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Fig.1 Schematic diagram of radiator structure
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Table 1 Dimensions and boundary conditions of numerical
model
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Table 2 Parameter of physical properties of materials
0o/ W k,/ ./
(kg (Jekg's (Wem™'s (kgem~'-
0 M ) B S )
(25C) 1.7675 1005 0.026 3 1.553 x10°
(87°C) 967.3 4203 0.678 3.377 x107
(140°C) 968 2194 0.1038  2.065 x103
6061 2690 896 180 -
19 2
Fig.2  Grid independence verification
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Fig.3 Picture of experimental bench
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Fig.5 Module diagram of radiator
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Fig.7 Comparison of experimental and simulation results of the
radiator
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Fig.6  Schematic diagram of system testing of experimental bench
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Fig.8 Schematic diagram of radiator with internal flow channel
3 )
Table 3  Geometry dimension of multidevel flow channels ( 413K) ; 4
22K
i H/mm [/mm w/mm ¢/mm
2 8 60 16 2
3 8 29 8 2
4 8 13.5 4 2
NN 1077
9
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9 CFX
Fig.9 Residual curves of CFX simulation
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Fig. 10 Simulation results of radiator with internal flow channel
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Energy-saving Optimization Operation of Central Air-conditioning
System Based on Double-DQN Algorithm

YAN Junwei HUANG Qi ZHOU Xuan
( School of Mechanical and Automotive Engineering South China University of Technology =~ Guangzhou 510640 Guangdong China)

Abstract: A method about energy-saving optimization operation of central air-conditioning system based on adaptive
modeling and selfdearning was proposed to solve the difficulties of mechanism modeling and parameters identifica—
tion. The Markov decision process model of air-conditioning system was designed and the reinforcement learning al—
gorithm with dual neural network structure was used to solve the curse of dimensionality and overestimation of value
function during the learning process. A TRNSYS simulation platform based on the central air-eonditioning system of
an office building in Guangzhou was built and the effectiveness of the algorithm was validated. The simulation re—
sults show that under the premise of meeting the indoor thermal comfort requirement the energy-saving optimiza—
tion operation of the system is realized with the goal of minimizing the energy consumption. Compared with PID con—
trol and single neural network reinforcement learning control  the total energy consumption of the system is reduced
by 5.36% and 1.64% the proportion of total uncomfortable time is decreased by 2.32% and 1.37%  respec—
tively. The reinforcement learning controller proposed can effectively solve the overestimation problem. It has good
robustness  self-adaption optimization capability and better energy-saving effect and it can provide new ideas for
building energy efficiency.

Key words: central air-conditioning system; energy-saving optimization operation; reinforcement learning; Dou-—

ble-DON algorithm; dual neural network structure; total energy consumption; indoor thermal comfort
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Heat Dissipation Characteristics of Platefin Heat Exchanger
with Internal Flow Channel

CAI Huikun'®>  WENG Zeju'>  LIAO Yidai' SU Lijun’

(1. Department of Mechanical and Electronic Engineering Xiamen University Xiamen 361102 Fujian  China;
2. CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing 100190  China)

Abstract: Currently little study has been carried out on the platefin heat exchanger with internal flow channel
and its heat dissipation power cannot be calculated accurately as its boundary conditions are be over-simplified.
Therefore a simulation analysis model of plate-fin heat exchanger with internal flow channel and a small wind tun—
nel experimental system was developed based on the interactions of cooling air  hot fluid and heat exchanger. The
results show that under the cooling conditions of 1 m/s air speed and 25 °C air inlet temperature the heat dissipa—
tion power increases with mass volume of hot fluid and will be stable after the mass volume reaches 3 L/min. The
maximum deviation between the numerical analysis results and the experimental results is less than 5% . After vali-
dation the effect of flow channel level on heat dissipation performance was investigated. The result shows that the
heat exchanger with four-evel internal flow channel is of best efficiency and temperature uniformity but its highest tem—
perature in internal flow channel is still lower than that of hot fluid inlet temperature 22 K which demonstrates the ne—
cessity to take the interactions of cooling air hot fluid and heat exchanger into consideration in simulation analysis.
Key words: platefin heat exchanger; internal flow channel; heat dissipation characteristics; flow channel level ;

temperature uniformity



