

[Article]

doi: 10.3866/PKU.WHXB201805291

www.whxb.pku.edu.cn

385

Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX₂) and Effect of Strains

TAN Miao, ZHANG Lei, LIANG Wanzhen *

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China.

Two-dimensional Abstract: transition metal dichalcogenides (TMDs) possess the potential to be widely applied in optoelectronic devices, sensors, photocatalysis, and many other fields because of their intrinsic physical, chemical, and mechanical properties. Generally, the van der Waals (vdW) heterostructures fabricated from these TMDs exhibit excellent electronic properties. However, the spectral responses of most vdW heterostructures are limited by the inherent band gaps; it is thus essential to tune the band gaps for specific applications. In this paper, we

performed a first-principles theoretical study on the structures and properties of WX₂ (X = S, Se, Te), as well as the vdW heterostructures WS₂/WSe₂, WS₂/WTe₂, and WSe₂/WTe₂. The impacts of the number of layers on the properties of WX₂ and the strain on the band gaps of vdW heterostructures were demonstrated. We found that every monolayer WX₂ (X = S, Se, Te) is a direct gap semiconductor, and as the number of layers increases, their band gaps decrease and they become indirect bandgap semiconductors. The spin-orbit coupling (SOC) effect on their band structures is significant and can decrease the band gap by approximately 300 meV compared with those that do no incorporate SOC effects. The properties of WX₂ can be accurately described by the HSE06 + SOC approach. WS₂/WSe₂, WS₂/WTe₂, and WSe₂/WTe₂ heterostructures are direct gap semiconductors with band gaps of 1.10, 0.32, and 0.61 eV, respectively. These three heterostructures exhibit type-II band alignments, which facilitate photo-induced electron-hole separation. In addition, they have quite small electron and hole effective masses, indicating that the separated electrons and holes can move very quickly to reduce the recombination rate of electrons and holes. There is an explicit red-shift of the optical absorption spectra of the three heterostructures compared with those of the monolayer components, and the most obvious redshift occurs in WSe₂/WTe₂. Both uniaxial and biaxial strains can alter the band gaps of these vdW heterostructures. Once the strain exceeds 4%, a transition from semiconductor to metal characteristics occurs. This work provides a way to tune the electronic properties and band gaps of vdW heterostructures for incorporation in high-performance optoelectronic devices.

Key Words: 2D materials; TMDs; van der Waals heterostructure; Strain; Band gap

Received: April 9, 2018; Revised: May 14, 2018; Accepted: May 25, 2018; Published online: May 29, 2018. *Corresponding author. Email: liangwz@xmu.edu.cn; Tel.: +86-592-2184300.

The project was supported by the National Natural Science Foundation of China (21573177).

© Editorial office of Acta Physico-Chimica Sinica

国家自然科学基金(21573177)资助项目

基于二维材料WX₂构建的范德华异质结的结构和性质及应变效应的 理论研究

谭淼,张磊,梁万珍*

厦门大学化学化工学院化学系,能源材料化学协作创新中心,固体表面物理化学国家重点实验室,福建 厦门 361005

摘要:二维材料过渡金属硫属化物(TMDs),因其优越的物理化学特性及其在光电子器件、光催化等领域的潜在应用价值,得到了人们的广泛关注。基于 TMDs 材料可以构建具有不同性能的范德华(vdW)异质结,但构建的异质结由于其固有的能带带隙大小限制了其在全光谱上的响应,因而对其能带带隙调控变得十分重要。本文基于第一性原理方法系统地研究了WX₂(X = S, Se, Te)从单层到体相的结构和性质,以及由此组装的vdW 异质结构WS₂/WSe₂、WS₂/WTe₂和WSe₂/WTe₂的结构和性质以及应力应变对异质结构的能带带隙的影响。结果表明:结合 HSE06 泛函和自旋轨道耦合(SOC)效应的计算方案可以精确描述 WX₂体系;异质结构 WS₂/WSe₂, WS₂/WTe₂和 WSe₂/WTe₂呈现 type-II 能带分类;在施加单轴或双轴的应力应变后,能带带隙大小发生相应改变,当晶格形变大于 4%后,异质结构由半导体特性变成具有金属性。这些研究为光电子器件的设计提供了重要的指导意义。

关键词:二维材料; TMDs; vdW异质结; 应力应变; 能带带隙 中图分类号: O649

1 引言

二维过渡金属硫属化合物(TMDs)具有诸多优 良性质,比如超高载流迁移率、适中的宽度带隙、 Spin Valley 等特性,因此它们被广泛应用于光电 子器件、光催化以及超极电容等相关领域 1-5。典 型的 TMDs 材料如 MX₂ (M = Mo、W, X = S, Se, Te)⁶⁻⁸,是由三层原子组合而成,上下层为S族元 素,中间层为过渡金属元素。人们发现当把不同组 分的 TMDs 材料组合在一起后可以得到性质更加 独特的异质结构,如 MoS₂/WS₂⁹⁻¹¹、MoS₂/MoSe₂¹²、 MoSe₂/WSe₂¹³、MoS₂/MoTe₂¹⁴等。与传统的异质 结构相比,基于 TMDs 二维材料构建的范德华异 质结构具有较小的界面晶格失配度,制备操作简 单等优势,是运用于电子学和光电子学领域的理 想材料 15-18。然而,有文献报导大部分的范德华异 质结构由于组成材料固有的能隙限制了其在全光 谱上的响应^{16,19},因此,调控范德华异质结构的能 带带隙是具有十分重要意义的研究课题。

为了调控 TMD 范德华异质结构的能带,人们 已经进行了大量的理论和实验研究,目前主要侧 重于通过改变层间耦合效应,施加单轴或双轴效 应等方式进行调整²⁰⁻²⁵。例如,Chou 课题组²⁶发 现通过旋转 MoS₂/WSe₂ 范德华异质结构的上下组 分可以实现不同的 Moiré 模式组合,这些不同的 Moiré 模式具有不同的层间耦合效应,同时这种双 层异质结构仍保留直隙半导体特征。Lu 课题组²⁷ 通过对 MX₂/MoS₂ (M = Mo, Cr, W; X = S, Se)范德 华异质结构施加单轴或双轴应力发现,异质结构 会发生从直隙半导体转变成间隙半导体,当应力 超过一定值后,异质结构从半导体性质变成金属 性。同时,Shih 课题组²⁸对水平拼接的 WS₂-MoS₂ 异质结构进行了研究,通过对 MoS₂ 区域的晶格失 配度进行改变应力大小,结果表明,每改变一个压 力单位时能带带隙减小(0.52±0.1) eV,同时应力 的改变会使异质结构由典型的 type-II 能带结构转 变成 type-I 能带结构。基于此,本文在前人工作的 基础上继续进行进一步的研究,研究对象为包含 过渡金属 W 元素的 TMD 材料 WX₂ (X = S, Se, Te)。

众所周知,在TMDs中除 MoS2 材料之外, WS2 也是一种十分特殊的材料²⁹。首先, 单层 WS2 是能带带隙为2eV的直隙半导体材料³⁰,同时有 着较高的载流子迁移速率³¹。此外,由于重原子 W 的存在,WS2结构中的自旋轨道耦合效应(SOC)会 引起明显的价带能级劈裂 32, 价带劈裂值为 426 meV, 是 MoS2的价带劈裂值(150 meV)的 3 倍左 右, 使其 Valley hall effect 更加明显 33。因此, 过 渡金属 W 系列的 WX₂ (X = S, Se, Te)材料引发了 人们的广泛的关注。目前,理论上大多采用 Perdew-Burke-Ernzerhof (PBE)泛函对于 WX2体系 进行理论研究³⁴⁻³⁶,然而 PBE 泛函会明显低估其 能隙,同时 W 原子具有非常强的自旋轨道耦合效 应,所以必须使用更高精度的方法来进行模拟。本 文主要以钨原子硫族化合物 $WX_2(X = S, Se, Te)$ 作 为研究对象,采用高精度的杂化泛函 HSE06 37 外

加 SOC 效应来系统地研究这三种材料从单层到体相的电子结构性质和能带结构的变化;同时理论 探究 WS₂/WSe₂、WS₂/WTe₂和 WSe₂/WTe₂三种不同的范德华异质结构的电子结构性质的差异以及 外加应力如何调控这三种不同范德华异质结构的 能带结构。

2 理论计算方法

本文所有的计算均是采用密度泛函理论 (DFT)与投影缀加波(PAW)相结合的方法,利用 VSAP 软件完成。结构优化采用广义梯度近似法 (GGA)下的 PBE 泛函 38 进行计算, 电子结构及光 学性质的计算则使用高精度的杂化泛函 HSE06 外 加考虑 SOC 效应的方案。对 WX2 单层结构,本文 选用1×1×1最小单胞;对于三种异质结构,本 文均采用了 2 × 2 × 1 超晶胞进行模拟计算。为了 考虑层间弱的范德华相互作用,本文采用了 DFT-D2 方法³⁹进行色散较正。此外,平面波基组截断 能设定为 500 eV, 力的收敛标准设置为 0.1 eV·nm⁻¹。为了消除相邻 slab 模型的相互作用,本 文将真空层设为 1.5 nm。所有模型在结构优化时 均采用以 Gamma 点为中心的 12 × 12 × 1 格点取 样,电子结构相关性质计算均采用以 Gamma 点为 中心的 $3 \times 3 \times 1$ 的 K 点取样。

当物质受到外力作用时,物质内部会产生相应的内力以抵抗外力的影响,试图还原到未受到 外力时的初始状态。因此,对材料施加应力,材料 会发生一定的形变,从而改变其内在电子结构性 质。本文通过改变 TMDs 异质结构的晶格参数来 施加相应的拉伸或者压缩应力,实现应变过程。应 力大小由晶格形变常数 *Exy* 表示, *Exy* 定义为:

 $\varepsilon_{xy} = [(a_2, b_2) - (a_1, b_1)]/(a_1, b_1)$

上式中 *a*₁、*b*₁表示为未加应力前的 *x* 轴、*y* 轴的晶 格常数, *a*₂、*b*₂则表示为加入应力后 *x* 轴、*y* 轴的 晶格常数。负号代表压缩,正号表示拉伸。

3 结果与讨论

3.1 层数对 WX₂ (X = S、Se、Te)材料的性质 的影响

本文首先测试了不同的泛函以及有无考虑 SOC 对 WX₂体系性质的影响。表1展示了单层、 双层和体相下 WS₂、WSe₂和 WTe₂三种材料在四种 不同的计算方案(PBE、PBE+SOC、HSE06、HSE06+ SOC)下的计算结果。同时表中也给出了相应材料 的实验值以及前人的计算值。

通过表 1 中的结果分析发现, SOC 效应显著 影响 WX₂ 材料的带隙。相对于采用 PBE 和 HSE06 计算得到的能隙, PBE + SOC 和 HSE06 + SOC 的 计算果表明 SOC 效应会使能隙降低约 300 meV。 这主要来源于重金属原子 W 引发的自旋轨道耦合 效应。相较于实验结果 ³⁹, HSE06 杂化泛函会显 著高估 WX₂ 能带带隙, 而 PBE 会低估其能带带 隙, HSE06 + SOC 的计算结果可以和实验值有很 好的符合。此外,本文采用 HSE06 + SOC 计算得 到的单层 WS₂、WSe₂ 和 WTe₂ 的能带带隙分别是 2.09、1.69 和 1.12 eV,和前人的理论计算结果相 一致 ⁴⁰。因此,以下所有计算均在 HSE06 + SOC 计算方案下完成。

为了进一步探究 SOC 对能带结构的影响,本 文使用 HSE06 + SOC 分别计算了 WS2、WSe2 和 WTe2 三种材料从单层到体相的能带结构,如图 1 所示。从图中可以看出, WS2和 WSe2 材料在体相 状态时,均是间接带隙半导体,带隙大小分别是 1.45 和 1.33 eV, 电子跃迁主要是以从 G 点到 T 点 (K 与 G 之间)的间接跃迁。随着层数减小到双层 时,尺寸效应使其能带带隙会进一步增大,二者能 带带隙分别达到 1.84 和 1.57 eV。相比于体相材 料, 单层 WS2 和 WSe2 均为直隙半导体, 能带带 隙大小分别是 2.09 和 1.69 eV。同时, 单层材料在 导带底和价带顶处的能带曲率很大,可以预测其 有着较小的有效载流子质量,这也进一步验证了 WX,材料具有优异的载流子传输特性。对于WTe, 材料,本文发现从体相到双层再到单层,其均是间 隙半导体,其能带带隙也随着层数的减小不断增

表 1 不同泛函计算得到的单层、双层和体相 WS2、WSe2 和 WTe2 材料的能隙

 Table 1
 Calculated bandgaps of monolayer, bilayer, and bulk of WS2, WSe2 and WTe2 by the first-principles approach with different exchange-correlation (xc) functionals and with/without SOC effect involved.

	Monolayer				Bilayer	Bulk		
	PBE	PBE + SOC	HSE06	HSE06 + SOC	Theor.	HSE06 + SOC	HSE06 + SOC	Expt. 40
WS ₂	1.94	1.62	2.39	2.09	2.1 32	1.84	1.45	1.4
WSe ₂	1.59	1.28	2.08	1.69	1.7 39	1.57	1.33	1.2
WTe ₂	/	/	/	1.12	1.1 39	1.02	0.84	/

?1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 在 ISEC00730C 们身力法下得到的半层, 双层到体相 WS2、WSE2 和 W IE2 初科的能带图 Fig. 1 Calculated band structures of monolayer, bilayer, and bulk WS2, WSe2 and WTe2 by HSE06 + SOC.

大,分别是 0.84、1.02 和 1.12 eV,其吸光主要在 近红外区。纵向来看,随着硫族元素自上而下周期 不断增大,WS₂、WSe₂和 WTe₂的能带带隙不断减 小。因此,通过替换不同的非金属可以有效地调控 材料性质,实现从可见光到近红外光的全光谱吸 收。

WS₂/WSe₂、WS₂/WTe₂和 WSe₂/WTe₂的 结构和性质

为了进一步调控 WX2 材料的电子结构,本文 WS2、WSe2 和 WTe2 单层材料通过两两组合构建 三种不同的范德华异质结构,它们分别是 WS2/WSe2、WS2/WTe2 和 WSe2/WTe2。图2给出 WS2/WSe2 异质结构的四种堆垛方式结构示意图。 我们对其进行了结构优化和能量计算,发现四种 模型能量相近,故本文后续计算采用了其中一种 较易构建的 T 型堆垛方式。三种单层材料以及 WS₂/WSe₂、WS₂/WTe₂和WSe₂/WTe₂三种异质结构优化后的晶格参数归纳在表 2 当中,相应的异

表 2 三种单层材料以及 WS₂/WSe₂、WS₂/WTe₂和 WSe₂/WTe₂ 异质结构的晶格参数、层间距离和晶格失配度 Table 2 Optimized interlayer distances lattice constants (in unit of nm), mismatch and of three monolayers, and WS₂/WSe₂, WSe₂/WTe₂ and WSe₂/WTe₂ heterostructures,

PAC	nn	oti	TTO I	3.7
1 63	DC	ւս	VC	I V .
	r -			

	<i>d</i> /nm	a/nm	<i>b</i> /nm	c/nm	Mismatch
WS_2	\	0.32	0.32	2	\
WSe ₂	\	0.33	0.33	2	\
WTe ₂	\	0.35	0.35	2	\
WS ₂ /WSe ₂	0.31	0.32	0.32	3	5%
WS ₂ /WTe ₂	0.31	0.33	0.33	3	2%
WSe ₂ /WTe ₂	0.32	0.34	0.34	3	3%

Blue, yellow and brown balls donate W, S and Se atoms, respectively. Color online.

质结晶格失配度(≤5%)也一并给出。另外,从表2 中可以看到三种异质结构的层间距离分别为 0.31、0.31 和 0.32 nm,均处于范德华相互作用范 畴。WSe2/WTe2 异质结拥有最大的层间距离(0.32 nm)。众所周知,结构决定性质,本文随即计算了 这三种不同异质结的态密度和能带结构图,结果 见图 3。图 3a 给出了 WS₂/WSe₂ 异质结构的态密 度和分态密度图,其价带主要是由 WSe2 中的 W 原子的 $d_{x^2-y^2}$ 轨道组成, 而导带主要是 WS₂ 中 W 原 子的 dz 轨道贡献。如此一来,在光照激发下,电 子会从 WSe2 原子层转移到 WS2 原子层,实现电 子的空间转移和激子的有效分离。接下来,从 WS2/WSe2异质结构的能带结构图上(图 3b)可以看 出,WS₂/WSe₂异质结构是在K点处具有直接跃迁 特性的半导体材料,其能带带隙为1.10 eV。相较 单层的 WS₂ (2.09 eV)、WSe₂ (1.69 eV), 异质结构 的能隙降低,说明组合后的 WS₂/WSe₂ 异质结构中 有着明显不同于体相的性质。

相似地,本文还计算了 WS₂/WTe₂,WSe₂/WTe₂ 范德华异质结构的态密度图和能带结构图,结果 见图 3c-f,通过对态密度图和分态密度图以及轨 道 密 度 图 的 分 析 可 以 看 出 , WS₂/WTe₂ 和 WSe₂/WTe₂ 均具有典型的 type-II 能带结构。和 WS₂/WSe₂类似,WS₂/WTe₂和 WSe₂/WTe₂的价带 顶同样地是 WTe₂中的 W 原子的 *d_{x²-y²*页献,导带} 部分别由 WS₂和 WSe₂的 W 原子的 d_{z^2} 组成。 WS₂/WTe₂和 WSe₂/WTe₂都是直接带隙半导体,能 带带隙大小分别是 0.32和 0.61 eV。为了更直观的 反应导带底和价带顶轨道的分布,文中给出上述 三种异质结构的导带底和价带顶的部分电荷密 度,见图 4。以 WS₂/WSe₂为例,价带顶处的电荷 密度主要分布在上层的 WSe₂中,而导带底的电荷 密度图主要分布在下层 WS₂中,这也表明了光激 发可以有效实现 electron-hole 的空间分离,提高装 置的性能。WS₂/WTe₂和 WSe₂/WTe₂异质结构也都 有着相似的载流子空间分离能力。

为了方便对比,图中还给出了对应的单层结构的吸收谱图。从图 5 可以看出,三种异质结构的吸收光谱相较于对应的单层材料都有着一定程度的红移现象,尤其是 WSe₂/WTe₂ 异质结构最为明显,这也和上文能带结构的结果相一致。这也说明 WSe₂/WTe₂ 的结构相较于单层 WSe₂和 WTe₂有着明显的变化。另外,对于 WSe₂/WTe₂ 异质结构,由于不同组分的性质相互叠加,其在可见光区有很好的吸收。相似地,WS₂/WSe₂和 WS₂/WTe₂ 异质结的吸收光谱也有很大的增强。

众所周知,载流子有效质量是描述材料特性的一个重要物理量。本文还给出了WS₂/WSe₂、WS₂/WTe₂和WSe₂/WTe₂三种范德华异质结构的有效载流子质量,如表3所示。通常来说,有效质

图 4 (a) WS₂/WSe₂、(b) WS₂/WTe₂、(c) WSe₂/WTe₂ 异质结构的价带顶(VBM)和导带底(CBM)的局域电荷密度图 Fig. 4 Partial charge densities of valence band maximum (VBM) and conduction band minimum (CBM) of (a) WS₂/WSe₂, (b) WSe₂/WTe₂, (c) WSe₂/WTe₂ vdW heterostructures.

Here W, S and Te are in gray, yellow and brown, respectively.

量越小越有利于电子或者空穴的迁移。通过结果 可以得出三种异质结构在K点处沿着K-M方向相 比K-G方向有着较小的空穴有效质量,表明空穴 更倾向于沿着K-M方向迁移。有趣的是,三种异 质结构的在K点处沿着K-G方向相比较沿着K-M 方向有着较小的电子有效质量,这说明电子在 导带中更容易沿着K-G方向迁移。导带和价带上 电子和空穴在不同的方向上的迁移,进一步实现 了激子的空间分离,提高了在器件中的光电转化 效率。

表 3 WS₂/WSe₂、WS₂/WTe₂、WSe₂/WTe₂ 三种异质 结构在 K 点处的有效电子质量

 Table 3
 Effective mass of WS₂/WSe₂, WS₂/WTe₂ and

 WSe₂/WTe₂ heterostructures at K point.

	١	VBM		CBM		
	$m_{K \to M}$	$m_{K \to G}$	$m_{K \to M}$	$m_{K \to G}$		
WS ₂ /WSe ₂	0.051	2.73	0.45	0.43		
WS ₂ /WTe ₂	0.00024	5.96	0.75	0.40		
WSe ₂ /WTe ₂	0.0017	5.96	0.75	0.40		

3.3 外加应力对 WS₂/WSe₂、WS₂/WTe₂和 WSe₂/WTe₂能带结构的影响

应力应变也是调控电子结构性质的重要手段 之一。因此,本文还系统地研究了应力应变对 WS₂/WSe₂、WS₂/WTe₂和WSe₂/WTe₂三种范德华 异质结构的能带结构的影响。施加的应力大小的 变化范围从-10%增加到+10%。对于应力的方向本 文采用了3种情况,分别是沿着晶格 *a* 方向进行 拉伸或压缩(记作 strain-*a*%)、沿着晶格 *b* 方向拉 伸或压缩(记作 strain-*b*%)和 *ab* 双轴共同伸缩(记 作 biaxial-*ab*%)。

本文首先探究了应力应变对 WS₂/WSe₂ 异质 结构的性质的影响。文章提取不同应力下材料的 最高对称点及其对应的能级位置对不同应力进行 作图,如图 6 所示。WS₂/WSe₂ 异质结构沿着 *a* 或 者 *b* 方向做单轴拉伸时,其都是直接带隙半导体, 且带隙随着拉伸程度增大而不断减小。与之相反, 若沿着 *a* 或者 *b* 做单轴压缩,其会从直接带隙转 变成间接带隙,主要都是从 *K* 到 *T* 点处的跃迁, 同时带隙会先增大后减小。若对 *ab* 方向同时进行 双轴拉伸时,当拉伸力应力> 4%的时候,其会发 生从半导体到金属性质的转变。以拉伸力为 6%和

图 6 WS₂/WSe₂ 的导带底和价带顶的能级位置在单轴 a 方向、单轴 b 方向和双轴 ab 方向上随着应力变化的示意图 Fig. 6 Schematic diagram of the energy levels of CBM and VBM of WS₂/WSe₂ varied with the strains along with uniaxial-a, uniaxial-b and biaxial-ab directions.

8%的情况为例,双轴拉伸力为 6%和 8%时,能带 结构如图 7 所示,此时其能带结构已经显示其为 无带隙且具有金属性,此时已经没有严格意义上 的 VBM 和 CBM 的概念。这也说明应力大小和方

向会对 WS₂/WSe₂ 异质结构的电子结构性质产生 不同的影响。

相似地,本文用同样的方式研究了在同样方向,施加同等间隔大小的拉伸或者压缩力对WS₂/WTe₂和WSe₂/WTe₂异质结构的影响,观察其能带结构中导带底和价带顶的能级位置随着应力应变的改变,分别见图 8 和图 9。

在图 8 中, WS₂/WTe₂ 异质结构中无论在 a 轴 方向上施加拉伸还是压缩,若应力小于等于 2% 时,能带间隙值都将增大,并且都是直接带隙。当 拉伸和压缩的应力大于 2%时,其会出现直接跃迁 到间接跃迁的转变。特别地是,当应力大于 4%时, WS₂/WTe₂ 异质结构将从半导体性质变成金属性 质(能带结构类似于图 7)。同样地,这种半导体变 金属特性也会发生在 b 轴和 ab 轴拉伸方向。在 b 轴方向,随着施加 b 轴的压缩力不断增大,带隙 增大后迅速较小。当应力小于-2%的时候,跃迁方 式由直接变间接的。在 ab 轴压缩力方向有着同样 的趋势。

在图 9 中, WSe₂/WTe₂ 异质结构在 *a* 轴方向 施加拉伸,能带带隙值先增后减小,在 0-6%拉伸

图 9 WSe₂/WTe₂ 导带底和价带顶的能级位置在单轴 a 方向、单轴 b 方向和双轴 ab 方向上随着应力变化的示意图 Fig. 9 Schematic diagram of the energy levels of CBM and VBM of WSe₂/WTe₂ varied with the strains along with uniaxial-a, uniaxial-b and biaxial-ab directions.

力中跃迁方式仍保持直接间隙,8%-10%转变为间 隙跃迁。在 b 轴在压缩力方向能带值迅速陡增后 迅速减小,8%之后能带间隙消失,

直接变间接跃迁。在 b 轴施加拉伸力后能带 带隙先微弱减小后再增大,跃迁方式一直保持在K 点电子直接跃迁方式。在 b 轴施加压缩后能带值 先增后减小,且价带顶和导带底大幅度降低。而在 对 ab 双轴施加压力,无论是拉伸力或者压缩力在 压力大于4%之后,异质结构由半导体变成金属(能 带结构类似于图 7),在施加拉伸力中能带间隙值 变大,电子仍保留在K点直接跃迁方式。

4 结论

本文通过第一性原理计算,首先系统研究了 泛函、自旋轨道耦合和材料层数对WS₂、WSe₂和 WTe₂材料性质的影响。计算结果发现,SOC对单 层WX₂体系的性质有着很明显的影响,而且这种 效果不可忽略,同时,PBE泛函会低估体系的能带 带隙而HSE06会高估能带值,HSE06+SOC可以给 出准确的能带带隙。因此,对WX₂体系来说, HSE06+SOC是可靠的。

随后,本文利用HSE06+SOC计算方案研究了 WS₂/WSe₂、WS₂/WTe₂和WSe₂/WTe₂三种范德华异 质结构的几何结构和性质。通过计算发现, 三种异 质结构均是直接带隙半导体, 且能带带隙分别是 1.10、0.32和0.61 eV; 三种异质结构均具有Type-II 型能带结构, 在光激发后, 载流子可以在空间上有 效的分离, 加上三种材料的载流子有效质量都比 较小, 也预示着分离后的电子或者空穴可以更快 的迁移, 减小激子复合, 提高材料的光电转化效 率。

最后,通过研究应力应变对三种范德华异质结构WS₂/WSe₂、WS₂/WTe₂和WSe₂/WTe₂的能带结构的影响,发现通过改变应力的大小、方向可以实现三种异质结构的能带带隙调控,包括产生从半导体到金属、直隙到间隙的转变。

希望本文的工作可以给材料的实验设计以及 应用提供一些借鉴。

References

- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2012, 6, 74. doi: 10.1021/nn2024557
- (2) Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917. doi: 10.1002/adma.201503270
- (3) Arul, N. S.; Han, J. I. Mater. Lett. 2016, 181, 345.
 doi: 10.1016/j.matlet.2016.06.065
- (4) Sun, Z.; Martinez, A.; Wang, F. Nat. Photonics 2016, 10, 227. doi: 10.1038/nphoton.2016.15
- (5) Xia, F.; Wang, H.; Xiao, D.; Dubey, M. Nat. Photonics 2014, 8, 899. doi: 10.1038/nphoton.2014.271
- (6) Gupta, A.; Sakthivel, T.; Seal, S. Prog. Mater. Sci. 2015, 73, 44. doi: 10.1016/j.pmatsci.2015.02.002
- Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M.
 S. *Nat Nanotechnol.* 2012, 7, 699. doi: 10.1038/nnano.2012.193
- (8) Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.;
 Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V.; *et al. ACS Nano* 2015, *9*, 11509. doi: 10.1021/acsnano.5b05556
- (9) Huo, N.; Kang, J.; Wei, Z.; Li, S. S.; Li, J.; Wei, S. H. Adv. Funct. Mater. 2014, 24, 7025. doi: 10.1002/adfm.201401504
- (10) Choudhary, N.; Park, J.; Hwang, J. Y.; Chung, H. S.; Dumas, K. H.;
 Khondaker, S. I.; Choi, W.; Jung, Y. *Sci. Rep.* 2016, *6*, 25456.
 doi: 10.1038/srep25456
- (11) Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2013, 8, 952. doi: 10.1038/nnano.2013.219
- (12) Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. ACS Nano 2014, 8, 12717. doi: 10.1021/nn505736z
- (13) Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater.

2014, 13, 1096. doi: 10.1038/nmat4064

- (14) Zhang, K.; Zhang, T.; Cheng, G.; Li, T.; Wang, S.; Wei, W.; Zhou,
 X.; Yu, W.; Sun, Y.; Wang, P.; *et al. ACS Nano* 2016, *10*, 3852.
 doi: 10.1021/acsnano.6b00980
- (15) Zhang, W.; Wang, Q.; Chen, Y.; Wang, Z.; Andrew, T. S. W. 2D Mater. 2016, 3, 022001. doi: 10.1088/2053-1583/3/2/022001
- Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; *et al. Science* **2013**, *340*, 1311. doi: 10.1126/science.1235547
- (17) Chen, Y.; Wang, X.; Wu, G.; Wang, Z.; Fang, H.; Lin, T.; Sun, S.;
 Shen, H.; Hu, W.; Wang, J.; *et al. Small* **2018**, *14*, 1703293.
 doi: 10.1002/smll.201703293
- (18) Mak, K. F.; Shan, J. Nat. Photonics 2016, 10, 216. doi: 10.1038/nphoton.2015.282
- (19) Chen, Y.; Xi, J.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.;
 Shuai, Z.; Huang, Y. S.; Xie, L. ACS Nano 2013, 7, 4610.
 doi: 10.1021/nn401420h
- Johari, P.; Shenoy, V. B. ACS Nano 2012, 6, 5449.
 doi: 10.1021/nn301320r
- (21) Kang, J.; Li, J.; Li, S. S.; Xia, J. B.; Wang, L. W. Nano Lett. 2013, 13, 5485. doi: 10.1021/nl4030648
- (22) Rathi, S.; Lee, I.; Lim, D.; Wang, J.; Ochiai, Y.; Aoki, N.; Watanabe,
 K.; Taniguchi, T.; Lee, G. H.; Yu, Y. J.; *et al. Nano Lett.* 2015, *15*, 5017. doi: 10.1021/acs.nanolett.5b01030
- (23) Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.;
 Vajtai, R.; Yakobson, B. I.; *et al. Nat. Mater.* 2014, *13*, 1135.
 doi: 10.1038/nmat4091
- (24) Zeng, Q.; Wang, H.; Fu, W.; Gong, Y.; Zhou, W.; Ajayan, P. M.;
 Lou, J.; Liu, Z. Small 2014, 11, 1868.
 doi: 10.1002/smll.201402380
- (25) Kou, L.; Frauenheim, T.; Chen, C. J. Phys. Chem. Lett. 2013, 4, 1730. doi: 10.1021/jz400668d
- (26) Zhang, C.; Chuu, C. P.; Ren, X.; Li, M. Y.; Li, L. J.; Jin, C.; Chou,

M. Y.; Shih, C. K. *Sci. Adv.* **2017**, *3*, 1. doi: 10.1126/sciadv.1601459

- (27) Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W. N.; Wu, X.; Zeng,
 X. C. *Nanoscale* 2014, *6*, 2879. doi: 10.1039/C3NR06072A
- (28) Zhang, C.; Li, M. Y.; Tersoff, J.; Han, Y.; Su, Y.; Li, L. J.; Muller, D. A.; Shih, C. K. *Nat. Nano* 2018, *13*, 152.
 doi: 10.1038/s41565-017-0022-x
- (29) Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. *Solid State Commun.* 2000, *114*, 245. doi: 10.1016/S0038-1098(00)00047-8
- (30) Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv,
 R.; Feng, S. L.; Aaron, D.; Hayashi, T; Kim, Y. A.; Endo, M.; *et al.* ACS Nano 2013, 7, 5235. doi: 10.1021/nn400971k
- (31) Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. *IEEE Trans. Elec. Dev.* **2011**, *58*, 3042. doi: 10.1109/TED.2011.2159221
- (32) Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. *Phys. Rev. B* 2011, 84, 15. doi: 10.1103/PhysRevB.84.153402
- (33) Xiao, D.; Liu, G. B.; Feng, W.; Xu, X.; Yao, W. *Phys. Rev. Lett.* **2012**, *108*, 196802. doi: 10.1103/PhysRevLett.108.196802
- (34) Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Nano Lett. 2017, 17, 644. doi: 10.1021/acs.nanolett.6b03513
- (35) Horri, A.; Faez, R.; Pourfath, M.; Darvish, G. J. Appl. Phys. 2017, 121, 214503. doi: 10.1063/1.4984145
- (36) Jeong, H. Y.; Jin, Y.; Yun, S. J.; Zhao, J.; Baik, J.; Keum, D. H.; Lee,
 H. S.; Lee, Y. H. Adv. Mater. 2017, 29, 1. doi: 10.1063/1.49841451
- (37) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060
- (38) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
- Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J.; Sangwan, V. K.;
 Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Nano Lett. 2016, 16, 497. doi: 10.1021/acs.nanolett.5b04141
- (40) Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. Phys. B: Condens. Matter 2011, 406, 2254. doi: 10.1016/j.physb.2011.03.044