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a b s t r a c t 

Skewness and kurtosis, the third and fourth order moments, are statistics to summarize the shape of a 

distribution function. Recent studies show that investors would take these higher-order moments into 

consideration to make a profitable investment decision. Unfortunately, due to the difficulties in solving 

the multi-objective problem with higher-order moments, the literature on portfolio selection problem 

with higher-order moments is few. This paper proposes a new hybrid approach to solve the portfolio se- 

lection problem with skewness and kurtosis, which includes not only the multi-objective optimization but 

also the data-driven asset selection and return prediction, where the techniques of two-stage clustering, 

radial basis function neural network and genetic algorithm are employed. With the historical data from 

Shanghai stock exchange, we find that the out-of-sample performance of our model with higher-order 

moments is significantly better than that of traditional mean-variance model and verify the robustness 

of our hybrid algorithm. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Portfolio selection problem has been one of the core issues

f the modern investment theory. It originates from the mean-

ariance model by Markowitz (1952) , which measured the ex-

ected return and risk of a portfolio by mean and variance, and

hus first transformed the portfolio selection problem into a math-

matical model. Based on this, researchers further extended the

lassical model by applying other risk measurements, such as

emi-variance, absolute deviation, and semi-absolute deviation. See

teinbach (2001) for a review on these significant ones which con-

idered only the first and second order moments of return distri-

ution. However, these moments are inadequate in practice. Mean-

hile, the performance of a portfolio selection model highly de-

ends on the parameter estimation and the initial asset selection.

e thus intend to build a hybrid algorithm, which includes not

nly data-driven asset selection and prediction, but also solving the

ortfolio selection problem with higher-order moments. 

In the literature, the importance of higher order moments

as attracted increasing attention. Liu (2004) and Maringer and
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arpas (2009) proved that only when the investor’s utility func-

ion is quadratic or the asset’s yield obeys the normal distribu-

ion, the influence of higher-order moments can be ignored. Un-

ortunately, both of these two premises are hardly satisfied in the

eal world. Empirical studies found that the risk assets’ yields have

at tails and do not obey the normal distribution ( Chunhachinda,

andapani, Hamid, & Prakash, 1997; Konno & Suzuki, 1992 ). There

re also works (see e.g. Paravisini, Rappoport, & Ravina (2016) ) ob-

erving the fact that an investor’s risk aversion degree and sen-

itivity will change with the wealth accumulation, whereas the

uadratic utility function is unable to characterize this feature and

hus is not practical in reality. Hence, it is necessary to consider

igher-order moments when constructing the portfolio optimiza-

ion model. 

In the past decades, an increasing number of studies have

nvolved skewness into the portfolio optimization model, and

bserved that the mean-variance-skewness (MVS) model per-

orms better than the classical mean-variance one (see e.g.

dcock (2014) ; Briec, Kerstens, and Jokung (2007) ; Joro and

a (2006) ; Liu, Han, and Han (2016) ; Zhai, Bai, and Wu (2018) ).

nfortunately, there are few studies on kurtosis, due to the diffi-

ulties in obtaining the optimal solution to the the higher-order-

oment optimization problem, which is a multi-objective prob-

em in essence. Maringer and Parpas (2009) applied stochastic
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optimization algorithms to extended mean-variance portfolio se-

lection problems with either skewness or kurtosis being consid-

ered at a time. Saranya and Prasanna (2014) and Aksaraylı and

Pala (2018) studied the mean-variance-skewness-kurtosis frame-

work by constructing a polynomial goal programming model for

the higher moments. Chen and Zhou (2018) applied multiobjective

particle swarm optimization to deal with higher moments, but fo-

cused on the parameter uncertainty. 

Inspired by the existing works on the mean-variance portfolio

selection problem (see e.g., Li and Ng (20 0 0) and Cui, Li, Wang,

and Zhu (2012) ), we, instead of construct a polynomial goal pro-

gramming model, incorporate the trade-off parameters over the

mean, variance, skewness and kurtosis to formulate a single target

model. However, this constrained non-linear optimization problem

is still difficult to solve. Traditional optimization algorithms for

constrained non-linear optimization problem have quite low con-

vergence rates, and may even not converge to a solution in ex-

treme cases. Hence, we turn to machine learning algorithms to

boast a high generalization and a fast convergence. In particular,

we apply genetic algorithm, which can not only boast a fast search-

ing speed, but also reduce the risk of falling into a local minimum

trap, to solve our single target problem. 

Moreover, we focus on how to improve the asset selection and

return prediction with machine learning algorithm and historical

data, instead of considering robust model with parameter uncer-

tainty. In fact, a real portfolio selection problem starts with the se-

lection of assets. Most present studies rely on investors’ experience

to select risk assets as samples to build the prior portfolio, which

appears subjective and lacks the support of scientific selection cri-

teria. In addition, the performance of a portfolio selection model

highly depends on the parameter estimations, such as the return

vector and the risk measurements. The parameters estimated by

the historical data may not be able to predict the future. 

Our paper is thus also related to the works applying ma-

chine learning algorithms in various financial fields. Patel, Shah,

Thakkar, and Kotecha (2015) and Chong, Han, and Park (2017) ap-

plied machine learning techniques for market analysis and pre-

diction. See ( Henrique, Sobreiro, & Kimura, 2019 ) for a review

on the machine learning techniques applied to financial mar-

ket prediction. Paiva, Cardoso, Hanaoka, and Duarte (2019) pro-

posed a unique decision-marking model for day trading invest-

ments on stock market based on machine learning methodology

with the classical mean-variance model. Varied clustering tech-

niques are applied on financial data to identify the similarity in-

side the time series data (See e.g., Iorio, Frasso, D’Ambrosio, and

Siciliano (2016) ; Zhang, Liu, Du, and Lv (2011) and the references

therein). Iorio, Frasso, D’Ambrosio, and Siciliano (2018) furthermore

applied the P-spline based clustering approach on financial data to

build a portfolio. We also include the two-stage clustering method

for asset selection in our hybrid algorithm. In fact, we apply ma-

chine learning algorithms for not only the market prediction and

asset selection before the optimization problem, but also solving

the multi-objective portfolio selection problem with higher order

moments to identify the optimal portfolio. 

To conclude, in this paper, we investigate the portfolio selec-

tion problem with skewness and kurtosis by applying a hybrid ap-

proach to select pre-diversified assets, predict the returns and op-

timize the portfolio. 

First of all, to deal with this multi-objective problem, we intro-

duce the risk preference to transfer it to a non-linear optimization

problem and apply the genetic algorithm, which is a probability-

based directional searching tool and is able to reduce the risk of

falling into a local minimum trap, to numerically solve the consid-

ered portfolio optimization. 

Second, instead of solving the portfolio selection problem with

parameters directly estimated from the historical data, we propose
 hybrid approach which includes the asset selection, return pre-

iction and portfolio optimization. In particular, besides the ge-

etic algorithm applied to solve the optimization problem, our hy-

rid approach also includes two-stage clustering and radial ba-

is function neural network. The two-stage clustering, also known

s Chameleon algorithm, is a statistical data analysis technique

roposed by Karypis, Han, and Kumar (1999) . The basic idea of

his method is to classify a set of objects according to the inter-

onnectivity and closeness such that objects in a cluster are more

imilar to each other than those in the other cluster. We thus se-

ect assets with the two-stage clustering for a diversified portfolio.

e then apply the radial basis function neural network on these

elected assets to predict the future returns. 

Finally, we apply the historical data from Shanghai Exchange

o compare the performance of our model with those of mean-

ariance and mean-variance-skewness models and testify the ro-

ustness and efficiency of our hybrid algorithm. 

The rest of this paper is organized as follows. Section 2 intro-

uces the higher-order-moment portfolio optimization model and

he genetic algorithm for solving it. Section 3 illustrates our hy-

rid approach, which includes not only the higher-order-moment

ortfolio optimization, but also the data-driven asset selection

nd return prediction for a pre-diversified portfolio selection.

ection 4 performs the numerical experiments to test the model’s

fficiency and reports the experimental results. Section 5 investi-

ates the robustness of our algorithm. The last section concludes

his paper. 

. Higher-order-moment portfolio optimization 

In this section, we formulate our portfolio selection model with

kewness and kurtosis, and introduce the genetic algorithm to

olve this higher-order-moment portfolio optimization problem. 

.1. Higher-order-moment portfolio selection model 

In this subsection, we first consider the problem of construct-

ng a portfolio from n financial products, which will be selected

y our two-clustering method introduced in Section 3 . A portfolio

 = (x 1 , x 2 , . . . , x n ) 
T is a vector of the proportions in each of these

 assets with x 1 + x 2 + · · · + x n = 1 . The mean return of the i -th as-

et is R i , i = 1 , . . . , n . R is the vector of the expected return, while

 is the co-variance matrix. Denote σ 2 
i 

as the variance of asset i ’s

eturn, and σ ij as the covariance between the returns of assets i

nd j . The expected return and its variance, skewness and kurtosis

re thus computed as follows: 

 (X ) = X 

T R = 

n ∑ 

i =1 

x i R i , (1)

 ar(X ) = X 

T V X = 

n ∑ 

i =1 

x 2 i σ
2 
i + 

n ∑ 

i =1 

n ∑ 

j=1 

x i x j σi j (i � = j) , (2)

kew (X ) = E (X 

T (R − R ) 3 ) , (3)

urt(X ) = E (X 

T (R − R ) 4 ) . (4)

The classical mean-variance portfolio selection problem is thus

xpressed as the following multi-objective optimization problem. 

max E (X ) 
min V ar(X ) 
s.t. X 

T 1 = 1 , X ≥ 0 . 

here 1 is a all-one vector. The constraint that X ≥ 0 is the no-

horting constraint. In other words, short selling is not allowed

n our model. Because a portfolio with a larger skewness and
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Fig. 1. The flowchart of Genetic Algorithm. 
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 smaller kurtosis is more appealing to the investors, we im-

rove the classical mean-variance model’s performance by includ-

ng skewness and kurtosis. The higher-order-moment model is thus

escribed as the following multi-objective optimization problem

 P 1 ). 

(P 1 ) 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

max E (X ) 
min V ar(X ) 
max Skew (X ) 
min Kurt(X ) 
s.t. X 

T 1 = 1 , X ≥ 0 . 

n order to solve problem ( P 1 ), we can transform it into the follow-

ng nonlinear programming: 

(P 2 ) 

{ 

max λ1 (X 

T R ) − λ2 (X 

T V X ) + λ3 [ E (X 

T (R − R ) 3 )] 

−λ4 [ E (X 

T (R − R ) 4 )] 

s.t. X 

T 1 = 1 , X ≥ 0 , 

here λ1 , λ2 , λ3 and λ4 are non-negative investment preference

actors, corresponding to the objectives: mean, variance, skewness

nd kurtosis, respectively. In fact, the auxiliary parameters, λi , i =
 , 2 , 3 , 4 , capture the risk preference of the investor. For example,

n investor who doesn’t care about the kurtosis can set the pa-

ameter λ4 , which is corresponding to the kurtosis, to be zero. We

ocus on the solution scheme for model ( P 2 ) with different sets of

iven auxiliary parameters ( λ1 , λ2 , λ3 , λ4 ) in this paper. 

.2. Genetic algorithm for higher-order-moment portfolio 

ptimization 

In this subsection, we apply the genetic algorithm to solve the

igher-order-moment portfolio optimization problem. Note that

odel ( P 2 ) is a constrained non-linear optimization problem. Solv-

ng this problem will inevitably consume a significant amount of

omputing resources, and even may not converge to the global op-

imal solution. As a heuristic computational intelligent tool, genetic

lgorithm not only boasts a fast searching speed, but also reduces

he risk of falling into a local minimum trap. We will thus apply

he genetic algorithm to solve problem ( P 2 ). 

In particular, a feasible solution to the optimization problem

 P 2 ) is called a chromosome, which is evaluated by the fitness

unction designed according to the objective function of the opti-

ization problem. These chromosomes are selectively evolved by

ndividual reproduction, crossover and mutation. We summarize

he work flow of the genetic algorithm in Fig. 1 . The detailed steps

re described as follows. 

Step 1: Individual coding. We translate asset weight X =
(x 1 , x 2 , . . . , x n ) 

T into the binary string, whose length depends on

ermissible accuracy. The accuracy in this paper is p a , and the vari-

ble x i ranges from 0 to 1 for i = 1 , 2 , . . . , n . According to the cal-

ulation on the string length, we can obtain the only integer m

atisfying 2 m −1 < (1 − 0) /p a < 2 m − 1 , and thus the length of each

hromosome X as nm bits. 1 Each m -bit denotes the weight of one

f the n assets. 

Step 2: Population initialization . Assuming that the initial popu-

ation has L chromosomes, 

 

1 , X 

2 , . . . , X 

L , 

e randomly generate L binary strings with nm bits which

re feasible to model ( P 2 ). In particular, a chromosome X l =
(x l 

1 
, x l 

2 
, . . . , x l n ) (l = 1 , 2 , . . . , L ) is decoded at m bits per unit to get

he real value of each variable x l , i = 1 , . . . , n . For example, if the

i 

1 For different accuracy p a , one would need varied length of the binary strings 

o guarantee varied digits of accuracy. For example, a 14-bit code can represent 

umbers that are accurate to four decimal places. 

g  

t  

h  

f  
inary string corresponding to the variable x l 
i 

is 

 m 

b m −1 b m −2 · · · b 3 b 2 b 1 , 

ts decimal value is computed as 

 

l 
i = 

( 

m ∑ 

j=1 

b j 2 

j−1 

) 

· 1 − 0 

2 

m − 1 

, (i = 1 , 2 , . . . , n ) . (5)

Step 3: Fitness calculation . According to model ( P 2 ), we define

he fitness function g ( · ) to evaluate the solutions as 

(X ) = λ1 (X 

T R̄ ) − λ2 (X 

T V X ) + λ3 [ E(X 

T (R − R̄ ) 3 )] 

−λ4 [ E(X 

T (R − R̄ ) 4 )] − P 

∣∣∣∣∣
n ∑ 

i =1 

x i − 1 

∣∣∣∣∣, (6) 

here P is the penalty factor to eliminate individuals that dissat-

sfy the constraints. The target is to minimize the fitness function.

he fitness of the l -th chromosome is obtained as g ( X 

l ), and the

otal fitness of the population is calculated by 

 = 

L ∑ 

l=1 

g(X 

l ) . (7) 

Step 4: Individual reproduction . A certain number of chromo-

omes are selected to join in the reproduction. To select the chro-

osomes to be reproduced, we calculate the accumulated proba-

ility of each chromosome to be reproduced by 

 l = 

l ∑ 

k =1 

g(X 

k ) /G. (8) 

he roulette selection algorithm is simulated in N R times by the

omputer. At each time, a number s between 0 and 1 is randomly

enerated. When Q l−1 ≤ s < Q l the individual l is reproduced as

he member of new generation. This algorithm indicates that the

igher-fitness individual owns a larger probability to be selected

or the reproduction, which assures that the feasible solutions with
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Fig. 2. The framework of the hybrid approach for solving higher-order-moment 

portfolio optimization problem. 
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larger objective values have higher probabilities to reproduce the

new “generations”. 

Step 5: Individual crossover . The number of chromosomes in

each crossover equals to the population size times the crossover

probability, which is set to be p c . There are L individuals in the

population, so p c L chromosomes will participate in the crossover.

In order to determine the specific ones, we use the computer to

generate L random numbers to denote the chromosomes in the

population. They are ranked in the decreasing order of the value.

The top p c L chromosomes are selected into the crossover each

time. 

Step 6: Individual mutation . We assume that the mutation prob-

ability is p m 

, which is to say, there is 0-1 reversal in one percent

of genes. We can illustrate the process of crossover and mutation

with a simple example. Assume that there are two three-bit parent

individuals, one is 110, the other is 011. If the crossover position is

at the third bit, then the two child individuals are 111 and 010.

Similarly, for the parent 110, if the third bit is the mutation point,

then the new child becomes 111. 

The genetic algorithm repeats the process above continuously,

until the evolution generation reaches the given bound. The result

is the optimal solution of the higher-order-moment portfolio opti-

mization selected by the genetic algorithm. 

3. A hybrid approach for higher-order-moment portfolio 

optimization 

In this section, we present our hybrid approach for the port-

folio optimization problem, which includes not only the multi-

objective optimization but also the data-driven asset selection and

return prediction. We adopt the genetic algorithm mentioned in

Section 2 , and the techniques of two-stage clustering and radial ba-

sis function (RBF) neural network in the hybrid approach. We sum-

marize the framework of the hybrid approach for solving higher-

order-moment portfolio optimization problem in Fig. 2 . The de-

tailed flowchart of our method is illustrated as follows. 

Step 1: Calculate the return . When the day t is the ex-dividend

date, the daily return rate with cash bonus reinvestment at day t

is calculated as 

r t = 

P t (1 + B t + S t ) C t + D t 

P t−1 + C t S t K t 
− 1 , (9)

where P t denotes the settlement price, and the symbols B t , S t , C t ,

D t and K t represent the corresponding bonus share, rights issue,

split, cash dividend, and rights issue price per share, respectively.

When the day t is not the ex-dividend date, the daily return rate

is computed as 

r t = 

P t 

P t−1 

− 1 . (10)

Step 2: Select assets . We apply the two-stage clustering to ana-

lyze the return rates of N risky assets to select n ( < N ) risky assets

to construct the portfolio in model ( P 2 ). The process is described in

Algorithm 1 . Denote the historical return vectors of the N risky as-

sets are as a 1 , a 2 , . . . , a N . At the first stage, the k -nearest-neighbor

method is applied to generate N 

′ ( < N ) sub-clusters. One point a i is

selected as the initial sub-cluster. Then, the following points will

be connected into the nearest sub-cluster according to the similar-

ity between them and the existing points. Here we use Euclidean

distance to measure the similarity between each two points. For

any two arbitrary points, there exists an edge between them if and

only if either one of them is one of the nearest k points of the

other one. We call this stage as the pre-clustering. 

At the second stage, these sub-clusters are merged into final

clusters according to their relative inter-connectivity RI and rela-

tive closeness RC . The sub-clusters i and j which maximize RC ( SC ,
i 
C j ) × RI ( SC i , SC j ) will be selected to combine. Finally, we can ob-

ain n clusters. The definitions of RC and RI are as follows: 

C(SC i , SC j ) = 

| SEW (SC i , SC j ) | 
(| SEW (SC i ) | + | SEW (SC j ) | ) / 2 

, (11)

I(SC i , SC j ) = 

AEW (SC i , SC j ) 

| SC i | | SC i | + | SC j | AEW (SC i ) + 

| SC j | 
| SC i | + | SC j | AEW (SC j ) 

, (12)

here SEW ( SC i ) and SEW ( SC i , SC j ) denote the summation of the

eights of the edges in the sub-cluster i and that between sub-

lusters i and j , respectively. The weight of edge is the reciprocal

f distance, and thus represents the similarity. | SC i | represents the

umber of data points in the sub-cluster i. AEW ( SC i ) is the average

f edges’ weights in sub-cluster i. AEW ( SC i , SC j ) is the average of

onnecting edges’ weights between sub-clusters i and j . 

With the two-stage clustering, we pick out cluster-center points

hich have the longest distance between each other both in close-

ess and interconnection, in order to realize the pre-diversification

f portfolio risk. 

Step 3: Predict the return . Because the investors focus on the fu-

ure distribution of the return instead of the history distribution,

e predict the assets’ return rates by RBF neural network trained

ith the assets’ historical return rates. 

As shown in Fig. 3 , the RBF neural network has three layers:

he input layer, the hidden layer with a non-linear RBF function

nd a linear output layer. The l neurons in the first layer are cor-

esponding to the input vector y = [ y , y , · · · , y ] T . Here the input
1 2 l 
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Algorithm 1 Select assets by two-stage clustering. 

Require: a 1 , a 2 , . . . , a N 
Ensure: n clusters 

1: Stage I: Pre-clustering 

2: Select one point randomly as the initial point, e.g., point a 1 ; 

3: Initialize p = 2 

4: while p ≤ N do 

5: Measure the distance between the point a p and the existing 

point(s), i.e., a 1 , a 2 , . . . , a i (i < p) by Euclidean distance suc- 

cessively; 

6: if either one of a p and a i is one of the nearest k points of 

the other one then 

7: Connect the point a p to the sub-cluster, to which the 

point a i belongs, and generate the corresponding edge; 

8: end if 

9: p ← p + 1 ; 

10: end while 

11: Let the number of sub-clusters be N 

′ and sub-cluster be SC. 

12: Stage II: Re-clustering 

13: Initialize i = 1 

14: while i < N 

′ do 

15: j ← i + 1 ; 

16: while j ≤ N 

′ do 

17: Compute: SEW (SC i ) , SEW (SC i , SC j ) , AEW (SC i ) , 

AEW (SC i , SC j ) ; 

18: Compute: RC(SC i , SC j ) , RI(SC i , SC j ) ; 

19: if RC × RI is maximal then 

20: Merge SC i and SC j into a new cluster; 

21: Set the new cluster at the end of queue; 

22: N 

′ ← N 

′ − 1 ; 

23: end if 

24: j ← j + 1 ; 

25: end while 

26: i ← i + 1 ; 

27: end while 

28: return n final clusters; 

Fig. 3. The structure of RBF neural network. 
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ector y is each asset’s history return and l is the length of his-

ory data. We choose the optimal value of l which minimizes the

ean square error of prediction. The second layer is the hidden

ayer with J neurons. We set the kernel function as the Gaussian

unction. It implies that the output of neuron j, F j ( y ) can be ex-
ressed as 

 j (y ) = exp 

( 

−
∥∥∥∥y − c j 

σ j 

∥∥∥∥
2 
) 

, j = 1 , 2 , · · · , J. (13)

he parameter c j is the basis function’s central parameter of neu-

on j , and σ j is the corresponding width parameter. ‖·‖ is the Eu-

lidean norm. The last layer is the output layer with K neurons.

e calculate the weighted summation of the information from the

idden layer to get the network’s final output z = [ z 1 , z 2 , · · · , z K ] 
T 

s 

 k = 

J ∑ 

j=1 

w k j F j (y ) , k = 1 , 2 , · · · , K, (14)

here w kj is the connecting weight between output neuron k and

idden neuron j . In this paper, the output vector y is each asset’s

uture return predicted by RBF neural network. 

The key of RBF neural network is the update of the three sets

f parameters, c j , σ j and w kj , which are determined by the train-

ng process presented in Algorithm 2 . The network whose predic-

ion accuracy meets certain requirements is used to forecast return

istribution of the portfolio in the future. After the prediction, we

an calculate the four target functions, the mean, variance, skew-

ess and kurtosis of the portfolio’s future return, for each portfolio.

lgorithm 2 RBF neural network’s training progress. 

1: Given the maximal iteration steps T , learning rate η, adjusting

rate β and threshold ε; 

2: Initialize c j (0) , σ j (0) , and w k j (0) ; 

3: Initialize t = 1 ; 

4: Define: z mk is the real output of output neuron k on input sam-

ple m , o mk is the corresponding desired output; 

5: while t ≤ T do 

6: Compute: evaluation function E ← 

1 
2 

∑ l 
m =1 

∑ K 
k =1 (z mk −

o mk ) 
2 ; 

7: if t = 1 then 

8: c j (t) ← c j (t − 1) − η ∂E 
∂c j (t−1) 

; 

9: σ j (t) ← σ j (t − 1) − η ∂E 
∂σ j (t−1) 

; 

10: w k j (t) ← w k j (t − 1) − η ∂E 
∂w k j (t−1) 

; 

11: end if 

12: if ∂E 
∂c j (t−1) 

< ε then 

13: c j (t) ← c j (t − 1) ; 

14: end if 

15: if ∂E 
∂σ j (t−1) 

< ε then 

16: σ j (t) ← σ j (t − 1) ; 

17: end if 

18: if ∂E 
∂w k j (t−1) 

< ε then 

19: w k j (t) ← w k j (t − 1) ; 

0: end if 

21: c j (t) ← c j (t − 1) − η ∂E 
∂c j (t−1) 

+ β[ c j (t − 1) − c j (t − 2)] ; 

2: σ j (t) ← σ j (t − 1) − η ∂E 
∂σ j (t−1) 

+ β[ σ j (t − 1) − σ j (t − 2)] ; 

3: w k j (t) ← w k j (t − 1) − η ∂E 
∂w k j (t−1) 

+ β[ w k j (t − 1) − w k j (t −
2)] ; 

4: t ← t + 1 ; 

5: end while 

6: return c j (t) , σ j (t) , and w k j (t) ; 

Step 4: Set the risk preferences . We consider the risk preferences

f investors and set the preference factors in the model ( P 2 ) to

earch optimal solution with the genetic algorithm in Section 2.1 . 

Step 5: Search optimal portfolio . The optimal portfolio return

s calculated. If it satisfies the investors’ expectation, the optimal
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Table 1 

Two-stage clustering result 

Cluster ID Stock Number Stock ID Cluster Center 

1 7 601601, 601628, 601318, 601169, 600016, 601088, 601390 600016 

2 6 600028, 601857, 600050, 600104, 600837, 601766 600050 

3 4 600100, 600519, 600887, 601211 600887 

4 9 601198, 601800, 600999, 601985, 600036, 601186, 601901, 601336, 601377 600036 

5 7 600958, 601288, 601688, 601818, 601668, 601989, 600030 600030 

6 9 600048, 600109, 600111, 600485, 600518, 600547, 600637, 600893, 601998 600518 

7 8 601006, 601166, 601328, 601398, 601988, 600000, 600029, 601788 601166 
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portfolio is the investment decision. Otherwise, the expectations

will be added into the multi-objective optimization problem as

new constraints to search the optimal solution again. 

4. Empirical analysis 

In this section, we apply our hybrid algorithm, as stated in

Section 3 , to real transaction data from Shanghai Stock Exchange

in China. We first briefly introduce the dataset we investigate, and

then present our results of each step for our sample data in this

section, according to the flowchart stated in Section 3 . 

4.1. Data description 

The data set is the daily trading data of SSE 50 index’s latest

constitutes from Jan. 4th, 2010 to Feb. 20th, 2017, provided by the

CSMAR China Stock Market Trading Database. 

The SSE 50 index ranks the stocks on Shanghai Stock Exchange

based on the total market value and the turnover to choose the top

50 as the index’s constituents. Therefore, the index’s constituents

are the most representative stocks in terms of the transaction size

and liquidity in the market. 

In particular, to verify the effectiveness and robustness of our

proposed method for solving higher-order-moment portfolio op-

timization model, we apply the data from Jan. 4th, 2010 to Dec.

30th, 2016 as the in-sample to train and test the model, and the

data from Jan. 1st, 2017 to Feb. 20th, 2017 (30 trading days) as

the out-of-sample to evaluate the performance of the optimization

model and the solution found by our method. In fact, we also vary

the out-of-sample length from 30 trading days to 10 0, 250 and 50 0

trading days, and find that all the performance results are similar.

Therefore, we only present the case of 30 trading days in our nu-

merical tests. 

4.2. Two-stage clustering result 

As described in Section 3 , we first calculate the daily return

rates with cash bonus reinvestment of each constituent during

2010-2016 according to the historical trading data. Then, we apply

the two-stage clustering method to analyze them and document

the result in Table 1 . 

Table 1 presents that the two-stage clustering divides 50 stocks

into seven clusters. Unlike the usual classification, which sim-

ply clustering the bank shares, security shares and infrastructure

shares, the two-stage clustering takes the relative distance of inner

characteristics and the hidden pattern in approximation and inter-

connection as a criterion. Moreover, using these seven stocks in-

stead of all stocks to construct the portfolio will save considerable

computing resources for our algorithm to find the optimal solu-

tions. 

After clustering, the seven cluster centers are selected to con-

struct the portfolio. Their stock IDs are are 60 0 016, 60 0 050,

60 0887, 60 0 036, 60 0 030, 60 0518, and 601166. The statistical de-

scription of selected stocks’ return vectors are summarized in

Table 2 . 
.3. Forecasting of RBF neural network 

We divide the in-sample data into training set and testing set,

.e., 80% of the data is set to train the RBF neural network, and the

ther 20 percentage is to test whether the prediction precision of

he network satisfies the accuracy requirement. Here, the metric

ean squared error (MSE) is used to evaluate the forecasting accu-

acy of the network. In order to avoid over-fitting, we set the target

SE as 0.0 0 01. If its forecasting accuracy meets the target criterion,

he trained network is put into use to predict the assets’ daily re-

urn rates in the future 30 trading dates, i.e., from Jan. 1st, 2017

o Feb. 20th, 2017. Otherwise, the learning process on the training

et repeats with adjusted parameters, such as the learning speed,

ntil the accuracy reaches the target criterion. The testing result of

orecasting accuracy of RBF neural network is presented in Table 3 .

Table 3 shows that the number of in-sample data of different

tocks varies during the same observation period. The reason is

hat different stocks were suspended for various reasons during

he period, and that the intervals between suspension and resump-

ion differ in length, which causes different actual trading dates.

owever, the proportion between the training set and the testing

et remains 8:2 for all the stocks. The results in Table 3 show that

he MSE of the network prediction on the testing set meets the re-

uirement, i.e., we can apply it to forecast the assets’ future return.

able 4 reports the statistical description of the network’s predic-

ion on the assets’ daily return rate in the future 30 trading days. 

.4. Optimal portfolios obtained by genetic algorithm 

Based on the prediction results of the RBF neural network,

enetic algorithm (GA) is applied to search the optimal portfo-

ios under different risk preferences. We adopt the same param-

ter values in the experiment as Davis (1991) and Kacprzyk and

edrycz (2015) : p a = 0 . 0 0 01 , L = 20 , P = 10 4 , N R = 20 , p c = 0 . 5 and

p m 

= 0 . 01 . Fig. 4 presents its fitness variation in the process of

olving the higher-order-moment model. 

As shown in Fig. 4 , the blue and red lines represent the best

nd mean fitness, respectively. The blue line implies that the con-

ergence rate of GA is fast, and it can converge to a point near the

inimum within 100 iterations. After its convergence, the genetic

lgorithm keeps fine search in a small area, indicated by the fluctu-

tion of its mean fitness in the red line, and then stops evolution

t around 520 generations. In general, the performance of GA in

olving the model is satisfactory. It is mainly due to the fact that

he span of variables is narrow, and the number of chromosomes

s sufficient. A smaller search range and a larger population ensure

 greater probability to approach the optimal solution. 

In Table 5 , different values of the investment preference fac-

or ( λ1 , λ2 , λ3 , λ4 ) represent different risk preferences of an in-

estor, where (1,1,1,1) denotes that the weights on the mean, vari-

nce, skewness, and kurtosis of the portfolio are the same, i.e., the

nvestor attaches equal importance to the average, volatility, sym-

etry, and steep of the return. That is also the foundation of our

odel, the Mean-Variance-Skewness-Kurtosis model, referred to as
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Table 2 

Statistical description of selected stocks 

ID Stock name Number Mean Std. Dev. Skewness Kurtosis Min Max 

600016 Minsheng Bank 1691 0.0006 0.0194 0.4799 5.7746 –0.0999 0.1001 

600050 China Unicom 1696 0.0003 0.0230 0.4303 5.2698 –0.1005 0.1010 

600887 Yili 1665 0.0012 0.0239 0.0494 2.1477 –0.1001 0.1001 

600036 China Merchants Bank 1679 0.0004 0.0183 0.5650 4.8578 –0.0991 0.1003 

600030 CITIC Securities 1677 0.0003 0.0268 0.2979 3.3499 –0.1001 0.1004 

600518 Kangmei 1672 0.0012 0.0258 0.1121 3.2570 –0.1001 0.1002 

601166 Industrial Bank of China 1680 0.0004 0.0212 0.3661 4.3090 –0.1002 0.1005 

Fig. 4. The fitness variation of GA in solving higher-order-moment model. 

Table 3 

Testing result of RBF neural network’s forecasting accuracy. 

ID In-sample data Training set Testing set MSE 

600016 1691 1353 338 0.00001 

600050 1696 1357 339 0.00005 

600887 1665 1332 333 0.00001 

600036 1679 1343 336 0.00002 

600030 1677 1342 335 0.00005 

600518 1672 1338 334 0.00003 

601166 1680 1344 336 0.00001 

Table 4 

Statistical description of the network prediction in the future 30 trad- 

ing dates. 

ID Number Mean Std. Dev. Min Max 

600016 30 –0.0002 0.0051 –0.0093 0.0136 

600050 30 –0.0036 0.0278 –0.0858 0.0562 

600887 30 0.0008 0.0912 –0.0176 0.0201 

600036 30 0.0029 0.0081 –0.0148 0.0224 

600030 30 0.0015 0.0065 –0.0078 0.0142 

600518 30 –0.0008 0.0087 –0.0189 0.0175 

601166 30 0.0012 0.0079 –0.0186 0.0178 
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Table 5 

Optimal portfolios under different risk preferences. 

Risk Preferences 60 0 016 60 0 050 600887 

(1,1,0,0) 0.0283 0.3200 0.2492 

(1,1,1,0) 0.0429 0.1693 0.0798 

(1,1,1,1) 0.1323 0.0874 0.0697 

(2,1,1,1) 0.0192 0.1248 0.0796 

(1,2,1,1) 0.0435 0.1037 0.0711 

(1,1,2,1) 0.0452 0.0633 0.0211 

(1,1,1,2) 0.0279 0.1183 0.0417 

(1,2,1,2) 0.1428 0.1213 0.0711 

(2,1,2,1) 0.0277 0.0284 0.0500 
he M-V-S-K model hereinafter. Similarly, the preference (1,1,1,0)

epresents that the investor attaches equal importance to the av-

rage, volatility, symmetry of the return but ignores its steep. This

s the focus of the studies on the Mean-Variance-Skewness model,

eferred to as the M-V-S model hereinafter. The preference (1,1,0,0)

s the Markowitz M-V model in essence, which is taken as the

enchmark to evaluate the performance of our considered model

nd proposed method. 

As mentioned above, the value of the risk preference factor im-

lies the investor’s emphasis. For example, (2,1,1,1) implies that the

nvestor prefers to pursue a higher return under certain risk, while

1,2,1,1) indicates that the investor emphasizes the volatility of the

ortfolio more than other factors. 

.5. Comparisons on model performance 

In this section, in order to evaluate the performance of M-V-S-K

odel, the out-of-sample data is used to compare it with the M-

-S model and M-V model in terms of the investment yield, risk

anagement (Sharpe Ratio) and error tracking (Information Ratio).

n particular, we consider the M-V model with the risk preference
60 0 036 60 0 030 600518 601166 

0.0540 0.2134 0.0426 0.0924 

0.1748 0.0651 0.4540 0.0141 

0.1018 0.4101 0.1317 0.0669 

0.2651 0.2731 0.1719 0.0663 

0.2804 0.0336 0.2699 0.1977 

0.3073 0.0001 0.4872 0.0757 

0.2659 0.1823 0.1626 0.2014 

0.1742 0.0464 0.1409 0.3033 

0.3108 0.1487 0.3403 0.0940 
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Fig. 5. The daily return rates (%) of three portfolio optimization models from Jan. 

3rd to Feb. 20th, 2017. 

Table 6 

Comparison on yields of the portfolios selected by the three models (%). 

Model Out-of-sample Daily Annualized 250-trading-date 

M-V-S-K 2.1011 0.0693 28.3414 18.9200 

M-V-S –0.1051 –0.0035 –1.2542 –0.8726 

M-V –1.7967 –0.0604 –19.5522 –14.0225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Accumulated gains of the three models from Jan. 3rd to Feb. 20th, 2017. 
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(λ1 , λ2 , λ3 , λ4 ) = (1 , 1 , 0 , 0) , the M-V-S model with the risk pref-

erence (1,1,1,0) and the M-V-S-K model with the risk preference

(1,1,1,1). 2 

Fig. 5 shows the realized daily return rate of the three models

from Jan. 3rd to Feb. 20th in 2017. The fluctuation amplitude of

the daily return rate of M-V portfolio 3 is the largest, whose max-

imum is over 1.5%, and minimum is close to –3%. By comparison,

the daily return rate of portfolio selected by M-V-S model fluctu-

ation is smaller, while that of M-V-S-K model is the smallest with

less than 1.3% at high points and around –1% at the bottom. 

Intuitively, the M-V portfolio performs worst on the risk man-

agement among the three portfolios. Although it might achieve a

high yield when the stock market rises, its loss will also be quite

heavy once the market plunges. On the contrary, the performance

of M-V-S-K portfolio is relatively stable. As it considers the sym-

metry and steep degrees of the return on the basis of average and

volatility, the M-V-S-K model is able to make a faster response to

the share price adjustment. 

Table 6 further reports the quantitative comparison on the re-

turn rate of the three models. The M-V-S-K portfolio performs best

on the investment return among all the three portfolios, and its

out-of-sample cumulative yield reaches 2.1011%, while the yield

of M-V portfolio is lowest as –1.7967%. The M-V-S portfolio has

a slight loss in the out-sample with –0.1051% cumulatively. Ac-

cording to the compound interest calculation formula, the out-of-

sample cumulative yield can be converted into the daily, annu-

alized, 250-trading-date yield. It is worth pointing out that, be-

cause there are only 250 trading dates in China’s stock market,

the 250-trading-date yield may own more practical reference value

than the annualized one. After the conversion, the 250-trading-

date yield of M-V-S-K portfolio reaches 18.9200%, which is impres-

sive, while the loss of M-V model in 250 trading dates reaches

14.0225%. 

Fig. 6 describes accumulated gains of the out-of-sample of the

optimal portfolios selected by the three models from Jan. 3rd to
2 The setting is in line with Yu, Wang, and Lai (2008) . We also apply the other 

sets of risk preferences and find similar results. 
3 To simplify the expression, we will denote the portfolios selected by M-V, M-V- 

S and M-V-S-K models by M-V, M-V-S and M-V-S-K portfolios, respectively. 

s  

o  

s  

e  

o

eb. 20th, 2017. Here, the initial principal is set to be one unit. Ac-

ording to Fig. 6 , the accumulated gain of M-V portfolio is far be-

ow those of M-V-S and M-V-S-K portfolios during the trading pe-

iod except the first several days. In the end, the M-V-S-K portfolio

arns a profit, and the M-V-S portfolio stays near break-even. The

-V portfolio makes a heavy loss. This is consistent with the anal-

sis above. It proves that, when the skewness and kurtosis are con-

idered in portfolio selection, the model can respond to the market

uctuation more quickly according to the change of return distri-

ution’s shape. 

In addition, we next introduce several common quantitative in-

icators to summarize the overall out-of-sample performances of

he three optimal portfolios. As we know, the sharpe ratio is the

ommonest indicator to measure the portfolio risk-adjusted return,

.e., divide the average return by its standard deviation to estimate

he portfolio return to the system risk. However, the average return

f M-V model is negative in value, and the negative sharpe ratio is

eaningless in reality, so we will not compare the risk-adjusted

eturn of the models here. As an alternative, we choose the in-

ormation ratio to evaluate the error-tracking ability of a portfolio.

n fact, in the last decade, the indicator information ratio has been

dopted by a number of studies or reports to investigate new port-

olios’ performances (See, e.g., Israelsen (2005) and the references

herein). 

The information ratio , namely IR , takes the M-V model as bench-

ark to measure the excess return per unit of the active risk. We

hus calculate IR according to the following equation, 

R = 

E(R p − R b ) √ 

v ar(R p − R b ) 
, (15)

here R b is the return of M-V portfolio, and R p is the return of the

valuated portfolio. The numerator is the excess return, while the

enominator represents the active risk. IR > 0 indicates that the

valuated portfolio performs better than the M-V portfolio, while

R < 0 implies that its performance is worse than that of M-V port-

olio. Therefore, a higher value of IR illustrates that the portfolio

erformance on error-tracking is better. 

Table 7 presents that the IR values of M-V-S-K and M-V-S port-

olios are both higher than zero, which indicates that they perform

etter than M-V on the return adjusted by the active risk. Further-

ore, it is worth noting that the active risk of M-V-S-K portfolio is

lightly larger than that of M-V-S portfolio, but the excess return

f M-V-S-K portfolio is much higher than that of M-V-S portfolio,

o the IR of M-V-S-K portfolio is also higher. It implies that the

rror-tracking performance of M-V-S-K portfolio is better than that

f M-V-S portfolio. 
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Table 7 

Overall performances of out-of-sample of the three optimal portfolios. 

Model Average Return System risk Excess return Active risk IR Min Max Final value 

M-V-S-K 0.0709 0.0057 0.1262 0.0066 0.1911 0.9972 1.0330 1.0210 

M-V-S –0.0006 0.0077 0.0546 0.0054 0.1010 0.9812 1.0250 0.9989 

M-V –0.0553 0.0103 / / / 0.9675 1.0281 0.9820 

Table 8 

Solutions to the M-V-S-K model ( P 2 ) provided by the three algorithms. The numbers are 

the optimal strategies, i.e., the weights of these stocks in the portfolio, calculated by the 

three algorithms. 

Method 60 0 016 60 0 050 600887 60 0 036 60 0 030 600518 601166 

GA 0.1323 0.0874 0.0697 0.1018 0.4101 0.1317 0.0669 

MPFM 0.0621 0.1162 0.0940 0.2399 0.1238 0.2370 0.1271 

SA 0.1267 0.1252 0.1225 0.1230 0.0884 0.1352 0.2789 

Fig. 7. The variation of objective functions of MPFM and SA methods in solving the M-V-S-K model. 

Table 9 

Comparison on the yields of the three portfolios (%). 

Method Out-of-sample Daily Annualized 250-trading-date 

GA 2.1011 0.0693 28.3414 18.9200 

MPFM 1.9425 0.0642 25.9695 17.3894 

SA 1.3608 0.0451 17.6095 11.9228 
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. Robustness of our hybrid method 

This section further compares the solutions of the M-V-S-K

odel obtained by different algorithms, in order to test the robust-

ess of our hybrid method. We also present some computational

ime analysis of our hybrid method and other alternatives. 

For the purpose of a comparison, we choose another two al-

orithms, the mixed penalty function method (MPFM) and the simu-

ated annealing algorithm (SA). The former one combines the advan-

ages of exterior and interior penalty and is able to solve nonlinear

rogramming containing both equality and inequality constraints.

he latter one does not depend on the initial value strongly, and

ardly falls into the local optimum trap. In fact, the simulated

nnealing algorithm has been applied to solve portfolio selection

roblem and got an excellent performance ( Crama & Schyns, 2003 ),

hile the mixed penalty function method is an efficient mathemati-

al tool for nonlinear programming ( Bertsekas, 2016 ). 

The presentation of the rest of this section is consistent with

ections 4.4 and 4.5 . We use the prediction results of the RBF

eural network, but apply GA, MPFM, and SA to solve the M-V-

-K model separately to compare these three algorithms. Table 8

resents numerical results of the three algorithms on the M-V-S-K

odel. 
Fig. 7 shows the variation of objective function values of MPFM

nd SA methods in solving the M-V-S-K model respectively. It is

bserved that the convergence rate of MPFM is quite fast: it takes

nly eleven generations to stop iterating. By contrast, the conver-

ence rate of SA is much lower. It takes over 20 0 0 iterations to

onverge to a point that near the optimum. Then, it conducts the

mall-area fine search for a long time, and stops computation at

bout 60 0 0 generations. In Section 4.4 , GA iterates less than 600

enerations in total to find the optimal solution, and also performs

he long-time fine search (see Fig. 4 ). It indicates that MPFM may

erform better than those of GA and SA in terms of the conver-

ence rate, but may miss a potential better solution. We thus fur-

hermore compare the performances of the portfolios selected by

hese three algorithms (the GA, SA and MPFM portfolios for short)

n the following part. 

Fig. 8 presents the daily return rates of the three algorithms

orm Jan. 3rd to Feb. 20th, 2017. Their variations are quite simi-

ar. The fluctuation of SA method is slightly greater than those of

A and MPFM, but the nuance between those of GA and MPFM is

ardly distinguished. Hence, further calculations on relevant quan-

itative indicators are necessary to compare the performances of

he portfolios optimized by the three algorithms. 

Table 9 reports the comparison on the yields of the three port-

olios. According to Table 9 , the out-of-sample cumulative yield of

A portfolio is lower than those of GA and MPFM portfolios. GA

erforms best on the investment return, whose 250-trading-date

ield is about 1.5% higher than that of MPFM portfolio, and around

% higher than that of SA portfolio. 

Fig. 9 presents the accumulated gains of the three algorithms

rom Jan. 3rd to Feb. 20th, 2017. The initial principal is one unit.

he accumulated gain of SA portfolio is almost the same as MPFM
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Table 10 

Overall performances of out-of-sample of the three portfolios. 

Method Average System Sharpe Excess Active IR Min Max Final 

return risk ratio return risk value 

GA 0.0709 0.0057 12.341 0.1262 0.0066 0.1911 0.9972 1.0330 1.0210 

MPFM 0.0663 0.0067 9.8534 0.1216 0.0061 0.2003 0.9936 1.0350 1.0194 

SA 0.0473 0.0068 6.9509 0.0853 0.0076 0.1122 0.9910 1.0310 1.0136 

Table 11 

Comparisons of time complexity. 

Different parts of algorithm Two-stage Clustering RBF Neural Network GA 

Running time (in s) 13.6244 12.3718 16.2050 

Different searching methods GA MPFM SA 

Running time (in s) 16.2050 11.7691 32.1475 

Fig. 8. The daily return rates of the three portfolios from Jan. 3rd to Feb. 20th, 2017. 

Fig. 9. The accumulated gains of the three portfolios from Jan. 3rd to Feb. 20th, 

2017. 
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portfolio, and higher than GA portfolio during the first eight trad-

ing days. However, in the latter trading dates, the performances of

GA and MPFM portfolios are more robust on quick stop-loss and

the short-time profits in batch. The final value of SA portfolio is

much lower than that of MPFM portfolio, whereas the final value

of MPFM portfolio is slightly lower than that of GA portfolio. 

Table 10 describes overall out-of-sample performances of the

three algorithms via quantitative indicators. First, we compare the

return adjusted by the system risk. As it performs best on both the

mean and the standard deviation of return, GA portfolio undoubt-

edly has the highest sharpe ratio. Hence, from the perspective of

the overall system risk, GA portfolio is better than MPFM portfolio,

which is better than SA portfolio. 
Secondly, from the viewpoint of active risk, the IR of MPFM

ortfolio is little larger than that of GA portfolio, which is mainly

ue to the fact that the active risk of MPFM portfolio is a bit

maller. Combining the results shown in Table 7 , the optimal port-

olio suggested by GA portfolio does not have the lowest active

isk, partially due to the fact that we set the penalty factor P as a

arge fixed value 10 4 , which increases the active risk of the model

nevitably. Nevertheless, the penalty factor of MPFM portfolio is

ot determined artificially in advance, but iterates and updates in

he process of searching the optimal solution. Hence, the perfor-

ance of GA is a bit inferior to that of MPFM on the error tracking.

ombining GA with the mixed penalty algorithm may help GA to

educe the active risk, and further improve its error-tracking abil-

ty. It is worth pointing out that the IR of portfolio provided by GA

s still higher than that by SA significantly. 

We furthermore compare the computational time of our

ethod with the identified alternatives discussed above. The re-

ults are shown in Table 11 . We present the average running times

f these three searching algorithms and the main three parts of

ur hybrid algorithm in 50 trials for solving M-V-S-K model. We

ee that the total running time of our hybrid algorithm is 42.2 s

n average, which consists of 13.6 s for the asset selection by the

wo-stage clustering method, 12.4 s for the return prediction by

BF neural network, and 16.2 s for the model optimization by GA.

s for the different searching methods, we find that the average

unning time of GA is between those of the other two alternatives,

.e., slightly longer than that of MPFM (11.8 s), but much shorter

han that of SA (32.1 s). Taken together the overall performances

n investment yield and error tracking, the consuming time of our

ethod is reasonable. 

To summarize, our proposed hybrid method provides the op-

imal portfolio with robust overall performances and acceptable

omputational times. 

. Conclusion and future work 

This paper studies the portfolio selection problem with higher-

rder moments. Aiming at extending the classical mean-variance

odel, this paper introduces skewness and kurtosis of the port-

olio to construct the mean-variance-skewness-kurtosis (M-V-S-K)

odel. To solve our model, we transform the multi-objective opti-

ization problem into a non-linear programming model with risk

references. Furthermore, we propose a hybrid approach includ-

ng three machine learning algorithms to select the pre-diversified

ssets, predict the future returns of these assets and numerically

onstruct the optimal portfolio to invest. 

The empirical analysis with historical data from Shanghai Stock

xchange in China shows that the out-of-sample performance of

he optimal portfolio selected by our M-V-S-K model is better
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han those by the classical mean-variance model and the mean-

ariance-skewness model. We also compare the genetic algorithm

ith the other widely used algorithm to find that the overall per-

ormance of genetic algorithm (GA) we applied is appealing. Specif-

cally, the performance of the optimal portfolio provided by GA on

ield and risk management is superior to those by SA and MPFM,

he other two widely used approaches for non-linear program-

ing. Our hybrid algorithm serves the purpose as a good portfolio

election algorithm for investors and hedge funds. 

For higher-order-moment portfolio selection, there are still

any interesting problems remaining open for future research.

or example, one may notice that we only discuss several sets

f widely-used risk preference parameters in our paper. Optimiz-

ng the higher-order-moment portfolio selection problem, with the

onsideration of all possible risk preference parameters, to identify

he efficient frontier is worth investigating. In addition, we con-

ider static portfolio selection problem in this paper. A dynamic

igher-order-moment portfolio selection problem could be non-

eparable and remains open for future research. 
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