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Renewable energy is not only an efficient way to ensure energy independence and security but also supports the
transition to a low carbon economy and society. The progress of renewable energy technological innovation is an
important factor that influences the development of renewable energy. An in-depth analysis of the driving
factors that influence this progress is crucial to China's energy transition. Based on Chinese provincial data over
2000–2015 and panel data models, this paper regards the CO2 emissions as climate change and explores the
response of renewable energy technological innovation to intensive CO2 emissions. We also analyze the effect of
the driving factors such as energy price and R&D investment on this innovation process. The main conclusions
drawn are: (1) There are significant differences in technological innovation levels across China's provinces. (2)
We observe that the intensive CO2 emissions have promoted renewable energy technological innovation level,
meaning that innovation process responds actively to climate changes. (3) R&D investment from government
and enterprise both are conducive for promoting the innovation level. (4) Energy price has an insignificant effect
on innovation in renewable energy technologies and we attribute this to the unreasonable energy price me-
chanism. This paper provides clear evidence for understanding the role of innovation on climate change.

1. Introduction

China's coal-dominated energy consumption structure has a huge
impact on energy security, energy independence and environmental
pollution (Ren and Sovacool, 2014; Hao et al., 2015; Yang et al., 2018).
According to BP statistics, China's total energy consumption was 3053
million tonnes oil equivalent (Mtoe) in 2016. Where, total coal con-
sumption was 1887.6 Mtoe, accounting for 61.8% of total energy
consumption. The long-term coal-dominated energy consumption
structure emits large amounts of CO2 (Lin and Zhu, 2017; Shao et al.,
2014). BP statistics also show that China's total CO2 emissions were
9123 million tonnes in 2016, accounting for 27.3% of the total world.
Considering energy independence and security, China's fossil energy
consumption is currently growing rapidly. According to IEA data,
China's coal, oil, and natural gas reserve-production ratio were only 72,
17.5, and 38.8 in 2016, which means that under the general production
condition, the three fossil energy sources are only available for 72, 17.5
and 38.8 years respectively and far below the world average.

Renewable energy is of great significance for China to build a safe,

independent and low-carbon energy system (Yao and Chang, 2014; Ren
and Sovacool, 2014; Wang et al., 2018). The increasing depletion of
traditional fossil energy and the pressure for energy saving and emis-
sion reduction have forced China to develop renewable energy (Li and
Lin, 2017). According to data from the Chinese government, the in-
stalled capacity of hydropower, wind power, photovoltaic power gen-
eration, and biomass power generation reached 338 million kW, 154
million kW, 102 million kW and 13.3 million kW respectively, and
ranked first in the world.1 However, even though China is currently
experiencing rapid renewable energy development. Due to market
failures and some other reasons, the development of renewable energy
is facing some problems. First, due to the high upfront cost, the de-
velopment of renewable energy requires a high initial investment (Kim
and Park, 2016) and large amounts of government subsidies (Zhang
et al., 2017a). To achieve sufficient market competitiveness for re-
newable energy, it is necessary to further promote renewable energy
technological innovation (RETI) level. Second, although China cur-
rently has relatively higher technological R&D ability in hydropower,
nuclear power, and thermal power, it has weaker innovation
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capabilities in wind power, biomass, etc. Third, even though the RETI
develops fast, there are still great differences among China's provinces.
Understanding the reasons for such regional differences are beneficial
to China in developing renewable energy and building a low carbon and
safe modern economic system.

The existing studies mainly focus on the effect of technological in-
novation on CO2 reduction (Jia et al., 2018; Liu and Liang, 2017). Few
studies consider it from the opposite direction, in other words, whether
intensive CO2 emissions promote RETI level. In order to validate this
idea, this paper adopts various econometric methods to assess the re-
sponse of RETI to CO2 emissions. Based on Chinese provincial panel
data from 2000 to 2015, this paper commences with constructing the
RETI level of Chinese provinces. Then using panel data analysis, this
paper explores the effect of the driving factors on China's RETI by taking
the CO2 emissions constraint into account. We obtain a reliable con-
clusion after conducting the robustness test. Finally, the paper proposes
several relevant policy recommendations.

We make the following contributions. First, even though some prior
studies have researched the relationship between technological in-
novation and climate change, they focused on the country level (Su and
Moaniba, 2017). Conducting the research from China's perspective is
more targeted and representative due to the fact that China is the lar-
gest carbon emitter and energy consumer (Yao et al., 2018; Tian et al.,
2019). By using various econometrics models and considering the role
of CO2 emissions, we explore the driving factors that cause differences
in RETI among China's provinces. This will support the provinces in
proposing the development strategy according to local conditions and
ensure the stable development of China's renewable energy. Second, this
paper adopts a novel way to explore the relationship between low-
carbon technological innovation and climate changes by examining
how Chinese RETI responses to intensive CO2 emissions, which con-
tributes to the existing literature on further understanding the role of
innovation on climate change. Third, even though this paper is con-
ducted from the perspective of China, we provide some useful in-
formation for global environmental governance since the climate
change is a global concern. To learn from China's case, it is possible to
formulate some targeted strategy to promote the progress of RETI for
countries facing serious pressure on emission reduction.

The rest of this paper is proceeded as follows (see Fig. 1). Section 2
summarizes the existing literature about renewable energy and tech-
nological innovation. Section 3 is model specification and data

description. Section 4 presents empirical analysis. Section 5 concludes
this paper with some relevant policy implications.

2. Literature reviews

2.1. The role of renewable energy

Global climate change and the depletion of traditional fossil energy
have reinforced the importance of renewable energy. With the pro-
motion of energy technological innovation and economic development,
the global energy transition is accelerating (Solomon and Krishna,
2011). BP statistics show that renewable energy consumption ac-
counted for 14.48% of the total energy in 2016. The rapid development
of renewable energy has made a profound impact on the economy and
society. Xu and Lin (2018a) found that economic growth has a positive
“U” shape relationship with new energy sources. Narayan and Doytch
(2017) used panel data of 89 countries and explored the relationship
between energy and economic growth. The results showed that re-
newable energy promotes economic growth in low and lower middle
income countries. Pao et al., (2014) found a long run causality from
renewable energy to economic growth. Other similar findings can be
found in Kahia et al. (2016); Omri et al. (2015), and Chang et al.
(2015). These studies indicate that renewable energy plays an im-
portant role in promoting economic development.

Renewable energy also plays an important role in energy security
and energy independence (Proskuryakova, 2018). Energy security
means that the country has a stable energy supply capacity with a
reasonable energy price (Wang and Zhou, 2017) and energy in-
dependence refers to a self-sufficient energy supply capacity. Energy
security and energy independence are not only related to the stable
development of the economy and society but also an important factor
affecting the stability of a country (Ang et al., 2015). Energy reserves
and foreign energy dependence are important indicators of energy se-
curity and energy independence.

With a gradual reduction of fossil energy reserves and increasing
dependence on foreign energy sources, China's energy security issues
have gradually emerged. China has been the world's largest oil importer
since 2015 (Geng et al., 2017). This growing dependence on foreign
energy resources has seriously affected China's energy security and
energy independence (Radovanović et al., 2016; Zeng et al., 2017).
Renewable energy can alleviate these problems to some extent. Wang
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et al. (2018) pointed out that renewable energy is an efficient way to
address China's energy security. Lin and Zhu (2019) suggested that the
development of renewable energy is helpful for the sustainable devel-
opment of China and can also improve energy security.

Meanwhile, renewable energy can also mitigate climate change and
reduce pollutant emissions. Compared with traditional fossil energy,
renewable energy emits almost no pollutants. Therefore, the use of
renewable energy helps to reduce greenhouse gas emissions and miti-
gates climate changes (Wang et al., 2018; Lin et al., 2016; Jaforullah
and King, 2015; López-Menéndez et al., 2014).

2.2. Determinants of technological innovation

Prior studies on technological innovation are mainly from the as-
pects of innovation investment, environmental pollution, and energy
consumption. Considering the role of innovation investment, it is the
main innovation funding source for the whole society and plays a key
role in technological innovation (Perl-Vorbach et al., 2018). Innovation
investment mainly includes innovation funds and R&D personnel.
Existing studies have shown that the increase in innovation input will
promote technological innovation and increase the innovation output of
renewable energy (Kim and Kim, 2015).

Considering environmental pollution, at present, the most serious
environmental problem facing the world today is climate change, the
excessive consumption of traditional fossil fuels is considered to be the
source of this problem (Wu and Chen, 2018). Some studies revealed
that environmental pollution can promote technological innovation.
Based on the data of 70 countries, Su and Moaniba (2017) adopted
several econometrical models to explore whether technological in-
novation responds to environmental changes. They found that CO2

emissions from gas and liquid fuel have a positive effect on technolo-
gical innovation. This point is also recognized by other scholars,
Costantini and Crespi (2008) suggested that, given the active role of
renewable energy in mitigating climate change, the large-scale of CO2

emissions and other pollutants have contributed to technological pro-
gress in renewable energy. From the perspective of energy consumption
and energy structure. Energy is the driving force of stable economic
growth. At present, coal and oil still dominate world energy con-
sumption structure (Key World Energy Statistics, 2016). The depletion
of traditional fossil energy and the huge energy consumption have
promoted the demand for new energy sources to replace fossil energy.
The renewable energy industry is equivalent to a capital-intensive in-
dustry and needs lots of upfront funds for technological innovation (Xu
and Lin, 2018b). Thus, the cost of renewable energy is higher than that
of fossil energy (Lin and Li, 2015). We deem that the energy structure
may have two effects on the development of renewable energy. In the
short term, the energy consumption structure dominated by low-cost
fossil energy may inhibit the technological progress of relatively ex-
pensive renewable energy. In the long run, the increasingly serious
environmental problems caused by traditional fossil fuels will con-
versely promote the technological progress of renewable energy.

In summary, although several studies have explored the develop-
ment of renewable energy, they are mainly focused on the interaction
among renewable energy and economy, society, and the environment
(Lin and Moubarak, 2014; Kahia et al., 2016). Furthermore, for these
studies on RETI, many studies focus on the country level analysis and
measure the innovation level by the number of renewable energy pa-
tents (Su and Moaniba, 2017), but these indicators cannot truly reflect
the innovation level. Based on the data of the number of renewable
energy patents, this paper accurately calculates the innovation level.
Then we explore the responses of technological innovation to climate
change and deeply analyze the driving factors of technological in-
novation, which contains targeted policy implications to improve
technological innovation.

3. Model specification and data description

3.1. Model specification

In order to explore the driving factors of RETI in China under the
CO2 emissions constraint, we construct the following econometric
model:

= + + + + +
=

RETI CO X v uln lnit o it
k

K

k k it i t it1 2,
2

,
(1)

where, 0 represents the constant, …, , , k1 2 represent the parameters
to be estimated. i represents regions, t represents year. RETI is re-
newable energy technological innovation, CO2 is the carbon dioxide
emissions and X represents the control variables. vi is the individual
effect which reflects regional differences, ut represents the time effect,
and it is the random error term. Traditional static panel models, such as
fixed-effect and random-effect models, do not consider the impact of
some unobservable factors on the explanatory variables. For example,
considering that technological progress is a continuous process, current
technological progress is not only related to the current influencing
factors, but also affected by the previous technology. As a result, using
static panel model will lead to model estimation errors. We hence in-
troduce the first-order lag items of renewable energy technology into
the model and construct the dynamic panel linear regression model as
follows:

= + + + + + +
=

RETI RETI CO X v uln ln lnit o i t it
k

K

k k it i t it, 1 1 2,
2

,

(2)

where, represents the coefficient of lnRETI, and other variables are
defined identically to those in Eq. (2). The endogenous problems in the
dynamic panel model make the static panel model estimation method
inapplicable. We adopt the Arellano and Bond (1991), Arellano and
Bover (1995) and Blundell and Bond (1998) generalized method of
moments (GMM) estimators to estimate the dynamic panel regression
model. These estimators are designed for “small T, larger N″ panels and
require the dependent variable to correlate with its past values. The
Arellano-Bond estimator (difference GMM) differences the estimation
equation and uses the lag terms as the instrumental variables. The
Arellano-Bover/Blundell-Bond estimator further assume that the first
differences of the instrumental variables are uncorrelated with the fixed
effect, and this is called as the system GMM estimator. The system GMM
method can improve efficiency by adopting more instrumental vari-
ables (Arellano and Bover, 1995; Blundell and Bond, 1998). We adopt
the system GMM estimator in the main analysis and use the code
“xtabond2” which is provided by Roodman (2009).

The validity of dynamic panel GMM estimation depends on whether
the selected instrumental variable is valid. There are two methods to
identify the validity of the model. The first method is to use the Sargan
(Hansen) test to identify the effectiveness of the instruments. The null
hypothesis of these tests is that the instruments are valid. The second is
to determine whether there is a second-order autocorrelation of the
residual it by using the AR(2) test. The hull assumption of the AR(2)
test is that there is no second-order autocorrelation of it .

3.2. Data description

3.2.1. Renewable energy technological innovation (RETI)
Technological innovation is an important factor for promoting the

development of renewable energy (San Cristóbal, 2011), and the in-
novation level mainly depends on R&D investment and knowledge ac-
cumulation of renewable energy in the entire society. At present, there
are two ways to measure the technological level: the first uses the R&D
input or the R&D personnel to measure the technological level (Xu and
Lin, 2018a). We avoid the above ways for two reasons. Firstly, R&D
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input or R&D personnel cannot properly reflect the current technolo-
gical level, because enterprises still have informal R&D activities, and
there is no complete linear relationship between R&D investment and
output. Secondly, the R&D inputs or R&D personnel data for renewable
energy are not available at the provincial level.

The R&D output, measured by the number of patents, is a good
measure of the technological level and is being adopted by an in-
creasing number of scholars. However, there are some shortcomings in
directly measuring the technological level based on the number of pa-
tents because patent quality may be different. Moreover, scholars cur-
rently constructed a knowledge stock and only considered the depre-
ciation rate, but ignored the diffusion rate (Bottazzi and Peri, 2007; Yan
et al., 2017; Verdolini and Galeotti, 2011). The patents which are open
across on the Internet require some time to complete the transition from
patent to technology. Thus, it is necessary to consider the diffusion rate
of knowledge because it measures the time of large-scale application of
new technologies. Popp (2002) calculated the knowledge stock by
considering the diffusion and depreciation rate. The formula is as fol-
lows:

=
=

RETI RPAT t j t jexp[ ( )]·{1 exp[ ( )]}it
j

t

ij
0

1 2
(3)

where, RPAT represents the patents authorized. 1 and 2 represent the
depreciation rate and diffusion rate, and have the value of 36% and 3%,
respectively (Popp, 2002). This paper regards the renewable energy
knowledge stock as the proxy RETI level. China's patent data has been
available since 1985. Therefore, this paper takes 1985 as the base year
to calculate the renewable energy knowledge stock. Renewable energy
includes hydropower, wind power, solar energy, etc. This article sear-
ches them according to the latest International Patent Classification
(IPC) codes. The relevant patent classification number is shown in
Appendix A. We collect the raw data from the Patent Search System of
the State Intellectual Property Office of China.2 These patents include
invention patent, design patent, and utility model patent, and are re-
gistered in China.

3.2.2. Carbon emissions (CO2)
China has become the world largest CO2 emitter since 2006 (Zhang

et al., 2017b; Yao et al., 2018; Tian et al., 2019). High CO2 emissions
have forced China to make some commitments and take some actions to
reduce emissions. Developing renewable energy is one of the efficient
ways to reduce CO2 emissions. Each of China's provinces will take
measures to reduce CO2 emission under the pressure of the central
government, and developing renewable energy is one of the desirable
choices. Therefore, CO2 emission may be an important factor influen-
cing RETI. This paper mainly explores whether CO2 emission promotes
the progress of RETI, in other words, whether RETI responds to climate
change. The detailed calculation method of Chinese provincial CO2

emissions can be found in Lin and Zhu (2017).
Fig. 2 shows the number of renewable energy patents and CO2

emission during of China during 1985–2016. We observe a high posi-
tive correlation between CO2 emissions and renewable energy patents,
and both of them experienced rapid growth after 2000. However, the
number of renewable energy patents decreased significantly in 2013
and 2014. The first reason is that China has experienced severe
“abandonment problem”. Facing increasing greenhouse gas emissions,
the Chinese government has made energetic efforts to promote re-
newable energy development. However, due to the inadequate support
toward the power grid construction and some other reasons, China's
renewable energy power generation has encountered problems that are
quite challenging since 2000. The second reason is that the large pro-
duction by Chinese solar manufacturers led to excess production

capacity which affected the profitability of the market and caused the
solar manufacturers to reduce their investment in R&D. Because re-
newable energy patents account for a larger proportion of total patents,
the decline in R&D investment eventually resulted in the decrease in the
total amount of patents.

However, in the following years, the Chinese government proposed
a series of policies to solve the “abandonment problem”. This has made
renewable energy consumption to gradually increase. Even though
China faced the “abandonment problem”, the Chinese government still
vigorously promotes the construction of renewable energy. The
“Strategic action plan for energy development (2014–2020)3”, which
was promulgated by the government in 2014 clearly stated that the
proportion of non-fossil energy in primary energy consumption will
increase to 15% by 2020. The announcement of this plan indicates that
China will strongly support the development of renewable energy. The
relevant data showed that in 2015, the installed capacity of renewable
energy power generation was 480 million kW, and by 2016 it had
reached 570 million kW, a growth rate of 18.75%. Therefore, the rapid
development of renewable energy pushed renewable energy companies
to increase R&D investment in technological innovation.

Although China's renewable energy technology, which is measured
by the number of patents, has developed relatively rapidly, the differ-
ences among the provinces are obvious. Fig. 3 shows the number of
renewable energy patents in different provinces of China in 2016. We
observe a great difference across provinces, and the highest in Jiangsu
Province is 70 times more than that of the lowest in Hainan Province.
Confronted with different CO2 emissions constraints, different pro-
vinces have placed different emphasis on renewable energy, resulting in
significant differences in technological innovation. Under the circum-
stances that China is pressing ahead with renewable energy, under-
standing the reasons for these differences are significant for the sus-
tainable development of renewable energy. Therefore, on the basis of
scientific assessment of these driving factors that have led to the dif-
ference in RETI level, this paper proposes some relevant suggestions
which are of great significance to the implementation of development
strategies in different provinces.

3.2.3. Control variables
Global warming makes the development of renewable energy im-

minent. The advantages of renewable energy are renewable and non-
polluting. This is not only conducive for improving energy security and
environmental quality but also key to economic development (Aized
et al., 2018; Narayan and Doytch, 2017). However, due to the high cost
of developing renewable energy, in addition to the external impetus of
environmental and resource pressures, RETI is mainly promoted by a
large number of funds from governments and enterprises in the short
term. Referring to previous researches, this article mainly considers the
following driving factors:

(1) Enterprise R&D investment (INV). RETI requires large amounts of
capital investment. Technological innovation is an important way
to increase competitiveness and plays a decisive role in the long-
term development for enterprises (Yang et al., 2017). Since there is
no renewable energy R&D investment data, Xu and Lin (2018b)
regarded the R&D investment as technological progress and ana-
lyzed its effect on the development of new energy. Following Xu
and Lin (2018b), this paper uses the R&D investment of industrial
enterprises above designated scale as the indicator of INV. The data
comes from the China Statistical Yearbook.

(2) Fiscal spending on science and technology expenditure (GTE). GTE
can reflect the economic development of a region and is another
important source of funding for promoting technological innova-
tion. Compared with the enterprise R&D investment, GTE involves a

2 http://www.pss-system.gov.cn/. 3 http://www.nea.gov.cn/2014-12/03/c_133830458.htm.
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wide range, not only including basic research and applied research,
but also involving scientific and technological services and ex-
changes. GTE plays an important role in solving market ex-
ternalities which can affect the transformation of science and
technology achievements and promotion of the development of
RETI (Yu et al., 2016). This paper uses the local fiscal expenditure
on science and technology expenditures to represent GTE, the data
is collected from the Wind database.4

(3) Energy Price (PRI). Since renewable energy has a relatively higher
cost than traditional fossil fuels, a relatively lower energy prices
will make renewable energy companies to reduce the R&D

investment in renewable energy due to the fact that they cannot
earn sufficient profits. Therefore, lower energy prices are harmful to
the technological progress of renewable energy. Furthermore, as the
largest oil importing country, the price fluctuation of traditional
fossil energy is harmful to maintain a stable economic growth, this
has also compelled the Chinese government to develop renewable
energy. Therefore, the fluctuation of energy price can affect the
development of renewable energy (Atalla et al., 2017). Following
the prior studies, we use the fossil fuel price inflation index as the
proxy of energy price, and the data is from the China Statistical
Yearbook.

(4) Energy consumption structure (ENS). China's energy endowment,
which is characterized by “rich coal, low oil, and low gas” de-
termines the coal-dominated energy consumption structure.
Considering that the renewable energy industry is a capital-
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4 The Wind database is an authoritative Chinese economics database (http://
www.wind.com.cn/).
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intensive industry and requires large amounts of capital to support
R&D research, renewable energy industry costs higher than the
traditional fossil energy industry. Therefore, ENSmay be harmful to
technological innovation of the renewable industry. However, in
the long term, the burning of fossil fuels has made China face ser-
ious environmental problems and enormous challenges in energy
security. The pressure from energy conservation and emission re-
duction has prompted the government to develop renewable en-
ergy. We hence consider the effect of ENS on RETI. The ENS is re-
presented by the proportion of the coal consumption in total energy
consumption, and the relevant data is from China Energy Statistics
Yearbook.

(5) Dependence on foreign energy (DEP). Dependence on foreign en-
ergy reflects energy supply capability. A higher DEP means a lower
energy supply capability, which is detrimental to energy security
(Radovanović et al., 2016). Stable economic growth requires a
stable energy supply capability. The development of renewable
energy can improve energy supply capability when facing increas-
ingly severe environmental and resource constraints. We hence
control the DEP and it is measured as the proportion of energy
import in the sum of energy import and domestic energy produc-
tion. The relevant data is from China Energy Statistics Yearbook.

GTE, INV, and PRI are normalized to 2000 constant price. Due to the
data limitation, this paper uses the panel data of China's 30 provinces
during 2000–2015, Tibet, Hong Kong, Macao and Taiwan are not in-
cluded in our analysis. The descriptive statistics of all variables are
presented in Table 1.

Based on the above data description and equation (2), we construct
the econometric model for the determinants of RETI. In order to avoid
possible heteroscedasticity, all data are in natural logarithm forms. The
dynamic panel data model cam be specified as follows:

= + + + +
+ + + + + +

RETI RETI CO INV GTE
PRI ENS DEP v u

ln ln ln ln ln
ln ln ln

it i t it it it

it it it i t it

0 , 1 1 2, 2 3

4 5 6

(4)

4. Empirical analysis

4.1. Panel unit root test

Before executing the panel co-integration test, we need to test the
stability of all the variables. The panel unit root test mainly includes
two types. The first assumes all panels have the same autoregressive
parameter, and the most widely used is the LLC test, proposed by Levin
et al. (2002). The second relaxes the assumption and assumes that
different panels have its own autoregressive parameter, and this in-
cludes the IPS test (Im et al., 2003) and Fisher-type tests. We do not
apply the Fisher-type tests because these tests assume that the time
period T is infinite. For comparison, this paper uses the LLC test and IPS
test with the null hypothesis that there is a unit root. The results are
presented in Table 2. Most of the variables are non-stationary at level.
However, the tests for the first difference term reject the null hypothesis
for all the variables. We hence determine that all the variables are

integrated of order one.

4.2. Panel co-integration test

Engle-Granger (1987) proposed the co-integration test and argued
that if there is a long-run equilibrium relationship among these vari-
ables with integrated I(1), then these variables are co-integrated.
Pedroni (1999, 2004) extended this idea to panel data and put forward
several tests by considering the heterogeneous intercepts and trend. The
null hypothesis of the Pedroni co-integration test is that there is no co-
integration, with two alternative hypotheses, namely, the homogenous
alternative hypothesis and the heterogeneous alternative hypothesis,
which is called Within-dimension test and Between-dimension test re-
spectively. The results of the Pedroni co-integration test are reported in
Table 3. The Within-dimension test (Panel PP-Statistic and Panel ADF-
Statistic) and Between-dimension test (Group PP-Statistic and Group
ADF-Statistic) both reject the null hypothesis at 1% significance level,
implying the existence of co-integration relationship among RETI, CO2

emissions, and other factors. For a robustness test, we also construct the
Kao test (Kao, 1999), and the results further confirm that there is the co-
integration relationship among these variables.

4.3. Panel causality test

Before we estimate the panel regression model, we further adopt the
panel causality test to explore the relationship among RETI, CO2

emissions, and other driving factors. The Dumitrescu Hurlin panel
causality test, which is proposed by Dumitrescu and Hurlin (2012)
considers the heterogeneous characteristic for different panels, and has
been proven to have good properties in the small sample. We adopt this
method and the results are reported in Table 4. The results indicated
that there is a bidirectional causal relationship between CO2 emissions
and RETI, meaning that the CO2 emissions is an important factor in
promoting the diffusion of RETI, beside RETI having a significant effect
on CO2 emissions. The causality tests also confirm that there is causality
from INV and GRD to RETI.

4.4. Dynamic panel regression model

4.4.1. Main analysis
Based on equation (4), the system GMM estimator is adopted in the

main estimation to quantitatively analyze the driving factors of RETI.
Because the development of renewable technological innovation will
affect the CO2 emissions as well as energy structure, we regard these
two variables as the endogenous variables and use the lag term of these
two variables as the instruments. We adopt the stepwise regression
method and the results are reported in Table 5. The coefficients of
lnCO2 and the lag term of lnRETI are significant in all cases. The AR(2)
test cannot reject the null hypothesis even at the 10% significance level,
indicating that there is no second-order correlation. Moreover, the
Hansen tests suggest that the instruments applied here are reasonable. In
summary, these two tests indicate that the regression results are reli-
able.

We can observe in Table 5 (model (1)–(5)), the coefficient of
lnRETIt 1 is positive and statistically significant, implying that the
technological level has path-dependence and the existing technological
stock will promote the development of new technologies. This is in line
with reality. In addition, the results show that CO2 emissions have a
significant and positive coefficient in all cases, indicating that the re-
gions with higher CO2 emissions tend to make more progress in RETI.
Presently, China has set stricter targets for CO2 emissions reduction,
and each province has also set its own CO2 reduction targets. The
provinces with higher CO2 emissions will increase their investment in R
&D research and accelerate the construction of renewable energy,
which is conducive for the promotion of technological progress in re-
newable energy. Therefore, the positive correlation between CO2

Table 1
Descriptive statistics.

Variable Unit Obs Mean Std. Dev. Min Max

RETI – 480 187.832 321.836 0.267 2457.870
CO2 million tonnes 480 267.775 216.812 7.508 1112.481
INV 100 million Yuan 480 137.333 233.653 0.070 1520.550
GTE 100 million Yuan 480 33.395 56.759 0.192 442.907
ENS % 480 64.949 17.924 12.145 99.300
PRI – 480 177.560 57.271 93.6734 313.939
DEP % 480 23.279 21.673 0.003 99.560
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emissions and RETI is in line with our expectation, and this confirms
that innovation in renewable energy technologies responds actively to
climate change.

Our results also suggest that lnGTE and lnINV are positively corre-
lated with lnRETI, showing that the investment in R&D from govern-
ments and enterprises all can promote RETI. Prior studies suggested
that R&D from governments and enterprises all have a positive impact
on technological progress (Kang et al., 2018; Lin and Chen, 2019). By
comparison, the coefficient of lnGTE is significantly greater than that of
lnINV. This indicates that the government's support plays a key role in
the development of RETI. The energy consumption structure, which is
measured as the proportion of coal consumption (lnENS) is significant
with a negative sign (Xu and Lin, 2018b). This result can be explained
that the coal-dominated energy structure will inhibit the development
of RETI.

We gradually add PRI and DEP to the estimation process. The results
show that the coefficient of energy prices is not significant in all cases,
indicating that the current energy prices cannot promote the develop-
ment of innovation in renewable energy technologies. Prior studies

Table 2
Panel unit root test.

Series IPS Test (Wt-bar) LLC Test (Adjusted t*)

Constant Trend and constant Constant Trend and constant

Levels lnRETI −0.3553 −0.0664 −7.3482*** −3.9717***
lnCO2 −4.1558*** 8.1576 −11.2122*** 1.5097
lnPRI −4.8307*** −6.8478*** −6.0434*** −10.1503***
lnINV 2.2462 −5.5504*** −3.0817*** −10.5468***
lnGRD 5.2149 1.3814 −1.4888* 2.8404***
lnENS 0.8480 2.0822 0.0903 −7.0230***
lnDEP −5.4404*** −7.6408*** −6.8379*** −12.4518***

First difference D.lnRETI −14.5165*** −12.3721*** −17.5239*** −16.9603***
D.lnCO2 −4.1877*** −8.9412*** −5.9927*** −14.3418***
D.lnPPI −25.1063*** −18.3111*** −29.0887*** −21.2705***
D.lnINV −14.3061*** −10.0200*** −19.4322*** −16.6874***
D.lnGRD −11.4488*** −7.2611*** −16.2404*** −14.2489***
D.lnENS −14.6992*** −13.0183*** −19.2384*** −18.7625***
D.lnDEP −21.9610*** −19.5912*** −25.1566*** −24.5090***

Note: Lag length selection based on AIC criterion; *p < 0.1, **p < 0.05, ***p < 0.01.

Table 3
Pedroni residual co-integration test.

Within-dimension Between-dimension

Statistic Prob. Weighted Statistic Prob. Statistic Prob.
Panel v-Statistic −4.110 1.000 −5.094 1.000 Group rho-Statistic 8.609 1.000
Panel rho-Statistic 5.395 1.000 6.606 1.000 Group PP-Statistic −10.352 0.000
Panel PP-Statistic −10.291 0.000 −6.718 0.000 Group ADF-Statistic −4.494 0.000
Panel ADF-Statistic −8.910 0.000 −5.251 0.000

Note: Lag length selection based on AIC criterion with intercept and trend; *p < 0.1, **p < 0.05, ***p < 0.01.

Table 4
Panel causality tests.

Null Hypothesis: W-Stat. Zbar-Stat. Prob.

lnCO2 does not homogeneously cause lnRETI 6.285 13.997 0.000
lnRETI does not homogeneously cause lnCO2 2.951 4.820 0.000
lnINV does not homogeneously cause lnRETI 2.995 4.940 0.000
lnRETI does not homogeneously cause lnINV 3.649 6.741 0.000
lnGTE does not homogeneously cause lnRETI 7.232 16.602 0.000
lnRETI does not homogeneously cause lnGTE 3.056 5.108 0.000
lnENS does not homogeneously cause lnRETI 1.474 0.754 0.451
lnRETI does not homogeneously cause lnENS 2.498 3.573 0.000
lnPRI does not homogeneously cause lnRETI 0.802 −1.095 0.273
lnRETI does not homogeneously cause lnPRI 2.400 3.302 0.001
lnDEP does not homogeneously cause lnRETI 1.218 0.050 0.960
lnRETI does not homogeneously cause lnDEP 3.348 5.911 0.000

Table 5
Main estimation results.

Dependent
variable: lnRETI

(1) (2) (3) (4) (5)

lnRETIt-1 0.552∗∗∗ 0.512∗∗∗ 0.521∗∗∗ 0.431∗∗∗ 0.428∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
lnCO2 0.826∗∗∗ 0.613∗∗∗ 0.502∗∗∗ 0.469∗∗∗ 0.474∗∗∗

(0.000) (0.000) (0.003) (0.003) (0.008)
lnENS −1.307∗∗∗ −1.247∗∗∗ −1.190∗∗∗ −1.067∗∗∗ −1.016∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
lnINV 0.138∗∗∗ 0.156∗∗∗ 0.117∗∗∗ 0.113∗∗∗

(0.001) (0.001) (0.001) (0.001)
lnPRI 0.100 −0.249 −0.255

(0.519) (0.199) (0.182)
lnGTE 0.206∗∗∗ 0.204∗∗∗

(0.000) (0.000)
lnDEP 0.039

(0.329)
Constant 3.038∗∗ 3.562∗∗∗ 3.289∗∗ 4.760∗∗∗ 4.474∗∗∗

(0.047) (0.000) (0.018) (0.000) (0.001)
AR(1) −2.659 −2.712 −2.659 −2.775 −2.775

(0.008) (0.007) (0.008) (0.006) (0.006)
AR(2) 1.183 1.158 1.128 1.203 1.210

(0.237) (0.247) (0.259) (0.229) (0.226)
Hansen test 28.803 27.681 27.128 27.967 28.204

(0.999) (1.000) (1.000) (1.000) (1.000)

Note: (1) p-values in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
(2) lnCO2 and lnENS are treated as the endogenous variables and the instru-
ments are selected by using the collapse sub-option, the robust standard error
estimates are used in the regression process.
(3) The Hansen test is used to test the validity of instrument variables (over-
identification restriction). Different from the Sargan test, the Hansen test is ef-
ficiency under heteroscedasticity condition. By checking, the data we adopted
in this paper satisfy the heteroscedasticity condition, thus, the robust standard
error estimates are used in the regression process and we adopt the Hansen test..
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revealed that higher energy price has an “induced effect” on promoting
the progress of RETI due to the relatively high cost of renewable energy
(Ley et al., 2016; Kruse and Wetzel, 2015). However, the strict gov-
ernmental control leads to the distortion in China's energy pricing
system to some extent, resulting in lower energy prices (Ju et al., 2017;
Li and Lin, 2018). Even though a lower energy price is beneficial for
economic growth, it cannot truly reflect the market value. As a result, it
will hinder the progress of technological innovation as well as energy
transition. Therefore, the insignificant correlation between lnPRI and
lnRETI is in line with China's actual situation. The results of the model
(5) also show that there is a positive correlation between lnDEP and
lnRETI which indicates that the higher dependence on foreign energy is
beneficial for developing renewable energy technologies but the impact
is not significant.

4.4.2. Robustness test
In order to verify the robustness of the relationship among RETI,

CO2 emissions and other driving factors, this paper conducts robustness
test. We continue adopt the system GMM method. We replace the
lnRETI by directly using renewable energy patents (lnRPAT) for the
robustness test. We use the stepwise regression method and the re-
gression results are shown in Table 6. The AR(2) test and Hansen test
both show that the model is reasonable. The results of the robustness
test further verify that there is a significantly positive correlation be-
tween CO2 emissions and lnRPAT. The signs and significance levels of
other variables are similar to the results in Table 6, which indicates that
the main estimation results are robust.

5. Conclusion and policy implication

The development of renewable energy plays an important role in
China's energy security, energy independence and climate mitigation
(Tsai and Chou, 2005; Wang et. Al., 2018). Technological innovation is
a determinant factor in renewable energy development. An in-depth
analysis of the drivers affecting innovation in renewable energy tech-
nological innovation is crucial for China's energy transition.

Based on China's provincial panel data from 2000 to 2015 and panel

data techniques, this paper explores the response of renewable energy
technological innovation respond to climate change, and further ana-
lyzes the driving factors such as energy price and innovation input on
this innovation process. The reliability of the results is verified by a
robustness test. The main conclusions are as follows: (1) Even though
there is rapid progress in China's renewable energy technologies in
recent years, there are great differences in innovation level across
China's provinces. (2) There is a bidirectional relationship between CO2

emissions and innovation level., indicating that extensive CO2 emis-
sions have promoted renewable energy technological innovation. (3) R
&D investment from government and enterprise is conducive for pro-
moting the innovation level. (4) Energy price has an insignificant effect
on innovation in renewable energy technologies and we attribute this to
the unreasonable energy price mechanism. Regional differences in re-
newable energy technologies are detrimental to the sustainable devel-
opment of renewable energy. In order to promote China's innovation
level as well as increase the contribution of renewable energy to China's
low-carbon economic and social development, this paper proposes the
following policy recommendations.

On the one hand, the government should guide and support en-
terprises for technological innovation and increase the scale of tech-
nology expenditures. The positive impact of CO2 emissions on techno-
logical innovation indicates that renewable energy technologies
respond actively to climate change. The policy implication is that we
need to notice the role of innovation in renewable energy technologies
on CO2 reductions and funding support is necessary to further promote
innovation level. This paper reveals that innovation investment (in-
cluding enterprises’ R&D investment and fiscal spending on science and
technology) has a significant role in promoting innovation level, but
they play different roles. Technological innovation is an important way
for enterprises to increase their competitiveness, but they often face
high risk, high cost and uncertainty problems during the innovation
process. As a result, the innovation investment from enterprises is al-
ways lower than the socially optimal level. As the main promoter of
national innovation, the government can optimize technological in-
novation level through technology expenditures and other policy in-
struments including government subsidies, investment in R&D projects
and indirect measures such as tax incentives. In other words, the main
role of fiscal spending on science and technology is to solve the pro-
blems existing in the R&D research process which cannot be effectively
solved by the market resources allocation. Thus, the government should
give full play to the guidance of enterprise and support for renewable
energy technological innovation and meanwhile increase the invest-
ment in science and technology especially paying attention to the ap-
plication effect of R&D fund in these provinces with higher CO2 emis-
sions and lower innovation level, and eventually narrow the technology
gap among different regions.

On the other hand, there is a need to gradually rationalize the role
of the energy price mechanism in promoting technological innovation.
Technological innovation is an important factor to promote the devel-
opment of renewable energy. It is particularly important to promote the
innovation level on the premise of China's vigorous development of
renewable energy. The low price of traditional fossil fuels and China's
coal-dominated energy endowment have caused China to consume
large amounts of coal. This phenomenon is not only harmful to China's
low-carbon development but also will inhibit the technological progress
of renewable energy (Xu and Lin, 2018a). Therefore, the Chinese gov-
ernment should give full play to the role of the energy price mechanism,
impose a tax on traditional fossil fuels, and provide certain subsidies for
renewable energy. It is also necessary to gradually straighten out the
role of the energy price mechanism, increase the market competitive-
ness of renewable energy and further promote technological progress.

In closing, it should be noted that this paper is a preliminary dis-
cussion to reveal the role of innovation on climate change, much re-
mains to be done. On the one hand, more accurate data are needed to
reveal the true technological innovation level. On the other hand, a

Table 6
Robustness test.

Dependent
variable: lnRPAT

(1) (2) (3) (4) (5)

lnRPATt-1 0.567∗∗∗ 0.520∗∗∗ 0.588∗∗∗ 0.471∗∗∗ 0.471∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
lnCO2 0.796∗∗∗ 0.664∗∗∗ 0.420∗∗∗ 0.440∗∗∗ 0.461∗∗∗

(0.000) (0.000) (0.002) (0.005) (0.001)
lnENS −1.136∗∗∗ −1.071∗∗∗ −0.961∗∗∗ −0.958∗∗∗ −0.898∗∗∗

(0.002) (0.000) (0.001) (0.000) (0.000)
lnINV 0.112∗∗ 0.142∗∗∗ 0.101∗∗∗ 0.091∗∗

(0.017) (0.002) (0.003) (0.011)
lnPRI 0.045 −0.256 −0.243

(0.731) (0.166) (0.190)
lnGTE 0.196∗∗∗ 0.184∗∗∗

(0.003) (0.003)
lnDEP 0.058

(0.184)
Constant 2.399∗ 2.584∗∗ 2.800∗ 4.376∗∗∗ 3.855∗∗∗

(0.095) (0.012) (0.092) (0.000) (0.001)
AR(1) −2.902 −3.018 −3.057 −2.968 −3.063

(0.004) (0.003) (0.002) (0.003) (0.002)
AR(2) 0.760 0.741 0.759 0.755 0.804

(0.447) (0.458) (0.448) (0.450) (0.422)
Hansen test 28.855 27.794 29.089 27.663 28.448

(0.999) (1.000) (0.999) (1.000) (0.999)

Note: (1) p-values in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
(2)lnCO2 and lnENS are treated as the endogenous variables and the instruments
are selected by using the collapse sub-option, the robust standard error esti-
mates are used in the regression process.
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systematic model is needed to integrate technological innovation into
the energy system so as to deeply analyze the impact of technological
innovation on climate change.
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Appendix A

Technology IPC classes

Wind power F03D
Solar energy F03G6; F24J2; F26B3/28; H01L27/142; H01L31/042-058
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Hydro power E02B9 and not E02B9/08; [F03B3 or F03B7 or F03B13/06-08 or F03B15] and not F03B13/10-26
Biomass energy C10L5/42–44; F02B43/08
Storage H01M10/06-18; H01M10/24–32; H01M10/34; H01M10/36–40

Sources: Noailly and Shestalova (2017), Johnstone et al. (2010), Johnstone and Haščič (2010).
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