基于矢量螺旋推进舵的新型主动式减摇装置的仿真研究

张 帅¹, 王驰明^{1, 2}, 姚恺涵¹, 肖晶晶¹

(1.厦门大学 航空航天学院, 福建 厦门 361102; 2.厦门船舶重工股份有限公司, 福建 厦门 361026)

摘 要:本文介绍了一种基于矢量螺旋推进舵的主动式船舶减摇装置,并在分析随机海浪的波能谱和波倾角以及船 舶运动受力的基础上,建立了随机海浪的仿真模型,利用 Matlab 对海浪波倾角及有无减摇装置的船舶横摇运动进 行了建模及仿真研究,研究表明该减摇装置具有可控性强、易改装的特点,能够提高船舶的耐波性。 关键词:矢量螺旋推进舵;减摇;数学模型;Matlab 仿真 中图分类号:U676.1 文献标识码:A 文章编号:1006-7973 (2019) 02-0102-03

一、引言

目前常用的船舶减摇装置主要有舭龙骨、减摇水舱、减 摇鳍等。舭龙骨通常作为辅助被动式减摇装置以增加船舶横 摇阻尼。减摇水舱的减摇效果不受航速影响,但其会占用较 大舱内空间。减摇鳍虽占用舱内体积小、易于控制,但减摇 效果易受航速的影响。为了满足现有减摇系统的灵活性、快 响应、高效率、强环境适应性的要求,本文提出一种基于矢 量螺旋推进舵的新型主动式船舶减摇装置。该矢量推进装置 具有结构简单紧凑、体积较小、移植性强、制造和维护成本 低的优点。该矢量推进装置可以根据船舶横摇幅度产生相应 的回正力矩,从而在不同级别的风浪条件下达到保证船体平 稳、最大极限减少船体横摇的目的。

二、矢量螺旋减摇装置

如图 1 所示,基于矢量螺旋推进舵的船舶减摇装置(以 下简称矢量螺旋减摇装置)由摇摆电机、传动机构、螺旋桨 自旋电机以及螺旋桨组成。将其相对船舷两侧成对布置,可 伸缩式桨轴可沿船长方向前后摆动。当桨轴向船首方向摆动 时,可兼具减摇及制动作用;当桨轴向船尾方向摆动时,可 兼具减摇及推进作用。

图 1 矢量螺旋减摇装置结构示意图

收稿日期:2018-09-02 作者简介:张 帅(1993-),男,厦门大学航空航天学院机电工程系硕士生。 通讯作者:肖晶晶(1985-),女,厦门大学航空航天学院机电工程系博士后。 基金项目:福建省海洋高新产业发展专项资金项目[2016]13号。

三、海浪仿真

船舶在海上的摇荡主要由海浪引起。因此设计船舶的运 动控制系统时,通常需要研究海浪对船舶以及其控制系统的 影响。故需要建立一定的数学模型以模拟海浪信号。在海洋 中海浪的相位、频率以及振幅等都具有随机性和不确定性, 因而无法用简单的规则波来替代,尽管每个波在其不同时段 的波高、波长都是随机变化的,但是根据统计规律性,复杂 的、不规则的波可以由多个不同相位、振幅和频率的规则波 进行替代,所以可推导出长峰波海浪波幅数学模型,如下式 所示:

$$\xi(\mathbf{t}) = \sum_{i=1}^{N} \xi_{\alpha i} \cos\left(k_{i}\xi_{i} \pm \omega_{i}t + \varepsilon_{i}\right)$$
(1)

其中, \mathcal{E}_i 取 0 到 2π 间任意值。

若只考虑海平面上某一点的波高,上式可简化为:

$$\xi(t) = \sum_{i=1}^{N} \xi_{\alpha i} \cos(\omega_{i} t + \varepsilon_{i})$$
⁽²⁾

本文采用 Pierson—Moscowitz 的海浪波能谱表达式:

$$S_{\xi}(\omega) = \frac{8.1 \times 10^{-3} g^2}{\omega^5} \exp\left[-0.74 \left(\frac{g}{v_{wd}\omega}\right)^4\right]$$
(3)

经过波倾角密度函数与波能谱密度函数的转化可得出 其在遭遇角频率的公式:

$$S_{\alpha}(\omega_{\rm e}) = \frac{\frac{8.1}{\omega} \times 10^{-3} \exp\left[-0.74 \left(\frac{g}{v_{wd}\omega}\right)^4\right]}{1 - \frac{2\omega}{g} v \cos\beta}$$
(4)

海浪的总能量即所有组成波的能量合成,海浪谱的实质 是反应能量密度,若只考虑能量相对于频率的分布,得到的 即为波能谱,用 $S(\omega)$ 表示。单个波的能量由振幅决定,这样 就可以利用谱函数来求取振幅,根据能量相等的关系,结合 实际船只的情况可得:

$$\alpha_{m} = K_{1}K_{2}\frac{\omega^{2}}{g}\sum_{i=1}^{\infty}\sqrt{2S_{\xi}(\omega_{i})\Delta\omega_{i}}\cos(\omega_{i}t+\varepsilon_{i})$$
(5)

 K_1 为有限吃水修正系数, K_2 为有限船宽修正系数;

实际航行的船舶的波倾角可以根据上式进行仿真。对有 义波高为 5m, 航速为 5kn, 遭遇角为 90°时的海浪波倾角 进行了仿真,得到曲线如图 2 所示。

图 2 遭遇角为 90°时的波倾角仿真曲线

四、船舶横摇仿真模型

假设某船的参数如下: D=3036t, H=18m, B=24m, GM=1.624m, Z_g=7.2m, L=54m, V=12kn, 水线 面系数C_W=0.716, 方形系数C_p=0.471。根据 Conolly 理论可以得 到如下的船舶平衡方程:

$$(J_{\phi} + \Delta J_{\phi})\ddot{\phi} + 2N\dot{\phi} + D \cdot GM \cdot \phi = D \cdot GM \cdot \alpha_{m}$$
(6)

该式对两边进行拉普拉斯变换得到船舶在零初始状态条 件下,可以得到横摇角相对于有效波倾角的传递函数:

$$G_{\phi}(s) = \frac{\phi(s)}{\alpha_m(s)} = \frac{1}{K_{\phi}^2 s^2 + 2\xi_{\phi} K_{\phi} s + 1}$$
(7)

式中:
$$K_{\phi} = \sqrt{\frac{J_{\phi} + \Delta J_{\phi}}{Dh}}; \quad 2\xi_{\phi} = \frac{2N}{\sqrt{Dh(J_{\phi} + \Delta J_{\phi})}};$$

根据杜埃尔公式计算得出的该船舶的横摇转动惯量:

$$J_{\phi} = \frac{D}{12g} (B^2 + 4Z_g^2)$$
(8)

从而计算得到:

$$T_{\phi} = 2\pi K_{\phi} = 2\pi \sqrt{\frac{J_{\phi} + \Delta J_{\phi}}{Dh}} = 12.69 \text{s}$$
(9)

对横摇阻尼采用经验公式计算如下:

$$2\mu = k_1 \frac{LB^4}{D(B^2 + H^2)} \phi_A \tag{10}$$

式中: $k_1 = 0.055 \sim 0.060$; ϕ_A 为横摇幅值,平均取 0.5~0.6 rad。 按照母型船的结构参数,可得衰减系数: $2\mu = 0.198$ (11) 结合航速和流场的影响,考虑到实际情况,经过经验公 式计算可得:

$$G_{\phi}(s) = 0.505 \times \frac{0.485}{(s+0.092)^2 + 0.2365}$$
(12)

在已知船模横摇角度与波倾角的频域关系后,利用拉普 拉斯反变换和卷积公式将频域关系改写为时域关系的公式:

$$\phi(t) = 0.505 \times e^{-0.092t} \times \sin(0.485t) \otimes \alpha(t)$$

式中 🛇 为卷积运算。

船舶在海浪中的横摇运动仿真以海浪有效波倾角α(t)为 输入,通过上述公式,运用卷积定理及拉普拉斯反变换可以 得出船舶横摇角φ(t)。下图为通过仿真可得未减摇时船舶的横 摇角曲线:

图 3 遭遇角为 90°时未减摇横摇角仿真曲线

五、矢量螺旋减摇装置模型的建立

如图 4 所示,将船舶和减摇装置视为一个系统,其运动 可以用船舶横摇角 Ø 和左右舷螺旋桨的转速 V 作为广义坐标 来描述。正横摇角 Ø 为左舷横倾,正 V 值对应左舷螺旋桨转 速,负 V 值对应右舷螺旋桨转速。

图 4 矢量螺旋减摇装置的减摇原理

状态 1 表明船舶在右舷达到最大横摇角并开始向左舷 摇,此时左舷螺旋桨开始转动并且转速随着摇摆角速度增大 而增大。状态 3 表明,船舶左摇幅度达到最大值并开始向右 舷摇,此时左舷螺旋桨转速降低至零,右舷螺旋桨开始转动 并且转速随着摇摆角速度增大而增大。状态 5 表明船舶右摇 幅度达到最大值并开始向左舷摇,右舷螺旋桨转速降低至零。 如此便完成一个周期,进入下一个周期。经过上述反复控制, 使船舷两侧螺旋桨产生的力矩始终与波浪扰动力矩相反。

考虑船舶小角度线性横摇,根据船舶在波浪作用下的横 摇受力分析以及动平衡原理,可得到增加矢量螺旋减摇装置 后船舶平衡方程为下式:(下转第179页)

表 3 各取样点表层沉积物粒度特征统计结果									
站位	砂质含量	とここの人 日 (a)	粘土质含量(%)	Dm	D50				
	(%)	初砂质含重(%)		(mm)	(mm)				
S1	9.9	67.5	22.7	0.029	0.013				
S2	16.0	66.7	17.3	0.035	0.019				
S3	5.9	75.9	18.3	0.024	0.015				
S4	3.1	70.5	26.5	0.016	0.010				
S5	6.7	76.2	17.1	0.027	0.019				
S6	7.3	66.5	26.3	0.022	0.011				
S7	4.1	67.3	28.5	0.021	0.010				
S8	3.3	71.5	25.3	0.022	0.013				
S 9	14.2	73.2	12.6	0.034	0.030				
S10	6.6	67.1	26.3	0.024	0.011				

吉论					[
6.2	74.8	19.0	0.023	0.017	
3.3	75.2	21.5	0.019	0.014	[2
4.0	64.3	31.7	0.021	0.009	
0.9	74.2	24.9	0.015	0.012	
0.0	62.0	36.0	0.013	0.008	-

6. 五、结

S11

S12

S13

S14

S15

(1) 独山港水域的潮汐性质属正规半日潮型, 测验期间 测区最高高潮位为 5.47 m;最低低潮位为-1.30m;最大潮 差为 6.33m, 最小潮差为 2.51 m, 平均潮差为 4.89m。

(2) 测区内潮流呈明显往复流运动,且往复流倾向在深 槽相对弱于近岸,落潮时主流向介于 53.2~74.3°,涨潮时 主流向介于 231.3~263.4°。

_ . _ . _ . _ . _ . _ . _ . _ . (上接第103页)

 $(J_{\phi} + \Delta J_{\phi})\ddot{\phi} + 2N\dot{\phi} + D \cdot GM \cdot \phi = D \cdot GM \cdot \alpha_m + M_s \quad (13)$

其中, M_s为矢量螺旋减摇装置产生的稳定力矩, 该力 矩与船体型宽、螺旋桨转速、桨轴摆动角度及船舶横摇角速 度相关,近似有:

$$M_s = \frac{-B\cos\theta k v\phi}{2} \tag{14}$$

其中k为控制系数, θ 为桨轴沿船长方向的摆动角度。 我们把(13)式作为船舶—减摇装置仿真的机理模型, 仿真结果如下图:

(3) 测区内整体落潮历时长于涨潮历时,测区内整体落 潮历时长于涨潮历时,各测点平均落潮历时 6.3~7.4h,相应 涨潮历时为 5.1~6.3h。

(4) 位于近岸水域的 C1、C2 和 C3 测点呈微弱落潮优 势; 而位于杭州湾主槽开敞水域的 C4、C5 和 C6 测点呈微 弱涨潮优势。

(5) 测区整体表现为涨潮含沙量略高于落潮含沙量。测 区含沙量由近岸向深槽逐渐增大。

(6) 测区内悬沙粒径较细, 所测水域的悬沙主要由粉砂 和粘粒组成,但悬沙粒径随水动力增强呈明显变粗趋势。

(7) 测区表层沉积物颗粒较细,主要为粘土质粉砂,砂 质、粉砂质和粘土质含量平均为 6.2%、68.9%和 24.9%。

参考文献

- 11 谷国传,李身铎,胡方西.杭州湾北部近岸水域水文泥沙 特性[]]. 东海海洋, 1987, 5 (4): 15-24.
- 2] 茅志昌, 郭建强, 虞志英等. 杭州湾北岸岸滩冲淤分析[[]. 海洋工程, 2008, 26 (1): 108-113.
- 3] 曹杰, 李为华. 杭州湾金山石化近岸海域水文泥沙特征现 场观测分析[]]. 中国水运, 2016, 16 (6): 289-292.
- [4] 赵建春, 戴志军, 立九发等. 强潮海湾近岸表层沉积物时 空分布特征及水动力响应——以杭州湾北岸为例[[]. 沉积 学报, 2008, 26 (6): 1043-1051.
- [5] 曹佳, 茅志昌, 沈焕庭. 杭州湾北岸岸滩冲淤演变浅析[[]. 海洋学研究, 2009, 27 (4): 1-9.

由设计和仿真研究可知,采用该种减摇装置,具有以下 优点:

(1) 该装置是主动式减摇装置, 工作周期不依赖船舶的 固有周期,可以在全航速范围内起到减摇作用;

(2) 通过优化控制系统, 该减摇装置可以在规则波和不 规则波中皆能发挥稳定船舶姿态的作用;

(3) 由于该装置的桨轴具有前后摇摆功能, 使其可在减 摇的同时兼具辅助制动及推进的多功能应用效果;

(4) 该减摇装置也可应用在海上平台等多种场合中。

目前,该减摇装置已进行了船模静水实验研究,获得了 较理想的研究结果,还有待于后续的实船实验研究及对于具 体船舶所需指标的论证研究等。

参考文献

- [1] 盛振邦, 刘应中.船舶原理[M].上海:上海交通大学出版 社, 2004.
- [2] 夏义.船舶横摇运动仿真与减摇鳍控制系统的研究[D].大 连: 大连海事大学, 2015.
- [3] 王科俊.海洋运动体控制原理[M].哈尔滨:哈尔滨工程大 学出版社, 2007.
- [4] 王凌云,张帅,肖晶晶等.基于二维矢量推进器和移动重 物的组合式船舶减摇装置[P]. 中国专利: CN201810203 880.0, 2018-07-24.