)

is preferably bound to the C atom of carbonyl group to form the CH–O$ intermedi-

ate (orange panel in Figure 5B; Table S4). Furthermore, the calculation reveals that

the C radical formed on the VO-free surface has a much smaller adsorption energy

than the O radical formed on the VO-rich surface (Figure 5C; Table S5). Thus, the

C radical may readily desorb from the VO-free TiO2 surface and dimerizes to form

the coupling products, whereas the strongly bound O radical on the VO-rich surface

preferably undergoes consecutive (e� + H+) addition to yield furfural alcohol.

Therefore, our calculations indicate that the product selectivity in furfural conversion

on the VO-free and VO-rich surfaces is determined by the interaction between the

reactant and the surface. The electron transfer between the TiO2 surface and furfural

molecule controls the preferential attack of (e� + H+) onto C or O atom in a carbonyl

group, leading to the formation of O or C radical intermediate and different types of

products. The strength of adsorption of reaction intermediate on TiO2 surfaces also

affects the product selectivity.

Experiments were performed to probe the interaction of the reactant with the VO-

rich and VO-free surfaces. Because rich VO and almost no VO sites were generated

in situ on the A-sheet and R-rod, respectively, these two catalysts were chosen to

represent the VO-rich and VO-free surfaces in our experiments. The transient
3046 Chem 6, 3038–3053, November 5, 2020



Figure 5. Interactions between Furfural and TiO2 Surfaces

(A) Electron density changes (Dre) on TiO2 before and after furfural adsorption.

(B) Hirshfeld charge distributions in carbonyl C and O atoms. Right panel: preferential attack behavior of H atom onto carbonyl C or O atom.

(C) Adsorption energies (Ead) of C radical on VO-free surfaces and O radical on VO-rich surfaces.

(D) Transient photocurrent responses of R-rod and A-sheet before and after furfural (FF) injection.

(E) Schematic setup for ATR-FTIR spectroscopy. N2 is the protecting gas to prevent ATR-FTIR measurements from the influence of air.

(F) Time-resolved ATR-IR spectra of furfural on R-rod.

(G) Time-resolved ATR-IR spectra of furfural on A-sheet. The VO-free and VO-rich surfaces in (A), (B), and (C) include anatase {101}, anatase {001} and

rutile {110} surfaces. The chemical structures and bonding length of carbonyl group on VO-free surface of rutile {110} and VO-rich surface of anatase

{001} are displayed on the right panels of (F) and (G).
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photocurrent response study was performed in methanol, i.e., the solvent, and the

electrode with photocatalyst was illuminated under UV light for 1 h before measure-

ment. This pretreatment generated VO sites with saturated concentrations on the A-

sheet and R-rod surfaces. The result for the R-rod showed a slight difference in the

presence and absence of furfural, suggesting a weak interaction between furfural

and the VO-free surface (Figure 5D). In contrast, a big decrease in the photocurrent

density was observed after the injection of furfural onto the A-sheet, indicating that

the interfacial electron transfer induced a strong interaction between the VO-rich
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surface and furfural.43 Transient photocurrent response measurements were also

performed by using CH3CN as the electrolyte without pretreatment of the photoca-

talyst, and thus the VO density on catalyst surfaces would be very low. The result

showed that the decrease in photocurrent density after the injection of furfural

was not big not only for the R-rod but also for the A-sheet catalyst (Figure S14).

The phenomenon that the photocurrent density only decreases slightly after furfural

injection in the case of CH3CN is similar to that for the R-rod with catalyst pretreat-

ment in methanol (Figure 5D). This agrees with the finding that the density of VO sites

was low on the R-rod catalyst under irradiation in methanol.

Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy (Fig-

ure 5E), which could provide liquid-phase IR spectra of molecules on solid catalyst

surfaces,44 typically provides IR bands of furfural in a wavenumber region of

1,500–1,200 cm�1 (Table S6).45,46 The thermogravimetric-differential thermal anal-

ysis (TG-DTA) showed that no organic adsorbates were present on catalyst surfaces

before adsorption (Figure S15). Our time-resolved ATR-FTIR spectra recorded for

the furfural-adsorbed R-rod and A-sheet both exhibited characteristic signals assign-

able to furfural (Figures 5F and 5G). Furthermore, an additional band centered at

around 1,241 cm�1 was observed for the A-sheet, which could not be observed

for the R-rod (Figures 5F and 5G). This new IR band could be assigned to the red-shift

of carbonyl group caused by the strong interaction with the VO-rich surface.47 Our

DFT calculations further revealed that for furfural on the VO-free rutile {110} surface,

the bond length of C=O (1.26 Å) had negligible change with respect to that in the

gas phase (1.23 Å). However, on the VO-rich anatase {001} surface, the C=O bond

length for adsorbed furfural increased to 1.32 Å (Table S7), indicative of the change

of C=O to C–O bond. The new IR band of adsorbed furfural on the VO-rich surface

may arise from the C–O stretching vibration for furfuryl-oxy adsorption state (Fig-

ure 5G). The appearance of this band further confirms the strong interaction and

electron transfer between furfural and the VO-rich surface.

The addition of a small amount of H2O2, a radical scavenger, into the system signif-

icantly suppressed the conversion of furfural over the A-sheet and R-rod (Table S8),

confirming that both the hydrogenation and coupling reactions proceeded via

radical intermediates. The formation of $C–OH radical over the R-rod was further

verified by the addition of 1,1-diphenylethylene as a radical trap.48 A new compound

with a mass-to-charge ratio (m/z) of 276, which could be assigned to the adduct of

$C–OH radical and 1,1-diphenylethylene, was detected in the product mixture (Fig-

ure S16). The adduct of CH–O$ radical and 1,1-diphenylethylene, which should have

fingerprint peaks of m/z at 97, 167, 181, and 278, could not observed for the A-

sheet. This is probably because of the strong adsorption of CH–O$ on VO-rich sur-

faces (Figure 5C).
Valorization of Other Bioplatforms

Besides furfural, which can be easily obtained from hemicellulose, we have per-

formed photocatalytic conversions of other bioplatforms derived from lignocellu-

losic biomass, including 5-methyl furfural from cellulose and vanillin from lignin, us-

ing the A-sheet and R-rod, which represent VO-rich and VO-free TiO2 catalysts,

respectively. The A-sheet was highly selective toward the hydrogenation of alde-

hyde group in these bioplatforms to form the corresponding alcohols (Figure 6),

which are versatile fine chemicals. On the other hand, the R-rod exhibited unique

selectivity toward the formation of coupling products and the yield of the corre-

sponding coupling products reached R 80%. These results demonstrate the
3048 Chem 6, 3038–3053, November 5, 2020



Figure 6. Photocatalytic Conversions of Bioplatforms

Furfural, 5-methyl furfural, and vanillin can be derived from hemicellulose, cellulose, and lignin, the

three major components of lignocellulosic biomass, respectively. The experiments in each case

were performed at least for three times. The error bar represents the absolute deviation, which is

within 10%.
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feasibility of TiO2 surface engineering in tuning the selectivity in photocatalytic

transformation of lignocellulosic biomass-derived platforms.

Surface defects like VO sites, even in a low density, have the potential to regulate the

surface electronic structure of semiconductors and thus can tune adsorbed chemi-

cals and catalytic performance.49,50 The interaction between the functional groups

in reactants or intermediates and the catalyst surface is known to play a key role in

determining the selectivity in thermocatalytic transformations of multifunctional

chemicals.14 However, how the surface defect functions in photocatalytic valoriza-

tion of biomass is less understood. The present work contributes to presenting a first

example to illustrate that the surface engineering by tuning the density of oxygen

vacancies can successfully control the selectivity in photocatalytic transformation

of multifunctional bioplatforms.
Conclusion

We discovered that TiO2 is an efficient photocatalyst for the reductive transforma-

tion of lignocellulose-derived furfurals and vanillin and that surface-oxygen va-

cancies play a decisive role in determining the product selectivity. The catalyst

without surface-oxygen vacancies favors the reductive coupling reaction to form
Chem 6, 3038–3053, November 5, 2020 3049
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C10–C18 products, which are high-quality fuel precursors, whereas the catalyst with

rich surface-oxygen vacancies preferentially catalyzes the hydrogenation of alde-

hyde group to form aromatic and furanic alcohols as versatile fine chemicals. High

yields of the coupling products or aromatic and furanic alcohols have been achieved.

Our mechanistic studies revealed that the density of oxygen vacancies affects the

reactant-surface interaction and the charge transfer. The strong interaction between

the oxygen-vacancy-rich surface and furfural leads to the preferential formation of

CH–O$ intermediate, and the strong adsorption of intermediate facilitates the sub-

sequent addition of a second H atom to form furfural alcohol. On the other hand, the

$C–OH intermediate is formed on the oxygen-vacancy-free surface and the weak

adsorption of the radical intermediate enables easy desorption and the subsequent

C–C coupling. The present work not only demonstrates that surface-controlled TiO2

is a promising photocatalyst for biomass valorization but also offers an opportunity

to control the reaction pattern and product selectivity in transformation of multifunc-

tional chemicals.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Professor Ye Wang (wangye@xmu.edu.cn).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The published article includes all datasets generated or analyzed during this study.

Synthesis of TiO2 Nanocrystals with Controlled Facets

To synthesize anatase TiO2 with bipyramid morphology and {101} facet mainly

exposed, titanium isopropoxide (20 mL) was mixed with distilled water (2 mL) in a

Teflon autoclave. The mixture was then placed in an electric oven and held at

180�C for 36 h. After cooling to room temperature, the sample was separated by

centrifugation, washed with distilled water and ethanol, dried overnight at 60�C,
and calcined in air at 500�C for 3 h.51 For the synthesis of anatase TiO2 sheets domi-

nated by {001} facet, tetrabutyl titanate (25mL) wasmixed with 47% hydrofluoric acid

solution (3 mL) and the mixture was kept at 180�C for 24 h. After cooling to room

temperature, the sample was separated by centrifugation, washed with 1 M

NaOH, distilled water and ethanol, and dried overnight at 60�C.52 For the synthesis

of rutile TiO2 rod enclosed mainly by {110} facet, tetrabutyl titanate (10 mL) was

mixed with distilled water (10 mL) and 38% hydrochloric acid (10 mL), and the

mixture was kept at 180�C for 24 h. After cooling to room temperature, the sample

was separated by centrifugation, washed with 1 M NaOH, distilled water and

ethanol, dried overnight at 60�C, and calcined in air at 500�C for 3 h.53

Evaluation of Photocatalytic Performance

For the conversion of furfural, TiO2 (5 mg), furfural (100 mL, 1.2 mmol) and solvent

(CH3OH, 5 mL) were added into a quartz reactor (10 mL). The reactor was evacuated

and purged with N2 for 5 min. The reaction mixture was stirred at 650 rpm and irra-

diated under 300 W Xe lamp (l = 320–780 nm). During the reaction, water was circu-

lated to cool the reactor, keeping the temperature of the reactor at 40�C. To ensure

the complete conversion of furfural in Figure 6, 50 mg of catalyst and 4 h of reaction

time were adopted. For the conversions of 5-methlyfurfual and villain, the reaction
3050 Chem 6, 3038–3053, November 5, 2020
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conditions were the same as those for the conversion of furfural in Figure 6 except for

using reactant of 0.5 mmol and reaction time of 12 h. The light intensity was 600 mW

cm�2 and the illumination area was 3.7 cm2. After reaction, the solid catalyst was

filtered and the products in the filtrate were identified by GC-MS and quantified

by GC-FID and HPLC.

DFT Calculation

All the geometries were optimized using DFT as implemented in the freely available

package CP2K/Quickstep.54 For the reduced TiO2 with excess electrons localizing at

the surface Ti site next to bridge OH group, the redox potentials of Ti4+/Ti3+ of the

localized trapped electronic state obtained by using Perdew-Burke-Ernzerhof (PBE)

density functional55 and hybrid functional HSE0656 are close.57 Therefore, to alle-

viate computation time, the PBE functional with the Grimme’s dispersion correc-

tion58 was adopted. The Goedecker-Teter-Hutter (GTH) pseudopotentials59 were

used to represent the core electrons, and the double-z basis functions with one

set of polarization functions (DZVP)60 were employed to valence electrons. The

atomic charges were calculated based on the Hirshfeld method.61 Hirshfeld charge

is considered to be the chemically meaningful charge62 and is widely used in the

charge-transfer analysis for adsorption system.63,64 Further information on the

computational setup in this work can be found in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.chempr.

2020.08.014.
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