

Chinese Journal of Organic Chemistry

NOTE

新型膦胺配体羰基钌化合物的合成及催化性能研究

方霄龙 ", b 章 敏 "段 宁 " 汪 新*, a 朱红平*, b

("池州学院化学与材料工程学院 微纳粉体与先进能源材料安徽普通高校重点实验室 池州 247000) (⁶厦门大学化学化工学院 固体表面物理化学国家重点实验室 醇醚酯清洁生产国家工程实验室 厦门 361005)

摘要 以十二羰基三钌和 o-PPh₂C₆H₄NR₂ (R = H, Me)配体为原料,成功地制备出三种新型羰基钌化合物 (µo-PPh₂C₆H₄NH)Ru₃(µH)(CO)₉ (2)、(o-PPh₂C₆H₄NH)₂Ru(CO)₂ (3)和(µo-PPh₂C₆H₄NMe₂)₂Ru(CO)₃ (4).对这三个化合 物进行了核磁共振和红外谱学、元素分析和 X-射线单晶衍射分析表征,并对这三个化合物进行了催化性能研究.化合 物 2 和 4 可催化苯甲醛加氢反应生成苯甲醇,但是 3 没有催化活性.该研究从实验角度阐述了膦胺配体钌催化剂的结 构与性能关联,并进一步探讨了加氢催化反应失活的可能原因.这些结果对后续催化剂的设计提供一定的理论指导. 关键词 膦胺配体羰基钌化合物;合成与表征;催化加氢;结构与性能;失活

Study on Synthesis and Catalytic Property of New Aminophosphino Ruthenium Carbonyl Complexes

Fang, Xiaolong^{a,b} Zhang, Min^a Duan, Ning^a Wang, Xin^{*,a} Zhu, Hongping^{*,b}

(^a Key Laboratory of Micro-Nano Powder and Advanced Energy Materials of Anhui Higher Education Institutes, College of Chemistry and Materials Engineering, Chizhou University, Chizhou, 247000)

(^b State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols–Ethers–Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005)

Abstract New carbonyl ruthenium complexes (μ -o-PPh₂C₆H₄NH)Ru₃(μ -H)(CO)₉ (**2**), (o-PPh₂C₆H₄NH)₂Ru(CO)₂ (**3**) and (μ -o-PPh₂C₆H₄NMe₂)₂Ru(CO)₃ (**4**) have been successfully synthesized by using ruthenium carbonyl and o-PPh₂C₆H₄NR₂ (R = H, Me) ligand. These three complexes have all been characterized by NMR and IR spectroscopy, elemental analysis and X-ray crystallography. Complexes **2** and **4** could catalyze the hydrogenation of benzaldehyde into benzyl alcohol. However, complex **3** showed no activity. This study reveals a correlation between the structure and the catalytic property, where the possible deactivation mode for the hydrogenation reaction using the aminophosphino ruthenium catalyst is discussed in view of the experimental work. These results may offer an understanding on designation of the useful catalysts.

Keywords aminophosphino ruthenium carbonyl; synthesis and characterization; catalytic hydrogenation; structure and property; deactivation

在过渡金属化合物均相催化加氢反应中,由于 H₂分子的活化方式差异,目前基本上认为有两类反应机理,分别 是金属-配体协同作用下的"金属配体双功能机理"(metal-ligand bifunctional mechanism)和金属中心作用下的"内核 加氢机理"(inner-sphere hydrogenation mechanism)^[1]. 以含氮配体金属 Ru 化合物的催化反应为例, H₂分子易于与 Ru–NH 结构单元作用转化生成 H₂N→RuH^[2](或基于吡啶亚甲基配体的芳构化-去芳构化过程, ligand aromatization-dearomatization process^[3]). 在该反应中, H₂分子发生的是异裂反应,其中金属 Ru 的价态不发生变化;

^{*} Corresponding authors. E-mail: wangxin164@sina.com; hpzhu@xmu.edu.cn

Received June 18, 2019; revised August 22, 2019; published online September 13, 2019.

Project supported by the Natural Science Foundation of China (No. 21802010, 21673191), the Natural Science Foundation of Anhui Province (No. 1808085QB48), and the Starting Grants for Young Teachers of Chizhou University (No. 2018YJRC001).

国家自然科学基金(No. 21802010, 21673191)、安徽省自然科学基金(No. 1808085QB48)及池州学院青年教师科研启动基金(No. 2018YJRC001)资助项目.

图 1 钉化合物均相催化加氢的两种可能反应机理 Figure 1 Two proposed reaction mechanisms for homogeneous hydrogenation catalyzed by the Ru complex

生成的 H₂N→RuH 官能团用于催化反应时, Ru-H 与 N-H 分别与底物分子通过协同的亲核和亲电作用形成"六元环" 过渡态,并在 Ru←N 配位键和 Ru-N 共价键的转换过程中引发 Ru-H 和 N-H 对底物分子中的 C=O 键 H⁻/H⁺加成,实 现催化加氢(图 1a). 这是典型的"金属配体双功能机理".第二种"内核加氢机理"是金属 Ru 通过氧化加成反应生 成 RuH₂^[4]. 在该反应中, H₂分子均裂生成两个钌金属氢,其中金属中心的价态由 0 价变为+2 价. 在催化反应过程中, 一个金属氢首先与底物分子的 C=O 键进行加成反应,生成的中间体基团进一步与另一个金属氢发生还原消除反应, 生成产物分子(图 1b).

近年来,我们课题组围绕 o-PPh₂C₆H₄NHR (R = H, Me, Et, CH₂Ph)配体,合成了系列不同结构的 o-PPh₂C₆H₄NHR-Ru 配合物催化剂,并成功地应用于均相催化加氢反应^[5].围绕催化活性物种[如化合物 (o-PPh₂C₆H₄NH₂)(o-PPh₂C₆H₄NH)RuH(CO) (1)等],我们也成功地开展了相关的动力学以及密度泛函理论计算研究. 结果证实了 Ru-H与 N-H 的协同作用过程^[5a,5b]. 2018年,我们进一步以乙酰丙酮钌和 o-PPh₂C₆H₄NH₂配体组成催化剂 体系,应用于丙二酸二甲酯加氢制 3-羟基丙酸甲酯的催化反应研究^[6]. 有趣的是,我们发现溶剂对催化活性有显著 的影响.在相同反应条件下,采用甲醇-四氢呋喃混合溶剂(体积比为 2 : 8)与仅采用甲醇作为溶剂相比,丙二酸二甲 酯转化率以及 3-羟基丙酸甲酯收率分别由 55%和 45%提升到 86%和 75%.这一结果表明采用混合溶剂可有效减缓反 应过程中催化剂的失活速率,推测 THF 是一种良好的电子给体,其引入一定程度上稳定金属活性中心,并降低了甲醇分解产生 CO 毒化催化剂的进程.在本文研究中,我们采用 Ru₃(CO)₁₂与 o-PPh₂C₆H₄NR₂ (R = H, Me)配体反应,成 功地合成了 3种具有不同结构特征的羰基钌配合物 2-4,并初步考察了它们催化加氢的反应活性.实验结果直观地展示了 Ru-NH 催化剂的作用原理,我们也探讨了催化反应的失活机制.

1 结果与讨论

钌配合物 2-4 的合成过程如图 2 所示. Ru₃(CO)₁₂与一倍当量 *o*-PPh₂C₆H₄NH₂ 配体的甲苯溶液在 60 ℃ 条件下反 应 24 h,可以制备得到化合物(μ-*o*-PPh₂C₆H₄NH)Ru₃(μ-H)(CO)₉ (2);以 2 为原料进一步与 5 倍当量 *o*-PPh₂C₆H₄NH₂ 配

图 2 钉化合物 1 的结构和钉化合物 2-4 的合成 Figure 2 The structure of ruthenium complex 1 and synthesis of ruthenium complexes 2-4

Chinese Journal of Organic Chemistry

Most hydrogen atoms have been omitted for clarity

图 3 配合物 2-4 的单晶结构图 Figure 3 X-ray crystal structure of complex 2-4

体在甲苯溶液中于 100 ℃ 反应 12 h,则生成化合物(*o*-PPh₂C₆H₄NH)₂Ru(CO)₂ (**3**). 值得注意的是,Ru₃(CO)₁₂与六倍当 量的 *o*-PPh₂C₆H₄NH₂ 配体在甲苯溶液中反应也可以制备得到化合物 **3**. 采用甲基取代的 *o*-PPh₂C₆H₄NMe₂ 配体与 Ru₃(CO)₁₂反应,我们仅能制备得到化合物(μ-*o*-PPh₂C₆H₄NMe₂)₂Ru(CO)₃ (**4**).

我们分别对化合物 2-4 开展了核磁共振和红外谱学以及 X-射线单晶衍射等结构表征,确定了化合物的分子构型. X-射线结构解析表明化合物 2 是一个三核 Ru 簇合物(图 3a),每个 Ru 处于不同的配位结构. Ru(3)与四个 CO 分子键 联,也同时与 Ru(1)和 Ru(2)键联;Ru(2)在键联三个 CO 分子的同时,也键接一个 H 原子、膦胺配体中的 N 原子以 及 Ru(3)和 Ru(1);Ru(1)则与两个 CO 分子、一个 H 原子、膦胺配体中的 N 和 P 原子以及 Ru(2)和 Ru(1)键联. Ru(1)-Ru(2)、Ru(1)-Ru(3)和 Ru(2)-Ru(3)的键长分别是 2.7673(2)、2.8264(2)和 2.8296(2) Å,这些键长与 Ru₃(CO)₁₂ 中的相当(2.837-2.859 Å)^[7],表明 Ru(1)、Ru(2)、Ru(3)之间存在着金属-金属键作用,其中 Ru(1)与 Ru(2)的作用较强. Ru(1)-H(1)和 Ru(2)-H(1)的键长都是 1.85(3) Å,这表明形成的是 μ-H 桥键.进一步考察发现 N(1)原子含有一个氢质 子.这可以推断桥 μ-H 原子来自于膦胺配体原料,显然中性的膦胺配体与 Ru₃(CO)₁₂发生了氧化还原反应^[8].在¹H NMR 谱图中,化学位移位于-13.20 ppm 处的三重峰为 μ-H 的共振吸收;6.16 ppm 处的单峰为 NH 的共振吸收;化学 位移处于 6.56-7.73 ppm 的多重峰为苯环质子氢的共振吸收 (图 S2),上述三组峰积分比值为1:1:14,与相应的质子 组成数目吻合.化合物 2 的 ³¹P{¹H} NMR 谱仅在化学位移 50.08 ppm 处显示一个单峰(图 S3),说明该化合物呈谱学 纯,并且结构中仅含一种化学环境的 P 原子.¹³C{¹H} NMR 谱在 171.66-213.34 ppm 呈现 9 个羰基碳的共振吸收峰(图 S4),与晶体结构中所含 CO 数目一致,表明每个 CO 分子处于不同的配位环境.

化合物3的单晶结构如图3b所示.可以看出,Ru金属中心配位有两个羰基分子和两个[*o*-PPh₂C₆H₄NH]⁻,Ru与后者呈N,P双齿螯合配位,形成稳定的RuNPC₂配位五元环结构.Ru中心的配位数为6,显现典型的八面体配位几何构型;两个CO分子处于Ru中心的顺式配位,类似的是两个NH配位基,但是两个*o*-PPh₂基处于反式配位.由此可以看出,2与*o*-PPh₂C₆H₄NH₂配体进一步发生了氧化还原反应,有可能生成的两个H⁻发生还原消除形成H₂,从体系中释放出来.化合物3也可以直接由Ru₃(CO)₁₂与*o*-PPh₂C₆H₄NH₂反应制得.这可以推断化合物2是生成3的中间体.实验结果也显示如此(图S1).在该化合物中,Ru中心显示+2氧化态.¹H和³¹P{¹H} NMR 谱分别在2.24 ppm 处显示出 NH的共振吸收峰以及 51.19 ppm 处显示出 PPh₂的共振吸收峰,说明在溶液中3以高度对称的分子构型存在(图S6 & S7).

图 3c 为化合物 4 的单晶结构图. 在分子结构中, *o*-PPh₂C₆H₄NMe₂ 配体仅采用 *o*-PPh₂与金属 Ru 配位, 这一配位 方式与 *o*-PPh₂C₆H₄NH₂ 配体截然不同, 类似的实验现象文献已有报道^[9]. 这一现象出现的原因可能是由于 NMe₂ 官能

Table 1 The catalytic performance of complexes 1-4 in hydrogenation of benzaldehyde into benzyl alcohol			
Entry	Ru complex	PhCHO Conv. / %	PhCH ₂ OH Yield / %
1	1	100	99
2	2	49	48
3	3	0	-
4	4	27	24
5	Ru ₃ (CO) ₁₂	49	48

表1 配合物 1-4 催化苯甲醛加氢制苯甲醇的反应活性"

^a Reaction conditions: Benzaldehyde (0.5 mmol), Ru (1 mol%), THF (2 mL), Temp. = 100 °C, $P_{(H2)} = 5.0$ MPa, Time = 4 h.

团空间位阻较大且与 Ru(0)键合能力较弱, 难以取代 CO 形成 RuNPC₂ 五元环结构^[9-10]. X-射线衍射数据显示, 晶态条 件下分子结构中∠P(1)-Ru(1)-P(2)等于 178.14°, 接近直线; 赤道面三个 CO 分子以近平面型与金属中心配位 (∠C(1)-Ru(1)-C(2) = 116.70°, ∠C(1)-Ru(1)-C(3) = 124.42°, ∠C(2)-Ru(1)-C(3) = 118.93°); 并且, P(1)–Ru(1)键(或 P(2)–Ru(1)键)基本与赤道面垂直. ¹H 和 ³¹P{¹H} NMR 谱检测结果显示, 在溶液中 4 以高度对称的分子构型存在(图 S10 & S11). ¹³C{¹H} NMR 谱在 45.54 ppm 处显示 NMe₂ 的核磁信号. 这进一步验证了这一结果(图 S12).

我们以催化苯甲醛加氢制苯甲醇作为模型反应,在 100 ℃、初始 H₂ 压力 5.0 MPa、反应时间 4 h 以及 Ru 配合物 用量为 1 mol%等反应条件下,考察了化合物 1-4 的催化加氢性能.如表 1 所示,催化剂 1 在该反应条件下实现了 100%的苯甲醛转化,苯甲醇收率高达 99% (Entry 1).化合物 2 的催化活性与 Ru₃(CO)₁₂相当,取得了 49%的苯甲醛转 化率和 48%的苯甲醇收率(Entries 2 & 5,表1).值得注意的是,化合物 3 的结构与 1 相当;然而,3 没有催化活性(Entry 3,表 1).如 Entry 4 所示,化合物 4 在该反应条件下也表现出了一定的催化加氢活性(苯甲醛转化率为 27%,苯甲醇 收率为 24%).

如前文所述,含Ru-NH功能结构的催化剂在反应过程中显示Ru-H与N-H良好的协同作用^[2c,5a].化合物1可以同时提供Ru-H与N-H,因而能有效催化酯类分子加氢^[5a].在本文活性测试中,化合物1取得了近乎定量的苯甲醇收率.对比化合物2与1结构可以看出,反应过程中2难以提供有效的N-H,但2有可能基于"内核加氢机理"参与催化加氢反应,即结构中Ru-Ru键断裂生成配位空位,并用以活化H₂分子产生RuH₂活性物种,因此表现出一定的催化活性^[11].Ru₃(CO)₁₂以及由*o*-PPh₂C₆H₄NMe₂配体构成的化合物4在反应条件下均表现出一定催化加氢活性,该实验结果有力验证了这一推测.

化合物3与1在催化性能上有显著差异,这可以有效解释 Ru-NH 催化剂在羰基衍生物分子催化加氢过程中的失活问题.化合物3与1在结构上存在的差异较小,可近似看成1结构中钌金属氢被羰基取代而成.从表1结果可以看出,钌金属氢被取代直接导致催化剂活性的完全丧失,说明催化剂中 Ru 中心的活性基团 H⁻对催化性能有着决定性的影响.化合物 3 没有催化活性,原因应该是金属中心不含有 H⁻,且处于+2 价的 Ru 也无法进一步通过反应形成H^{-[5a]}.这一结果有效验证了我们在前期研究中提出的想法,即反应体系中甲醇分解产生 CO 并配位于金属中心,导致 Ru 中心无法进一步生成活性基团 H⁻,因而造成催化剂中毒失活^[6].因此,可以认为在反应体系中,低碳醇分子发生脱羰基反应是导致 Ru-NH 功能结构催化剂中毒失活的原因之一^[12].

2 结论

本文以 Ru₃(CO)₁₂和 o-PPh₂C₆H₄NR₂配体(R = H, Me)为原料,成功地合成了羰基钌配合物 2-4,并采用核磁和红 外谱学、X-射线单晶衍射等测试技术对化合物进行了表征.催化苯甲醛加氢的活性测试表明,化合物 1 通过"金属 配体双功能机理"显示优良催化加氢性能;化合物 2 和 4 可通过"内核加氢机理"参与催化加氢;化合物 3 没有催 化活性.这些结果表明在 Ru-NH 功能结构催化剂参与的反应体系中,甲醇等低碳醇分子脱羰基生成 CO 是导致催化 剂中毒失活的重要原因之一.本研究有望对进一步开发合成高效的 Ru-NH 功能结构催化剂的设计提供指导.

3 实验部分

3.1 仪器与试剂

甲苯、正己烷以及 THF 等有机溶剂购买自国药集团上海试剂公司; Ru₃(CO)₁₂、合成配体所需原料、苯甲醛、苯 甲醇以及正十二烷等化合物购买自百灵威化学试剂公司. 配体 *o*-PPh₂C₆H₄NH₂ 以及 *o*-PPh₂C₆H₄NMe₂ 参考文献方法 合成^[13].

配合物 2-4 的核磁测试在 Bruker Advance II 500 MHz 上完成,以 CDCl₃或 C₆D₆为氘代溶剂.配合物的晶体学数 据在 Agilent SuperNova X-射线单晶衍射仪上采集.配合物的红外光谱测试以及 C、H、N 元素含量的测定分别在 Nicolet FT-IR 330 型光谱仪和 Thermo Quest Italia SPA EA 1110 型元素分析仪上完成.HRMS 采用 Q-Exactive 型液相 色谱-高分辨质谱联用仪(离子源: ESI)测定.催化剂活性评价采用科幂公司生产的 NSZ25-P4-T3-SS1-SV 型高压反应 釜,体积为 25 mL.反应液采用配备有氢焰离子化检测器(FID)以及 KB-Wax 色谱柱(30 m × 0.32 mm × 0.33 μm)的福 立 GC-9790 型气相色谱仪进行分析.

3.2 实验方法

实验中涉及无水无氧的操作采用标准 Schlenk 技术或在氩气氛手套箱中进行. 有机溶剂甲苯、正己烷以及 THF

等用钠丝预处理后,氮气气氛下用钠钾合金回流后取用. C₆D₆ 在手套箱中用钠钾合金室温搅拌 2 天后过滤使用; CDCl₃用氢化钙室温搅拌 2 天并经氮气气氛下减压蒸馏后置于手套箱中备用. 苯甲醛用氢化钙室温搅拌 2 天后氮气 气氛下蒸馏,储存在手套箱中备用.

钌配合物的活性评价过程如下:首先,在手套箱中配制好钌配合物以及苯甲醛的 THF 溶液,吸入注射器中后转移出手套箱;紧接着,将反应液快速注射进H₂保护的反应釜釜体中,充H₂压力至5 MPa 后,将釜体置于加热装置中按指定条件加热反应;反应完成后,快速冷却釜体并排去釜中剩余的氢气.最后,在反应液中加入一定量正十二烷,混合均匀后用色谱检测.色谱检测所用参数如下: N₂为载气(流速为 25 mL/min);气化室和 FID 检测器温度均为 230 ℃;程序升温过程如下: 50 ℃ 维持 5 min,后以 10 ℃/min 升高温度至 200 ℃ 并维持 10 min.根据所得谱图中产物、原料以及正十二烷的峰面积进行转化率和产率的计算.

配合物(μ_2 -2-PPh₂C₆H₄NH)Ru₃(μ_2 -H)(CO)₉(2)的合成:在氩气氛手套箱中,称取 0.19 g Ru₃(CO)₁₂(0.3 mmol)、0.08 g *o*-PPh₂C₆H₄NH₂(0.3 mmol)于装有 30 mL 甲苯的 100 mL 反应瓶中,密闭后转移出手套箱,并加热至 60 °C.反应 24 h 后,冷却反应液至室温.减压浓缩所得到的棕黄色溶液至约 2 mL 后,加入 5 mL 正己烷,迅速析出棕色沉淀.过滤 收集并用正己烷洗涤生成的沉淀后,减压干燥,得到 0.15 g 配合物 2,产率为 62%.¹H NMR plus ¹H-¹³C HSQC (500 MHz, C₆D₆, 298 k, ppm): δ = -13.20 (d, 1 H, μ_2 -H), 6.16 (s, 1 H, NH), 6.56 (m), 6.80 (m), 6.90 (s), 6.92 (s), 6.95 (m), 7.24 (m), 7.73 (m) (14 H, C₆H₄ and C₆H₅).¹³C {¹H} NMR (125 MHz, C₆D₆, 298 k, ppm): δ = 121.4 (d, J_{PC} = 43.8 Hz), 123.7 (d, J_{PC} = 10.0 Hz), 124.0 (d, J_{PC} = 5.0 Hz), 128.8 (q, J_{PC} = 5.0, 10.0Hz), 130.0 (d, J_{PC} = 2.5 Hz), 130.8 (d, J_{PC} = 2.5 Hz), 131.0 (d, J_{PC} = 11.3 Hz), 132.2 (s), 132.3 (s), 133.0 (d, J_{PC} = 17.5 Hz, CO), 198.8 (s, CO), 200.5 (s, CO), 206.2 (d, J_{PC} = 6.3 Hz, CO), 206.9 (s, CO), 213.3 (s, CO). ³¹P {¹H} NMR (202 MHz, C₆D₆, 298 k, ppm): δ = 50.08 (s). IR (Nujol mull, KBr, cm⁻¹): ν = 1953, 1979, 1994, 2015, 2039, 2078 (CO), 2961 (NH). Anal. Calcd (%) for Ru₃C₂₇H₁₆NPO₉ (M_{r} = 832.7): C 38.94, N 1.68, H 1.94; found: C 38.39, N 1.76, H 1.85. 配合物 2 的单晶是在手套箱中,室温下 2 的甲苯溶液经正已烷缓慢渗透 4 天长成.

配合物(*o*-PPh₂C₆H₄NH)₂Ru(CO)₂ (**3**)的合成:在氩气氛手套箱中,称取 0.19 g Ru₃(CO)₁₂ (0.3 mmol)、0.50 g *o*-PPh₂C₆H₄NH₂ (1.8 mmol)于装有 40 mL 甲苯的 100 mL 反应瓶中{或 0.17 g 配合物 **2** (0.2 mmol)、0.28 g *o*-PPh₂C₆H₄NH₂ (1.0 mmol)}, 密闭后转移出手套箱,并加热至 100 °C.反应 12 h 后,冷却反应液至室温.减压浓缩所 得到的黄色溶液至约 2 mL 后,加入 5 mL 正己烷,析出大量黄色沉淀.过滤收集并用正己烷洗涤生成的沉淀后,减压 干燥,得到 0.50 g 配合物 **3**, 产率为 78% (或 0.35 g 配合物 **3**, 产率为 83%). ¹H NMR plus ¹H-¹³C HSQC (500 MHz, CDCl₃, 298 k, ppm): δ = 2.24 (t, 2 H, N*H*), 6.00 (m), 6.18 (m), 6.82 (t), 6.98 (m), 7.45 (br), 7.53 (br), 7.65 (m), 7.75 (m) (28 H, C₆H₄ and C₆H₅). ¹³C NMR (125 MHz, CDCl₃, 298 k, ppm): δ = 105.2 (d, *J*_{PC} = 6.3 Hz), 128.8 (d, *J*_{PC} = 17.5 Hz), 111.0 (d, *J*_{PC} = 5.0 Hz), 111.0 (d, *J*_{PC} = 5.0 Hz), 111.2 (d, *J*_{PC} = 5.0 Hz), 111.0 (d, *J*_{PC} = 5.0 Hz), 112.7 (s), 129.8 (s), 130.0 (s), 130.4 (d, *J*_{PC} = 7.5 Hz), 132.1 (s), 132.6 (d, *J*_{PC} = 6.3 Hz), 133.0 (d, *J*_{PC} = 5.0 Hz), 133.5 (s), 134.1 (d, *J*_{PC} = 25.0 Hz), 134.3 (d, *J*_{PC} = 25.0 Hz), 169.4 (d, *J*_{PC} = 16.3 Hz) (*C*₆H₄ and *C*₆H₅), 197.0 (d, *J*_{PC} = 10.0 Hz, CO). ³¹P NMR (202 MHz, CDCl₃, 298 k, ppm): δ = 51.19 (s). IR (Nujoi mull, KBr, cm⁻¹): ν = 1964, 2032 (CO), 2960 (NH). Anal. Calcd (%) for RuC₃₈H₃₀N₂P₂O₂ [M+H]⁺: 711.0904, found 711.0913. 配合物 **3** 的单晶是在手套箱中,室温下 **3** 的甲苯溶液经正己烷缓 慢渗透 4 天长成.

配合物(μ_1 -*o*-PPh₂C₆H₄NMe₂)₂Ru(CO)₃ (4)的合成:在氩气氛手套箱中,称取 0.13 g Ru₃(CO)₁₂ (0.2 mmol)、0.37 g *o*-PPh₂C₆H₄NMe₂ (1.2 mmol)于装有 30 mL 甲苯的 100 mL 反应瓶中,密闭后转移出手套箱,并加热至 100 °C.反应 24 h 后,冷却反应液至室温.减压浓缩所得到的黄色溶液至约 2 mL 后,加入 5 mL 正己烷,迅速析出大量乳黄色沉淀.过滤收集并用正己烷洗涤生成的沉淀后,减压干燥,得到 0.35 g 配合物 4,产率为 71%.¹H NMR (500 MHz, C₆D₆, 298 k, ppm): δ = 2.37 (s, 12 H, CH₃), 6.84 (t), 7.03 (m), 7.09 (t), 7.11 (s), 7.16 (s), 7.17 (s), 7.44 (m), 7.91 (m) (28 H, C₆H₄ and C₆H₅).¹³C NMR (125 MHz, C₆D₆, 298 k, ppm): δ = 45.5 (s, CH₃), 125.0 (t, *J*_{PC} = 5.0 Hz), 125.3 (t, *J*_{PC} = 2.5 Hz), 129.2 (s), 131.6 (s), 134.2 (t, *J*_{PC} = 6.3 Hz), 134.9 (t, *J*_{PC} = 25.0 Hz), 137.8 (t, *J*_{PC} = 22.5 Hz), 158.4 (t, *J*_{PC} = 3.8 Hz) (*C*₆H₄ and *C*₆H₅), 209.7 (t, *J*_{PC} = 16.3 Hz, CO).³¹P NMR (202 MHz, C₆D₆, 298 k, ppm): δ = 47.96 (s). IR (Nujol mull, KBr, cm⁻¹): ν = 1878,

1894 (CO). Anal. Calcd (%) for RuC₄₃H₄₀N₂P₂O₃ (*M*_r = 795.8): C 64.89, N 3.52, H 5.07; found: C 64.53, N 3.38, H 5.25. HRMS (ESI) calcd for RuC₄₃H₄₁N₂P₂O₃ [M+H]⁺: 797.1635, found 797.1626. 配合物 4 的单晶是在手套箱中, 在–20 ℃ 条件下 4 的甲苯溶液经正己烷缓慢渗透 2 天长成.

辅助材料(Supporting Information) 配合物 2-4 的核磁谱图以及单晶结构数据(CCDC 1934516-1934518), 这些材料 可以免费从本刊网站(http://sioc-journal.cn/)上下载.

References

- [1] (a) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.
 - (b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
 - (c) Pritchard, J.; Filonenko, G.A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808;
 - (d) Zhang, Y. W.; Chen, Y. L.; Fang, X. L.; Yuan, Y. Z.; Zhu, H. P. Chin. J. Org. Chem. 2017, 37, 2275 (in Chinese).

(张亦伟,陈艺林,方霄龙,袁友珠,朱红平,有机化学,2017,37,2275.)

- [2] (a) Sandoval, C. A.; Ohkuma, T.; Mu ñz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
 (b) Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem. Int. Ed. 2007, 46, 7473.
 (c) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2012, 51, 13041.
 (d) Zhao, B.; Han. Z.; Ding. K. Angew. Chem. Int. Ed. 2013, 52, 4744.
 (e) Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K. H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.
- [3] (a) Zhang, J.; Leitus, G; Ben-David, Y.; Milstein, D. *Angew. Chem. Int. Ed.* 2006, *45*, 1113.
 (b) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. *Nat. Chem.* 2011, *3*, 609.
 (c) Gunanathan, C.; Milstein, D. *Acc. Chem. Res.* 2011, *44*, 588.
 (d) Li, W.; Xie, J. H.; Yuan, M. L.; Zhou, Q. L. *Green Chem.* 2014, *16*, 4081.
- [4] (a) Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A: Chem. 2011, 346, 70.
 (b) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.
- [5] (a) Fang, X.; Zhang, C.; Chen, J.; Zhu, H.; Yuan, Y. *RSC Adv.* 2016, *6*, 45512.
 (b) Fang, X.; Sun, M.; Zheng, J.; Li, B.; Ye, L.; Wang, X.; Cao, Z.; Zhu, H.; Yuan, Y. *Sci. Rep.* 2017, *7*, 3961.
 (c) Fang, X.; Li, B.; Zheng, J.; Wang, X.; Zhu, H.; Yuan, Y. *Dalton Trans.* 2019, *48*, 2290.
- [6] Fang, X.; Duan, N.; Zhang, M.; Zhang, C.; Liu, R.; Zhu, H. P. Chin. J. Org. Chem. 2019, 39, 1450 (in Chinese).
 (方霄龙,段宁,章敏,张春燕,刘睿,朱红平,有机化学, 2019, 39, 1450.)
- [7] Mason, R.; Rae, A. I. M. J. Chem. Soc. A: Inorg., Phys., Theor. 1968, 778.
- [8] (a) Deeming, A. J.; Martin, C. M. Angew. Chem. Int. Ed. 1998, 37, 1691.
 (b) Hanif, K. M.; Hursthouse, M. B.; Kabir, S. E.; Malik, K. M. A.; Rosenberg, E. J. Organomet. Chem. 1999, 580, 60.
 (c) Tan, X.; Li, B.; Xu, S.; Song, H.; Wang, B. Organometallics 2011, 30, 2308.
- [9] Gong, P.; Wu, B.; Liu, S.; Wang, D. Chin. J. Inorg. Chem. 2004, 20, 37 (in Chinese).
 (宫培军, 吴秉芳, 刘树堂, 王丁泽, 无机化学学报, 2004, 20, 37.)
- [10] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
- [11] (a) El-Amouri, H.; Bahsoun, A. A.; Fischer, J.; Osborn, J. A. *Angew. Chem. Int. Ed.* **1987**, *26*, 1169.
 (b) Holland, G. F.; Ellis, D. E.; Tyler, D. R.; Gray, H. B.; Trogler, W. C. *J. Am. Chem. Soc.* **1987**, *109*, 4276.
- [12] (a) Van der Sluys, L. S.; Kubas, G J.; Caulton, K. G *Organometallics* 1991, *10*, 1033.
 (b) Chen, Y. Z.; Chan, W. C.; Lau, C. P.; Chu, H. S.; Lee, H. L.; Jia, G *Organometallics* 1997, *16*, 1241.
- [13] (a) Herd, O.; He ßler, A.; Hingst, M.; Tepper, M.Stelzer, O. *J. Organomet. Chem.* **1996**, *522*, 69.
 (b) Richard, V.; Ipouck, M.; M érel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J. L. *Chem. Commun.* **2014**, *50*, 593.

Study on Synthesis and Catalytic Property of New Aminophosphino Ruthenium Carbonyl Complexes

Fang, Xiaolong; Zhang, Min; Duan, Ning; Wang, Xin^{*}; Zhu, Hongping^{*} *Chin. J. Org. Chem.* **2019**, *39*(x), xxxx Three new carbonyl ruthenium complexes were successfully synthesized from $Ru_3(CO)_{12}$ and *o*-PPh₂C₆H₄NR₂ (R = H, Me) ligand. The activity test of hydrogenation of benzaldehyde into benzyl alcohol revealed that metal hydride of Ru-NH catalyst is indispensable.