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a b s t r a c t 

The phase-transformation-induced damage of Cu 6 Sn 5 is an emerging reliability issue in the manufactur- 

ing of 3D ICs. Although the retarded phase transformation from η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 at room tem- 

perature can produce a large expansion in volume, how the transformation stress threatens the joint 

reliability during usage is poorly understood. In this paper, the evolution characteristics of quenched 

η-Cu 6 Sn 5 bumps were observed during ageing at 25 °C for 1–40 d Due to the retarded phase trans- 

formation, η′ -Cu 6 Sn 5 whiskers spontaneously nucleated and grew on the surfaces of η-Cu 6 Sn 5 bumps. 

The orientation relationship between the two phases favourable for whisker growth was confirmed, and 

two necessary conditions for whisker formation were discussed. In addition, the potential harmfulness of 

whisker growth was analysed. The study will help expose the phase-transformation-induced damage of 

Cu 6 Sn 5 during room-temperature ageing and may reduce the failure risk of entire Cu 6 Sn 5 intermetallic 

joints in future large-scale applications of 3D ICs. 

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Three-dimensional integrated circuits (3D ICs), which merge

chip technology and packaging technology, are considered to

have potential applications in overcoming the scaling limits in

super-large-scale integration (SLSI) [1 , 2] . The two most typical

features of this technology are (1) continuous minimization of

the interconnection size on a limited chip area and (2) vertical

stacking of multi-chips in a tight device space. The first feature

causes downsizing of Sn-based solder bumps (Sn bumps); some

scholars further predict that if a Sn bump can be reduced in

size from the current 100 μm to 1 μm in the future, then the

interconnection density per unit area would sharply rise by 4

orders of magnitude [3 , 4] . However, following this downsizing

tendency, a large volume fraction of Cu 6 Sn 5 intermetallics (IMCs)

will also form at the Sn-bump|Cu-through-Si-via (Sn-bump|Cu-

SV) interfaces during reflow [5–9] . Because the average diameter
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f Cu 6 Sn 5 grains is 1–2 μm after the traditional reflow process,

 resultant Sn-bump|Cu-TSV joint may currently contain only a

ew Cu 6 Sn 5 grains and even a single grain in the future [10] . Such

oints will be increasingly dependent on Cu 6 Sn 5 IMCs and will be

ighly anisotropic [11 , 12] . Interestingly, if a Sn-bump|Cu-TSV joint

s entirely composed of Cu 6 Sn 5 , a joint with a melting point up to

15 °C can be achieved [7 , 13] . During the chip stacking process, an

nterconnection with high-melting-point joints can avoid the re-

elting and collapse of Sn bumps at lower levels, bear the weight

f additional chips, and maintain the standoff height between

djacent chips for heat dissipation [14] . In brief, entire Cu 6 Sn 5 IMC

oints can provide strong mechanical support for fabrication of ver-

ically stacked structures, satisfying the second feature of 3D ICs. 

The formation of entire Cu 6 Sn 5 IMC joints for multi-chip inter-

onnections seems to be an irresistible trend in 3D ICs. However,

ome scholars [15–19] are worried that although this improve-

ent can achieve satisfactory mechanical ( e.g. , compressive and

onding) strengths, the brittleness of Cu 6 Sn 5 may trigger crack ini-

iation and propagation, posing a serious threat to joint reliability.

ssentially, the crack damage of Cu 6 Sn 5 is induced by interfacial

tresses, such as peeling stress under shock or vibration [20–23] ,

lectric stress under current stressing [24–27] , and thermal-

https://doi.org/10.1016/j.actamat.2019.11.032
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echanical stress under thermal shock or cycling [23 , 28 , 29] .

ost of the stress-induced damage can be restricted or prevented

y using appropriate methods ( e.g. , under-bump-metallization

echnology can restrain peeling stresses [27 , 30] , while underfill

echnology can suppress thermal and mechanical stresses [31] ),

nd these methods may become increasingly effective with the

ownsizing of interconnection joints. However, Nogita et al. re-

orted a novel damage mode originating from the solid-state

hase transformation of Cu 6 Sn 5 [2 , 7 , 32–34] , which seems difficult

o avoid. Cu 6 Sn 5 exists in at least 2 crystal structures in the solid

tate [2 , 35] . The η-Cu 6 Sn 5 phase with a space group of P6 3 /mmc

s expected to transform to the η′ -Cu 6 Sn 5 phase with a space

roup of C 2/c below 186–189 °C. However, this transformation has

lways been kinetically hindered due to the insufficient reaction

ime during cooling [36] ; the retarded transformation may result

n a large expansion in volume, producing severe internal stresses

hat threaten the joint reliability during usage [32] . Because

maller joints have higher cooling rates, the onset probability

f this retarded transformation may rise with decreasing joint

ize; for example, when the joint size is smaller than 337.5 μm,

he metastable η-Cu 6 Sn 5 phase may be completely maintained

t room temperature after a traditional reflow process ( see the

upporting Information ). Accordingly, the phase-transformation-

nduced damage of Cu 6 Sn 5 may become one of the most critical

ailure modes in future large-scale applications of 3D ICs. 

Despite the danger of this unusual damage mode, the exper-

mental observation of Cu 6 Sn 5 growth evolution during phase

ransformation from η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 has seldom been

eported, and an in-depth understanding of the formation mech-

nism ( e.g. , kinetics and crystallography) and the corresponding

nfluence on crack initiation and propagation is still lacking. This

aper has the following three objectives: to determine the char-

cteristic of whisker growth during Cu 6 Sn 5 phase transformation,

o discuss the formation mechanism and to analyse the phase-

ransformation-induced damage and potential inhibition methods. 

. Experimental procedure 

.1. Sample preparation 

For ease of observation of the microstructural evolution, Cu 6 Sn 5 

MC bumps, rather than Cu 6 Sn 5 flip-chip joints, were fabricated

y the soldering reaction between polycrystalline Cu sheets and

n-0.7wt%Cu liquid solder at 250 °C. Because the accumulation of

ompressive stress inside Cu 6 Sn 5 bumps will be directly related to

he volume of the metastable η-Cu 6 Sn 5 phase, the small Cu 6 Sn 5 

umps may not exhibit a sufficient compressive stress to promote

he η′ -Cu 6 Sn 5 whisker growth; accordingly, a long-lasting solder-

ng reaction is needed to obtain large Cu 6 Sn 5 bumps. After 10 h of

oldering reaction, the liquid solder on the Cu sheets was blown

way by compressed N 2 gas (120 psi). The resultant sheets were

uenched to 0 °C, and the residual solder was selectively removed

y a 10% chemical etching solution of nitric acid in ethyl alcohol.

he as-prepared sheets were then rinsed in distilled ice water

n an ultrasonic bath for 1 min, dried under N 2 gas, and aged at

5 °C for 1–40 d 

.2. Sample characteristics 

At each selected time point ( i.e. , 1, 20 and 40 d), the microstruc-

ures of the as-prepared sheets were characterized by scanning

lectron microscopy (SEM, Hitachi S-4800), X-ray diffractometry

XRD, Rigaku D/max-2500 PC) and Auger electron spectroscopy

AES, Ulvac-Phi PHI-700). Note that the X-ray source came from Cu

 α radiation ( λ = 1.5406 Å) at a high voltage of 40 kV and a cur-

ent of 100 mA, and the XRD data were collected in the 2 θ range
f 25–80 ° with a scan rate of 0.5 °/min at room temperature. More-

ver, differential scanning calorimetry (DSC, Netzsch STA-449F3)

ests were conducted with two consecutive heating-cooling cycles

n the temperature range of 25–220 °C at a rate of 1 °C • min 

−1 in

ir. All the DSC samples were peeled from the shallow surfaces

f the as-prepared sheets after thermal ageing, and the weight

f each sample was 30 mg. In addition, to study the growth

haracteristics and transformation mechanism of η′ -Cu 6 Sn 5 on

-Cu 6 Sn 5 IMCs, the as-prepared sheet after thermal ageing for 40

 was cut using a focused-ion beam (FIB, FEI Helios NanoLab 600i),

nd the surface microstructures were observed by high-resolution

ransmission electron microscopy (HR-TEM, Philips Tecnai G2 F20).

.3. Simulation method 

To explore the transformation mechanisms of the kinetics and

rystallography, ab initio molecular dynamics (AIMD) simulations

ere conducted on the basis of density functional theory and im-

lemented using the Vienna ab initio simulation package (VASP).

he Perdew-Burke-Ernzerhof exchange-correlation functional was 

mployed with projector augmented wave pseudopotentials

37 , 38] . The simulations were performed in a canonical ensemble

ith velocity scaling for temperature control, and the pressure-

olume curve was adopted to ensure that the average pressure was

qual to the expected value ( i.e., 0 here) for the simulation un-

er constant pressure. The equation of motion was solved via the

elocity Verlet algorithm with a time step of 1 fs. Two rectangu-

ar supercells with 416 and 412 atoms for the (1 2 10) η|(102) η ′ and

1 2 10) η|(3 5 6) η ′ interfaces, respectively, were constructed as the

nitial configuration and heated to 400 K. Both simulations were

erformed for 20 0 0 steps, and the von Mises strain was adopted

s a measure of the plastic deformation at the atomic level. 

. Results 

.1. Surface microstructural evolution of Cu 6 Sn 5 IMC bumps 

Fig. 1 shows the evolution of the surface microstructure of the

s-prepared sheet after ageing at 25 °C for 1–40 d After ageing

or 1 d ( Fig. 1 a), a layer of hill-like bumps with smooth surfaces

s observed on the original polycrystalline Cu sheet. The AES

nalysis confirms that these hill-like bumps have a stoichiometric

omposition of Cu 6.4 Sn 5 , implying that Cu 6 Sn 5 IMCs have been

enerated on the Cu sheet after the soldering reaction. Moreover,

ased on the inverse pole figure (IPF) map obtained by electron

ackscatter diffraction (EBSD), each bump is identified as a single

rystal. In addition, the average diameter of these single-crystal

umps ranges from 20 to 30 μm, as shown in the insert in Fig. 1 a.

After ageing for 20 d ( Fig. 1 b), the surfaces of the hill-like

umps are no longer smooth, and numerous protuberance-like

tructures with diameters of 0.2–0.3 μm and some microcracks

pontaneously emerge in certain areas of the bump surfaces.

urthermore, after ageing for 40 d ( Fig. 1 c), the original Cu 6 Sn 5 

umps cannot be identified on the Cu sheet, and the entire sheet

s supplanted by clusters of whisker-like structures with lengths of

–10 μm and diameters of 0.3–0.5 μm. Note that the newly gener-

ted structures have stoichiometric compositions of Cu 6.1 Sn 5 and

u 5.9 Sn 5 for 20 and 40 d of ageing, respectively; no O element is

etected, indicating that these structures are not Cu 6 Sn 5 oxides but

re instead evolution products. In addition, considering that very

arge changes in the surface microstructures and a slight change in

he chemical composition between the original Cu 6 Sn 5 bumps and

ewly generated structures are found, we believe that the Cu 6 Sn 5 

umps on the as-prepared sheet have spontaneously undergone a

econstruction of the surface microstructures with little change in

he chemical composition during room-temperature ageing. 
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Fig. 1. Typical micrographs of the surface microstructural evolution on the same 

as-prepared sheet after ageing at 25 °C for (a) 1 d, (b) 20 d, and (c) 40 d The in- 

serted IPF map in (a) shows the top-down view of another as-soldered sheet after 

polishing. A hexagonal structure of the η-Cu 6 Sn 5 phase (space group of P6 3 /mmc, 

a = b = 4.192 Å, c = 5.037 Å, and γ = 120 °) was used in this EBSD analysis. In 

addition, the inserted SEM images in (b) and (c) are enlarged fragmentary views of 

(b) and (c), respectively. 
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3.2. Surface orientation evolution of Cu 6 Sn 5 IMC bumps 

Fig. 2 shows XRD patterns of the surface layers on the same

as-prepared sheet after ageing at 25 °C for 1–40 d. The Rietveld

refinement was carried out using EXPGUI–GSAS software ( see the

Supporting Information ). Based on the International Centre for

Diffraction Data (ICDD) card No. 0 0–0 04–0836, the three main

diffraction peaks at 43.29 ° (111) Cu , 50.43 ° (100) Cu and 74.12 °
(110) Cu in line a can be indexed to the Cu phase ( Fm- 3 m ) ,

indicating that the Cu sheet is indeed polycrystalline. However,

after soldering for 10 h and then ageing at 25 °C for 1–40 d, the

original diffraction peaks of the Cu phase dramatically diminish,

and many new diffraction peaks are observed in lines b-d . Due

to the fast growth of the interfacial IMCs during soldering, the

original Cu peaks eventually disappear when the Cu 6 Sn 5 layer

grows sufficiently thick; thus, the generated diffraction peaks

in lines b-d are likely attributed to the formation of Cu 6 Sn 5 . By

careful comparison of ICDD cards and our XRD patterns, the

diffraction peaks of the as-prepared sheet after ageing for 1 d ( line

b ) basically match those of the η-Cu 6 Sn 5 phase ( P 6 3 / mmc , ICDD

card No. 01–071–5036). The diffraction peaks of the as-prepared

sheet after ageing for 40 d ( line d ) closely match those of the

η′ -Cu 6 Sn 5 phase ( C 2/ c , ICDD card No. 01–072–8761), and the

diffraction peaks of the as-prepared sheet after ageing for 20 d

( line c ) are mixtures of those of both the metastable η-Cu 6 Sn 5 

and stable η′ -Cu 6 Sn 5 phases. Therefore, the Cu 6 Sn 5 bumps on the

as-prepared sheet should undergo a phase transformation from

η-Cu Sn to η′ -Cu Sn during room-temperature ageing. 
6 5 6 5 
Moreover, in the 2 θ range of 29.5–30.5 °, the strong diffraction

eak at 30.271 ° in line b is assigned to (101) η , slightly deviating

rom its standard position (30.323 °) in the η-Cu 6 Sn 5 phase. The

xtremely weak diffraction peak at 30.153 ° in line d is assigned to

 1 13) η ′ , perfectly matching its standard position (30.157 °) in the
′ -Cu 6 Sn 5 phase. The moderately strong diffraction peak at 30.220 °

n line c is relatively broad and asymmetric and should be induced

y a superposition of the two diffraction peaks centred at 30.157 °
the standard ( 1 13) η ′ peak) and 30.220 ° (the distorted (101) η
eak). Similarly, in the 2 θ range of 42–44 °, the strong diffraction

eak at 43.652 ° in line b is assigned to (102) η , slightly deviating

rom its standard position of 43.708 °. The strong diffraction peak

t 42.962 ° in line d is assigned to (204) η ′ , closely matching its

tandard position of 43.0 0 0 ° The broad peak at 43.385 ° in line c

an be divided into two peaks centred at 43.321 ° (the standard

 3 14) η ′ peak) and 43.614 ° (the distorted (102) η peak). Suh et al.

roposed that in a solid-state phase transformation, the product

hase preferentially maintains a coherent/semi-coherent rela-

ionship with the parent phase to minimize the interfacial energy

39] ; therefore, orientation relationships between η-Cu 6 Sn 5 and η′ -
u 6 Sn 5 can be determined, e.g. , (101) η‖ ( 1 13) η ′ , (102) η‖ ( 3 14) η ′ , and

110) η‖ (204) η ′ [35] . However, based on the intensity of the diffrac-

ion peaks in lines b-d , the actual evolution rule of the preferred

rientations for this transformation is (101) η+ (102) η→ (204) η ′ ,
ather than (101) η+ (102) η→ ( 1 13) η ′ + ( 3 14) η ′ . Because a dramatic

hange in the preferred orientation occurs, we believe that the

u 6 Sn 5 bumps undergo a reconstruction of the surface orientation

uring the phase transformation. 

In addition, all the diffraction peaks in line b and the diffrac-

ion peaks assigned to the η-Cu 6 Sn 5 phase in line c have slight

eviations to lower diffraction angles compared to those of the

tandard ICDD card of the η-Cu 6 Sn 5 phase. However, all diffraction

eaks in line d and diffraction peaks assigned to the η′ -Cu 6 Sn 5 

hase in line c perfectly agree with the standard ICDD card of

he η′ -Cu 6 Sn 5 phase. Based on Castro’s work [40] , a reduction in

he diffraction angle corresponds to a biaxial in-plane compres-

ive stress in the layer, which would increase the out-of-plane

nterplanar spacing; the larger the compressive stress is, the

reater the deviation to a lower diffraction angle. Although the

istribution of compressive stresses in the Cu 6 Sn 5 bumps may

ary with the depth to the surface, grain orientation, and ageing

ime, our experiments can provide a preliminary, qualitative result

uggesting that compressive stresses indeed exist. Interestingly,

ollowing Castro’s principle, we obtain a surprising inference

hat compressive stress would accumulate in only the η-Cu 6 Sn 5 

hase with increasing ageing time and that no additional stress

xists inside the η′ -Cu 6 Sn 5 phase. To satisfy this requirement, the
′ -Cu 6 Sn 5 phase should not be formed inside the Cu 6 Sn 5 bumps

ut only on the bump surfaces (which can efficiently release the

enerated transformation stress); thus, we suspect that this phase

ransformation may be related to the stress condition. 

.3. Phase transformation kinetics of Cu 6 Sn 5 IMCs 

Fig. 3 shows the DSC heat flow signals of five types of Cu 6 Sn 5 

amples peeled from the shallow surfaces of as-prepared sheets

fter ageing for 1–40 d. For Sample-1d ( Fig. 3 a), two endothermic

eaks are observed on the first heating curve, but only one re-

ains on the second heating curve. The first cooling curve has

wo exothermic peaks, and the shape of the second cooling curve

erfectly coincides with that of the first one. For Sample-20d

 Fig. 3 b) and Sample-40d ( Fig. 3 c), the curve shapes are basically

onsistent with those shown in Fig. 3 a. However, the following

ifferences are found: (1) The two endothermic peaks on the

rst heating curve gradually merge into a single peak. (2) The

ositions of the exothermic peaks in the temperature range of
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Fig. 2. XRD patterns of the surface layers on the same as-prepared sheet: a (black line), the original Cu sheet; b (red line), after ageing for 1 d; c (green line), after ageing 

for 20 d; and d (yellow line), after ageing for 40 d The diffraction peaks are indexed utilizing the ICDD cards for Cu (0 0–0 04–0836), η-Cu 6 Sn 5 (01–071–5036), and η’ -Cu 6 Sn 5 
(01–072–8761). In addition, the 2 θ ranges of 29.5–30.5 ° and 42–44 ° are shown at enlarged scales to magnify the relatively weak diffraction peaks (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 3. DSC heating and cooling curves of five Cu 6 Sn 5 samples. (a) Sample-1d , (b) Sample-20d , and (c) Sample-40d are peeled from the shallow surfaces of the as-prepared 

sheets after ageing for 1, 20, and 40 d, respectively. (d) Sample-1d-p and (e) Sample-40d-p are the ground powder of Sample-1d and Sample-40d , respectively. The morphologies 

of particles are provided in the figures, and the powder samples were sifted through a 2800-mesh sieve before use. 
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160–170 °C change only slightly, but the corresponding areas grad-

ually increase; in contrast, the positions of the exothermic peaks

in the temperature range of 145–155 °C slightly shift to higher

temperatures, while the corresponding areas sharply decrease.

In addition, Sample-1d-gp is the ground powder of Sample-1d ;

by comparing the corresponding curves in Fig. 3 a and d, visibly

dissimilar peak positions and areas before and after the grinding

treatment are observed. A similar situation is found in the results

of Sample-40d ( Fig. 3 c) and Sample-40d-gp ( Fig. 3 e). 

Differences in phase composition and particle size may oc-

cur among the initial samples. According to our SEM and XRD

results, the Cu 6 Sn 5 phase transformation is likely controlled by

a nucleation-growth process; the Gibbs free energy change in

nucleation is theoretically given by 

�G = �G V + �G I + �G ε (1)

where �G V , �G I and �G ε are the changes in the volumetric,

interfacial and strain energy, respectively, related to nucleation.

�G ε is resistant to phase transformation due to steric hindrance;

however, when the phase transformation is accompanied by a

volumetric change and a residual stress, the situation may be

complicated. Based on the virtual work principle ( see the Sup-

porting Information ), when the compressive stress exists, the

shrinkage transformation will be promoted due to �G ε< 0, while

the dilatational transformation will be retarded due to �G ε> 0. 

Because the Cu 6 Sn 5 phase transformation is kinetically com-

plete for the temperature change rate of ≤1 °C • min 

−1 [34] , all

the samples in our DSC tests will ideally be entirely composed

of the η-Cu 6 Sn 5 phase after heating to 220 °C or the η′ -Cu 6 Sn 5 

phase after cooling to 20 °C. Hence, if an initial sample was

composed of only the η′ -Cu 6 Sn 5 phase, then the curves of its two

heating-cooling cycles should overlap (as observed in Fig. 3 c or e).

However, if a certain amount of the η-Cu 6 Sn 5 phase exists in an

initial sample, then it would transform to the η′ -Cu 6 Sn 5 phase

during heating ( > 80 °C [35] ), producing a compressive stress

in particles due to volume expansion. With further heating,

the stress in the particle surfaces will be released, while the

stress in the particle cores may be maintained. Accordingly,

when the shrinkage transformation from η′ -Cu 6 Sn 5 to η-Cu 6 Sn 5 

begins ( i.e. , �G = 0), �G 

Sur face 
ε = 0 and �G 

Core 
ε < 0 ; assuming

that �G 

Sur face 
I 

= �G 

Core 
I 

> 0 , we have �G 

Sur face 
V 

< �G 

Core 
V 

< 0 and

�T Sur face > �T Core > 0 . Thus, the η′ -Cu 6 Sn 5 phase in the particle

cores can transform to the η-Cu 6 Sn 5 phase at a lower temperature

than that in the particle surfaces due to the existence of compres-

sive stress. Therefore, a sample ( e.g., Sample-1d and Sample-20d )

with two separate endothermic peaks on the first heating curve

should initially contain a certain amount of η-Cu 6 Sn 5 . Notably, the

smaller the amount of η-Cu 6 Sn 5 in the initial samples, the less

compressive stress can accumulate in the particles; accordingly, the

first endothermic peak on the first heating curve for Sample-20d

is smaller in area and shifted left compared to that for Sample-1d

In addition, Sample-1d-gp has only a broadened endothermic peak

(rather than two peaks) on its first heating curve; the reason for

this result may be that the powder can easily release compressive

stress, triggering the merging of the first peak with the second one.

Moreover, the kinetics of the normal Cu 6 Sn 5 phase transforma-

tion may also be influenced by the accompanying transformation

stress ( Fig. 4 ). For instance, when the dilatational transformation

from η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 occurs during cooling, η′ -Cu 6 Sn 5 nu-

clei will cluster on the surfaces of η′ -Cu 6 Sn 5 particles and then de-

velop towards the cores. The compressive stress will be generated

due to the volume expansion. Because the transformation stress

can be efficiently released from the surface, we have �G 

Sur face 
ε = 0 ;

if �G 

Sur face 
I 

is unchanged, both �G 

Sur face 
V 

and �T Sur face (belong-

ing to the surface transformation) will be constant. Hence, we can
bserve that the positions of all first exothermic peaks on the cool-

ng curves in Fig. 3 are stable. However, the compressive trans-

ormation stress in particle cores cannot be easily released and

ay increase with the occurrence of core transformation. Notably,

G 

Core 
ε > 0 ; if �G 

Sur face 
I 

= �G 

Core 
I 

, t �G 

Core 
V 

< �G 

Sur face 
V 

< 0 and

T Core > �T Sur face > 0 . Therefore, we can observe another exother-

ic peak (belonging to the core transformation) at a low tempera-

ure on the cooling curve. In addition, the smaller the particle size

s, the less the stress accumulates in the cores, and the smaller the

ifference between �G 

Core 
V 

and �G 

Sur face 
V 

or between �T Core and

T Sur face . Hence, we observe a smaller area and a smaller left shift

f the second exothermic peak for the powder sample compared

o those for the corresponding non-powder sample on the cooling

urves ( e.g. , Fig. 3 d and a or Fig. 3 e and c). In addition, the second

xothermic peak will continuously shift to a lower temperature

ith increasing cooling rate, even to room temperature; thus, the

etastable η-Cu 6 Sn 5 phase can be maintained at 25 °C in our ex-

eriments. In summary, the kinetics of the Cu 6 Sn 5 phase transfor-

ation should be both structure dependent and stress dependent. 

.4. Phase transformation crystallography of Cu 6 Sn 5 IMCs 

Fig. 5 a and b show cross-sectional and top-view SEM images,

espectively, of a 40-d-aged Cu 6 Sn 5 bump after FIB cutting. The

hickness of the sample was 68.6 nm, and a TEM experiment was

mmediately conducted to avoid sample failure. Fig. 5 c shows a

EM image of this bump, and a Cu 6 Sn 5 whisker can be observed

n the bump surface. Similar to Sn whiskers, the Cu 6 Sn 5 whisker

s a single crystal with a long narrow shank and a pointed tip.

ome single-crystal protuberances surrounding this whisker are

lso detected. In addition, the bump matrix beneath the whisker

s not a single crystal, as it originally is in Fig. 1 a, and the grain

oundaries are observed to spread across the matrix. 

The high-magnification TEM images of three regions of inter-

st (marked A, B and C in Fig. 5 c) are shown in Fig. 5 d, e and

, respectively. In region A , the lattice spacings of 5.095 Å and

.638 Å correspond to the ( 2 01) η ′ and (0 2 0) η ′ planes, respectively.

n region B , the lattice spacings of 2.1017 Å and 2.548 Å correspond

o the ( 132 ) η ′ and (40 2 ) η ′ planes, respectively. In region C , the

attice spacings of 5.041 Å and 3.630 Å correspond to the (0 0 01) η
nd ( 1 010) η planes, respectively. The abovementioned results are

urther verified by the corresponding selected area electron diffrac-

ion (SAED) patterns in Fig. 5 g–i. Therefore, both Cu 6 Sn 5 whiskers

nd protuberances exhibit the η′ -Cu 6 Sn 5 phase, while the matrix

xhibits the η-Cu 6 Sn 5 phase. Although no evidence of lattice

ompression is detected in the η-Cu 6 Sn 5 matrix, these results can

irectly support our inference that the η′ -Cu 6 Sn 5 phase nucleates

nd grows on the surfaces of η-Cu 6 Sn 5 bumps during ageing at

5 °C for 40 d In addition, the whisker elongates along the [ 2 01] η ′ 
irection with a side face of (0 2 0) η ′ ; however, based on our XRD

esults, the surface texture of the whiskers should correspond to

he (204) η ′ plane. The reason for this discrepancy may be cutting

naccuracy, as both (0 2 0) η ′ and (204) η ′ share the same zone axis

f [ 2 01] η ′ . In other words, the actual side faces of the η′ -Cu 6 Sn 5 

hiskers should be composed of (204) η ′ planes; this perfectly ex-

lains why the preferred orientation for Cu 6 Sn 5 phase transforma-

ion in our XRD patterns changes from (101) η+ (102) η to (204) η ′ . 
Fig. 6 a shows a TEM image of the bump matrix beneath the

u 6 Sn 5 whisker, and nearly parallel straight grain boundaries are

bserved across the entire matrix. All coloured lath-like grains

arked have similar SAED patterns (as in Fig. 5 i), indicating that

hey all split from one single-crystal matrix. Interestingly, a yellow

rain, just beneath the whisker, protrudes outward from the

atrix (white box in Fig. 6 a); this extrusion feature implies that

he grain splitting of η-Cu Sn bumps is caused by the release of
6 5 
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Fig. 4. Kinetic models of the structure-/stress-dependant phase transformation in Cu 6 Sn 5 . The transformation stress distributions in Cu 6 Sn 5 particles are simulated based on 

the volumetric change during the phase transformation (compressive and tensile stresses are denoted “c” and “t”, respectively). In addition, the latent heat peaks are marked 

based on the location of the phase transformation. 
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ompressive stress inside the matrix. Moreover, according to the

EM-EDS analysis in Fig. 6 b, the concentration of Cu in η-Cu 6 Sn 5 is

lightly higher than that in η′ -Cu 6 Sn 5 , and an obvious increase in

u content is detected at the interface. The finding of Cu segrega-

ion at the η-Cu 6 Sn 5 | η
′ -Cu 6 Sn 5 interface can directly prove the ex-

stence of interfacial atomic segregation and clarify that the Cu 6 Sn 5 

hase transformation is diffusive in nature, rather than displacive. 

. Discussion 

.1. Atomistic simulation of whisker growth 

Notably, the neighbouring η′ -Cu 6 Sn 5 grains in Fig. 5 c present

wo different orientation relationships with the same η-Cu 6 Sn 5 

ingle-crystal matrix, but only one grain becomes a whisker. This

esult means that the nucleation may be random, but only certain

rowth can proceed unhindered. To further explore the reason

or whisker growth, two atomic 3D configurations with interfaces

etween matrix C and whisker A and between matrix C and pro-

uberance B are displayed in Fig. 7 a and b, respectively. The initial

rientation alignments are in accordance with our observations

n Fig. 5 d–f. The Cu and Sn atoms are coloured by red and blue,

espectively. The oblique rectangle in the centre of the configura-

ion denotes the position of the interface. Fig. 7 c and d depict the

orresponding evolution snapshots for in-plane atomic arrange-

ents of (1 2 10) η|(102) η ′ and (1 2 10) η|(3 5 6) η ′ , respectively, during

quilibrium at 400 K for 0–1.5 ps. The atomic behaviour is charac-

erized by both shear strain and displacement from the reference
onfiguration at time 0. The displacement vector is denoted by

 yellow arrow, and the colourbar describes the degree of shear

train accumulation of an individual atom due to the relative

otion of its neighbours. At 0 ps, the (1 2 10) η|(102) η ′ interface

as a higher coherent degree than that of the (1 2 10) η|(3 5 6) η ′ 
nterface, and the distortion of atoms near the former interface is

uch smaller than that near the latter. At 0.5–1.5 ps, the atoms

n η-Cu 6 Sn 5 are subject to considerable stress, leading to a larger

hear strain accumulation compared to those in η′ -Cu 6 Sn 5 . The

ight-directed atomic movements in η-Cu 6 Sn 5 indicate that this

hase is unstable at this temperature and will thermodynamically

ransform to the η′ -Cu 6 Sn 5 phase. In addition, the closer to the

nterface, the larger the degree of shear strain accumulation is;

eanwhile, the segregation of Cu atoms can also be observed,

ccompanying the shear strain accumulation at the interface

hown in Fig. 7 e and f (consistent with our experimental result

hown in Fig. 6 b). Hence, the segregations of both Cu atoms and

hear strains can be detected at the interface ( see Movies S1 and

2 in the Supporting Information ). 

Interestingly, the (1 2 10) η|(102) η ′ interface remains almost

traight and moves parallel to the η-Cu 6 Sn 5 phase ( Fig. 7 c). Al-

hough local segregations of atoms and shear strains occur close

o this interface, the limited atomic displacements indicate that

attice reconstruction can be easily achieved by the short-range

iffusion of atoms. In contrast, the evolution of the (1 2 10) η|(3 5 6) η ′ 
nterface results in a serrated structure ( Fig. 7 d). The segregation

evels of atoms and shear strains at this interface are much

igher than those at the (1 2 10) η|(102) η ′ interface; the atomic
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Fig. 5. Microstructures of a 40-d-aged Cu 6 Sn 5 bump after FIB cutting: (a) SEM image in the cross-sectional direction; (b) SEM image in the top-view direction; and (c) 

TEM image. In addition, high-magnification TEM images and corresponding SAED patterns of the three regions of interest are shown in (d–f) and (g–i), respectively (For 

interpretation of the references to color in this figure, the reader is referred to the web version of this article.). 

Fig. 6. (a) TEM image of the bump matrix beneath the Cu 6 Sn 5 whisker in Fig. 5 c. (b) Locally magnified TEM image of the whisker-A | matrix-C interface and the Cu distribution 

along the red line scanned using TEM-EDS. 
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displacements are also very chaotic, implying that the atoms need

long-range diffusion to relax the structure and strain energy. More

importantly, this interface shows no signs of tending towards sta-

bility. Although certain relatively stable regions are formed along

the [331] η ′ direction, regions with large segregations of shear

strains and atoms are found in both η-Cu 6 Sn 5 and η′ -Cu 6 Sn 5 .
verall, from the viewpoints of both thermodynamics and kinetics,

he η′ -Cu 6 Sn 5 phase grows along the (1 2 10) η|(102) η ′ interface

uch easier and faster than it grows along the (1 2 10) η|(3 5 6) η ′ 
nterface; thus, the interfacial orientation relationship favourable

or whisker growth can be expressed as follows: (0 0 01) ηǁ( 2 01) η ′ 
nd [1 2 10] ηǁ[102] η ′ . 
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Fig. 7. Atomic 3D configurations with the (a) matrix-C | whisker-A and (b) matrix-C | protuberance-B interfaces and corresponding evolution snapshots for in-plane atomic ar- 

rangements of (c) (1 2 10) η |(102) η ′ and (d) (1 2 10) η |(3 5 6) η ′ at 400 K for 0–1.5 ps. In addition, the corresponding atomic distributions of the two interfaces ( i.e. , an evolution 

snapshot at 1.5 ps) are shown in (e) and (f), respectively (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.). 
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.2. Whisker growth mechanism and inhibition methods 

The existence of local breaks in the surface oxide and the oc-

urrence of compressive stress in the matrix are generally accepted

s two necessary conditions for the formation of Sn whiskers [41] .

imilarly, when the retarded transformation from η-Cu 6 Sn 5 to
′ -Cu 6 Sn 5 occurs, a continuous monolayer of η′ -Cu 6 Sn 5 nuclei

ill be generated on the surfaces of the η-Cu 6 Sn 5 bumps, and

he resultant segregations of Cu atoms and shear strains at the
′ -Cu 6 Sn 5 | η-Cu 6 Sn 5 interface will undoubtedly block the release

f compressive stress in the matrix ( see the Graphical Abstract ).

owever, if certain η′ -Cu 6 Sn 5 nuclei with favourable orientations

re formed, then their low segregation levels may promote the

ccurrence of a phase transformation, triggering the formation of
′ -Cu 6 Sn 5 whiskers. Because sustained whisker growth will induce

ocalized stress relief, a stress gradient may be created in the

atrix, producing grain splitting of the η-Cu 6 Sn 5 bumps. More-

ver, the formation of η′ -Cu 6 Sn 5 protuberances will also crack the
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bump surfaces, and long narrow gullies are observed in Fig. 1 b.

Hence, the phase-transformation-induced whisker growth, on the

one hand, can bridge adjacent joints, causing electrical failure,

and, on the other hand, may produce surface cracking and matrix

splitting, making the joints more vulnerable to stress. Note that

the sample in Fig. 6 a wrinkled and shattered after observation,

and this result directly documents the brittleness of Cu 6 Sn 5 and

the potential harmfulness of the retarded transformation from

η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 . 

To inhibit this retarded transformation, one method is to stabi-

lize the η-Cu 6 Sn 5 phase at low temperature; e.g. , minor additions

of Ni, Zn, and Au have been reported to stabilize η-Cu 6 Sn 5 at room

temperature [42 , 43] . Moreover, methods of adjusting the cooling

process may be effective in reducing the content of unreacted

η-Cu 6 Sn 5 in Cu 6 Sn 5 IMC joints, e.g. , by slowing the cooling rate

or providing proper thermal insulation during cooling [44 , 45] . In

addition, for actual Cu 6 Sn 5 flip-chip joints, whisker growth and

matrix splitting may occur vertically in the sidewalls of the joints;

therefore, underfill encapsulation may be the best method to

protect Cu 6 Sn 5 IMC joints in 3D ICs. 

5. Conclusions 

1. Surface reconstructions of quenched Cu 6 Sn 5 bumps in terms

of both microstructure and orientation were observed during

ageing at 25 °C for 1–40 d Due to the retarded phase transfor-

mation from η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 , η
′ -Cu 6 Sn 5 protuberances

and whiskers were generated on the surfaces of η-Cu 6 Sn 5 

bumps via the nucleation-growth process. The compressive

transformation stress was confirmed inside the bump matrix,

and the phase-transformation-induced evolution of the surface

texture was detected as (101) η+ (102) η→ (204) η ′ . 
2. The kinetics of the Cu 6 Sn 5 phase transformation are both

structure dependent and stress dependent. When the dilata-

tional transformation from η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 occurs

during cooling, the compressive stress generated in the particle

cores cannot be easily released, producing a left shift of the

corresponding exothermic peak. The smaller the particle size

is, the less the stress accumulates in the cores and the more

similar the shapes of the two heating-cooling curves. 

3. Based on TEM observation, a η′ -Cu 6 Sn 5 whisker grows along

the [ 2 01] η ′ direction with a side face of (204) η ′ , and the

orientation relationship between the two phases favourable

for whisker growth is (0 0 01) ηǁ( 2 01) η ′ and [1 2 10] ηǁ[102] η ′ . The

interfacial segregations of shear strains and Cu atoms are con-

firmed to play an important role in blocking the phase trans-

formation from η-Cu 6 Sn 5 to η′ -Cu 6 Sn 5 by AIMD simulation. 

4. The existence of a segregation layer on the surface and the

occurrence of compressive transformation stress in the matrix

are two necessary conditions for the formation of η′ -Cu 6 Sn 5 

whiskers. The whisker growth can bridge adjacent joints and

produce surface cracking and matrix splitting. Three methods to

inhibit whisker growth are proposed, and this study may help

improve the reliability of entire Cu 6 Sn 5 IMC joints in 3D ICs. 
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