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Abstract
Theproblemof time series predictionhas beenwell explored in the community of datamining.
However, little research attention has been paid to the case of predicting the movement of a
collection of related time series data. In this work, we study the problem of simultaneously
predicting multiple time series data using joint predictive models. We observe that in real-
world applications, strong relationships between different time-sensitive variables are often
held, either explicitly predefined or implicitly covered in nature of the application. Such
relationships indicate that the prediction on the trajectory of one given time series could
be improved by incorporating the properties of other related time series data into predictive
models. The key challenge is to capture the temporal dynamics of these relationships to jointly
predict multiple time series. In this research, we propose a predictive model for multiple time
series forecasting and apply it to the domain of inventory management. The relationships
among multiple time series are modeled as a class of constraints, and in turn, refine the
predictions on the corresponding time series. Experimental results on real-world data reveal
that the proposed algorithms outperformwell-established methods of time series forecasting.

Keywords Time series · Joint prediction · Inventory management

1 Introduction

Inventory management is the general process of efficiently and effectively monitoring the
fluctuant flow of units into and out of an existing inventory [1]. This process usually involves
two types of operations: (1) Transferring units into the inventory in order to guarantee the
fluency of sales (a.k.a, stock in); and (2) Delivery of cargo from the inventory for sales (a.k.a,
stock out). These two operations often create two types of time series data, each of which
represents the amount of the corresponding operation evolving over time. Complete inventory
management also seeks to control the costs associated with each operation and maintaining
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the status of the inventory. For simplicity, in this work, we mainly focus on the problem of
forecasting the two types of time series data in inventory management.

In the existing inventory management system [2,3], inventory forecasting is often separate
forecasting the amount of stock in and stock out. It is treated as a single time series forecasting
which ignores the relationship between stock in and stock out. We all know that single time
series forecasting has been extensively researched and there exist some outstanding methods
from the statistics and data mining arenas [4–8].

In practice, the amounts of stock in and stock out in an inventory are related to each other.
The amount of stock out (Sout for short) is usually restricted to the amount of stock in (Sin for
short) at identical or close time periods, i.e., Sout is often less than Sin to prevent the situation
that a unit is out of stock. Moreover, the scheduled Sin would primarily depend on the past
Sout to avoid the situation that a unit is in excess of demand [9]. Then the two time series of
Sin and Sout will bear some interdependencies according to the characteristics of inventory
management. But the above single time series forecasting methods cannot capture and model
the dynamics of relationships among multiple time series and to predict their future values
simultaneously. And little research attention has been paid to the case of forecasting the
movement of a collection of related time series data.

In this work, we propose a joint prediction model, as shown in Fig. 1, integrating the
interdependencies of multiple time series into the process of forecasting. Different from
the existing methods, our proposed model can capture the dynamics of relationships in
multiple time series and predict their future values simultaneously. Specifically, in the domain
of inventory management, the aggregated amount of Sin would be often larger than the
aggregated amount of Sout in a specific period to avoid “out of stock”. In addition, Sin and
Sout should be close to each other to prevent a unit from being “in excess of demand”. Based
on such an intuition, we transform the requirement of inventory management into constraints
and perform time series prediction under these constraints. And we apply the Joint prediction
model on two real-world inventory datasets. Experimental results reveal that the proposed
models outperform the traditional established time series forecasting models.

The paper is organized as follows. In Sect. 2, we summarize the related work. In Sect. 3,
we briefly review the single time series prediction and the multiple time series predictions
without the constraint. In Sect. 4, we propose the Joint predictive model and implement
approaches in two cases: linear prediction model and nonlinear prediction model. In Sect. 5,
we present experimental evaluations and analysis on real-world data. Finally, we conclude
in Sect. 6.

2 Related work

There are a lot of real-world examples of multiple time series data that run in parallel. An
illustrative one is that in cloud computing, theworkload on virtualmachines (e.g., CPUusage,
memory usage, etc.) consists of multiple time-sensitive variables. In such a case, system
administrators need the capabilities of characterizing and predicting the workload. To resolve
this issue, [10] proposes a co-clustering technique to identify groups of virtual machines
that frequently exhibit correlated workload patterns and the time periods in which these
virtual machines groups are active. Other examples include the inventory management (e.g.,
in storage and delivery of storage), financial forecasting (e.g., investments and investment
returns).However, despite the great demandonpredictingmultiple time series data in practice,
little fundamental research attention has been paid to this problem.
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Fig. 1 The framework of joint prediction for inventory management

Most of the time series analysis methods are drawn from statistics or machine learning
fields.Classical statistical analysismodels such as vector auto regression (VAR)model, vector
error correction model (VECM), vector autoregressive moving average (VARMA) and mul-
tiple spectral analysis models are adopted for multiple time series analysis and forecasting.
VARmodel is the generalization of auto regression model, which can capture the linear inter-
dependencies among multiple time series without requiring some strong restrictions [11,12].
VECM can be viewed as a VAR with cointegration constraints, in which an error correction
term measuring the previous period’s deviation from long-run equilibrium is included [13].
VECM is suitable for the time series with non-stationary cointegration constraints. VARMA
models are of interest as generalizations of successful univariate ARMAmodels. The reduc-
tion in the number of parameters involved in VARMAmodels is an important consideration.
For example, vector moving average (VMA) is a simplified version, and we can only use

123



908 Q. Zhou et al.

relatively simple and effective tools to determine the order of a VMA model [14]. Multiple
spectral analysis in statistic and signal processing is also called frequency domain analysis,
that estimates the strength of different frequency components of time series signal [15,16], a
typical work is as singular-value decomposition of a specific matrix constructed upon time
series [17]. These multivariate statistical analysis models are simple, easy to operate and
understand and have been successfully used in economics, physiology, electric circuits, and
other fields.

In recent years, multiple time series forecasting problems also attract more attention
in machine learning field. Researchers expect to adopt machine learning and data mining
techniques to deal with the enormous data emerged in practice and revealing the potential
relationships among multiple time series which are new challenges for statistical models.
Clustering on multiple time series data might be valuable for finding patterns within time
series. In [18], an evolving clustering method is employed to extract profiles of relation-
ships among multiple climate time series, and then a non-parametric regression analysis
method is used to generate the predictions based on the profiles. Finazzi et al. [19] proposes a
novel clustering approach based on a modification of classic state-space modeling, which is
applied to lake surface water temperature for 256 lakes globally for 5years of data to obtain
investigate information. Pravilovic et al. [20] proposes a spatio-temporal clustering-based
multiple geophysical time series forecasting method. It includes two steps, partitioning time
series into different clusters, and then predicting the future values of a time series by uti-
lizing its historical values and information from other cluster-time series. Neural network
models, also called artificial neural networks(ANN), have been widely used for time series
forecasts [21,22]. Inspired by the study of brain architecture, ANN is constructed on a collec-
tion of connected units or nodes called artificial neurons. Each connection between artificial
neurons can transmit a signal from one to another. And the artificial neuron that receives the
signal can process it, thus learning from data. ANN has been applied in many areas where
statistical methods are traditionally employed. ANNwithout the strong assumption about the
learning function, but it often trapped in local minima.

The problem of joint prediction on multiple time series data has not been fundamentally
studied in the research community. The key challenge of this problem is that it is difficult
to characterize the constraints of different time series. In the following, we highlight the
research problems closely related to our work and show their difference.

– Multivariate time seriesMultivariate or multiple time series problems mean that a prob-
lem involvesmore than one time series, andweneed to analyze all these time series jointly.
There are some models to deal with these problems, for example, a vector autoregression
of order 1 (VAR(1)) on a bivariate system is:

y1,t = ϕ0,1 + ϕ1,1y1,t−1 + ϕ1,2y2,t−1 + ε1,t ,

y2,t = ϕ0,2 + ϕ2,1y1,t−1 + ϕ2,2y2,t−1 + ε2,t .
(1)

which can be rewritten as follows:

Yt = �0 + �1Yt−1 + εt . (2)

– Multi-task learningOn the other hand, joint prediction onmultiple time series data can be
regarded as a special case ofMulti-task learning (MTL),where each time series prediction
is a single prediction task.Multi-task learning is a well-explored area in machine learning
community that learns a problem together with other related problem at the same time,
using a shared representation overmultiple problems.Amyriad of researchwork has been
conducted along this direction [23–26]. Recently, some researchers start to investigate the
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problem of multi-task learning with constraints. The constraints are generally stemmed
from the background knowledge that defines the natural restriction among different tasks.
Following this stream of research, [27] presents a general class of tractable constraints
amongmultiple tasks, and introduces computationally efficientways to solve the problem.
Further [28], exploits a semi-supervised approach in which a potentially large set of
unlabeled examples is used to enforce the constraints on a large region of the input space.
Zhang [29] proposes an active learning framework exploiting the relations among tasks
constrained by task outputs. Fiot and Dinuzzo [30,31] explores the application of kernel-
based multi-task learning techniques to forecast the demand for electricity in multiple
nodes of a distribution network. Unlike themostMTLmodels that use domain knowledge
on the task relations to construct the learning models, Han and Zhang [32] give a formal
definition of task tree structure for MTL and proposed a Task Tree model to learn the
underlying tree structure among tasks and model parameters simultaneously.

– multi-target regression The other similar research problem is the multi-target regression,
which is also known as multi-output regression. Multi-target regression aims to pre-
dict multiple continuous target variables simultaneously based on the same set of input
variables. Common methods for predicting several numeric target variables at once are
derived from the predictive clustering tree (e.g., multi-target regression tree) and ensem-
ble model [33]. Moreover, Multi-target regression has been deployed with the sliding
window model to handle data in a streaming fashion, such as [34] utilize sliding window
model to transform event forecasting task into a predictive clustering problem.

Compared with joint prediction, multi-target regression and most of the MTL work
assumes the input spaces share common representation, e.g., the feature space of these targets
are unique. However, such an assumption might not hold in some practical issue.

3 Preliminaries

We formally introduce the single time series problem and multiple time series problem in
this section, and then define and model the joint prediction problem in the next section. Some
important notations mentioned in this paper are summarized in Table 1.

3.1 Single time series prediction

Given a single time series T , we are able to extract a sequence of samples from T . Assume
there are m examples {(xi , yi ) : i ∈ Nm} ⊂ X × Y (Nm = 1, . . . ,m) sampled i .i .d from T
with an unknown probability distribution P on X×Y . The input space X and the output space
Y fall in a real-value space R, where X is typically a subset of Rd , i.e., the d-dimensional
Euclidean space, and Y is a subset of R [35]. In the problem setup of time series forecasting,
Y can be chosen as a set of real values in the time series T .

The goal of single time series prediction is to learn a function f with small expected
error E[L(y, f (x))], where L is a predefined loss function, and the expectation is achieved
by calculating the loss with respect to the unknown probability P [36]. To obtain such a
function f , a common approach that considers the expected error and regularization [37] is
to learn f to minimize the function

1

m

∑

i∈Nm

L(yi , f (xi )) + γ ‖ f ‖FK , (3)
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Table 1 Important notations Notation Description

xi The i-th input sample

yi The i-th output sample

xil The i-th input sample in l-th time series

yil The i-th output sample in l-th time series

L The loss function

f (x) The forecasting function

m The number of samples

n The number of time series

Nm The sample set

Nn The set of time series

J(Hk ) The constraints among multiple time series

τ The size of unit time window

Sin The amount of stock in

Sout The amount of stock out

where ‖ f ‖FK is the F-norm of f in the function space HK , and γ is called the regularization
parameter that controls the tradeoff between the expected error made on m examples (i.e.,
the training error) and the complexity of the model (i.e., the smoothness). In the case that
HK consists of linear function f (x) = wT x , and the regularizer is the l-2 norm, the function
becomes

1

m

∑

i∈Nm

L(yi , w
T xi ) + γwTw, (4)

where w is a d × 1 matrix.
The form described in Eq. (3) has been adopted by a myriad of learning models. Based

on the choice of the loss function L . For example, square loss L = (y − f (x))2 is one such
function that is well-suited for regression problems and has been greatly utilized in a lot of
regression application. However, it suffers the problem that outliers in the data are punished
very heavily by the squaring of the error. An alternative of such function is absolute loss
L = |y − f (x)|, which is applicable to regression problems just like the square loss, and it
avoids the problem of weighting outliers too strongly by scaling the loss only linearly instead
of quadratically by the error amount. Hinge loss max(0, 1− y · f (x)) [38], as a third example,
works well for its purposes in SVM as a classifier, since the more a data point violates the
margin, the higher the penalty is. However, hinge loss is not well-suited for regression-based
problems as a result of its one-sided error.

3.2 Multiple time series prediction

In multiple time series prediction, we have n different time series data, and for the l-th time
series, we have m available examples {(xil , yil) : i ∈ Nm} sampled from the unknown
distribution Pl on the space of Xl × Yl . Therefore, we have {(xil , yil) : i ∈ Nm, l ∈ Nn}
available data in total. The goal is to learn a function fl : Xl → Yl based on the available
data for the l-th time series, and in total we have n such functions. Note that the input space
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of all n time series might share common representation, or their input space could be totally
different.

Recall that in the problem of single time series prediction, our goal is to minimize the
function of Eq. (3). However, in the context of multiple time series prediction, our objective
needs to be changed accordingly, that is, to learn all the functions f to minimize the function

1

nm

∑

l∈Nn

∑

i∈Nm

L(yil , fl(xil)) + γ

n
‖ fl‖FKl

. (5)

If we assume that the input and output spaces of all n time series are totally different, and
they are independent of each other, we can have n tasks, each of which is to minimize the
corresponding functions of Eq. (3). However, in practice, the output space of different time
series might correlate with each other, i.e., they may have to satisfy some specific constraints
naturally embedded in the applications.

4 Joint prediction

4.1 Joint predictionmodels

As described above, in some practical applications, the input spaces of multiple time series
may be totally different, but the output spaces of all n time series correlated with each other.
In this paper, we call this type of multiple time series prediction problems joint prediction. To
capture the relations among different time series, we add a constraint term J (HK ) in Eq. (5)
thus the function becomes

1

nm

∑

l∈Nn

∑

i∈Nm

L(yil , fl(xil)) + γ

n
‖ fl‖FKl

,

s.t . J (HK ) ≥ 0,

(6)

where HK is a function space, that is, all the n functions that need to be learned based on the
available n time series data.

The forms of loss function L and constraint term J (HK ) could be determined according
to specific scenarios. The commonly used constraints may have the following forms:

I. Pairwise constraints: the constraint between any two time series,

0 ≤ f p(xip) − fq(xiq) ≤ ξt , ξt ≥ 0. (7)

II. Upper or lower bound constraints: the constraints on each fl ,

fl(xi ) ≤ Ci , Ci ≥ 0. (8)

where Ci is a constant.
For inventory problem, it has two time series Sin and Sout, and assuming the regularization

term is l-2 norm, in such a case, Eq. (6) becomes

min
1

2m

2∑

l=1

∑

i∈Nm

L(yil , fl(xil)) + γ

2
(‖ f1‖2K + ‖ f2‖2K ),

s.t . J ( f1, f2) ≥ 0.

(9)
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Recall that in Sect. 1, we discussed the constraint of Sin and Sout in the domain of inventory
management. To incorporate the constraint into the prediction model, the length of a time
period should be defined in advance. For example, users can input the length of a time
window, noted as τ , and partition both times series of Sin and Sout into multiple segments
of length τ . Within several time segments t with length τ , we expect that the aggregated Sin
(i.e,

∑
i∈t f1(xi1)), is larger than but close to the aggregated Sout (i.e.,

∑
i∈t f2(xi2)). Thus,

the first kind of constraints becomes,

I. The constraints between Sin and Sout:

0 ≤
∑

i∈t
f1(xi1) −

∑

i∈t
f2(xi2) ≤ ξt , ξt ≥ 0. (10)

The ideal case is that
∑

i∈t f1(xi1) is always larger than or equal to
∑

i∈t f2(xi2) in any
specific time window. However, in practice, Sout cannot be accurately controlled based
on the history Sout, and hence

∑
i∈t f1(xi1) may be less than

∑
i∈t f2(xi2) in some time

window t , but is not deviated much from
∑

i∈t f2(xi2). To handle this problem, we
should modify the constraint described in Eq. (10) as

ηt ≤
∑

i∈t
f1(xi1) −

∑

i∈t
f2(xi2) ≤ ξt , ηt , ξt ≥ 0. (11)

II. The constraints on Sin and Sout, respectively:
∑

i∈t
f1(xi1) ≤ C1,

∑

i∈t
f2(xi2) ≤ C2, C1,C2 ≥ 0, (12)

where C1 and C2 are predefined constants, such as storage capacity and production
planning.
In some cases, inventory issues need to meet both constraints I and constraint II, i.e.,
meeting the following constraints:

III. The constraint both on case I and case II:

ηt ≤
∑

i∈t
f1(xi1) −

∑

i∈t
f2(xi2) ≤ ξt ,

∑

i∈t
f1(xi1) ≤ C1,

∑

i∈t
f2(xi2) ≤ C2,

ηt , ξt ,C1,C2 ≥ 0.

(13)

4.2 Learning with linear function

In statistics, linear regression is a commonly used approach for modeling the relationship
between a scalar dependent variable y and one or more explanatory variables (or independent
variables) denoted as χ . Therefore, linear regression fl(xil) = ωT

l xil can be adopted as a
baselinemethod to solve the proposedmodel. Suppose‖ fl‖FK is l-2 norm, L = [yil− fl(xil)]2,
then the objective function of joint prediction in Eq. (6) becomes the following Eq. (14).

min
1

nm

∑

l∈Nn

∑

i∈Nm

[yil − ωT
l xil ]2 + γ

n

∑

l∈Nn

(ωT
l ωl),

s.t . J (HK ) ≥ 0,

(14)
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This function can be solved as a Quadratic Programming(QP) problem to find the optimal
parameters of themodel. The standard quadratic program function is given inEq. (15) [39,40].

min f (ω) = 1

2
ωT Hω + cTω,

s.t . Aω ≥ b,
(15)

where ω is a n-dimensional column vector of prediction model, H is a Hesse matrix (n order
symmetric matrix), c is a n-dimensional column vector, A is a m × n matrix, and b is a
m-dimensional column vector. In the first kind of constraints, i.e., if constraints are:

η1,2 ≤
∑

i∈Nm

wT
1 xi1 −

∑

i∈Nm

wT
2 xi2 ≤ ξ1,2

η1,3 ≤
∑

i∈Nm

wT
1 xi1 −

∑

i∈Nm

wT
3 xi3 ≤ ξ1,3

...

η2,3 ≤
∑

i∈Nm

wT
2 xi2 −

∑

i∈Nm

wT
3 xi3 ≤ ξ2,3

...

ηn−1,n ≤
∑

i∈Nm

wT
n−1xin−1 −

∑

i∈Nm

wT
n xin ≤ ξn−1,n

(16)

then:

H =

⎡

⎢⎢⎣

2
nm

∑
i∈Nm

xi1xTi1 + 2γ
n 0

. . .

0 2
nm

∑
i∈Nm

xiNn x
T
i Nn

+ 2γ
n

⎤

⎥⎥⎦ (17)

cT = − 2

nm

[∑
i∈Nm

yi1xTi1 · · · ∑
i∈Nm

yiNn x
T
i Nn

]
(18)

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i∈Nm

xTi1 −∑
i∈Nm

xTi2 0 · · · 0∑
i∈Nm

xTi1 0 −∑
i∈Nm

xTi3 · · · 0
...

0
∑

i∈Nm
xTi2 −∑

i∈Nm
xTi3 · · · 0

...

0 · · · 0
∑

i∈Nm
xTin−1 −∑

i∈Nm
xTin

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−∑
i∈Nm

xTi1
∑

i∈Nm
xTi2 0 · · · 0

−∑
i∈Nm

xTi1 0
∑

i∈Nm
xTi3 · · · 0

...

0 −∑
i∈Nm

xTi2
∑

i∈Nm
xTi3 · · · 0

...

0 · · · 0 −∑
i∈Nm

xTin−1

∑
i∈Nm

xTin

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

b =
[
η1,2 η1,3 · · · η2,3 · · · ηn−1,n

... −ξ1,2 − ξ1,3 · · · − ξ2,3 · · · − ξn−1,n

]T
(20)
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In the second kind of constraints, i.e., if constraints are:
s.t. ηt ≤ ∑

i∈Nm ,l∈Nn
wT
l xil ≤ ξt

then

H =

⎡

⎢⎢⎣

2
nm

∑
i∈Nm

xi1xTi1 + 2γ
n 0

. . .

0 2
nm

∑
i∈Nm

xiNn x
T
i Nn

+ 2γ
n

⎤

⎥⎥⎦ (21)

cT = − 2

nm

[∑
i∈Nm

yi1xTi1 · · · ∑
i∈Nm

yiNn x
T
i Nn

]
(22)

A =
[ ∑

i∈Nm
xTi1 · · · ∑

i∈Nm
xTi Nm−∑

i∈Nm
xTi1 · · · −∑

i∈Nm
xTi Nm

]
(23)

b =
[

ηt
−ξt

]
(24)

When n = 2 (inventory problem) and constraint is Eq. (13) then their expressions are as
follows

H =
[ 1

m

∑
i∈Nm

(xi1xTi1) + γ 0
0 1

m

∑
i∈Nm

(xi2xTi2) + γ

]

n×n

, (25)

c =
[− 1

m

∑
i∈Nm

yi1xTi1

− 1
m

∑
i∈Nm

yi2xTi2

]

n×1

, (26)

A =
[−xTi1 xTi2

xTi1 −xTi2

]

m×n

, (27)

b =
[

ηt
−ξt

]

m×1
. (28)

Interior PointMethods(IPM) are a class of algorithms to solve linear and nonlinear convex
optimization problems. In this work, we solved aboveQP problem by the Primal-dual interior
point method. The theoretical time complexity of IPM is O(n∧3).

4.3 Learning with nonlinear function

In this section,wewill discuss adopting nonlinear function, SupportVectorRegression(SVR),
to implement joint prediction models. SVR is a popular regression algorithm, characterized
by the usage of kernels, absence of local minima, sparseness of the solution and capacity
control obtained by maximum-margin [41].

In SVR-based joint prediction model, the quality of estimation is measured by ε-intensive
loss function [as shown in Eq. (29)] which can ensure the existence of the global minimum
and at the same time optimization of reliable generalization bound.

L(yil , fl(xil)) =
{
0 if |yil − fl(xil)| ≤ ε

|yil − fl(xil)| − ε otherwise
(29)
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In this case, joint prediction model becomes

min
1

nm

∑

l∈Nn

∑

i∈Nm

L(yil , fl(xil)) + C
1

2
‖ωl‖2,

s.t . yil(ω
T
l φ(xil) + bl) ≥ 1, J (HK ) ≥ 0,

(30)

whereC is penalty coefficient to balance the training error and the generalization ability. φ(·)
is a linear or nonlinear kernel function. Here, we choose nonlinear function, Radial Basis
Function (RBF) [42], as kernel function. RBF kernel is defined as Eq. (31).

K (x, x
′
) = exp

(
−‖x − x

′ ‖2
2σ 2

)
, (31)

where ‖x − x
′ ‖2 may be recognized as the squared Euclidean distance between the two

feature vectors, σ is a parameter that sets the “spread” of the kernel.
In general, the kernel parameter σ and penalty parameter C can be determined by a grid

search approach. The grid search is an exhaustive searching through a manually specified
subset of the hyperparameter space of a learning algorithm. In this work, we select a finite set
of values for eachC and σ , e.g.,C ∈ {10, 100, 1000}, σ ∈ {0.05, 0.1, 0.5, 1.0}. Then we use
the grid search to train a SVR model with each pair (C, σ ) and evaluate their performance
on a validation set. Finally, the grid search algorithm outputs the settings that achieve the
highest score in the validation procedure.

To solve SVR QP problem, we adopt commonly used Sequential Minimal Optimiza-
tion(SMO) approach. SMO breaks a very large QP optimization problem into a series of
smallest possible QP problems. These small QP problems are solved analytically [43]. The
theoretical time complexity of SMO is O(n∧2.1) less than another commonly used chunking
algorithm, which is O(n∧2.9).

4.4 Time series data processing

4.4.1 Partition of history data

To train a time series forecastingmodel, the dataset is often divided into overlapping training-
validation-testing sets. This process can reduce the time-variability as well as maintain the
time order. Partitioning an independent validation set is usually fit for the big size of dataset,
to utilize the data more fully and further reduce the time-varying characteristic, we use k-fold
cross validation technique instead of independent validation set.

Suppose the size of the whole dataset is q , and the size of each training set and testing
set are q1 and q2, respectively. Then, the whole dataset will be divided into r overlapping
training-testing sets,

r =
⌈
q − q1

q2

⌉
, (32)

where 
x� denotes the minimal positive integer that is not less than x , and q2 can be viewed
as the updating period for the prediction model, i.e., the prediction model established after q2
periods will be renewed with new data. Figure 2 shows an example of overlapping partition
for two successive training-testing sets.
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Fig. 2 An example of time series training-testing overlapping partition

4.4.2 Selecting the length of time window

Inventory management time series is always nonlinear and time-varying. Using fixed length
timewindow to establish the predictionmodel cannot capture the change of the inventory over
time. Therefore, how to select the length of the time window is a key step in forecasting. Set
τ as a unit length of the time window, to forecast the inventory value in time t∗ ∈ [t, (t + e)],
historical data set Xt∗ can be used as modeling samples,

Xt∗ = {x(t−τ), x(t−τ+1), . . . , xt−1}. (33)

When the variable length time windows are adopted, we consider two cases: in the first
case, we assume that the amount of Sin and Sout in the next period are close to the current ones.
In this case, we set τ = {10, 20, . . . , 90, 99} as the alternative length of the time window.
Then the model is trained with different sizes of windows, and the window size which has
higher predictive accuracy and lower standard deviation is selected for the current period.
For the next overlapping set, we take the length of current window as the basis and select one
larger and one smaller size as the alternative length. Then the model is trained on these three
sizes of windows, and the window which has higher predictive accuracy and lower standard
deviation is selected. This process will repeat until to the last overlapping set.

Another case is that it is reasonable to assume that Sin or Sout in the next period is close
to that of the historical same period. Inventory information has typical characteristics of
periodicity and seasonality, for example, Sin and Sout will increase greatly in the Spring
Festival, May Day, and National Day; and in sales off-season, such as March, June, and July,
Sin and Sout will decrease greatly. In this case, we select the historical same period window
size as the basis and select one larger and one smaller window sizes as the alternative length.
Then the model is trained on these three sizes of windows, and the one has the highest
forecasting accuracy and lowest standard deviation is selected.

4.5 Model discussion

– Temporal cross-correlation The key challenge of joint prediction is to capture the tem-
poral cross-correlation of multiple time series. In proposed joint prediction model, the
temporal cross-correlation are embedded into the pairwise constraints on each moving
window. Take inventory for example, in each predefined time window the aggregated Sin
(i.e,

∑
i∈t f1(xi1))must be larger than but close to the aggregated Sout (i.e.,

∑
i∈t f2(xi2)).

The predicted Sin of current period also has effect on the Sout of next period.
– Online learning and incremental learning The proposed models are suitable for online

learning. Since the setting of training-testing dataset is overlapping and independent with
learning methods, when the new data arriving, we only need to move the time window to
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Fig. 3 Stock in and stock out time series in dataset1

the next data segment and the model is continuously updated during operation as more
training data arriving. The proposed methods are also suitable for incremental learning.
When the new data arriving, it only needs to update the learning models using part of
old data and new data to extend the existing model’s knowledge instead of retraining the
models completely. For example, when we utilize SVR-based forecasting models, we
can retain the support vectors (which are only a small part of samples in a total sample
set) in the existing models with new data to update the learning model. If the new data
are not considered as support vectors, the model will keep unchanged.

5 Experiments

To evaluate the effectiveness of proposed joint prediction framework with both linear and
nonlinear models, we conduct a number of experiments on two datasets collected from real
inventory transactions. We also compare the joint prediction model with some state-of-the-
art time series prediction approaches, including the non-constrained independent predicting
model (noted as Single), Autoregressive IntegratedMoving Average (ARIMA), Vector Mov-
ing Average (VMA), Multi-target Regression (MTR), and BP-neural network method.

5.1 Dataset descriptions

Two real inventory datasets collected from different trading companies are used to conduct
the experiments. The Dataset1 is provided by a real Tea E-commerce company in Jingdong
Mall (One of largest self-operating E-commerce enterprise in China, JD.com,). We choose
the inventory transaction data ranged from January 2014 to April 2016 including total 850
original Stock in and 850 Stock out data. Then these data are aggregated by week to generate
123 time series data Sin and Sout, respectively, as shown in Fig. 3.

The Dataset2 is collected from a large Plasma TV Sales Enterprise during September
2013 to December 2015. We also select a total of 850*2 original TV sales inventory data
(850 Stock in and 850 Stock out data) and take a week as time granularity to generate 123
time series data Sin and Sout, respectively, as shown in Fig. 4.

5.2 Experimental metric

Assume Y = {y1, y2, . . . , yn} is the observed values of a time series, and F =
{ f1, f2, . . . , fn} is the estimation given by forecasting algorithm. To compare and evalu-
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Fig. 4 Stock in and stock out time series in dataset2

ate the performance of aforementioned forecasting approaches, we adopt the following three
kinds of measures [44,45].

– Mean absolute error (MAE) MAE is an average of the absolute errors between the
prediction and the real value. It is a common measure of forecast error in time series
analysis. MAE is given as follows

MAE = 1

n

n∑

i=1

| fi − yi | = 1

n

n∑

i=1

|ei |, (34)

where fi is the prediction and yi is the true value.
– Root mean square error (RMSE) RMSE is the square root for the mean of the squares of

the deviations. For an unbiased estimator, the RMSE is the square root of the variance,
known as the standard error.

RMSE =
√∑n

i=1 | fi − yi |2
n

. (35)

However, MAE and MSE are scale-dependent metrics. Since the scale-dependent metrics
are not conduced to the comparison between different forecastingmodels andmulti-threshold
data experiments, we usually adopt relative indicators such as SMAPE.

– Symmetric mean absolute percentage error (SMAPE) SMAPE is an average of ratio
between the prediction and the true value.

SMAPE = 1

n

n∑

i=1

| fi − yi |
(yi + fi )/2

. (36)

5.3 Experiments with linear joint predictionmodel

In this set of experiments, we first discuss the impact of different constraints on the predictive
results, thenwe implement linear predictionmodel with two strategies: (1) learningwith fixed
length time window, and (2) learning with variable length time window.

To discuss the effect of different constraints on the performance of models, we adopt the
fixed length time window, here we set τ = 30. The experiments are carried on the linear Joint
Predictionmodelwith three kinds of constraintsmentioned in Sect. 4.1, respectively, (noted as
Joint1, Joint2, and Joint3). Table 2 shows the cumulative forecasting error under different
constraints on dataset1 (note that, the minimum errors in Table 2 and the following Tables 4,
5, 6, 7, 8, 9, 10, and 11 are highlighted in bold text). Although different constraints between
stock in and stock out have different effects on the performance of multiple time series
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Table 2 The cumulative
forecasting error of three kinds of
constraints on dataset1

Evaluation index Sin Sout Average

MAE

Joint 1 12,229 8348 10,288.5

Joint 2 13,944 6676 10,310

Joint 3 12,130 8247 10,188.5

RMSE

Jiont 1 16,017 9458 12,737.5

Jiont 2 17,564 9458 13,511

Jiont 3 15,852 9311 12,581.5

SMAPE

Jiont 1 0.19 0.15 0.17

Jiont 2 0.21 0.11 0.16

Jiont 3 0.18 0.15 0.16

prediction models, their difference is not very big. Therefore, in the following experiments,
we choose constraint III as the constraint relationship among multiple time series to compare
the performance of different inventory forecasting models. Note that in practice, constraints
should be given in advance according to specific demands.

As described in Sect. 4.4.2, to implement a linear Joint prediction model with variable
length time window we proposed two strategies. Under the first strategy, we firstly set τ =
{10, 20, . . . , 90, 99} as the alternative length of the time window. Then, predictive accuracy
and standard deviation in the current period are adopted as the criteria to determine the length
of the time window in the next time period. In this process, the length of the time windows
varies with time series data, and we note these model as Joint_dynamic1.

In the second case, we set the lengths of time window according to the fluctuations
of inventory in the historical same period, e.g., selecting a small time window from τ =
{10, 20 or 30} when Sin or Sout has big fluctuation on the corresponding period in last year
(e.g., Spring festival, Labor day, National Day), and selecting a big time window from τ =
{70, 80 or 90}when Sin or Sout has small fluctuation, thismodel is noted as Joint_dynamic2.

5.4 Experiments with nonlinear predictionmodel

In this set of experiments, SVR is adopted in joint prediction model to fulfill a nonlin-
ear time series prediction, called Joint_SV R. In the experiments with fixed length time
window, the length of windows is selected from τ = {10, 20, . . . , 90, 99}. And the experi-
ments with variable length time window are also performed under the same two strategies
with the linear prediction models. These models are remarked as Joint_dynamic_SV R1
(i.e., setting the lengths of time window according to accuracy and standard error) and
Joint_dynamic_SV R2 (i.e., setting the lengths of time window according to the inven-
tory in the historical same period), respectively.

The aforementioned joint prediction models with variable length time window are com-
pared with the fixed length time window prediction models and the single time series
prediction models. In addition, in this work, some state-of-the-art time series forecasting
models in statistical and machine learning fields are also compared with proposed joint pre-
diction models, including ARIMA, VMA, MTR, and BP-neural network model. All these
models are described in Table 3. Note that the original MTR model processes the training
dataset such as the following form:
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Table 3 Model descriptions

Model Description

Joint_Fixed Joint prediction model with the fixed length of time
window

Joint_dynamic Joint prediction model with the variable length of
time window

Joint_dynamic1 The length of time window is determined by
predictive accuracy

Joint_dynamic2 The length of time window is determined according
to the fluctuations of corresponding period of last
year

Joint_Fixed_SVR Nonlinear joint model with the fixed length of time
window

Joint_dynamic_SVR Nonlinear joint model with the variable length of
time window

Joint_SVR1 The length of time window is determined by
predictive accuracy

Joint_SVR2 The length of time window is determined according
to the fluctuations of corresponding period of last
year

Single Single prediction model without constraints between
Sin and Sout

SVR_single SVR model without constraints between Sin and
Sout

ARIMA Autoregressive integrated moving average model

VMA Vector moving average model

MTR Multi-target regression model

BP BP-neural network model

x1, x2, . . . xn → {y1, y2, . . . ym} (37)

In the semantics of inventory issues, we change the Stock in and Stock out datasets into the
following form to meet the MTR model:

xin,1, xin,2, . . . xin,n, xout,1, xout,2, . . . xout,n → {yin, yout} (38)

In these experiments, the window sizes of Joint_fixed, Single, ARIMA, VMA, MTR,
and BP methods are selected from τ = {10, 20, . . . , 90, 99}. For example, Tables 4, 5, 6, 7
present the experimental process of selecting the length of time windows in different models.
We can observe that BP model needs a bigger size of window to gain good performance, this
may be that BP method is more complex than linear model and ARIMA method requires
more training data to construct a model with good generalization.

5.5 Results and analysis

5.5.1 Experimental results on Dataset1

Table 8 shows the experimental results on dataset1 with linear joint prediction models. For
each model, we select its best predictive results under the alternative parameters. The data in
Table 8 represent the average error of predicted Sin and Sout under different criteria. Each pair
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Table 4 The forecasting error of Joint_fixed model under different size of windows

Joint_fixed MAE_Sin MAE_Sout RMSE_Sin RMSE_Sout SMAPE_Sin SMAPE_Sout

Win_10 383.6796 297.5744 702.3403 446.2667 0.0358 0.0328

Win_20 391.7472 282.6855 669.2211 428.9323 0.0364 0.0313

Win_30 383.1043 254.7431 666.6108 426.2464 0.0357 0.0281

Win_40 337.3474 252.6593 660.3014 430.2162 0.0315 0.0279

Win_50 311.6005 246.4348 645.8475 423.5693 0.0291 0.0272

Win_60 314.0946 250.9371 648.6223 425.5185 0.0293 0.0276

Win_70 321.3418 251.4372 647.4843 425.3410 0.0300 0.0277

Win_80 326.2138 249.5264 648.2067 424.0754 0.0305 0.0275

Win_90 323.6240 250.0751 647.9675 424.3760 0.0303 0.0276

Win_99 320.1518 253.3774 646.6877 426.0657 0.0299 0.0279

Table 5 The forecasting error of Single model under different size of windows

Single MAE_Sin MAE_Sout RMSE_Sin RMSE_Sout SMAPE_Sin SMAPE_Sout

Win_10 411.2073 318.3925 722.7793 461.1539 0.0386 0.0348

Win_20 385.5120 297.4001 683.4295 440.8310 0.0357 0.0327

Win_30 365.7634 268.8608 678.3583 438.1244 0.0338 0.0295

Win_40 327.4217 253.9615 673.0014 440.0261 0.0304 0.0279

Win_50 296.5950 238.8933 662.1404 430.3847 0.0275 0.0263

Win_60 295.2932 235.9657 659.3663 429.6929 0.0275 0.0258

Win_70 302.9679 236.4625 660.9606 430.2592 0.0282 0.0259

Win_80 310.3697 236.1715 661.5028 429.8569 0.0288 0.0260

Win_90 302.8185 235.4926 660.6595 430.0499 0.0281 0.0259

Win_99 296.0903 237.0044 659.5862 431.0336 0.0276 0.0261

Table 6 The forecasting error of ARIMA model under different length of windows

ARIMA MAE_Sin MAE_Sout RMSE_Sin RMSE_Sout SMAPE_Sin SMAPE_Sout

Win_10 779.9150 472.1413 993.7222 616.5589 0.0727 0.0554

Win_20 767.1857 465.7854 961.5539 607.1688 0.0719 0.0538

Win_30 762.6950 455.9603 953.6886 609.5810 0.0708 0.0506

Win_40 722.1252 425.9252 987.3089 581.3845 0.0679 0.0477

Win_50 657.0462 442.2947 950.4241 599.5640 0.0618 0.0493

Win_60 675.8487 430.0410 961.1186 587.5729 0.0628 0.0481

Win_70 688.3899 439.7919 965.1973 594.3256 0.0639 0.0491

Win_80 621.4150 442.7437 918.7579 597.2386 0.0581 0.0494

Win_90 620.6401 417.2078 910.2400 583.3575 0.0579 0.0466

Win_99 634.9884 439.2677 930.8533 591.2309 0.0593 0.0491
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Table 7 The forecasting error of BP model under different length of windows

BP MAE_Sin MAE_Sout RMSE_Sin RMSE_Sout SMAPE_Sin SMAPE_Sout

Win_10 1084.6953 630.0341 1499.1284 264.2952 0.1045 0.0713

Win_20 1431.1342 1034.1287 2151.1385 1338.1774 0.1248 0.1223

Win_30 1157.0386 807.6845 1619.1473 1065.2492 0.1145 0.0935

Win_40 1239.9745 771.6616 1829.8122 1034.2987 0.1199 0.0903

Win_50 988.8868 740.4088 1390.4941 878.1146 0.0921 0.0838

Win_60 796.3875 795.6159 1246.9763 992.3734 0.0770 0.0917

Win_70 732.1713 636.3702 1134.2393 832.8367 0.0717 0.0723

Win_80 663.1521 572.2429 966.8686 727.6441 0.0625 0.0636

Win_90 577.3470 529.1933 956.1066 646.7348 0.0542 0.0607

Win_99 580.8523 473.6979 890.7115 586.2252 0.0555 0.0532

Table 8 The experimental results on dataset1 using linear joint prediction models

Evaluation index Joint_dynamic1 Joint_dynamic2 Joint_fixed_win_50 Singl_win_60

MAE_Aver 277.0960 283.7128 279.0176 266.5288

RMSE_Aver 556.4216 549.3468 556.6372 547.7782

SMAPE_Aver 0.0280 0.0286 0.0282 0.0268

of predicted Sin and Sout is shown in Fig. 5. It can be observed from Table 8 that among all
the models, the predictive error of Single time series model is the smallest, but Fig. 5 shows
that in this model some predictive results of Stock in are bigger than those of Stock out.
These results are not meet the practical demand for inventory management. The proposed
Joint_Dynamic model has the slightly greater forecast error than the Single model, but all
the results meet the constraints given in advance.

The experimental results on dataset1 with nonlinear joint prediction models are shown
in Table 9 and Fig. 6. From Table 9, we can observe that under the three criteria,
Joint_dynamic_SV R1 model gets the best prediction performance in all the nonlinear
models. SV R_single has the slightly bigger error than Joint_dynamic_SV R1. Figure 6
shows the relationship of predicted Stock in and Stock out. We can observe that SV R_single
model could not guarantee that the predictive results satisfy the practical constraints, i.e.,
some predicted Sin exceed predicted Sout. However, the experimental results of all the non-
linear Joint predictive models, Joint_dynamic_SV R and Joint_ f i xed_SV R, satisfy the
practical constraints.

The final performance comparison of all aforementioned predictive models on dataset1
is shown in Table 10. From Table10, we can see that besides independent prediction model
Single, two joint predictionmodelswith the variable length timewindowand a joint prediction
model with the fixed length time window all obtain better performance. Joint_dynamic1
and Joint_dynamic2 have the smaller RMSE, MTR also shows better performance (i.e.,
smaller MAE and REMS). The ARIMA and BP-neural network models have the biggest
error. Joint_dynamic prediction models have more stable performance (i.e., small RMSE).
Note that, MAE and RMSE are the most commonly used performance metrics for regression
tasks. MAE is equivalent to L1 norm (first-order moment), and RMSE is equivalent to L2
norm (second-order moment), therefore RMSE is more sensitive to the anomaly. In our
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Fig. 5 Experimental results using linear joint prediction models

Table 9 The experimental results
on dataset1 using nonlinear joint
prediction models

Evaluation index Sin Sout

MAE

Joint_dynamic_SVR1 508.5897 438.6564

Joint_dynamic_SVR2 521.2316 435.6443

Joint_fixed_SVR_win_99 583.7693 487.4188

SVR_single_win_99 521.9607 528.2754

RMSE

Joint_dynamic_SVR1 746.6545 597.8720

Joint_dynamic_SVR2 693.3393 539.5030

Joint_fixed_SVR_win_99 740.8427 524.6678

SVR_single_win_99 728.5716 605.9881

SMAPE

Joint_dynamic_SVR1 0.0478 0.0491

Joint_dynamic_SVR2 0.0504 0.0521

Joint_fixed_SVR_win_99 0.0520 0.0538

SVR_single_win_99 0.0495 0.0578

experiments, the best algorithm changes according to the considered metrics, which may be
caused by the metrics that differ in the sensitivity of time series data.
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Fig. 6 Experimental results using nonlinear joint prediction models

Table 10 The average forecasting error on dataset1 using different models

Evaluation index MAE_Aver RMSE_Aver SMAPE_Aver

Joint_dynamic1 277.10 398.52 0.0280

Joint_dynamic2 283.71 538.08 0.0286

Joint_fixed_win_50 279.02 534.71 0.0282

Joint_dynamic_SVR1 473.62 672.27 0.0485

Joint_dynamic_SVR2 478.45 616.42 0.0512

Joint_fixed_SVR_win_99 535.60 632.76 0.0529

Single_win_60 265.63 544.53 0.0267

SVR_single_win_99 525.08 667.28 0.0537

ARIMA_win_90 518.92 746.81 0.0523

VMA_win_10 526.14 686.34 0.0632

MTR_win_20 302.62 483.37 0.0309

BP_win_99 527.28 753.99 0.0543

The experimental results also show that average error rate of linear prediction models is
lower than that of the nonlinear prediction models. It is possible that when the time series
changing smoothly linear models have better generalization ability than nonlinear models.
According to the statistical learning theory, generalization error is bounded by the training
error plus VC confidence (i.e., a function of the hypothesis space size). Compared with
nonlinear models, linear models have simpler structure, i.e., smaller VC confidence. These
results also partly reflect the Occam’s razor “the simpler one is usually better”.

5.5.2 Experimental results on Dataset2

Figures 7, 8, andTable 11 show the stock forecasting results utilizing ten differentmethods on
dataset 2. For eachmodel,we select its best predictive results under the alternative parameters.
From Figs. 7 and 8, we can see that independent prediction model (Single) and both linear
and nonlinear Joint prediction models (Joint_dynamic and Joint_dynamic_SVR) have the
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Fig. 7 Experimental results of MAE_in and MAE_out on dataset2

Fig. 8 Experimental results of SMAPE_in and SMAPE_out on dataset2

smaller prediction error, MTR shows better performance than ARIMA and VMA, and BP-
neural network has the biggest prediction error. In addition, same as the experimental results
on Dataset1, in Single time series forecasting model, ARIMA and VMA, some predictive
results of Stock in are out of Stock out. These results cannot be used in the practical inventory
management. Our proposed Joint_dynamic models meet the constraints given in advance.
Unlike the experimental results on dataset 1, Table 11 shows that nonlinear predictionmodels
have better performance than linear prediction models on dataset2, mainly because that the
time series of dataset2 have stronger nonlinearity and time variability, and nonlinear models
can capture these variations better.

In addition, the statistical analysis results of T -test between proposed joint predic-
tion models and other compared algorithms are shown in Table 12. In Table 12, JD1
represents Joint_dynamic1 model, JDS2 represents Joint_dynamic_SV R2 model, the
first three columns are T -test results between Joint_dynamic1 with ARIMA, VMA,
and MTR on dataset1, respectively; the latter three columns are T -test results between
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Table 11 The average forecasting error on dataset2 using ten different models

Evaluation index MAE_Aver RMSE_Aver SMAPE_Aver

Joint_dynamic1 1686.06 2285.43 0.8152

Joint_dynamic2 1653.62 2290.11 0.8543

Joint_fixed_win_30 1672.01 2351.05 0.8365

Joint_dynamic_SVR2 1553.49 2270.49 0.7592

Joint_fixed_SVR_win_50 1682.20 2163.62 0.8174

Single_win_30 1676.89 2270.25 0.8046

VMA_win_70 1842.09 2281.95 0.9115

ARIMA_win_90 1861.01 2308.42 0.8999

MTR_win_40 1667.42 2594.26 0.8454

BP_win_90 1813.29 2276.66 0.9091

Table 12 The T -test results

T test JD1_ARIMA_1 JD1_VMA_1 JD1_MTR_1 JDS1_ARIMA_2 JDS1_VMA_2 JDS1_MTR_2

Sin 0.047 0.008 0.087 0.026 0.040 0.109

Sout 0.042 0.022 0.049 0.018 0.037 0.042

Joint_dynamic_SV R2 with ARIMA, VMA, and MTR on dataset2, respectively. From
Table 12, we can see that compared with ARIMA and VMA approaches, our proposed joint
prediction methods have statistical significance improvement (the results of T -test are less
than 0.05) on both two datasets. Compared with MTR model, stock out prediction results
also have some improvement, but the T -test results of stock in on both datasets are large than
0.05.

In summary, above experimental results show that joint prediction model can capture
the temporal dynamics of relationships among multiple time series data, meanwhile keep-
ing a competitive prediction performance. Although multiple separate prediction models
can achieve lower prediction error, these prediction results may not be used in practice,
because single time series prediction ignores the relationship between stock in and stock
out. Compared with the state-of-the-art time series forecasting approaches, both linear and
nonlinear joint prediction models have better generalization for inventory forecasting, and
MTR method also shows better performance. Besides, dynamic selecting the length of time
window according to the transaction fluctuations over the period of history can improve the
forecast accuracy.

6 Conclusion

In this article, a joint prediction framework for multiple time series prediction is proposed
and applied to the domain of inventory management. Two Joint learning models: learning
with linear prediction model and learning with nonlinear prediction model are studied. And
three types of constraints between Stock in and Stock out are discussed. The proposed joint
prediction models can predict multiple time series data simultaneously via considering the
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temporal dynamics of these relationships. Experiments on real inventory datasets are con-
ducted to demonstrate the effectiveness of our proposed approaches.

In future work, we will evaluate the effectiveness of the proposed methodology in new
scenarios, and implement the joint prediction models on more than two time series dataset.
Moreover, we will further study the methods for adapting our model that could cope with the
low latency series where samples arrive at high frequency, and analysis the sensibility of the
different algorithms under the different window size.
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