7/2	4	72
-----	---	----

[Review]

www.whxb.pku.edu.cn

Advances in Active Site Structure of Carbon-Based Non-Precious Metal Catalysts for Oxygen Reduction Reaction

YANG Xiaodong ¹, CHEN Chi ², ZHOU Zhiyou ^{3,*}, SUN Shigang ³

¹ College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P. R. China.

² Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China.

³ Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,

College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China.

Abstract: Carbon-based non-precious metal catalysts, represented by pyrolyzed Fe/N/C, are the most promising catalysts to replace platinum for the oxygen reduction reaction (ORR). Therefore, further improvement of their performance will be significant for commercialization of proton exchange membrane fuel cells. Unveiling the nature of active sites at the atomic scale paves the way for rational designs of Fe/N/C catalysts with high activity and durability. Herein, we review the advances in the active site structure of carbon-based non-precious metal catalysts. Three types of active sites are discussed in the order of their ORR activity, namely, iron/nitrogen-containing sites. nitrogen-containing sites, and carbon defects. In the iron/nitrogen-containing sites, some of iron atoms are amorphous and

positioned in a porphyrin-like plane structure with single-iron-atom coordinated to nitrogen. Iron in porphyrin-like sites is believed to directly bind to dioxygen with electron transfer from e_g -orbitals (d_{z^2}) of iron to antibonding orbitals of dioxygen. Factors governing the energy level of e_{q} -orbitals (d_{z^2}) are certainly effected the ORR activity, including coordination number, atom type, axial ligand effect and electron-donating/withdrawing capability of the carbon matrix. The structures of porphyrin-like iron centers are described as four-coordinate FeN4, five-coordinate N-FeN2+2, O2-FeN4C12 and Fe-N2+2 bridging two graphene edges. Moreover, some highly active sites are proposed with basic N-group or defective carbon neighboring the Fe-N center. It is worth noting that surface probing is a powerful tool to identify porphyrin-like iron sites, as well as to estimate its density and turnover frequency. The prospect of surface probe is combined with spectroscopy techniques that will be tremendously helpful in providing further insights of pyrolyzed Fe/N/C. Besides the iron in porphyrin-like sites, other iron atoms are incorporated into crystalline iron nanoparticles and clusters, which are speculated to facilitate electron transfer from nitrogen-doped carbon to dioxygen. However, the role of crystalline iron remains uncertain, because conflicting experimental results are often observed when crystalline iron is removed. Nonetheless, it is undoubted that the iron doping highly boosts the ORR activity of carbon-based catalysts. The next category consists of the nitrogen-containing sites. Various models have been developed to describe the nitrogen-doping carbon catalysts. These include synthesis of planar nitrogen by the layer-by-layer space-confined method, controlled-synthesis of nitrogen on highly-oriented pyrolytic graphite, and selective graft of acetyl group on pyridinic-nitrogen. Strong evidences from models of nitrogen-doping carbon catalysts identify the ortho-carbon atom of the pyridinic ring is the reactive site. The last sites, dopant-free defective carbon, are also found to contribute to ORR. Exploring and summarizing the active sites of pyrolyzed Fe/N/C deepen our understanding of the structure-performance relationship and paves the way for new synthetic strategies. It is expected that the activity as well as stability of pyrolyzed Fe/N/C can be further improved, by exploring the active sites and the ORR mechanism.

*Corresponding author. Email: zhouzy@xmu.edu.cn; Tel.: +86-592-2180181.

© Editorial office of Acta Physico-Chimica Sinica

Received: April 11, 2018; Revised: June 6, 2018; Accepted: June 7, 2018; Published online: June 13, 2018.

The project was supported by the National Natural Science Foundation of China (21703184, 91645121) and the National Key Research and Development Program of China (2017YFA0206500).

国家自然科学基金(21703184,91645121)和国家重点研发计划(2017YFA0206500)资助项目

Key Words: Oxygen reduction reaction; Carbon-based non-precious metal catalyst; Active site; Electrocatalysis; Fuel cell

碳基非贵金属氧还原电催化剂的活性位结构研究进展

杨晓冬1,陈驰2,周志有3,*,孙世刚3

1华侨大学材料科学与工程学院,福建 厦门 361021

2中国科学院上海高等研究院,上海 201210

2厦门大学化学化工学院,能源材料化学创新中心,固体表面物理化学国家重点实验室,福建 厦门 361005

摘要:以热解型Fe/N/C为代表的碳基非贵金属材料被认为是当前最具潜力替代铂的非贵金属氧还原催化剂,其综合性能的进一步突破,对于推动质子交换膜燃料电池商业化应用具有重要意义。对热解型Fe/N/C催化剂活性位结构的深入认识是实现催化剂高活性位密度和高稳定性理性设计的关键。本文总结了热解型Fe/N/C活性位的研究进展,重点介绍了非晶态铁氮配位活性中心、氮掺杂和碳缺陷三类活性位构型。由于热解型Fe/N/C是非均相的,结构非常复杂,导致在活性位认识上还存在诸多争议,本文总结阐述了活性位结构的不同观点。最后,我们展望了Fe/N/C催化剂活性位研究的未来方向。

关键词: 氧还原反应; 碳基非贵金属催化剂; 活性位; 电催化; 燃料电池 中图分类号: O646

1 引言

燃料电池是一种清洁、高效的电化学能源转 化装置,有望缓解人类对化石燃料的依赖和解决 传统燃料转化造成的环境污染。目前,实现燃料 电池的大规模商业化应用,仍有许多科学及工程 问题亟待解决,如电池的成本、寿命,以及燃料 的储运等。催化剂作为燃料电池的核心组成部分, 其活性将直接影响燃料电池的能量转换效率和输 出功率。当前燃料电池仍依赖价格昂贵的铂基催 化剂,其成本约占电池总成本的40%以上,且难以 通过规模化生产降低成本1。此外,地球上铂族金 属资源分布严重不均匀,约铂族金属储量的89%分 布在南非,9%在俄罗斯境内,我国的铂金属储量 仅为 0.47%。全球铂的年产量仅 200 吨左右,价格 波动很大,而且随需求量增大而急剧上升。燃料 电池对铂的依赖是阻碍其大规模商业化应用的瓶 颈。

燃料电池的阴极是氧还原反应(ORR),其动力 学很迟缓,导致燃料电池中的铂催化剂绝大部分 用于阴极。探索以资源丰富的物质为原料,制备

周志有,现任厦门大学化学与化 工学院教授。主要研究领域:电 催化,燃料电池,非铂电催化剂 和电化学原位红外光谱。

廉价高效的非贵金属氧还原催化剂对于降低燃料 电池的成本,推进其商业化应用具有重要意义2。 热解型 Fe/N/C 作为非贵金属 ORR 催化剂在近年 来的研究中展示出极大的应用潜力。例如,加拿 大 Dodelet 组报道了一系列高 ORR 活性的热解型 Fe/N/C 催化剂: 2009 年 3 制备的 Fe/N/C 催化剂体 积活性达到 99 A·cm⁻³@0.8 V; 2011 年 ⁴ 将活性提 高至 230 A·cm⁻³@0.8 V,非常接近美国能源部提出 的目标²,即 2010年达到 130 A·cm⁻³@0.8 V; 2015 年达到 300 A·cm-3@0.8 V。近三年, 先后有多篇 工作报道 Fe/N/C 催化剂在氢氧质子交换膜燃料电 池 (H₂-O₂ PEMFC) 中的最大功率密度超过1 $W \cdot cm^{-2}$,如 2015 年周志有等 ⁵ 报道的硫掺杂 Fe/N/C 催化剂(1.03 W·cm⁻²), 2017 年陈忠伟等 6 报道的石墨烯/碳纳米颗粒复合 Fe/N/C 催化剂 (1.06 W·cm⁻²), 2017 年水江澜等 7 报道的高铁含量 Fe/N/C 催化剂(1.14 W·cm⁻²)。事实上, 通过优化 氧气传质仍有希望进一步提高热解型 Fe/N/C 催化 剂在燃料电池上的性能,主要方法如调控孔径类 型和孔径分布 8-12,调控催化剂表面亲疏水性 13。

热解型 Fe/N/C 催化剂在活性上已初步具备实际应用的潜力,但其稳定性仍有待提高。在 H2-O2 PEMFC 运行 100 h 后,Fe/N/C 催化剂高电位的放电活性只剩 15%-30% ¹⁴⁻¹⁹。高稳定性是热解型Fe/N/C 催化剂走向实际应用的重要指标。如何突破稳定性和活性的瓶颈,关键在于从原子层面上认识活性中心结构、反应路径和活性衰减过程的

本质,从而理性地设计高性能催化剂。近年来, 关于活性中心和反应路径的认识始终没有定论, 主要困难来自在高温热处理过程中前驱体发生了 不可控的热解重构,产物结构复杂,并且可能同 时存在不同类型的活性结构,如单原子 Fe 中心、 包覆金属颗粒的碳表面、氮掺杂位和碳缺陷位等 等。为了深入认识氧还原催化活性中心,进而实 现对高性能催化剂的理性设计,研究者们开展了 大量工作。本文从铁氮活性位、氮掺杂活性位和 碳缺陷活性位三部分展开介绍,最后对热解型 Fe/N/C 催化剂进行展望。

2 Fe/N/C 活性位

少量的过渡族金属可以大幅度提高氮掺杂碳 材料的氧还原活性,我们将这类材料称为 Me/N/C,其中 Me 代表金属(metal)。目前,Me/N/C 中常用的金属包括:铁、钴和锰,其中 Fe/N/C 是 氧还原活性最高的一类催化剂。因此,Me/N/C 催 化剂活性位的研究主要集中在 Fe/N/C。

热解 Fe/N/C 催化剂中,铁通常以两种物相形 式存在:原子级分散的非晶态铁和以纳米粒子或 团簇形式存在的晶态铁或 Fe₃C。这两种形式都被 认为可能具有氧还原反应催化活性。

2.1 Fe/N/C 中的非晶态铁

2.1.1 非晶态铁中心结构的推测

存在非晶态 Fe 的 Fe/N/C 中, Fe 普遍被认为 是氧还原反应活性中心。然而其具体结构却一直 是争论的焦点。Dodelet 等²⁰运用飞行时间二次离 子质谱技术(TOF-SIMS)分析以醋酸铁和铁卟啉为 前 驱 体 、 在 不 同 气 氛 (H₂/NH₃/Ar) 和 温 度 (400–1000 °C)下热处理所制得的催化剂活性中 心。实验检测到 FeN₄C⁺₂和 FeN₂C⁺₂物种,其丰度与 氧还原活性成正相关,表明在催化剂中同时存在 FeN₄-C 和 FeN₂-C 位点。另外,在 700–900 °C 区 间热处理可生成大量的 FeN₂-C 位点。作者认为 FeN₂-C 的活性比 FeN₄-C 高。

在随后的工作中,人们则倾向于认为 FeN4-C 具有更高的氧还原活性。Ferrandon 等²¹利用 ⁵⁷Fe 穆斯堡尔谱、X 射线吸收近边结构谱(XANES)等 多种技术系统地研究聚苯胺、炭黑和氯化铁为前 体制备的 Fe/N/C 体系,得到以下几个结论:(1) 活 性最好的催化剂具高的微孔率,以容纳大量的 Fe-N4 活性位;(2) 较低的热处理温度可能会形成 更易溶于酸的含铁物种,且不会形成碳包覆层, 使最终催化剂中铁的含量降低;(3) 氧还原反应活 性与形成的石墨型 N、Fe-N 物种含量以及 BET 表 面积、微孔率都有很好的相关性,而吡咯型N对活性的贡献不大;(4)S元素的添加可促使热处理时形成FeS,抑制碳化铁生成,对形成Fe-N4中心有利。

铁中心六配位结构也被认为是非晶态 Fe 的可能活性位之一,其结构为在平面上形成 FeN4结构,在轴向上和上下两个配体连接,形成六配位。苏党生等²²运用穆斯堡尔谱对使用邻/间/对-苯二胺为前体制备的催化剂进行分析,提出 FeN6结构,即在平面的 Fe^{III} 卟啉上下各与一个吡啶配位[Fe^{III} (porphyrin)(pyridine)₂]。苏党生等关于 Fe^{III} 处于六配位结构的观点与 Schulenburg 等²³相似,后者采用 ⁵⁷Fe 穆斯堡尔谱研究热解后的 Fe-TMPP-Cl 得出了相似的结论。他们认为,活性位点的 Fe^{III} 处于六重配位环境,其中包括 4 个氮和另外两个部分,可能是氧和/或碳。

Dodelet ²⁴ 总 结 了 铁 质 量 分 数 在 0.03%-1.55%范围内的 Fe/N/C 催化剂。结合穆斯 堡尔谱和 X 射线吸收精细结构谱(EXAFS)研究活 性中心,他们将含铁物种分为五类,分别为亚铁离 子处于低自旋态(FeN4/C, D1)、中间自旋态 (FeN2+2/C, D2)、高自旋态(N-FeN2+2/C, D3)的 FeN4 位点、表面氧化的氮化铁纳米颗粒(D4、D5)以及 铁质量分数大于 0.27%时存在的不完整 FeN4 结 构。三种非晶态 Fe 的结构和其 d 轨道电子填充如 图 1 所示意。其中只有 D1 和 D3 具有一定的抗酸 性, D3 只在 NH3 中热处理时才会形成, 其铁原子 与五个吡啶 N 配位,并且在附近存在着可质子化 的 N 基团,也有利于提高活性。氧还原反应活性 主要来源于 D1 和 D3 两种结构。这是因为 D1 和 D3 结构中,亚铁离子的 3dz2 轨道没有被完全占据, D2则被完全占据,不能吸附 O2。作者描绘了 D1、 D2、D3 结构的可能存在形式,并设想了 D3 结构 未质子化、质子化和被阴离子中和的结构变化, 如图 1d 所示。进一步研究 25 表明,分别在控制 Ar 或 NH₃ 的气氛进行二次热处理得到的高活性 Fe/N/C 催化剂也得益于 D1 和 D3 位点数量增加。 在Ar/NH3混合气氛中热处理的催化剂相比在纯 氩气中热处理具有更大的孔隙率,可参与反应的 催化位点更多。因此氧还原反应活性更高,而纯 氩气中热处理形成的活性位点有一部分被隔绝在 内部,不能发挥作用。

五配位的 D3 (N-FeN₂₊₂/C)和细胞色素 c 氧化 酶的结构相似。细胞色素 c 氧化酶作为动物体内 的氧还原反应催化剂,在自然界中已存在了十 亿年之久。它的结构中也包含铁(II)卟啉大环结

图 1 (a) FeN₄/C, (b) FeN₂₊₂/C 和(c) N-FeN₂₊₂/C 活性位点的结构示意图及 Fe^{II} 的电子轨道填充示意图; (d) N-FeN₂₊₂/C 位点变化示意图,从左至右分别与其相邻的 N 基团未质子化、质子化和阴离子中和, 当处于质子化状态时活性最高²⁴

Fig. 1 Proposed structures and Fe^{II} molecular orbitals of (a) FeN₄/C, (b) FeN₂₊₂/C 和(c) N-FeN₂₊₂/C. (d) Schematizes the changing ORR-activity of the composite N-FeN₂₊₂····N_{prot}/C site, where N-FeN₂₊₂/C has the D3 signature. The activity of the composite site is low when the basic N-group neighbouring the N-FeN₂₊₂/C moiety is unprotonated (left) or protonated and anion-neutralized (right). The activity is high when this N-functionality is protonated but not neutralized (center) ²⁴.

构,并且铁中心还连接着一个轴向咪唑基配位,属于五配位结构。Cho等²⁶受此启发,将吡啶修饰在碳纳米管上作为轴向配体固定酞菁铁分子,使铁中心形成五配位结构,制得 FePc-Py-CNTs 催化剂。碳纳米管可提供电子快速传输的通道。该催化剂在碱性介质中表现出很高的氧还原反应活性和稳定性。对四配位和五配位结构的密度泛函理论(DFT)计算(图 2)结果表明,轴向配体的轨道会与铁的 3d 轨道进行杂化,改变其电子结构和几何结构,使五配位铁更容易吸附氧气,并且可使O-O键拉伸程度增大,更容易断裂,从而提高氧还原反应速率。另一方面,对于四配位的结构,氧气吸附造成铁原子的位移较大,拉伸并弱化Fe-N4键,导致催化剂稳定性下降;而在五配位

结构中,氧气吸附对铁原子的位移影响非常小,因此稳定性显著提高。

刘劲刚等²⁷也报道了一项类似的工作。他们 在多壁碳纳米管上修饰咪唑,再通过轴向配位的 方式连接铁卟啉,制得与亚铁血红素结构非常类 似的(DFTPP)Fe-Im-CNT 氧还原催化剂。这种仿生 催化剂在酸性和碱性介质中均表现出优良的氧还 原反应活性和四电子反应选择性。在 0.1 mol·L⁻¹ HClO4中的半波电位可达到 0.880 V (可逆氢电极, RHE),在 0.1 mol·L⁻¹ KOH中的半波电位为 0.922 V (RHE),而不含轴向配体的对照样品(DFTPP) Fe-CNT 的催化活性则非常低,反映出五配位结构 的重要性。这两项工作仿生 Me/N/C 催化剂为进一 步设计制备高性能的氧还原催化剂提供了一个新

图 2 DFT 理论计算模型: (a)氧气吸附在 FePc-CNT 的模型; (b) OOH 物种吸附于 FePc-CNT; (c)氧气吸附于 FePc-Py-CNT; (d) OOH 物种吸附于 FePc-Py-CNT ²⁶ Fig. 2 (a) Optimized structure of O₂ adsorbed on FePc-CNT structure. (b) Optimized structure of OOH molecule adsorbed on FePc-CNT structure. (c) Optimized structure of O₂ adsorbed on FePc-Py-CNT structure. (d) Optimized structure of OOH molecule adsorbed on FePc-Py-CNT structure ²⁶.

The grey, blue, white, red and violet balls represent the carbon, nitrogen, hydrogen, oxygen and iron ion, respectively.

的思路,其明确的五配位结构也为热解型 Fe/N/C 催化剂的非晶态 Fe 结构猜想提供了参考。

人们对于非晶态 Fe 中心结构猜想的差异,其 主要原因是热解型 Fe/N/C 催化剂高度异相,且在 谱学研究中各个 Fe 物种之间的相互干扰。如何排 除惰性相的干扰是研究的关键。Jaouen 等 ²⁸通 过控制热解型 Fe/N/C 催化剂的制备条件,获得了 Fe 单原子分散的催化剂,即在 EXAFS 中没有观 察到 Fe-Fe 键。在排除铁纳米颗粒/铁团簇的影响 后,作者观察到以 Fe 单原子分散形式的催化剂具 有极好的氧还原活性。随后,通过拟合作者认为 高活性 Fe/N/C 催化剂的结构为 FeN4C12类卟啉结 构,并在轴向上通过端式/侧式吸附 O2,从而形成 五配位的 FeN4C12O2物种,如图 3 所示。作者通过 几何结构分析,提出类卟啉物种可能存在于高度 无序的石墨烯片或石墨烯 Z 字形边缘间,形成一 个微孔。他们也分析了在氩气和氨气中热处理的 影响。在氨气中热处理促进形成可质子化的含 N 基 团,进一步提高 FeN4C12物种的氧还原反应活性。 Kramm 等 ²⁹利用 H₂/N₂ 混合气氛热处理和酸洗的

Kramm 等27利用 H₂/N₂ 混合气氛热处理和酸抗的 过程有效地除去晶态铁颗粒/铁簇,制备出只含 有 FeN₄ 的 Fe/N/C 催化剂。这两项工作是人们 首次从实验上完美地拟合出 Fe/N/C 催化剂的构 型。尽管,FeN₄C₁₂O₂ 可能并非真实存在,而是多 种 Fe 单原子物种平均后的折中结构,但其意义在 于首次从实验上确定了氧气吸附的第五配位结 构,也通过几种碳结构的拟合展示了碳基底对于 中心 FeN₄结构直接且显著的影响。

近年来低加速电压(< 80 kV)下工作的透射电 镜快速发展,分辨率和对比度大幅度提高,可以 直接观察轻元素的原子像,且结合低能电子损失 谱可实现轻元素之间的分辨,例如可分辨碳、氮 和硼元素 ³⁰⁻³⁴。利用此技术,在近期的工作中 Zelenay 等³⁵观察到 FeN_x镶嵌于石墨烯骨架中的原 子像(图 4a),并且利用具有原子级分辨的电子能量 损失谱确定了 Fe/N 比为 1/4(图 4b),从而直观地 在电镜下观察到 FeN₄镶嵌于石墨烯框架中。包信

The brown sphere represents an iron atom, whereas blue, grey and red spheres identify nitrogen, carbon and oxygen atoms, respectively.

图 4 FeN4Cy 结构分析 Fig. 4 Structural analysis of FeN4Cy.

(a) HAADF-STEM image of individual Fe atoms (labeled 1 and 2).
(b) Electron Energy Loss Spectra of the N *K*-edge (N_K) and Fe *L*-edge (Fe_L) acquired from single atoms (1, 2 and 3)³⁵. (c) Low-temperature scanning tunneling microscopy (LS-STM) image of graphene-embedded FeN4. (d) Simulated STM image for figure c ³⁶.

和等³⁶也在由卟啉铁和石墨烯纳米片球磨得到的 样品中观察到 FeN4结构。他们利用球差电镜和低 温扫描隧道显微镜观察到 FeN4结构,如图 4c 和 4d 所示。图 4 中所示的 FeN4C₂结构均是 FeN4镶 嵌于石墨烯平面中。事实上,绝大部分的单原子 Fe 分散于碳边缘(edge),且边缘处的 FeN4结构可 能具有更高的氧还原活性。当然,边缘处的 FeN4 也更不稳定,在电子束照射下其结构很快就被破 坏。

此外,吴宇恩等³⁷提出 Fe、Co 双金属中心和 邻近 N 配位的活性位结构。他们认为双金属活性 位结构更有利于 O-O 键断裂,可以提高催化剂 的稳定性。在 50000 圈电位(0.6-1.0 V vs RHE)循 环中,催化剂活性几乎没有衰减。不过,电位循 环窗口太小,达不到加速衰减实验的效果,其稳 定性有待进一步确定。

2.1.2 反应界面上的非晶态铁

氧还原电催化过程仅发生在催化剂表界面。 然而,常用的 Fe/N/C 催化剂表征方法,包括 EXFAS ^{25,28,29},⁵⁷Fe 穆斯保尔谱 ^{25,28,29,38,39},飞行时 间二次离子质谱(TOF-SIMS) ^{20,39}和 X 射线光电子 能谱(XPS) ^{40,41}等,均是表征材料体相或近表面信 息的手段。除了使用高能电子探测的 EXFAS, 上述其它方法难于用于水溶液原位表征,使得仅 用这些方法难于捕捉到真正参与反应的表面物种的信息。

原位谱学可以通过观察催化活性物种随电化 学过程的变化,有利于排除干扰,更准确地反映 催化活性位结构的信息。例如 Mukerjee 等 $^{42-44}$ 利 用原位 X 射线吸收光谱(*in situ* XAS)技术,在氧还 原反应过程中观察到中心 Fe 离子发生变价,由平 面型的 O_x-Fe-N₄转变成非平面型的 Fe-N₄。他们认 为氧还原反应过程始于中心金属离子的变价,即 Fe-N₄中心吸附 O₂ 后,Fe²⁺转变成 Fe³⁺,如图 5a 所示。他们 ⁴⁵同时发现在碱溶液中碳基底的缺陷 度与氧还原反应的转化数(TON)存在线性关系,认 为这是由于碳基底的缺陷增加,破坏部分离域 π 键,降低了基底的给电子能力(即增加了吸电子能 力),使得 Fe 的 e_g 轨道(d_2)的能级降低,提高了 Fe 中心离子的氧化还原电位,从而增强氧还原反 应活性,如图 5b 所示。

表面探针技术是获得催化剂表界面信息最为 直接便捷的技术。目前,Fe/N/C 催化剂使用的表 面探针一般是表面物种(含 Fe 物种)的强配体,例 如如 CO、CN⁻、SCN⁻、SO₂、H₂S、SO₂、乙硫醇 等 ⁴⁶⁻⁴⁹。周志有等 ⁵⁰ 采用高含氮量的聚间苯二胺 (PmPDA)为氮源,制备出 PmPDA-FeN_x/C 催化剂, 其在酸性介质中的质量活性可达 11.5 A·g⁻¹@0.8 V (RHE),过氧化氢的产率也低于 1%。该催化剂

图 5 (a) Fe-N₄-C₈ 模型结构中,氧原子垂直方向的 配位引起 Fe²⁺/Fe³⁺的转变⁴⁴; (b) Fe-N-C 中 XPS 的 C 1s 半峰宽(碳的缺陷度)与 0.1 mol·L⁻¹ NaOH 中 氧还原反应的转化数(TON)之间的线性关系⁴⁵

Fig. 5 (a) The derived Fe-N switching behavior governed by the Fe^{2+/3+} redox potential is illustrated by the structural model (Fe-N₄-C₈) with/without axially bound O atom⁴⁴. (b) Linear relationship between ORR turnover numbers in 0.1 mol·L⁻¹ NaOH electrolyte *versus* full-width at half-maximum of C 1s photoemission spectra ⁴⁵.

The yellow, blue, grey, and red spheres identify iron, nitrogen, carbon and oxygen atoms, respectively.

同样还表现出良好的 H₂O₂还原活性。进一步研究 发现 PmPDA-FeN_x/C 催化剂易被卤素离子(F⁻、Cl⁻ 和 Br⁻)和低价态的含硫物种(如 SCN⁻、SO₂、H₂S 等)毒化(图 6)。探针分子/离子占据金属活性位后, 金属中心无法进行氧还原反应过程。实验上可以 观察到加入表面探针前后,金属中心催化剂的氧 还原反应活性明显下降。由此证明 Fe/N/C 的活性 位含有 Fe 元素。

表面探针分子/离子还可以用于估算表面活性 位的密度和催化转换频率(TOF)。Strasser 等⁵¹ 发 现 Me/N/C 催化剂可在低温下化学吸附一氧化碳, 且吸附量和氧还原活性成正比,如图 7 所示。由 此,他们提出利用脉冲化学吸附获得 CO 吸附量, 从而定量估算 Me/N/C 催化剂表面的活性点密度 和催化转换频率(TOF)。另外,一氧化氮(NO)和亚 硝酸根(NO₂)在酸性介质中氧还原反应电位窗口 (0.3–1.0 V vs RHE)内可以和 FeN_xC 形成稳定的配 位。在更低电位时(-0.3 – 0.3 V vs RHE)吸附物种

图 6 阴离子对 PmPDA-FeN_x/C 在 0.1 mol·L⁻¹ H₂SO₄中 氧还原反应活性的影响(a) F⁻, (b) Cl⁻, (c) Br⁻和(d) SCN⁻; (e)卤素离子和低价态的含硫物种(如 SCN⁻, SO₂, H₂S 等) 毒化 FeN_x/C 催化剂示意图 ⁵⁰

Fig. 6 Effects of (a) F⁻, (b) Cl⁻, (c) Br⁻, and (d) SCN⁻
ions on ORR activity of PmPDA-FeN_x/C catalyst in 0.1 mol·L⁻¹ H₂SO₄. (e) Illustration of halide ions and
S-containing species on the ORR of FeN_x/C catalyst ⁵⁰. All above four ion concentrations were 5 mmol·L⁻¹;

catalyst loading: 0.6 mg·cm⁻²; rotating speed: 900 r·min⁻¹.

(NO)则被还原成 NH₃ 和 N₂。Kucernak 等 ⁵² 利用 NO 吸脱附(NO striping)的电量,估算出 Fe/N/C 活 性位的数量。这两项工作将非贵金属的表面探针 技术从定性表征发展为定量表征技术,为缺乏高 效表征技术的 Fe/N/C 研究提供了一种有力的工 具。可以预见表面探针技术将会是 Fe/N/C 催化剂 的一个重要研究方向,尤其是将其与电化学原位 谱学技术相结合。

热解 Fe/N/C 催化剂结构复杂,存在多种物相, 难以研究活性位结构。要深入认识催化活性位, 需要借鉴表面科学已取得巨大成功的单晶模型催 化剂研究思想,构筑结构比较明确可控的 Fe/N/C 模型催化剂。单层石墨烯可认为是碳材料的一个 理想模型。周志有等 53 在 FeCl3(g)/NH3 前驱体气 氛中,高温热处理单层石墨烯,制得单原子层的 Fe/N/C 模型催化剂,如图 8 所示。单层 Fe/N/C 表 现出与纳米 Fe/N/C 催化剂相近的氧还原反应活性 和相同 SCN⁻毒化响应。以此为模型催化剂,通过 控制模型催化剂中 FeN 含量,观察到 Nx-Fe 含量 与氧还原反应活性之间的线性关系,证明了 Nr-Fe 为氧还原反应的活性位。另外,还观察到氧还原 活性随着石墨烯的缺陷位密度增加而升高,但石 墨烯的层数对活性影响比较小。值得一提的是, 此体系中所有物种均在表面上,即氧还原的反应 界面,可以准确的反映出物种与氧还原反应活性 之间的关系,不存在体相物种的干扰。

2.2 Fe/N/C 中的晶态铁

热解 Fe/N/C 催化剂往往还存在着被碳包裹的 铁或者 Fe₃C 晶态纳米粒子,在 XRD 和透射电镜

HClO₄ 中氧还原反应质量活性的线性关系图 ⁵¹ Fig. 7 CO uptake (nmol·mg⁻¹) versus ORR catalyst mass activity in 0.1 mol·L⁻¹ HClO₄ ⁵¹.

> Conditions: CO adsorption at 193 K, desorption ramp: 20 K·min⁻¹ to 693 K.

测量过程中非常容易观察到。关于晶态铁在热解 Fe/N/C催化剂中的作用有三种观点。

其一,晶态铁是电化学惰性相,不参与电催 化过程,甚至阻碍真正活性位的裸露,可除去晶 态铁以提高活性。例如,Jaouen²⁸和Kramm²⁹等 观察到晶体铁的存在与否并未影响ORR活性。他 们分别用控制NH₃气氛处理时间和还原气氛热处 理-酸洗的方法也制备出无晶态铁存在的热解 Fe/N/C催化剂,并表现出很好氧还原活性。Choi 等⁵⁴通过电化学在线电感偶合等离子体质谱 (ICP-MS)和差分电化学质谱(DEMS)观察到,在低 电位(< 0.7 V)时 Fe发生溶解,但活性并未衰减; 在高电位(> 0.9 V)时,部分碳发生氧化,活性衰减。 同时,他们也发展了电化学除去晶态铁的方法¹⁹。

其二,晶态铁在高温热处理下促进氧还原反应活性中心的形成,但其本身并不是氧还原活性位,对氧还原反应也没有直接的贡献。实验上的依据是,通过热处理、酸洗等条件改变铁的状态,但并未观察到氧还原反应活性与铁的改变之间存在联系,反而氧还原反应活性与碳、氮的变化更相关。因此,Ozkan 等 55 部分学者认为 Fe 只是在高温中催化活性位的形成,而其自身并不参与催化氧还原反应。

其三,封装在碳薄层内的晶态铁能够促进碳 表面对氧还原反应的活性,但铁本身并未直接参 与氧气还原反应。包信和等⁵⁶将二茂铁和叠氮化 钠在氮气中 350 ℃ 热处理,制备出豆荚状碳纳米 管包覆晶态铁的复合催化剂(Pod-Fe),如图9所示。 将晶态铁包裹在碳壳中可有效避免活泼的铁被酸 腐蚀,也有效阻止了二氧化硫等中毒,同时 Fe 还 能够向外层碳原子提供电子,促进氧气活化。在 碳外壳的保护下,该催化剂在10×10⁻⁶ (体积分数) 的 SO₂环境中,仍能稳定工作 200 h。DFT 结果表 明铁纳米粒子的电子转移可使碳纳米管的局部功 函降低,具备催化氧还原反应的能力,在碳的晶 格中掺杂 N 原子能进一步降低局部功函,提高氧 还原反应活性。在随后的研究中,Zelenay 等 ⁵⁷在 竹节状碳纳米管包裹铁颗粒(N-Fe-CNT/CNP)观察 到优异的氧还原活性。胡劲松等 ⁵⁸也认为在碱溶 液中,Fe/Fe₃C 和 FeN_xC 共存可以提高氧还原反应 活性,即 Fe/Fe₃C 促进了 FeN_x的活性。

如何从实验上证明晶态铁促进氧还原活性 呢?其难点和关键在于排除非晶态 Fe-N_x的影响, 以确定氧还原活性来自晶态铁纳米颗粒。Gewirth 等59通过分别在Cl2和H2气氛两步热处理,除去 了 Fe/N/C 中的非晶态 FeNxCy, 催化剂中只有还原 态的碳包裹铁纳米颗粒。他们观察到在 Cl2 气氛中 高温处理后, 晶态 Fe/Fe₃C 和非晶态 FeN_xC_y均转 化为 FeCl3, 催化剂失活; 但失活后的催化剂再通 过氢气还原形成晶态 Fe 后, 其氧还原活性又得到 恢复。据此,他们认为碳包裹的铁纳米粒子是具 有氧还原活性的。在近期的工作中, Jaouen 等⁶⁰ 通过对比四种 Fe/N/C 催化剂, 它们分别具有不同 含量的 FeN_xC_y物种和氮掺杂碳包覆的铁纳米颗粒 (Fe@N-C)。他们观察到 FeN_xC_y 物种和 Fe@N-C 均具有 ORR 催化活性,其中 FeN_xC_y物种表面绝 大部分进行4电子过程,小部分经历2电子过程 生成 H₂O₂; Fe@N-C 表面绝大部分进行 4 电子过 程。单纯的铁纳米颗粒(未包覆)或者氮掺杂碳不具 备过氧化氢还原能力(图 10)。

此外,Mukerjee 等⁶¹通过 *in situ* XAS 测试, 认为豆荚状结构的晶态铁并非活性位,其催化过 程可能是在氮掺杂碳表面进行的。在之前的工作 中^{42,44},他们观察到 FeN_xC_y物种会在 ORR 过程中

图 9 (a) 豆荚状碳纳米管包覆铁纳米颗粒催化剂 (Pod-Fe)的高分辨透射电镜图,插图为铁纳米粒子[110]晶 面的高分辨图; (b) Pod-Fe 催化剂催化氧还原示意图 ⁵⁶ Fig. 9 (a) HRTEM image of Pod-Fe with the inset showing the [110] crystal plane of the Fe particle. (b) A schematic representation of the ORR process at the surface of Pod-Fe catalyst ⁵⁶.

发生变价,而在豆荚状结构中,他们未观察到形成 Fe-N键,且 Fe 价态并不随电极电位移动而发生变化。因此,他们认为这类材料中氮掺杂碳是氧还原活性位。不过需要注意的是,该研究制备的豆荚状结构 Fe 质量分数很高(3.1%),而通常非晶态的 FeN_xC_y中 Fe 含量低于 1%,甚至低于 0.5%。因此,较高含量的晶态 Fe 可能会掩盖低含量 FeN_x的信号,使得 *in situ* XAS 未能观察到 Fe-N 配位。

当前,对于晶态铁对氧还原催化性能的作用 还没有定论。非晶态 FeN_xC_y物种具有优异氧还原 活性,且铁含量往往非常低,甚至痕量金属即可 大幅度提高氧还原活性。然而,目前的诸多证据 中均不能完全排除 FeN_x的影响。哪怕是利用还原 气氛除去非晶态铁的方法也难以保证单原子分散 的 FeN_x 已完全除去或被重构团聚成晶态铁。同时, 现有的检测技术也难以在晶态铁中分辨出少量/微 量的非晶态铁。晶态铁在催化剂中的作用有待完 美的(氮杂)碳包铁催化剂的建立,以及更加精细的 检测技术,如纳米级别空间分辨的 ORR 催化活性 mapping 技术等。

3 氮掺杂和碳缺陷活性位

非金属杂元素的引入也可以显著提高碳基催 化剂的氧还原催化活性,例如氮⁶²⁻⁶⁴、硼⁶⁵、磷⁶⁶、 硫⁶⁷、氟⁶⁸和碘⁶⁹等元素,或分子掺杂⁷⁰。其中, 氮掺杂碳具有最好的氧还原活性。2009年,戴黎 明等⁶²报道通过热解酞菁铁制备出氮掺杂碳纳米 管(NCNT)阵列,并利用电化学方法小心地除去金 属杂质,观察到其在碱性条件下具有与商业化 Pt/C 相当的氧还原活性,且具有更高的稳定性和 抗 CO 毒化能力。此后,氮掺杂碳材料开始受到 的关注,其是否存在痕量金属的影响也成为了讨论的热点。Pumera⁷¹和 Schuhmann 研究组^{72,73}认为在一些所谓的"Metal-Free"催化剂中残留的微量金属杂质,如 Mn、Fe、Co等,虽然很难被 XPS、EDS 等表征方法检测出来,却会对氧还原反应催化活性有极大的促进作用。

"自下而上"的方法可以制备出严格意义上的 "Metal-Free"碳材料。"自下而上"方法指的是 选择碳源通过化学反应从原子或分子合成出碳材 料。此方法制备的碳材料干净,易排除痕量金属 元素(如铁、钴等)掺杂对活性的影响,可以明确催 化活性的来源。胡征等⁷⁴利用 MgO 模板法,以吡 啶为前驱体制备出氮掺杂碳纳米笼,且在碱性条 件下具有不错的 ORR 活性。戴黎明等⁷⁵利用甲烷 和氨气在 SiO₂上制备氮掺杂碳纳米管,在酸性条 件下表现出一定 ORR 活性。这些催化剂是严格意 义上的"Metal-Free",有力地证明了氮掺杂可以 提高氧还原活性。

在氦掺杂碳中有三种类型的氦被认为可能是 氧还原反应活性位中心,包括吡啶氮(Pyridinic N)、吡咯氮(Pyrrolic N)和四价氮(Quaternary N 或 石墨氮)等。四价氮为非平面型的 *sp*³杂化,而吡 啶氮和吡咯氮均为平面型的 *sp*²杂化。通过 DFT 计算,陈胜利等⁷⁶系统分析了氦掺杂碳 11 种可能 表面位的氧还原过程,发现氧还原催化活性与 OH 吸附自由能呈火山型曲线关系,其中扶手椅型石 墨氮(armchair graphitic N)、锯齿形吡啶氮(zigzag pyridinic N)和锯齿形吡啶氮的氧化物活性比较 高。Bao 等⁷⁷认为 zigzag 边的石墨型氮具有较合 适的吸附氧气结构,其'V'字型底顶点为氮,两 个邻位碳能够分别吸附氧气分子的两个原子。同 时,质子对邻位碳的进攻帮助完成氧还原反应过 程,且起到至关重要作用。

实验上研究氮掺杂碳活性位通常需要巧妙的 设计。魏子栋等⁷⁸利用蒙脱土的层状结构制备出 几乎只有 *sp*²杂化的平面型氮,即吡啶型氮和吡咯 型氮,如图 11 所示。良好氧还原反应催化活性说 明了吡啶型氮和吡咯型氮对氧还原反应发挥了重 要的作用。乔世璋等⁷⁹通过对比氮掺杂碳材料在 碱性溶液中氧还原前后的 XPS 和红外光谱,推测 ORR 过程中吡啶型氮的邻位碳原子被接上了一个 羟基,如图 12a 所示。他们认为邻位碳的 OH_{ads} 为氧还原反应的中间体,吡啶型氮在氧还原反应 过程扮演重要角色,而邻位碳是氧还原反应的活 性位。随后,郭东辉等⁸⁰在模型催化剂方面取得 重要进展,在高序热解石墨(HOPG)上选择性地制

Fig. 11 Schematic representation showing the selectivity inside and outside of montmorillonite nitrogen-doped graphene synthesis ⁷⁸.

Planar N (pyridinic- and pyrrolic- N) formed in small-layer-spacing montmorillonite with high ORR activity;

non-planar N (quaternary N) formed in large-layer-spacing montmorillonite with low ORR activity.

图 12 (a)吡啶型氮的邻位碳在碱性溶液接上 OH ⁷⁹; (b)吡啶型氮的邻位碳上进行氧还原反应路径 ⁸⁰; (c) N 掺杂石墨烯选择性乙酰化,确认吡啶 N 的邻位碳原子为氧还原反应位 ⁸¹

Fig. 12 (a) OH(ads) attached on the carbon atoms close to pyridinic-N⁷⁹; (b) Schematic pathway for oxygen reduction reaction on nitrogen-doped carbon materials⁸⁰; (c) Identification of the ortho-carbon atom of the pyridinic ring as the reactive site for ORR by selective modification of acetyl group on N-doped graphene⁸¹.

备出吡啶氮和四价氮(或石墨氮)。他们观察到在酸 性溶液中吡啶氮含量与氧还原反应活性直接相 关,且在反应后样品氧含量增加。他们推测吡啶 氮的邻位碳接上了羟基,并认为氧还原反应过程 是在邻位碳上进行的,其反应路径如图 12b 所示。 近期,周志有和杨立军等⁸¹借鉴有机反应中喹啉 类化合物的高选择性乙酰化反应,对氮掺杂石墨 烯催化剂进行乙酰化修饰。在亲电取代条件下, 带有孤对电子的氮原子优先被乙酰化;而在自由 基反应条件下,吡啶氮的邻位原子被乙酰化。两 个修饰样品在酸性介质中表现出截然不同的氧还 原活性:吡啶氮被乙酰化的样品,基本能保留原 先的氧还原活性;而邻位碳原子被乙酰化的样品 完全丧失了氧还原活性,从而为吡啶氮的邻位碳 原子是氧还原活性位提供了一个实验证据(图 12c)。DFT 理论计算表明,在酸性溶液中吡啶 N 被质子化后或嫁接乙酰基后,邻位碳原子带有比 较高的正电荷密度和自旋密度,使得氧气很容易 在该位置上发生吸附和还原。

质子/氢氧根离子与活性位或碳基底在氧还原 电位窗口内存在强相互作用,并形成多种可逆的 氧化还原对。梁振兴等⁸²利用氧气溶出伏安法和 考察相当宽的 pH 区间(0-2、7、12-14)的氧还原 行为,认为氮杂碳材料的表面氧化还原对和氧还 原反应相关。在碱性和电位低于 0.8 V vs RHE 条 件下,表面形成含氧物种(*O、*OH 等),并借助 氢键在外亥姆霍兹层(OHP)吸附溶解氧,传递电子 促其转化为 H₂O₂。在酸性条件下,氮原子上的孤 对电子被质子化,降低了大π键电荷密度,降低了 大π键与氧气的相互作用,使得活性低于碱性环 境。周志有等⁸³也在实验中得到相同的结论。他 们对比三种具有不同吡啶氮含量的催化剂,观察 到吡啶氮含量与质子化后活性的降低正相关。

对于氮掺杂碳,尚存在氧还原活性是来源于 吡啶型氮还是石墨型氮的争议。该争议的主要原 因可能是忽略了碳缺陷对于氧还原的贡献。吡啶 型氮在较低的温度下形成,伴随着较多的碳缺陷, 而石墨型氮在较高的温度下形成,碳缺陷较少。 实验上观察到的吡啶型氮的活性可能有一部分来 源于缺陷的额外贡献⁸⁴。

碳材料的边缘位和缺陷位具有一定的氧还原 催化活性,尤其是在碱性介质中。以结构明确的 石墨烯为例, 王双印等 85 将空气饱和的碱性电解 液微滴滴在高序热解石墨(HOPG)的不同位置,利 用微电极采集微液滴上的电化学信号,观察到边 缘缺陷碳原子的氧还原活性显著高于平面内 sp² 杂化碳原子。将商业石墨颗粒进行球磨,结果表 明球磨时间越长,氧还原反应活性越好,说明边 缘缺陷碳密度增加有利于氧还原反应。DFT 计算 也指出,缺陷碳原子带有更高的电荷密度,可提 供氧还原反应吸附位点。其他研究也证实 86,通 过高温下对石墨烯、碳纳米管等进行等离子体刻 蚀,形成非掺杂、表面富缺陷的结构,可显著提 高氧还原反应催化活性。胡征等87以苯为碳源, 在高温下以 MgO 模板制备出碳纳米笼。碳纳米笼 未引入杂原子,且在碱性条件下表现出良好的氧 还原反应活性,如图 13 所示。通过 DFT 计算锯 齿形边缘(Zigzag edge)、扶手椅型边缘(Armchair edge)、五元环缺陷和孔缺陷在各个反应步骤的自 由能,结果显示锯齿形边缘和五元环缺陷表现出

Fig. 13 Schematic structural characters of the carbon nanocages and its ORR activity in alkaline solution ⁸⁷.

随反应进行自由能下降,有利于氧还原反应过程, 从而揭示了本征碳缺陷对氧还原反应活性的贡献。

其它非金属元素的掺杂碳材料,如徐维林等 ⁸⁸制备的氟掺杂碳材料,在碱性条件下也表现出良 好的氧还原反应活性。Joo等⁸⁹利用开尔文力显微 镜(Kelvin probe force microscopy)测量了三元掺杂 碳(N、S和O)、二元掺杂碳(N、S和O两两组合) 和氧掺杂碳的功函数(work function),观察到功函 数与碱性中的氧还原反应活性线性反比关系。降 低碳基催化剂的功函数,将提高其氧还原反应催 化活性。对于杂原子掺杂的碳材料催化剂,其本 质上也可解释为具有不同电负性、电子极性的杂 原子打破了碳原子间原有的 *sp*²杂化电子结构平 衡,使杂原子和相邻的碳原子带电荷,增加了活 性中心的密度,提高氧还原反应活性。杂原子掺 杂的关键是活化π电子,使之能被 O₂分子有效利用, 而不在于掺杂原子本身是富电子还是缺电子⁹⁰。

4 结论

总体来说,碳基非贵金属催化剂是一类非常 有前景的燃料电池氧还原反应催化剂。经过研究 者几十年的努力探索,已经取得了长足进步。但 要在燃料电池中取代铂催化剂,碳基非贵金属催 化剂的活性,尤其是稳定性还需进一步提高。要 实现这个目标的关键是对活性位结构的清晰认 识,从而指导催化剂的理性设计和制备,进一步 提高活性位密度。当前虽然已有大量关于活性位 结构的报道,但并未能达成一致性的结论,争议 很大。热解 Me/N/C 非贵金属催化剂结构复杂,很 可能存在多种类型的氧还原活性位,包括单原子 分散金属中心与氮配位结构、非金属氮掺杂碳, 以及碳(氮掺杂碳)包裹型金属纳米颗粒等。未来研 究需要借鉴表面科学已取得巨大成功的模型催化 剂研究思路,力求通过设计和制备结构明确可控 的模型催化剂,结合原位谱学技术深入研究。相 信未来随着对碳基非贵金属催化剂活性位结构 的深入认识,精确构筑活性位并提高其密度,结 合燃料电池催化层的结构优化设计,碳基非贵金 属催化剂在燃料电池和金属空气电池等电化学能 源转化装置的实际应用将得到实质性推进。

References

- Papageorgopoulos, D. Fuel Cells Session Introduction. Annual Merit Review and Peer Evaluation Meeting, May 14, 2013. U.S.
 Department of Energy Hydrogen and Fuel Cells Program. (https://www.hydrogen.energy.gov/pdfs/review13/fc000_papageorgo poulos_2013_o.pdf). (accessed Jun 12, 2018)
- US Department of Energy. Multi-Year Research, Development, and Demonstration Plan, 2016, (https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fue l_cells.pdf). (accessed Jun 12, 2018).
- (3) Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324,
 71. doi: 10.1126/science.1170051
- (4) Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. *Nat. Commun.* 2011, *2*, 416. doi: 10.1038/ncomms1427
- (5) Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P.; *et al. Angew. Chem. Int. Ed.* **2015**, *54*, 9907. doi: 10.1002/anie.201503159
- (6) Fu, X.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G.; Higgins, D.
 C.; Zhang, Y.; Hoque, M. A.; Chen, Z. Adv. Mater. 2017, 29, 1604456. doi: 10.1002/adma.201604456
- (7) Liu, Q.; Liu, X.; Zheng, L.; Shui, J. Angew. Chem. Int. Ed. 2018, 57, 1204. doi: 10.1002/anie.201709597
- (8) Shui, J.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D. J. Proc. Natl. Acad. Sci. 2015, 112, 10629. doi: 10.1073/pnas.1507159112
- (9) Su, X.; Liu, J.; Yao, Y.; You, Y.; Zhang, X.; Zhao, C.; Wan, H.; Zhou, Y.; Zou, Z. Chem. Commun. 2015, 51, 16707.
 doi: 10.1039/C5CC06413A
- (10) Yao, Y.; You, Y.; Zhang, G.; Liu, J.; Sun, H.; Zou, Z.; Sun, S. ACS Appl. Mater. Interfaces 2016, 8, 6464. doi: 10.1021/acsami.5b11870
- (11) Xuan, C. J.; Wang, J.; Zhu, J.; Wang, D. L. Acta Phys. -Chim. Sin.
 2017, 33, 149. [玄翠娟, 王杰, 朱静, 王得丽. 物理化学学报,
 2017, 33, 149.] doi: 10.3866/PKU.WHXB201609143
- (12) Zhou, Y.; Cheng, Q. Q.; Huang, Q. H.; Zou, Z. Q.; Yan, L. M.; Yang, H. Acta Phys. -Chim. Sin. 2017, 33, 1429. [周扬,程庆庆,黄庆红, 邹志青, 严六明,杨辉. 物理化学学报, 2017, 33, 1429.]

doi: 10.3866/PKU.WHXB201704131

- (13) Wang, Y. C.; Huang, L.; Zhang, P.; Qiu, Y. T.; Sheng, T.; Zhou, Z. Y.;
 Wang, G.; Liu, J. G.; Rauf, M.; Gu, Z. Q.; *et al. ACS Energy Letters* 2017, *2*, 645. doi: 10.1021/acsenergylett.7b00071
- (14) Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Chem. Rev. 2016, 116, 3594. doi: 10.1021/acs.chemrev.5b00462
- (15) Zhang, G.; Chenitz, R.; Lefèvre, M.; Sun, S.; Dodelet, J. P. Nano Energy 2016, 29, 111. doi: 10.1016/j.nanoen.2016.02.038
- Banham, D.; Ye, S. ACS Energy Letters 2017, 2, 629.
 doi: 10.1021/acsenergylett.6b00644
- (17) Choi, J. Y.; Yang, L.; Kishimoto, T.; Fu, X.; Ye, S.; Chen, Z.; Banham, D. *Energy Environ. Sci.* 2017, *10*, 296. doi: 10.1039/C6EE03005J
- (18) Chenitz, R.; Kramm, U. I.; Lefevre, M.; Glibin, V.; Zhang, G.; Sun,
 S.; Dodelet, J. P. *Energy Environ. Sci.* 2018, *11*, 365.
 doi: 10.1039/C7EE02302B
- (19) Choi, C. H.; Baldizzone, C.; Polymeros, G.; Pizzutilo, E.; Kasian, O.; Schuppert, A. K.; Ranjbar Sahraie, N.; Sougrati, M. T.; Mayrhofer, K. J. J.; *et al. ACS Catal.* **2016**, *6*, 3136. doi: 10.1021/acscatal.6b00643
- (20) Lefevre, M.; Dodelet, J. P.; Bertrand, P. J. Phys. Chem. B 2002, 106, 8705. doi: 10.1021/jp020267f
- (21) Ferrandon, M.; Kropf, A. J.; Myers, D. J.; Artyushkova, K.; Kramm,
 U.; Bogdanoff, P.; Wu, G.; Johnston, C. M.; Zelenay, P. J. Phys.
 Chem. C 2012, *116*, 16001. doi: 10.1021/jp302396g
- (22) Zhu, Y.; Zhang, B.; Liu, X.; Wang, D. W.; Su, D. S. Angew. Chem. Int. Ed. 2014, 53, 10673. doi: 10.1002/anie.201405314
- (23) Schulenburg, H.; Stankov, S.; Schünemann, V.; Radnik, J.; Dorbandt,
 I.; Fiechter, S.; Bogdanoff, P.; Tributsch, H. J. Phys. Chem. B 2003, 107, 9034. doi: 10.1021/jp030349j
- (24) Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefèvre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S.; *et al. Phys. Chem. Chem. Phys.* 2012, *14*, 11673. doi: 10.1039/c2cp41957b
- (25) Kramm, U. I.; Lefevre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J.
 P. J. Am. Chem. Soc. 2014, 136, 978. doi: 10.1021/ja410076f
- (26) Cao, R.; Thapa, R.; Kim, H.; Xu, X.; Gyu Kim, M.; Li, Q.; Park, N.;
 Liu, M.; Cho, J. *Nat. Commun.* 2013, *4*, 2076.
 doi: 10.1038/ncomms3076
- Wei, P. J.; Yu, G. Q.; Naruta, Y.; Liu, J. G. Angew. Chem. Int. Ed.
 2014, 53, 6659. doi: 10.1002/anie.201403133
- (28) Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.;
 Stievano, L.; Fonda, E.; Jaouen, F. *Nat. Mater.* 2015, *14*, 937.
 doi: 10.1038/nmat4367
- (29) Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter,
 S.; Bogdanoff, P. J. Am. Chem. Soc. 2016, 138, 635.
 doi: 10.1021/jacs.5b11015

- Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. *Nature* 2011, *469*, 389. doi: 10.1038/nature09718
- (31) Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P.; et al. Nature 2010, 464, 571. doi: 10.1038/nature08879
- (32) Suenaga, K.; Koshino, M. *Nature* 2010, 468, 1088. doi: 10.1038/nature09664
- (33) Van Dyck, D.; Jinschek, J. R.; Chen, F. R. *Nature* 2012, 486, 243. doi: 10.1038/nature11074
- (34) Lv, R.; Chen, G.; Li, Q.; McCreary, A.; Botello-Méndez, A.;
 Morozov, S.; Liang, L.; Declerck, X.; Perea-López, N.; Cullen, D. A.
 Proc. Natl. Acad. Sci. 2015, *112*, 14527.
 doi: 10.1073/pnas.1505993112
- (35) Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.;
 More, K. L.; Zelenay, P. *Science* 2017, *357*, 479.
 doi: 10.1126/science.aan2255
- (36) Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian,
 H.; Hu, Y.; Du, P.; *et al. Sci. Adv.* **2015**, *1*, 11.
 doi: 10.1126/sciadv.1500462
- (37) Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.;
 Jia, C.; Yao, T.; Wei, S.; Wu, Y.; Li, Y. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385
- (38) Koslowski, U. I.; Abs-Wurmbach, I.; Fiechter, S.; Bogdanoff, P. J. Phys. Chem. C 2008, 112, 15356. doi: 10.1021/jp802456e
- (39) Li, W.; Wu, J.; Higgins, D. C.; Choi, J. Y.; Chen, Z. ACS Catal. 2012,
 2, 2761. doi: 10.1021/cs300579b
- (40) Jaouen, F.; Herranz, J.; Lefevre, M.; Dodelet, J. P.; Kramm, U. I.;
 Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A.; *et al. ACS Appl. Mater. Interfaces* 2009, *1*, 1623.
 doi: 10.1021/am900219g
- (41) Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P.
 J. Phys. Chem. C 2015, 119, 25917. doi: 10.1021/acs.jpcc.5b07653
- Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.;
 Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P.; Mukerjee, S. ACS Nano 2015, 9, 12496. doi: 10.1021/acsnano.5b05984
- (43) Tylus, U.; Jia, Q.; Strickland, K.; Ramaswamy, N.; Serov, A.;
 Atanassov, P.; Mukerjee, S. J. Phys. Chem. C 2014, 118, 8999.
 doi: 10.1021/jp500781v
- (44) Li, J.; Ghoshal, S.; Liang, W.; Sougrati, M. T.; Jaouen, F.; Halevi, B.;
 Mckinney, S.; Mccool, G.; Ma, C.; Yuan, X.; *et al. Energy Environ. Sci.* 2016, *9*, 2418. doi: 10.1039/c6ee01160h
- (45) Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. J. Am. Chem. Soc.
 2013, 135, 15443. doi: 1021/ja405149m
- (46) Birry, L.; Zagal, J. H.; Dodelet, J. P. *Electrochem. Commun.* 2010, *12*, 628. doi: 10.1016/j.elecom.2010.02.016

- (47) Thorum, M. S.; Hankett, J. M.; Gewirth, A. A. J. Phys. Chem. Lett.
 2011, 2, 295. doi: 10.1021/jz1016284
- (48) von Deak, D.; Singh, D.; King, J. C.; Ozkan, U. S. *Appl. Catal. B* **2012,** *113–114*, 126. doi: 10.1016/j.apcatb.2011.11.029
- (49) Zhang, Q.; Mamtani, K.; Jain, D.; Ozkan, U.; Asthagiri, A. J. Phys. Chem. C 2016, 120, 15173. doi: 10.1021/acs.jpcc.6b03933
- (50) Wang, Q.; Zhou, Z. Y.; Lai, Y. J.; You, Y.; Liu, J. G.; Wu, X. L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M.; *et al. J. Am. Chem. Soc.* 2014, *136*, 10882. doi: 10.1021/ja505777v
- (51) Sahraie, N. R.; Kramm, U. I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J. P.; Strasser, P. Nat. Commun. 2015, 6, 8618. doi: 10.1038/ncomms9618
- (52) Malko, D.; Kucernak, A.; Lopes, T. Nat. Commun. 2016, 7, 13285. doi: 10.1038/ncomms13285
- Yang, X. D.; Zheng, Y.; Yang, J.; Shi, W.; Zhong, J. H.; Zhang, C.;
 Zhang, X.; Hong, Y. H.; Peng, X. X.; Zhou, Z. Y.; *et al. ACS Catal.* **2017,** 7, 139. doi: 10.1021/acscatal.6b02702
- (54) Choi, C. H.; Baldizzone, C.; Grote, J. P.; Schuppert, A. K.; Jaouen, F.;
 Mayrhofer, K. J. J. Angew. Chem. Int. Ed. 2015, 54, 12753.
 doi: 10.1002/anie.201504903
- (55) Matter, P. H.; Wang, E.; Millet, J. M. M.; Ozkan, U. S. J. Phys. Chem. C 2007, 111, 1444. doi: 10.1021/jp0651236
- (56) Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun,
 G.; Bao, X. Angew. Chem. Int. Ed. 2013, 52, 371.
 doi: 10.1002/anie.201204958
- (57) Chung, H. T.; Won, J. H.; Zelenay, P. Nat. Commun. 2013, 4, 1922. doi: 10.1038/ncomms2944
- Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.; Wang, J.; Hu, J. S.; Wei, Z.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 3570. doi: 10.1021/jacs.6b00757
- (59) Varnell, J. A.; Tse, E. C. M.; Schulz, C. E.; Fister, T. T.; Haasch, R. T.; Timoshenko, J.; Frenkel, A. I.; Gewirth, A. A. *Nat. Commun.* 2016, *7*, 12582. doi: 10.1038/ncomms12582
- (60) Choi, C. H.; Choi, W. S.; Kasian, O.; Mechler, A. K.; Sougrati, M. T.;
 Brüller, S.; Strickland, K.; Jia, Q.; Mukerjee, S.; Mayrhofer, K. J. J.; *et al. Angew. Chem. Int. Ed.* **2017**, *56*, 8809.
 doi: 10.1002/anie.201704356
- (61) Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang,
 W.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. *Nat. Commun.* 2015, *6*,
 7343. doi: 10.1038/ncomms8343
- (62) Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. doi: 10.1126/science.1168049
- (63) Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321.
 doi: 10.1021/nn901850u
- (64) Wang, J.; Li, L.; Wei, Z. D. Acta Phys. -Chim. Sin. 2016, 32, 321. [王 俊, 李莉, 魏子栋. 物理化学学报, 2016, 32, 321.]

485

doi: 10.3866/PKU.WHXB201512091

- (65) Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.;
 Ma, J.; Ma, Y.; Hu, Z. Angew. Chem. Int. Ed. 2011, 123, 7270.
 doi: 10.1002/anie.201101287
- (66) Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Angew. Chem. Int. Ed. 2011, 50, 3257.
 doi: 10.1002/anie.201006768
- (67) Jeon, I. Y.; Zhang, S.; Zhang, L.; Choi, H. J.; Seo, J. M.; Xia, Z.; Dai,
 L.; Baek, J. B. *Adv. Mater.* 2013, *25*, 6138.
 doi: 10.1002/adma.201302753
- (68) Sun, X.; Zhang, Y.; Song, P.; Pan, J.; Zhuang, L.; Xu, W.; Xing, W. ACS Catal. 2013, 3, 1726. doi: 10.1021/cs400374k
- (69) Yao, Z.; Nie, H.; Yang, Z.; Zhou, X.; Liu, Z.; Huang, S. Chem. Commun. 2012, 48, 1027. doi: 10.1039/C2CC16192C
- (70) Wang, S.; Yu, D.; Dai, L. J. Am. Chem. Soc. 2011, 133, 5182.
 doi: 10.1021/ja1112904
- (71) Wang, L.; Ambrosi, A.; Pumera, M. Angew. Chem. Int. Ed. 2013, 52, 13818. doi: 10.1002/anie.201309171
- Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. Angew. Chem. Int. Ed.
 2015, 54, 10102. doi: 10.1002/anie.201500569
- Masa, J.; Zhao, A.; Xia, W.; Sun, Z.; Mei, B.; Muhler, M.;
 Schuhmann, W. *Electrochem. Commun.* 2013, *34*, 113.
 doi: 10.1016/j.elecom.2013.05.032
- (74) Chen, S.; Bi, J.; Zhao, Y.; Yang, L.; Zhang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2012, 24, 5593.
 doi: 10.1002/adma.201202424
- (75) Yu, D.; Zhang, Q.; Dai, L. J. Am. Chem. Soc. 2010, 132, 15127.
 doi: 10.1021/ja105617z
- Liang, W.; Chen, J.; Liu, Y.; Chen, S. ACS Catal. 2014, 4, 4170.
 doi: 10.1021/cs501170a
- (77) Bao, X.; Nie, X.; Deak, D. V.; Biddinger, E. J.; Luo, W.; Asthagiri,
 A.; Ozkan, U. S.; Hadad, C. M. *Top. Catal.* 2013, *56*, 1623.
 doi: 10.1007/s11244-013-0097-z

- Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan,
 L. J.; Alvi, S. F.; *et al. Angew. Chem. Int. Ed.* **2013**, *125*, 11971.
 doi: 10.1002/ange.201303924
- (79) Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S.; Chen, Y. ACS Nano 2014, 8, 6856.
 doi: 10.1021/nn501506p
- (80) Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Science 2016, 351, 361. doi: 10.1126/science.aad0832
- (81) Wang, T.; Chen, Z. X.; Chen, Y. G.; Yang, L. J.; Yang, X. D.; Ye, J. Y.; Xia, H. P.; Zhou, Z. Y.; Sun, S. G. ACS Energy Letters 2018, 3, 986. doi: 10.1021/acsenergylett.8b00258
- (82) Wan, K.; Yu, Z. P.; Li, X. H.; Liu, M. Y.; Yang, G.; Piao, J. H.; Liang,
 Z. X. ACS Catal. 2015, 5, 4325. doi: 10.1021/acscatal.5b01089
- (83) Rauf, M.; Zhao, Y. D.; Wang, Y. C.; Zheng, Y. P.; Chen, C.; Yang, X. D.; Zhou, Z. Y.; Sun, S. G. *Electrochem. Commun.* 2016, *73*, 71. doi: 10.1016/j.elecom.2016.10.016
- (84) Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.
 doi: 10.1021/acs.accounts.6b00541
- (85) Shen, A.; Zou, Y.; Wang, Q.; Dryfe, R. A.; Huang, X.; Dou, S.; Dai,
 L.; Wang, S. *Angew. Chem. Int. Ed.* **2014**, *53*, 10804.
 doi: 10.1002/anie.201406695
- (86) Tao, L.; Wang, Q.; Dou, S.; Ma, Z.; Huo, J.; Wang, S.; Dai, L. Chem. Commun. 2016, 52, 2764. doi: 10.1039/c5cc09173j
- (87) Jiang, Y.; Yang, L.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X.;
 Wu, Q.; Ma, J.; Hu, Z. ACS Catal. 2015, 5, 6707.
 doi: 10.1021/acscatal.5601835
- (88) Sun, X. J.; Song, P.; Chen, T.; Liu, J.; Xu, W. L. Chem. Commun.
 2013, 49, 10296. doi: 10.1039/c3cc45480k
- (89) Cheon, J. Y.; Kim, J. H.; Kim, J. H.; Goddeti, K. C.; Park, J. Y.; Joo,
 S. H. J. Am. Chem. Soc. 2014, 136, 8875. doi: 10.1021/ja503557x
- (90) Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.;
 Qian, W.; Hu, Z. J. Am. Chem. Soc. 2013, 135, 1201.
 doi: 10.1021/ja310566z