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Abstract In this study, the isothermal sections of the Co-

Nb-Re ternary system at 1200, and 1300 �C have been

experimentally determined combining the means of elec-

tron probe microanalysis (EPMA) and x-ray diffraction

(XRD). The obtained experimental results showed that: (1)

The Laves phase of k3-Co2Nb (C36) was stable at 1300 �C.
The temperature was beyond its stability limit in Co-Nb

binary system. (2) The solubility of Re in the k3 phase was
so large that the nearest k2-Co2Nb (C15) phase was

essentially surrounded. (3) The solubility of Re in the l-
Co7Nb6 phase was 34.0 at.% at 1200 �C and 35.2 at.% at

1300 �C, respectively. (4) The liquid phase existed at

1300 �C dissolving about 4.0 at.% Re, but it was absent at

1200 �C. (5) The solid solution phase of (eCo, Re) exten-
ded from Re-rich to Co-rich side.

Keywords Co-Nb-Re ternary system � electron
microprobe � high-temperature alloys � phase equilibria

1 Introduction

Co-based superalloys that have better resistance of oxida-

tion and hot corrosion than Ni-based superalloys are

regarded as competitive high-temperature materials.[1,2] In

order to obtain better high temperature performances to

meet the increasing requirements of the aerospace field,

One of the most effective methods to improve the elevated

temperature property is adding refractory elements such as

Mo, Re, Nb, W, Ta.[3-12] For example, the melting point of

elemental Re (rhenium) is 3186 �C. As an additive ele-

ment, elemental Re can not only improve the strength and

creep resistance of Co-based superalloys, but also refine the

morphology of the alloys.[6-9] Doping refractory element of

Nb can improve high-temperature strength, creep resis-

tance, oxidation resistance and corrosion resistance.[10-12]

However, in Co-based superalloys, the brittle and detri-

mental TCP (topologically close packed) phases easily

form under high temperature and pressure if the element

additions are excessive. Therefore, the amounts of the Re

and Nb are under precise control and the knowledge of

phase equilibria in the Co-Nb-Re system is needed. How-

ever, the experimental information and phase diagram of

this ternary system are not established. Hence, investigat-

ing the phase equilibria of Co-Nb-Re system is necessary.

The three binary systems of Co-Nb, Co-Re and Nb-Re

constitute Co-Nb-Re ternary system, as shown in Fig. 1.

For the Co-Re binary system, it was ever published by

Elliott.[13] Later, Predel[14] also reported the results for the

Co-Re binary system. In 2014, Liu et al.[5] estimated the

Co-Re system and the phase equilibria were consistent with

the experimental data. Recently, Guo et al.[15] reassessed

the Co-Re system with the new thermodynamic parameters

of pure Re. The newly assessed Co-Re phase diagram by

Guo et al.[15] was applied in this work. The Co-Re
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system[15] is simple because there are only two solid phases

of (aCo) and (eCo, Re) and no intermediate phases. The

(eCo, Re) phase has a wide homogeneity range. A peri-

tectic reaction of L ? (eCo, Re) $ (aCo) exists in the Co-

Re system.

Pargeter and Hume-Rothery[16] investigated the equi-

librium diagram of the Co-Nb system by a combination of

thermal analysis, microscopical metallography, and x-ray

diffraction techniques. They reported there were only three

intermetallic compounds of Laves phase k2, k3 and l-
Co7Nb6 in the system. Later, Bataleva et al.[17] firstly found

five intermetallic compounds existing in the Co-Nb binary

system. Kumar[18] thermodynamically evaluated the sys-

tem using the data from Bataleva et al.[17] They described

the k1 and k3 Laves phases as stoichiometric phases

Co16Nb9 and Co3Nb. In 2008, Stein et al.[19] reinvestigated

the Co-Nb system and determined the existence of the five

phases of l-Co7Nb6, Co7Nb2, k3, k2, and k1. He et al.[20]

reassessed the binary system using a two-sublattice model

(Co, Nb)2(Co, Nb) for the k1 and k3 phases. Later, He

et al.[21] re-adjusted the thermodynamic parameters and re-

described the Co-Nb system. This work adopted the Co-Nb

phase diagram evaluated by He et al.[21] The Co-Nb system

is a special system where the Laves phases k1, k2, and k3
with different structure types (hexagonal, cubic and

hexagonal) occur as stable phases. There are the other two

intermediate compounds of l-Co7Nb6 and Co7Nb2. The k1
phase is stable in the temperature range from 1238 to

1423 �C. The eutectoid reaction: k1 $ k2 ? l-Co7Nb6
occurs at 1238 �C where the k1 phase decomposes. The
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Fig. 1 Binary phase diagrams constituting the Co-Nb-Re ternary system[15,21,26]
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composition range of the k1 phase is small. Similarly, the

k3 exists in the temperature range from 1029 to 1264 �C. It
disappears at 1029 �C as it changes into the k2 phase and

Co7Nb2 phase from the eutectoid reaction:

k3 $ k2 ? Co7Nb2.

The Nb-Re binary system has been investigated by

many researchers.[22-26] Greenfield and Beck[22] confirmed

the existence of the v phase. Steadman and Nuttall[23]

determined the site occupancies in the v phase using x-ray

diffractions. Knapton[24] ever determined the invariant

reactions and the congruent melting of the v phase by

alloyage and confirmed two eutectic points at 2673 K, 53%

Re (L $ bcc ? r) and 3003 K, 88% Re (L $ v ? hcp),

respectively. In addition, a peritectic point was found at

2723 K and 57% Re (L ? v $ r), the congruent melting

of the v phase was 3073 K. Savitskii et al.[25] reported a

peritectic reaction (L ? hcp $ v) existing at 2793 K and

a eutectic reaction (L $ bcc ? v) existing at 2613 K. Liu

et al.[26] conducted a thermodynamic description of the Nb-

Re binary system via the CALPHAD method using present

first-principles calculations. The Nb-Re binary system

assessed by Liu et al.[26] is adopted in this work. There are

two solid phases of bcc-(Nb) and (Re), two intermetallic

phases of r-ReNb and v-Re3Nb in the Nb-Re phase dia-

gram. The r-ReNb phase forms from the peritectic reaction

of L ? v-Re3Nb $ r-ReNb and occupies a composition

range from 57.1% Re at 2168 �C to 60.0% Re at 2558 �C.
The v-Re3Nb phase occupies a large composition range.

Table 1 summarizes all the solid phases and intermediate

phases in three binary systems.

This work intends to experimentally determine the phase

equilibria relationship of Co-Nb-Re ternary system at 1200

and 1300 �C by means of electron probe microanalysis,

x-ray diffraction.

2 Experimental Procedure

From the pure metals of cobalt (99.9 wt.%), niobium

(99.9 wt.%) and rhenium (99.9 wt.%), All 27 alloys were

prepared in the form of atomic ratios (at.%) and measured

with a semi-micro analytical balance with an accuracy of at

least 0.5 mg. The bulk alloys with nominal compositions

were prepared by the arc smelting using a non-consumable

tungsten electron in the atmosphere of argon. The ingots

were remelted for at least five times to promote complete

mixing and melting, thus to obtain the homogeneous

ingots. Subsequently, the samples were cut into pieces by

wire-cutting machine.

The samples were wrapped with niobium foils and

encased in quartz tube, which were evacuated and back-

filled with pure argon gas several times. The titanium scrap

was put in the quartz tube to prevent oxidation, similarly.

Afterwards, the samples were annealed at 1200 and

1300 �C. The time of heat treatment varied from 15 to

50 days according to the temperature and compositions.

The alloys containing more than 20 at.% Re were heat-

treated for a longer time. After the heat treatment, the

samples were quenched in ice water, then grinded with

sandpaper and polished using diamond paste.

The microstructure of the heat-treated alloys were

characterized by EPMA (JXA-8100R, JEOL, Tokyo,

Japan). The voltage was 20 kV and the current was

1.0 9 10-8 A. Pure metals of Co, Nb and Re were used as

standards. The powder x-ray diffraction (XRD) measure-

ments was carried out on a Philips Panalytical X-pert

diffractometer (Bruker Daltonic Inc., Billerica, MA, USA)

with Cu Ka radiation at 40 kV and 40 mA to analyze the

crystal structure of the alloys. The scanning range of 2h
was from 20� to 90� at a step size of 0.0167�.

Table 1 Crystal structures of

each phase in the Co-Nb-Re

ternary system

System Phase Pearson’s symbol Space group Prototype Strukturbe Type Reference

Re-Nb (Re) hP2 P63/mmc Mg A3 15

v-Re3Nb cI58 I-43m aMn A12 15

r-ReNb tP30 P42/mnm rCrFe D8b 15

bcc-(Nb) cI2 Im-3m W A2 15

Co-Re (aCo) cF4 Fm-3m Cu A1 21

(eCo, Re) hP2 P63/mmc Mg A3 21

Co-Nb (aCo) cF4 Fm-3m Cu A1 26

(eCo) hP2 P63/mmc Mg A3 26

k3-Co2Nb hP24 P63/mmc Ni2Mg C36 26

k2-Co2Nb cF24 Fd-3m Cu2Mg C15 26

k1-Co2Nb hP12 P63/mmc Zn2Mg C14 26

l-Co7Nb6 hR39 R-3m Fe7W6 D85 26

bcc-(Nb) cI2 Im-3m W A2 26

Co7Nb2 mC18 C2/m Zn2Ni7 … 26
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Fig. 2 BSE images of the

typical ternary Co-Nb-Re

alloys: (a) The Co79Nb6Re15
alloy annealed at 1200 �C for

35 days; (b) the Co35Nb30Re35
alloy annealed at 1200 �C for

50 days; (c) the Co76Nb13Re11
alloy annealed at 1300 �C for

15 days; (d) the Co25Nb40Re35
alloy annealed at 1300 �C for

25 days; (e) the Co72Nb18Re10
alloy annealed at 1200 �C for

35 days; (f) the Co23Nb58Re19
alloy annealed at 1200 �C for

35 days; (g) the Co44Nb25Re31
alloy annealed at 1200 �C for

50 days; (h) the Co76Nb20Re4
alloy annealed at 1300 �C for

15 days; (i) the Co71Nb12Re17
alloy annealed at 1300 �C for

15 days; (j) the Co59Nb40Re1
alloy annealed at 1300 �C for

15 days
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3 Results and Discussion

3.1 Microstructure

Figure 2 shows the typical back-scattered electron (BSE)

images of ternary Co-Nb-Re alloys annealed at 1200 and

1300 �C with different compositions. The three-equilib-

rium microstructures are shown in Fig. 2(a), (b), (c) and

(d) and the two-equilibrium microstructures are shown in

Fig. 2(e), (f), (g), (h), (i) and (j). Figure 3 shows the cor-

responding x-ray diffraction results. In the following paper,

the liquid phase is denoted as L.

The BSE image of Co79Nb6Re15 alloy annealed at

1200 �C for 35 days was shown in Fig. 2(a). It was a three-

phase equilibrium of the (eCo, Re), (aCo) and k3 phases.

The white strip phase was (eCo, Re), grey phase was k3 and
black phase was (aCo). Figure 2(b) shows the white l-
Co7Nb6 phase, light grey v-Re3Nb phase and dark grey k3
phase existing in an equilibrium in the Co35Nb30Re35 alloy

annealed at 1200 �C for 50 days. The corresponding XRD

pattern was presented in Fig. 3(a). The characteristic peak

clearly verified the three-phase microstructure. For the

Co76Nb13Re11 alloy, the L phase, (aCo) phase and k3 phase
were observed after annealing at 1300 �C for 15 days.

Figure 2(d) shows the BSE image of the white v-Re3Nb

phase, grey bcc-(Nb) phase and black l-Co7Nb6 phase in

the Co25Nb40Re35 alloy annealed at 1300 �C for 25 days.

Figure 3(b) shows the corresponding XRD pattern, and the

phases of v-Re3Nb, bcc-(Nb) and l-Co7Nb6 were clearly

distinguished by the different symbols. In the Co72Nb18-
Re10 alloy (1200 �C for 35 days), the black (aCo) phase
and white k3 phase were found, as shown in Fig. 2(e). The

(aCo) phase was evenly distributed in the matrix k3 phase.
Figure 2(f) is the BSE images of Co23Nb58Re19 alloys

annealed at 1200 �C for 35 days. Two phases of l-Co7Nb6
and bcc-(Nb) existed in an equilibrium. The white phase

was bcc-(Nb) and black phase was l-Co7Nb6. The XRD

analysis of the Co23Nb58Re19 alloy is presented in

Fig. 3(c), which is consistent with the result in Fig. 2(f).

Figure 2(g) shows a two-phase equilibrium of v-Re3Nb
(white phase) and k3 (grey phase) in the Co44Nb25Re31
alloy annealed at 1200 �C for 50 days. The Co76Nb20Re4
alloy annealed at 1300 �C for 15 days contained two

phases of k3 and L in Fig. 2(h). The k3 phase dissolved in

the L phase. The two-phase microstructure of the dark grey

k3 phase and light grey (eCo, Re) phase was identified in

the Co71Nb12Re17 alloy annealed at 1300 �C for 15 days,

as shown in Fig. 2(i). The BSE image of Co59Nb40Re1
alloy quenched from 1300 �C was showed in Fig. 2(j). The

white phase of l-Co7Nb6 and grey phase of k3 were
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Fig. 3 X-ray diffraction patterns obtained from: (a) the Co35Nb30-
Re35 alloy annealed at 1200 �C for 50 days; (b) the Co25Nb40Re35
alloy annealed at 1300 �C for 25 days; (c) the Co23Nb58Re19 alloy

annealed at 1200 �C for 35 days; (d) the Co59Nb40Re1 alloy annealed

at 1300 �C for 15 days
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observed in an equilibrium and their structures were con-

firmed by XRD pattern in Fig. 3(d).

3.2 Isothermal Sections

Tables 2 and 3 present the equilibrium compositions of the

Co-Nb-Re ternary system at 1200 and 1300 �C, respec-
tively. The phase relationships at the isothermal sections of

1200 and 1300 �C are determined according to the exper-

imental data, as shown in Fig. 4(a) and (b). Different

symbols are used to characterize k2-single phase, k3 single
phase, two-phase equilibrium, and three-phase equilibrium.

The determined three-phase equilibria are presented by the

solid triangles while the undetermined three-phase equi-

libria are presented by the dashed triangles.

The 1200 �C isothermal section of Co-Nb-Re ternary

system is shown in Fig. 4(a). Four intermetallic compounds

of k2, k3, l-Co7Nb6 and v-Re3Nb, three solid solution

phases of (eCo, Re), (aCo) and bcc-(Nb) were found in this

isothermal section. Four alloys (Co48Nb33Re19, Co64Nb25-
Re11, Co63Nb23Re14, Co60Nb35Re5) were confirmed to be

k3 single phase and two alloys (Co66Nb29Re5, Co69Nb29-
Re2) were k2 single phase. The k3 phase dissolved a large

solubility of Re (21.7 at.%) and wrapped around the k2
phase from the left side to the right side. The solubility of

Re in the k2 phase was about 4.8 at.%. The solubility of Re

in l-Co7Nb6 reached up to about 34.0 at.%. The solubility

of Co in the v-Re3Nb phase was measured to be approxi-

mately 18.0 at.%. The composition range of the (eCo, Re)
phase was wide, extending from Re-rich side to Co-rich

side. The (eCo, Re) phase dissolved about 18.9 at.% Nb.

There were five three-phase regions of (eCo,
Re) ? (aCo) ? k3, k3 ? (eCo, Re) ? v-Re3Nb, k3 ? l-
Co7Nb6 ? v-Re3Nb, l-Co7Nb6 ? v-Re3Nb ? bcc-(Nb),

Table 2 Equilibrium compositions of the Co-Nb-Re ternary system at 1200 �C determined in the present work

Temperature, �C Alloy, at.% Annealed time, days Phase equilibria Composition, at.%

Phase 1/Phase 2/Phase 3 Phase 1 Phase 2 Phase 3

Nb Re Nb Re Nb Re

1200 Co44Nb21Re35 50 v-Re3Nb/(eCo, Re)/k3 17.8 63.7 19.1 22.4 24.1 19.8

Co42Nb34Re24 50 l-Co7Nb6/k3 34.9 27.0 33.0 20.5 … …
Co25Nb40Re35 50 v-Re3Nb/bcc-(Nb)/l-Co7Nb6 31.9 60.4 51.2 44.9 38.4 27.0

Co57Nb21Re22 50 (eCo, Re)/k3 18.0 28.8 22.3 17.8 … …
Co44Nb25Re31 50 v-Re3Nb/k3 20.3 61.7 26.6 20.7 … …
Co23Nb49Re28 50 bcc-(Nb)/l-Co7Nb6 53.4 42.1 43.7 15.4 … …
Co28Nb50Re22 50 bcc-(Nb)/l-Co7Nb6 59.0 37.9 45.2 12.3 … …
Co35Nb30Re35 50 v-Re3Nb/l-Co7Nb6/k3 25.1 60.6 33.0 33.7 30.3 21.6

Co72Nb18Re10 35 k3/(aCo) 20.3 9.7 3.9 8.4 … …
Co52Nb39Re9 35 l-Co7Nb6/k3 43.4 9.3 34.9 7.8 … …
Co23Nb65Re12 35 l-Co7Nb6/bcc-(Nb) 52.4 2.8 78.8 19.4 … …
Co64Nb19Re17 35 (eCo, Re)/k3 15.1 26.7 20.3 15.4 … …
Co46Nb37Re17 35 l-Co7Nb6/k3 39.8 17.4 34.5 15.5 … …
Co23Nb58Re19 35 l-Co7Nb6/bcc-(Nb) 50.1 6.5 66.9 30.1 … …
Co47Nb40Re13 35 l-Co7Nb6/k3 41.2 13.4 34.6 12.0 … …
Co76Nb13Re11 35 k3/(aCo) 19.3 11.9 3.6 10.6 … …
Co48Nb33Re19 35 k3 31.7 19.0 … … … …
Co76Nb20Re4 35 k3/(aCo) 22.3 4.0 3.4 4.2 … …
Co76Nb18Re6 35 k3/(aCo) 21.5 6.4 5.3 4.8 … …
Co79Nb6Re15 35 (eCo, Re)/k3/(aCo) 2.9 17.2 19.3 13.2 3.1 12.2

Co71Nb12Re17 35 (eCo, Re)/k3 3.8 18.2 19.2 14.4 … …
Co64Nb25Re11 35 k3 25.5 10.3 … … … …
Co66Nb29Re5 35 k2 28.8 4.0 … … … …
Co69Nb29Re2 35 k2 28.9 2.0 … … … …
Co63Nb23Re14 35 k3 23.6 14.3 … … … …
Co60Nb35Re5 35 k3 35.1 4.7 … … … …
Co59Nb40Re1 35 l-Co7Nb6/k3 47.3 1.3 36.4 1.0 … …
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and k3 ? k2 ? l-Co7Nb6 at 1200 �C isothermal section,

the former four three-phase equilibria were determined by

Co79Nb6Re15, Co44Nb21Re35, Co35Nb30Re35, and Co25-
Nb40Re35 alloys, respectively. The last three-phase equi-

librium was too small to be confirmed.

Figure 4(b) shows the isothermal section at 1300 �C of

Co-Nb-Re system. Compared with the isothermal section

of 1200 �C, the L phase appeared at Co-rich corner and

dissolved about 4.1 at.% Re. And the L phase in our results

was larger than that of the Co-Nb sub-binary system. As

shown in Fig. 1, k1 phase existed in the sub-binary Co-Nb

system at 1300 �C. But unfortunately, the k1 phase was not
measured in this work. Thus, the singe k1 phase was plotted
by dot line and two three-phase regions k1 ? k2 ? k3 and
k1 ? k3 ? l-Co7Nb6 were predicted. It is worth men-

tioning that the k3 phase exists at the temperature range

from 1029 to 1264 �C in the Co-Nb binary system, but it

occurs as a stable phase at 1300 �C isothermal section in

the Co-Nb-Re ternary system. The possible reason is that

the k3 phase is stabilized to the higher temperature with the

addition of element Re. The k3 phase appears at 1200 �C
and it does not disappear at 1300 �C right now. The solu-

bility of Re in the k3 phase was measured to be 23.8 at.%, a

little larger than that in Fig. 4(a). The k2 phase dissolved

about 5.6 at.% Re. The solubility of Re in the l-Co7Nb6
phase was about 35.2 at.% and the solubility of Co in the

v-Re3Nb phase was 16.9 at.%. The solubility of Nb in the

(eCo, Re) phase was still large, about 18.8 at.%, which was

almost the same as that at 1200 �C. The Co64Nb19Re17
alloy located in the k3 single-phase region at 1300 �C,
whereas it was a two-phase equilibrium at 1200 �C. Eight
three-phase regions of (eCo, Re) ? (aCo) ? k3,

Table 3 Equilibrium compositions of the Co-Nb-Re ternary system at 1300 �C determined in the present work

Temperature, �C Alloy, at.% Annealed time, days Phase equilibria Composition, at.%

Phase 1/Phase 2/Phase 3 Phase 1 Phase 2 Phase 3

Nb Re Nb Re Nb Re

1300 Co44Nb21Re35 25 v-Re3Nb/(eCo, Re)/k3 17.7 65.5 19.4 22.6 24.0 21.1

Co42Nb34Re24 25 l-Co7Nb6/k3 34.4 27.7 33.1 20.4 … …
Co25Nb40Re35 25 v-Re3Nb/bcc-(Nb)/l-Co7Nb6 30.5 61.8 51.4 44.2 38.3 28.4

Co57Nb21Re22 25 (eCo, Re)/k3 18.4 29.4 22.1 19.0 … …
Co44Nb25Re31 25 v-Re3Nb/k3 21.0 62.7 26.3 21.8 … …
Co23Nb49Re28 25 bcc-(Nb)/l-Co7Nb6 56.6 38.8 43.3 17.8 … …
Co28Nb50Re22 25 bcc-(Nb)/l-Co7Nb6 60.4 35.9 45.3 14.4 … …
Co35Nb30Re35 25 v-Re3Nb/l-Co7Nb6/k3 25.3 61.9 32.6 35.0 30.8 23.5

Co72Nb18Re10 15 k3/L 20.5 10.7 9.0 4.2 … …
Co52Nb39Re9 15 l-Co7Nb6/k3 43.3 9.8 35.9 8.2 … …
Co23Nb65Re12 15 l-Co7Nb6/bcc-(Nb) 51.3 3.6 77.8 19.2 … …
Co64Nb19Re17 15 k3 20.2 16.0 … … … …
Co46Nb37Re17 15 l-Co7Nb6/k3 39.6 18.2 35.5 14.2 … …
Co23Nb58Re19 15 l-Co7Nb6/bcc-(Nb) 48.1 9.3 66.0 30.5 … …
Co47Nb40Re13 15 l-Co7Nb6/k3 41.4 14.3 35.2 11.8 … …
Co76Nb13Re11 15 k3/(aCo)/L 19.7 13.0 4.4 11.9 6.4 4.1

Co48Nb33Re19 15 k3 32.3 19.0 … … … …
Co76Nb20Re4 25 k3/L 22.8 4.5 13.1 2.0 … …
Co76Nb18Re6 15 k3/L 21.5 7.4 11.7 3.4 … …
Co79Nb6Re15 15 (eCo, Re)/k3/(aCo) 3.1 18.7 18.9 14.2 3.6 13.7

Co71Nb12Re17 15 (eCo, Re)/k3 4.1 19.1 18.9 14.9 … …
Co64Nb25Re11 15 k3 25.7 10.2 … … … …
Co66Nb29Re5 15 k2 30.0 4.0 … … … …
Co69Nb29Re2 15 k2 28.9 1.8 … … … …
Co63Nb23Re14 15 k3 23.9 14.1 … … … …
Co60Nb35Re5 15 k3 35.5 4.8 … … … …
Co59Nb40Re1 15 l-Co7Nb6/k3 46.9 1.9 36.8 … …
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Fig. 4 Experimentally

determined isothermal section

of the Co-Nb-Re system:

(a) 1200 �C, (b) 1300 �C
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k3 ? (eCo, Re) ? v-Re3Nb, k3 ? l-Co7Nb6 ? v-Re3Nb,
l-Co7Nb6 ? v-Re3Nb ? bcc-(Nb), k3 ? (aCo) ? L, k2-
? k3 ? L, k1 ? k2 ? k3, and l-Co7Nb6 ? k1 ? k3
existed in the isothermal section of 1300 �C. The former

five three-phase regions were experimentally evidenced.

The three-phase region of k3 ? (aCo) ? L occurred at

1300 �C, which is different with 1200 �C and the three-

phase region of k3 ? l-Co7Nb6 ? v-Re3Nb is a little

smaller than that at 1200 �C.
Several single-phased alloys (k2, and k3) were prepared

for further crystal structure analysis. Two representative

crystal structures that refined by the Rietveld method for

the Co60Nb35Re5 and Co66Nb29Re5 alloys are respectively

shown in the Fig. 5(a) and (b). The experimental diffrac-

tion pattern (the red ticks) and the theoretical diffraction

pattern (the black line) are presented below. The black

vertical line presents the position of the Bragg peaks. The

result gives a lattice parameter of a = 4.758(5) Å, and

c = 15.527(2) Å for the k3 phase (space group: P63/mmc),

and a lattice parameter of a = 6.747(4) Å for the k2 phase
(space group: Fd-3 m).

4 Conclusions

Two isothermal sections at 1200 and 1300 �C of Co-Nb-Re

ternary system were experimentally investigated. The

results were concluded as following: (1) Five and eight

three-phase regions respectively existed in the isothermal

sections of 1200 and 1300 �C. (2) No ternary compound

was found. (2) The Laves phase, k3 (C36), was stabilized to
higher temperature of 1300 �C due to the Re addition. (3)

The k3 phase had a large solubility of Re and wrapped

around the k2 phase. (4) A small liquid region was con-

firmed at the isothermal section of 1300 �C but it was

absent at the isothermal section of 1200 �C. (5) The

composition range of (eCo, Re) was wide, extending from

Co-rich side to Re-rich side. (6) The solubility of Re in the

k2, k3, and l-Co7Nb6 changed little from 1200 to 1300 �C.
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