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Abstract: Described herein is an organocatalytic enantiose-
lective desymmetrizing cycloisomerization of arylsulfonyl-
protected ynamide cyclohexanones, representing the first
metal-free asymmetric Conia-ene-type carbocyclization. This
method allows the highly efficient and atom-economical
construction of a range of valuable morphans with wide
substrate scope and excellent enantioselectivity (up to 97 % ee).
In addition, such a cycloisomerization of alkylsulfonyl-pro-
tected ynamide cyclohexanones can lead to the divergent
synthesis of normorphans as the main products with high
enantioselectivity (up to 90% ee). Moreover, theoretical
calculations are employed to elucidate the origins of regiose-
lectivity and enantioselectivity.

Introduction

Structurally diverse and interesting family of bridged N-
heterocycles, such as morphans and normorphans, are im-
portant structural motifs that have been found in a number of
bioactive molecules and natural products (Figure 1).[1, 2]

Although many impressive strategies have been established
for their construction in the past decades,[3, 4] the practical
synthesis of these medicinally significant structures remains
an intriguing objective for the synthetic community, especially
those with high enantioselectivity. To date, successful exam-
ples of asymmetric assembly of morphans and normorphans

have been quite scarce,[3d, 4c] and these methods often suffer
from limited substrate scope, inaccessible starting materials,
and low efficiency.

Recently, catalytic carbocyclization of alkynyl carbonyls
or alkynyl silyl enol ethers has attracted considerable interest
in organic synthesis because of its high bond-forming
efficiency and atom economy in the formation of function-
alized cyclic compounds.[5–8] Despite these significant achieve-
ments, examples of such an asymmetric version are quite
scarce.[9–11] In 2005, Toste et al. reported the first enantiose-
lective intramolecular Conia-ene reaction of alkynyl b-
dicarbonyl compounds by employing a PdII/YbIII dual catalyst
(Scheme 1a).[9a] On the basis of this work, the relevant Conia-
ene-type carbocyclizations were nicely explored by the groups
of Shibasaki[9b] and Shibata[9c] by using a similar bimetallic
cooperative catalysis. In addition, the enantioselective metal-
lo-organocatalyzed carbocyclization was realized by Michel-
et, Ratovelomanana-Vidal, and co-workers and Enders and
co-workers (Scheme 1b).[10] Very recently, Dixon et al. dem-
onstrated an elegant protocol for the chiral silver complex and
chiral amine cocatalyzed desymmetrization of 4-propargyla-
mino cyclohexanones that led to enantioenriched morphans
(Scheme 1c).[11] Although notable successes have been ach-
ieved, these asymmetric carbocyclization reactions have so far
been limited to transition-metal catalysts, especially chiral
metal complexes, and a metal-free protocol has not been
reported to date.

Ynamides are special alkynes bearing an electron-with-
drawing group on the nitrogen atom, and have proven to be
versatile building blocks in organic synthesis over the past
decade.[12] Importantly, the nitrogen atom is able to impose an

Figure 1. Morphans and normorphans in bioactive molecules and
natural products.
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electronic bias, almost invariably rendering regioselective
nucleophilic a-addition by a diverse range of nucleophiles via
keteniminium intermediates under transition-metal and
Brønsted acid catalysis. As a continuation of our work on
developing ynamide chemistry for heterocycle synthesis,[13]

we herein report the realization of an organocatalytic
enantioselective desymmetrizing cycloisomerization of aryl-
sulfonyl-protected ynamide cyclohexanones, which repre-
sents the first example of a completely metal-free asymmetric
Conia-ene-type carbocyclization. In addition, a rare cycliza-
tion at the b-position of the ynamide is also achieved.[14] This
protocol allows highly efficient and atom-economical con-
struction of various valuable morphans with wide substrate
scope and excellent enantioselectivity (Scheme 1d). More-
over, a similar cycloisomerization of alkylsulfonyl-protected
ynamide cyclohexanones can lead to the divergent synthesis
of normorphans as the main products with high enantiose-
lectivity. Theoretical calculations are employed to elucidate
the origins of regioselectivity and enantioselectivity. Herein,
we report the results of our detailed investigations of this
organocatalytic enantioselective carbocyclization of ynamide
cyclohexanones, including substrate scope, synthetic applica-
tions, biological tests, and mechanistic studies.

Results and Discussion

The cyclohexanone-tethered ynamide 1a was chosen as
the model substrate for our initial study, and selected results
are listed in Table 1.[15, 16] To our delight, the desymmetrizing
cycloisomerization of 1a proceeded smoothly in the presence
of only proline (3a) as the catalyst, and importantly, the
corresponding morphan 2a was formed in 50% yield by an
unusual addition at the b-position of the ynamide (entry 1).

Of note, previous silver-catalyzed carbocyclizations of enol-
ether-tethered ynamides occurred exclusively at the a-posi-
tion of the ynamide.[8a] Although the typically successful
diarylprolinol silyl ether catalyst 3b was inefficient in this
reaction (entry 2), the sterically less demanding desilyloxy
derivatives 3c–d were found to be effective chiral organo-
catalysts (entries 3–6), and 96% ee was obtained in the
presence of 3 d (entries 5 and 6). Interestingly, the use of
tertiary amines as additives significantly accelerated the
reaction efficiency (entries 3–6),[9f, 17] whereas the use of only
tertiary amine (without chiral secondary amine) gave no
conversion at all, indicating no involvement of a racemic
background reaction caused by the external base.[15] The
tertiary amine here most likely serves as a base to promote
the enamine formation via the reaction with 1a for the
generation of the enolate species and the protonated amine.
Gratifyingly, subsequent investigations on the reaction con-
centration and solvent (entries 7–10) demonstrated that 2a
was obtained in 95 % yield with 95% ee by using PhCF3

(0.2m) as the solvent (entry 10). It should be mentioned that
the formation of the normorphan 2a’’ was detected in 35%
yield in the presence of tBuOH/H2O (1:1) as the solvent
(entry 11) while almost no 2a’’ (< 3%) was obtained in all of
the other cases given above (entries 1–10).

With the optimal reaction conditions in hand (Table 1,
entry 10), we then assessed the scope of this enantioselective

Scheme 1. Asymmetric catalytic carbocyclization of alkynyl carbonyls.

Table 1: Optimization of the reaction conditions.[a]

Entry Catalyst Reaction conditions Yield
[%][b]

ee
[%][c]

1 3a toluene (0.05 m), 80 88C, 72 h 50 (45) <1
2 3b toluene (0.05 m), 80 88C, 72 h <1 (90) <1
3 3c toluene (0.05 m), 80 88C, 72 h 34 (60) 86
4[d] 3c toluene (0.05 m), 80 88C, 48 h 85 (<1) 85
5[d] 3d toluene (0.05 m), 80 88C, 72 h 10 (84) 96
6[e] 3d toluene (0.05 m), 80 88C, 72 h 20 (71) 96
7[e] 3d toluene (0.10 m), 80 88C, 72 h 35 (57) 95
8[e] 3d toluene (0.20 m), 80 88C, 72 h 72 (19) 95
9[e] 3d PhCl (0.20 m), 80 88C, 72 h 83 (8) 87
10[e] 3d PhCF3 (0.20 m), 80 88C, 36 h 95 (<1) 95
11[e,f ] 3d tBuOH/H2O (1:1, 0.20 m), 80 88C,

64 h
41 (<1) 93

[a] Reaction conditions: 1a (0.1 mmol), catalyst (20 mol%), solvent
(0.05–0.20 m), 80 88C, 36–72 h in vials. [b] Measured by 1H NMR
spectroscopy using diethyl phthalate as an internal standard. Recovered
unreacted starting material given within parentheses. [c] Determined by
HPLC analysis. [d] 20 mol% of iPr2EtN was used as additive. [e] 20 mol%
of Et3N was used as additive. [f ] 2a’’ was formed in 35% NMR yield.
Ts = 4-toluenesulfonyl, TMS= trimethylsilyl.
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organocatalytic desymmetrizing reaction for the synthesis of
morphans (2 ; Table 2). Besides the Ts-protected ynamide, the
reaction also proceeded smoothly with MBS-, SO2Ph-, and 2-
Naph-protected ynamides, affording the desired morphans 2b

(68 %, 91% ee), 2c (96%, 94 % ee), and 2d (90%, 92 % ee),
respectively. In addition, various aryl-substituted ynamides
bearing either electron-withdrawing or electron-donating
groups were good substrates to afford products 2e–m in 82–
97% yields and 88–97 % ee, and especially ynamides with
ortho-substituted aryl motifs were also tolerated. The reaction
was also extended to the naphthyl-substituted ynamide to
produce the corresponding 2n in 95% yield and 91% ee.
Then, various alkyl-substituted ynamides were screened and
the desired morphans 2o–u were obtained in 84–92% yields
and 87–95 % ee. Notably, a range of functional groups were
perfectly tolerated, including phenyl, alkenyl, and protected

hydroxy. Moreover, this chemistry was also compatible with
an alkenyl-substituted ynamide and even terminal ynamide to
deliver the desired products 2v and 2w in good yields, albeit
with a significantly reduced enantiocontrol in the latter case.
Our attempts to extend the reaction to the cyclobutanone
ynamide 1x, acyclic ketone ynamide 1y, and aldehyde
ynamide 1 z have been unsuccessful,[18] and attempts to
prepare the heterocycle-substituted ynamides failed.[15] Final-
ly, the use of ent-3d as the chiral organocatalyst led to the
efficient formation of the desired ent-2a (93 % ee). Impor-
tantly, an unusual cyclization on the b-carbon atom of the
ynamide was achieved in all these cases (attack on the a-
carbon: < 3%). Thus, this protocol provides a highly efficient
and practical route for the synthesis of valuable enantioen-
riched morphans.

Interestingly, when the Ms-protected ynamide 4a was
employed under the above optimized reaction conditions, the
corresponding normorphan 5 a was obtained as a major
product with only the E configuration of the double bond
[Eq. (1)],[19] which is distinctively different from the related
silver-catalyzed protocol by Miesch and co-workers where
a Z-configured exo double bond was formed through the
favorable conformation of the keteneiminium intermedia-
te.[8a] Further studies revealed that a higher ratio of 5a/5 a’’ was
obtained in the presence of pyrrolidine as catalyst and tBuOH
as solvent while chiral 5a was formed in 58% yield (NMR)
with 90 % ee by employing 3d as chiral catalyst under the
optimized reaction conditions.[15]

Inspired by these results, we also examined the scope of
this enantioselective organocatalytic desymmetrizing reaction
for the synthesis of the normorphans 5. As depicted in
Table 3, the reaction proceeded well with a variety of aryl-
substituted ynamides (4), including the isopropylsulfonyl-
protected ynamide 4 i, leading to the formation of function-
alized normorphans (5a–i) in moderate to excellent yields
with 76–90% ee. Instead, when the alkyl-substituted ynamide
4 (R = alkyl) was employed, the formation of the correspond-
ing morphan 5’’ was observed as the main product.[15] In
addition, excellent E/Z ratios (> 50:1) of the newly generated
olefin moieties were observed in all cases. Of note, all the
regioisomers were readily isolated by column chromatogra-
phy, and higher 5/5’’ ratios could be obtained in case of aryl-
substituted ynamides with electron-withdrawing groups. The
absolute configuration of 5h was established by X-ray
diffraction analysis (Figure 2).[20]

Table 2: Reaction scope for the formation of chiral morphans 2.[a]

[a] Reaction conditions: 1 (0.2 mmol), 3d (0.04 mmol), Et3N
(0.04 mmol), PhCF3 (1 mL), 80 88C, 36 h, in vials. Yields are those of
isolated products. The ee values were determined by HPLC analysis.
[b] Time= 64 h. [c] [1] = 0.40 M. [d] Used ent-3d. Ac =acetyl, Boc= tert-
butoxycarbonyl, MBS = 4-methoxybenzenesulfonyl, Naph= naphthyl,
PG= protecting group, TBS = tert-butyldimethylsilyl.
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Further synthetic transformations of the as-synthesized
chiral morphans and normorphans were then explored
(Scheme 2). For example, chiral 2a, prepared on a gram scale
in 90% yield with 95 % ee, could be readily converted into the
desired products 2aa (92 %, 93 % ee) and 2ab (83 %, 93 % ee),
respectively, by treatment with NaBH4 and MeMgBr. Inter-
estingly, the use of NBS and Selectfluor led to the selective
difunctionalization of the double bond from the less hindered
face to produce the corresponding 2ac and 2ad with three
contiguous stereocenters in good yields. In addition, facile
hydrogenation of the double bond afforded the desired 2ae in
80% yield with 93 % ee. Moreover, the synthesis of the
indole-fused morphan 2 af was achieved in 96 % yield upon
exposure to PhNHNH2 and TsOH (Scheme 2a). The absolute
configurations of 2ad and 2 ae were confirmed by X-ray
diffraction analysis (Figures 3 and 4),[20] which also deter-
mined the absolute configuration of the morphans 2. The
synthesis of the anti-inflammatory agent 2wb[1c] was also
achieved, starting from 2w, through reduction of the alkenyl
and carbonyl groups, followed by oxidation of the methylene
group adjacent to the nitrogen center and removal of the Ts
group (Scheme 2b). Finally, the reduction and oxidation of
the double bond of 5a afforded the corresponding 5aa (75 %,

Table 3: Reaction scope for the formation of the chiral normorphans 5.[a]

[a] Reaction conditions: 4 (0.2 mmol), 3d (0.04 mmol), tBuOH/H2O (1/
1; 1 mL), 80 88C, 64 h, in vials. Yields are those of isolated products. The
ee values were determined by HPLC analysis. Ms = methanesulfonyl.

Figure 2. Structure of 5h in its crystal.

Scheme 2. Gram-scale reaction and synthetic applications. Reagents
and conditions: i) NaBH4 (1.2 equiv), MeOH, 0 88C, 0.5 h; ii) MeMgBr
(2 equiv), THF, 0 88C, 4 h; iii) NBS (2 equiv), DCM/MeOH (1:1), RT,
5 min; iv) Selectfluor (2 equiv), MeCN/MeOH (2:1), @40 88C, 11 h;
v) 10% Pd/C, H2 (2 MPa), EtOAc, RT, 24 h; vi) PhNHNH2 (2 equiv),
TsOH (2 equiv), toluene, 80 88C, 6 h.

Figure 3. Structure of 2ad in its crystal.

Figure 4. Structure of 2ae in its crystal.
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89% ee) and 5ab[2a,21] (58%, 90 % ee), respectively. The latter
could be further transformed into the corresponding 5 ac
(29 %, 2 steps, 91% ee) and 5ad (90 %; Scheme 2c).
Importantly, the enantioselectivities were well maintained
and excellent diastereoselectivities (d.r. > 20:1) were ach-
ieved in all these transformations.

Moreover, we also tested the newly synthesized morphans
and normorphans for their bioactivity as antitumor agents.
The cytotoxic effects of these compounds were evaluated
against a panel of cancer cells, including breast cancer cells
MDA-MB-231 and MCF-7, melanoma cells A375, and
esophageal cancer cells SK-GT-4 and KYSE-450, based on
cell viability assays.[15] Our preliminary studies revealed that
almost half of these morphans exhibited significant cytotoxic
effects on MDA-MB-231 and A375, and a few morphans
exhibited cytotoxic effects on SK-GT-4 and KYSE-450,
whereas the normorphan derivatives displayed weak antitu-
mor activity against these five cell lines.

On the basis of the previous results[8–11] and density-
functional theory (DFT) computations,[15] plausible mecha-

nisms for regiodivergent synthesis of morphans and normor-
phans are illustrated in Scheme 3. Initially, an amine–ketone
condensation between pyrrolidine 3d and the ynamide-
tethered cyclohexanone via intermediate A gives the enamine
intermediate B. The nucleophilic carbon site of its enamine
group can attack either the b or a position of the ynamide
group to form vinyl anion intermediates C or C’’, respective-
ly.[22] As Ts is more electron-withdrawing than Ms, the b and
a carbon of the Ts-containing ynamide are both positively
charged and the nucleophilic attack favors the b site to form
a sterically less strained six-membered-ring intermediate C
that leads eventually to 2a. In the case of PG = Ms, the b

carbon is negatively charged, and the nucleophilic addition
thus favors the positively charged a carbon site to form
a sterically more strained five-membered-ring intermediate
C’’, the precursor of 5 a. The observed protecting-group-
dependent regiodivergence can be attributed to the stronger
electron-withdrawing capability of Ts than Ms in the ynamide
substrate. Furthermore, more detailed DFT computations
showed that the regioselectivity of cyclization is much more
sensitive on the polarity of solvent in the case of PG = Ts than
in the case of PG = Ms.[15]

To understand the origin of enantioselectivity, the C@C
bond-formation transition states (Figure 5) leading to the
final product 2a and its enantiomer were carefully explored.
Among them, the transition-states TSC and TSC2 having the
bulky bis(aryl)methyl group and ynamide phenyl moiety
located at the opposite side of the enamine plane are lower in
free energy than TSC1 and TSC3, which have the bis-

Scheme 3. Plausible reaction mechanism. Relative free energies (DG,
kcalmol@1) of key intermediates and transition states were computed
at the SMD-M06-2X/6-311+G(d,p)//SMD-M06-2X/6-31G(d) level for
reactions in solvent (PhCF3 for the case of PG=Ts and tBuOH/H2O
(1:1) for the case of PG =Ms) at 298 K. Data for the case of PG=Ms
are given within parentheses. The structures of key intermediates B as
well as Mulliken charges (q) on selected atoms are also shown.

Figure 5. Optimized structures (key bond lengths in b) and relative
free energies (DG, kcal mol@1) of the C@C bond formation transition
states leading to 2a and its enantiomer from 1a catalyzed by 3d.
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(aryl)methyl group and ynamide phenyl moiety located at the
same side of the enamine plane. More delicately, TSC2 has
a shorter C@H···H@C distance than does TSC (1.98 vs. 2.11 c),
hinting the former has a stronger C@H···H@C steric repulsion.
As such, TSC is the lowest in free energy, giving rise to
a 2.8 kcalmol@1 (TSC vs. TSC2) preference for the generation
of major enantiomer. In short, the observed enantioselectivity
is dominated by steric effects.

Conclusion

In summary, we have developed an organocatalytic
enantioselective desymmetrizing cycloisomerization of aryl-
sulfonyl-protected ynamide cyclohexanones, allowing the
highly efficient and atom-economical construction of a range
of valuable morphans with wide substrate scope and excellent
enantioselectivity (up to 97% ee). To the best of our
knowledge, this protocol not only represents the first metal-
free asymmetric Conia-ene-type carbocyclization, but also
constitutes the first ynamide reaction catalyzed only by an
amine, which is transition metal and Brønsted acid free. In
addition, a rare cyclization on the b-position of the ynamide is
achieved. Moreover, such a cycloisomerization of alkylsul-
fonyl-protected ynamide cyclohexanones can lead to the
divergent synthesis of various normorphans as the main
products with high enantioselectivity (up to 90% ee). Further
transformations and biological tests of these bridged N-
heterocycles have been conducted, highlighting the potential
utility of this chemistry. DFT studies were employed to
elucidate the origins of regioselectivity and enantioselectivity,
and it is revealed that both protecting group of the substrate
and reaction solvent are the key factors governing regiocon-
trol. The present protocol offers new opportunities for the
development of novel reactions of ynamides, especially those
based on asymmetric catalysis.[23]

Acknowledgements

We are grateful for financial support from the National
Natural Science Foundation of China (21622204, 91545105
and 21772161), the President Research Funds from Xiamen
University (20720180036), NFFTBS (No. J1310024), PCSIRT,
and the Science & Technology Cooperation Program of
Xiamen (3502Z20183015). We thank Professor Xianming
Deng from Xiamen University (School of Life Sciences) for
assistance with biological tests and Mr. Zanbin Wei from
Xiamen University (College of Chemistry and Chemical
Engineering) for assistance with X-ray crystallographic
analysis. We also thank the anonymous reviewers for insight-
ful reading and constructive suggestions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: asymmetric catalysis · cyclizations ·
desymmetrization · heterocycles · organocatalysis

How to cite: Angew. Chem. Int. Ed. 2019, 58, 16252–16259
Angew. Chem. 2019, 131, 16398–16405

[1] For morphans, see: a) B. Li, R. Liu, R. Liang, Y.-X. Jia, Acta
Chim. Sin. (Chin. Ed.) 2017, 75, 448; b) B. Kang, P. Jakubec, D. J.
Dixon, Nat. Prod. Rep. 2014, 31, 550; c) R. S. Alberte, W. P.
Roschek JR., D. Li, U. S. Pat. Appl. Publ. US 20100009927A1,
2010 ; d) H. Zhang, S.-P. Yang, C.-Q. Fan, J. Ding, J.-M. Yue, J.
Nat. Prod. 2006, 69, 553; e) C. Kibayashi, T. Miyata, K.
Takahama, H. Fukushima, PCT Int. Appl. US 6608080B1,
2003 ; f) B. B. Snider, H. Lin, J. Am. Chem. Soc. 1999, 121, 7778.

[2] For normorphans, see: a) A. Melnick, L. C. A. Cerchietti, M. G.
Cardenas, F.-T. Xue, A. D. Mackerell, PCT Int. Appl. US
20160166549A1, 2016 ; b) M. Betou, L. Male, J. W. Steed, R. S.
Grainger, Chem. Eur. J. 2014, 20, 6505; c) D. Gonz#lez-G#lvez,
E. Garc&a-Garc&a, R. Alib8s, P. Bayln, P. de March, M.
Figueredo, J. Font, J. Org. Chem. 2009, 74, 6199; d) C. W.
Roberson, K. A. Woerpel, J. Am. Chem. Soc. 2002, 124, 11342;
e) D. J. Triggle, Y. W. Kwon, P. Abraham, J. B. Pitner, S. W.
Mascarella, F. I. Carroll, J. Med. Chem. 1991, 34, 3164; f) A. B.
Holmes, A. Kee, T. Ladduwahetty, D. F. Smith, J. Chem. Soc.
Chem. Commun. 1990, 1412.

[3] For selected recent examples on the synthesis of morphans, see:
a) C. Xie, J. Luo, Y. Zhang, S.-H. Huang, L. Zhu, R. Hong, Org.
Lett. 2018, 20, 2386; b) L. Zhai, X. Tian, C. Wang, Q. Cui, W. Li,
S.-H. Huang, Z.-X. Yu, R. Hong, Angew. Chem. Int. Ed. 2017, 56,
11599; Angew. Chem. 2017, 129, 11757; c) Y.-L. Ma, K.-M. Wang,
R. Huang, J. Lin, S.-J. Yan, Green Chem. 2017, 19, 3574; d) B.
Bradshaw, C. Parra, J. Bonjoch, Org. Lett. 2013, 15, 2458; e) Y.-F.
Wang, S. Chiba, J. Am. Chem. Soc. 2009, 131, 12570.

[4] For selected examples on the synthesis of normorphans, see:
a) M.-C. P. Yeh, Y.-M. Chang, H.-H. Lin, Adv. Synth. Catal. 2017,
359, 2196; b) F. Diaba, J. A. Montiel, G. Serban, J. Bonjoch, Org.
Lett. 2015, 17, 3860; c) B. J. Casavant, A. S. Hosseini, S. R.
Chemler, Adv. Synth. Catal. 2014, 356, 2697; d) R. S. Grainger,
M. Betou, L. Male, M. B. Pitak, S. J. Coles, Org. Lett. 2012, 14,
2234; e) T. de Haro, C. Nevado, Angew. Chem. Int. Ed. 2011, 50,
906; Angew. Chem. 2011, 123, 936; f) Y.-S. Kwak, J. D. Winkler,
J. Am. Chem. Soc. 2001, 123, 7429.

[5] For selected reviews, see: a) D. Hack, M. Blgmel, P. Chauhan,
A. R. Philipps, D. Enders, Chem. Soc. Rev. 2015, 44, 6059; b) F.
D8nHs, A. P8rez-Luna, F. Chemla, Chem. Rev. 2010, 110, 2366.

[6] For pioneering work on the Au-catalyzed carbocyclization of
alkynyl carbonyls, see: a) J. J. Kennedy-Smith, S. T. Staben, F. D.
Toste, J. Am. Chem. Soc. 2004, 126, 4526; b) S. T. Staben, J. J.
Kennedy-Smith, F. D. Toste, Angew. Chem. Int. Ed. 2004, 43,
5350; Angew. Chem. 2004, 116, 5464.

[7] For Au-catalyzed carbocyclization of alkynyl silyl enol ethers,
see: a) A. Carr]r, C. P8an, F. Perron-Sierra, O. Mirguet, V.
Michelet, Adv. Synth. Catal. 2016, 358, 1540; b) F. Barab8, P.
Levesque, I. Korobkov, L. Barriault, Org. Lett. 2011, 13, 5580;
c) H. Kusama, Y. Karibe, Y. Onizawa, N. Iwasawa, Angew.
Chem. Int. Ed. 2010, 49, 4269; Angew. Chem. 2010, 122, 4365;
d) K. C. Nicolaou, G. S. Tria, D. J. Edmonds, M. Kar, J. Am.
Chem. Soc. 2009, 131, 15909; e) K. C. Nicolaou, G. S. Tria, D. J.
Edmonds, Angew. Chem. Int. Ed. 2008, 47, 1780; Angew. Chem.
2008, 120, 1804; f) S. T. Staben, J. J. Kennedy-Smith, D. Huang,
B. K. Corkey, R. L. LaLonde, F. D. Toste, Angew. Chem. Int. Ed.
2006, 45, 5991; Angew. Chem. 2006, 118, 6137.

[8] For selected recent examples on other similar transition metal
catalyzed processes, see: a) C. F. Heinrich, I. Fabre, L. Miesch,
Angew. Chem. Int. Ed. 2016, 55, 5170; Angew. Chem. 2016, 128,

Angewandte
ChemieResearch Articles

16257Angew. Chem. Int. Ed. 2019, 58, 16252 – 16259 T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

https://doi.org/10.1039/C3NP70115H
https://doi.org/10.1021/np050490e
https://doi.org/10.1021/np050490e
https://doi.org/10.1021/ja991160h
https://doi.org/10.1002/chem.201304982
https://doi.org/10.1021/ja012152f
https://doi.org/10.1021/jm00115a003
https://doi.org/10.1039/C39900001412
https://doi.org/10.1039/C39900001412
https://doi.org/10.1021/acs.orglett.8b00725
https://doi.org/10.1021/acs.orglett.8b00725
https://doi.org/10.1002/anie.201706018
https://doi.org/10.1002/anie.201706018
https://doi.org/10.1002/ange.201706018
https://doi.org/10.1039/C7GC01435J
https://doi.org/10.1021/ol400926p
https://doi.org/10.1021/ja905110c
https://doi.org/10.1002/adsc.201700271
https://doi.org/10.1002/adsc.201700271
https://doi.org/10.1021/acs.orglett.5b01832
https://doi.org/10.1021/acs.orglett.5b01832
https://doi.org/10.1002/adsc.201400317
https://doi.org/10.1021/ol300605y
https://doi.org/10.1021/ol300605y
https://doi.org/10.1002/anie.201005763
https://doi.org/10.1002/anie.201005763
https://doi.org/10.1002/ange.201005763
https://doi.org/10.1021/ja010542w
https://doi.org/10.1039/C5CS00097A
https://doi.org/10.1021/ja049487s
https://doi.org/10.1002/anie.200460844
https://doi.org/10.1002/anie.200460844
https://doi.org/10.1002/ange.200460844
https://doi.org/10.1002/adsc.201501135
https://doi.org/10.1021/ol202314q
https://doi.org/10.1002/anie.201001061
https://doi.org/10.1002/anie.201001061
https://doi.org/10.1002/ange.201001061
https://doi.org/10.1021/ja906801g
https://doi.org/10.1021/ja906801g
https://doi.org/10.1002/anie.200800066
https://doi.org/10.1002/ange.200800066
https://doi.org/10.1002/ange.200800066
https://doi.org/10.1002/anie.200602035
https://doi.org/10.1002/anie.200602035
https://doi.org/10.1002/ange.200602035
https://doi.org/10.1002/anie.201510708
https://doi.org/10.1002/ange.201510708
http://www.angewandte.org


5256; b) S. Zhu, Q. Zhang, K. Chen, H. Jiang, Angew. Chem. Int.
Ed. 2015, 54, 9414; Angew. Chem. 2015, 127, 9546; c) C. Sch-fer,
M. Miesch, L. Miesch, Chem. Eur. J. 2012, 18, 8028; d) B.
Montaignac, M. R. Vitale, V. Michelet, V. Ratovelomanana-
Vidal, Org. Lett. 2010, 12, 2582; e) Y. Onizawa, H. Kusama, N.
Iwasawa, J. Am. Chem. Soc. 2008, 130, 802; f) H. Kusama, Y.
Onizawa, N. Iwasawa, J. Am. Chem. Soc. 2006, 128, 16500; g) H.
Kusama, H. Yamabe, Y. Onizawa, T. Hoshino, N. Iwasawa,
Angew. Chem. Int. Ed. 2005, 44, 468; Angew. Chem. 2005, 117,
472.

[9] a) B. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 17168;
b) A. Matsuzawa, T. Mashiko, N. Kumagai, M. Shibasaki,
Angew. Chem. Int. Ed. 2011, 50, 7616; Angew. Chem. 2011,
123, 7758; c) S. Suzuki, E. Tokunaga, D. S. Reddy, T. Matsumoto,
M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2012, 51, 4131;
Angew. Chem. 2012, 124, 4207; for bouble activation by enolate-
alkyne complex with a chiral ligand, see: d) T. Yang, A. Ferrali,
F. Sladojevich, L. Campbell, D. J. Dixon, J. Am. Chem. Soc. 2009,
131, 9140; e) S. Shaw, J. D. White, J. Am. Chem. Soc. 2014, 136,
13578; f) M. Cao, A. Yesilcimen, M. Wasa, J. Am. Chem. Soc.
2019, 141, 4199; for the relevant enantioselective cyclization of
alkynyl silyl enol ethers, see: g) B. K. Corkey, F. D. Toste, J. Am.
Chem. Soc. 2007, 129, 2764; h) J.-F. Brazeau, S. Zhang, I.
Colomer, B. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2012, 134,
2742.

[10] a) B. Montaignac, C. Praveen, M. R. Vitale, V. Michelet, V.
Ratovelomanana-Vidal, Chem. Commun. 2012, 48, 6559; b) M.
Blgmel, D. Hack, L. Ronkartz, C. Vermeeren, D. Enders, Chem.
Commun. 2017, 53, 3956; for seminal work on such a carbocyc-
lization via metallo-organocatalysis, see: c) T. Yang, A. Ferrali,
L. Campbell, D. J. Dixon, Chem. Commun. 2008, 2923; d) J. T.
Binder, B. Crone, T. T. Haug, H. Menz, S. F. Kirsch, Org. Lett.
2008, 10, 1025.

[11] R. Manzano, S. Datta, R. S. Paton, D. J. Dixon, Angew. Chem.
Int. Ed. 2017, 56, 5834; Angew. Chem. 2017, 129, 5928.

[12] For recent reviews on ynamide reactivity, see: a) F. Pan, C. Shu,
L.-W. Ye, Org. Biomol. Chem. 2016, 14, 9456; b) G. Evano, C.
Theunissen, M. Lecomte, Aldrichimica Acta 2015, 48, 59; c) X.-
N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L.
Kedrowski, R. P. Hsung, Acc. Chem. Res. 2014, 47, 560; d) K. A.
DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P.
Hsung, Chem. Rev. 2010, 110, 5064; e) G. Evano, A. Coste, K.
Jouvin, Angew. Chem. Int. Ed. 2010, 49, 2840; Angew. Chem.
2010, 122, 2902.

[13] For selected examples on the transition metal or Brønsted acid
catalyzed reactions of ynamides by our group, see: a) L. Li, X.-Q.
Zhu, Y.-Q. Zhang, H.-Z. Bu, P. Yuan, J. Chen, J. Su, X. Deng, L.-
W. Ye, Chem. Sci. 2019, 10, 3123; b) W.-B. Shen, Q. Sun, L. Li, X.
Liu, B. Zhou, J.-Z. Yan, X. Lu, L.-W. Ye, Nat. Commun. 2017, 8,
1748; c) B. Zhou, L. Li, X.-Q. Zhu, J.-Z. Yan, Y.-L. Guo, L.-W.
Ye, Angew. Chem. Int. Ed. 2017, 56, 4015; Angew. Chem. 2017,
129, 4073; d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q.
Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56,
605; Angew. Chem. 2017, 129, 620; e) C. Shu, Y.-H. Wang, B.
Zhou, X.-L. Li, Y.-F. Ping, X. Lu, L.-W. Ye, J. Am. Chem. Soc.
2015, 137, 9567; f) L. Li, B. Zhou, Y.-H. Wang, C. Shu, Y.-F. Pan,
X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2015, 54, 8245; Angew.
Chem. 2015, 127, 8363; g) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S.
Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6,
1265.

[14] For reports on the catalytic cyclization on the b position of
ynamides, see: a) W.-B. Shen, B. Zhou, Z.-X. Zhang, H. Yuan, W.
Fang, L.-W. Ye, Org. Chem. Front. 2018, 5, 2468; b) L. Li, X.-M.
Chen, Z.-S. Wang, B. Zhou, X. Liu, X. Lu, L.-W. Ye, ACS Catal.
2017, 7, 4004; c) Y. Tokimizu, M. Wieteck, M. Rudolph, S. Oishi,
N. Fujii, A. S. K. Hashmi, H. Ohno, Org. Lett. 2015, 17, 604; d) Y.
Fukudome, H. Naito, T. Hata, H. Urabe, J. Am. Chem. Soc. 2008,

130, 1820; e) F. M. Istrate, A. K. Buzas, I. D. Jurberg, Y.
Odabachian, F. Gagosz, Org. Lett. 2008, 10, 925; for a review,
see: f) B. Zhou, T.-D. Tan, X.-Q. Zhu, M. Shang, L.-W. Ye, ACS
Catal. 2019, 9, 6393.

[15] For details, see the Supporting Information.
[16] For recent examples on the enantioselective desymmerization of

cyclic ketones, see: a) P. Zheng, C. Wang, Y.-C. Chen, G. Dong,
ACS Catal. 2019, 9, 5515; b) M. Wang, J. Chen, Z. Chen, C.
Zhong, P. Lu, Angew. Chem. Int. Ed. 2018, 57, 2707; Angew.
Chem. 2018, 130, 2737; c) C. Zhu, D. Wang, Y. Zhao, W.-Y. Sun,
Z. Shi, J. Am. Chem. Soc. 2017, 139, 16486; d) R.-R. Liu, B.-L. Li,
J. Lu, C. Shen, J.-R. Gao, Y.-X. Jia, J. Am. Chem. Soc. 2016, 138,
5198; for reports involving the Michael additions, see: e) B.-L.
Li, W.-Y. Gao, H. Li, S.-Q. Zhang, X.-Q. Han, J. Lu, R.-X. Liang,
X. Hong, Y.-X. Jia, Chin. J. Chem. 2019, 37, 63; f) A. D.
Gammack Yamagata, S. Datta, K. E. Jackson, L. Stegbauer,
R. S. Paton, D. J. Dixon, Angew. Chem. Int. Ed. 2015, 54, 4899;
Angew. Chem. 2015, 127, 4981.

[17] For recent selected examples on the base-promoted organo-
catalytic enantioselective reactions, see: a) N. Brindani, G.
Rassu, L. Dell’Amico, V. Zambrano, L. Pinna, C. Curti, A.
Sartori, L. Battistini, G. Casiraghi, G. Pelosi, D. Greco, F.
Zanardi, Angew. Chem. Int. Ed. 2015, 54, 7386; Angew. Chem.
2015, 127, 7494; b) A. Raja, B.-C. Hong, G.-H. Lee, Org. Lett.
2014, 16, 5756; c) L. Dell’Amico, Ł. Albrecht, T. Naicker, P. H.
Poulsen, K. A. Jørgensen, J. Am. Chem. Soc. 2013, 135, 8063;
d) Y.-Q. Fang, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 5660;
e) K. Frisch, A. Landa, S. Saaby, K. A. Jørgensen, Angew. Chem.
Int. Ed. 2005, 44, 6058; Angew. Chem. 2005, 117, 6212; f) T. P.
Yoon, E. N. Jacobsen, Angew. Chem. Int. Ed. 2005, 44, 466;
Angew. Chem. 2005, 117, 470.

[18] The carbocyclization reactions of the ynamides 1x–z failed to
afford the desired products and only starting materials (> 95%)
were recovered.

[19] We speculate that the E configuration of the double bond is
attributed to thermodynamic factors as the alkenyl anion
intermediate C’’ is presumably involved, as shown in Scheme 3.

[20] CCDC 1919345, 1919346 and 1919347 (5h, 2ad, and 2ae)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.

[21] Attempts to remove the Ms protecting group of 5ab and 5ad to
synthesize the bioactive molecules in the second row of Figure 1
have been unsuccessful to date.

[22] For the relevant vinyl anion intermediates in ynamide chemistry,
see: a) N. Marien, B. N. Reddy, F. De Vleeschouwer, S. Goderis,
K. Van Hecke, G. Verniest, Angew. Chem. Int. Ed. 2018, 57,
5660; Angew. Chem. 2018, 130, 5762; b) Z.-Y. Peng, Z.-M.
Zhang, Y.-L. Tu, X.-Z. Zeng, J.-F. Zhao, Org. Lett. 2018, 20, 5688;
c) A. Hentz, P. Retailleau, V. Gandon, K. Cariou, R. H. Dodd,
Angew. Chem. Int. Ed. 2014, 53, 8333; Angew. Chem. 2014, 126,
8473.

[23] This protocol represents an extremely rare example of organo-
catalytic enantioselective reaction of ynamides. Ynamides are
still scarcely used in catalytic asymmetric reactions. See repre-
sentative examples: a) M. Moskowitz, C. Wolf, Angew. Chem.
Int. Ed. 2019, 58, 3402; Angew. Chem. 2019, 131, 3440; b) R. N.
Straker, Q. Peng, A. Mekareeya, R. S. Paton, E. A. Anderson,

Angewandte
ChemieResearch Articles

16258 www.angewandte.org T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2019, 58, 16252 – 16259

https://doi.org/10.1002/ange.201510708
https://doi.org/10.1002/anie.201504964
https://doi.org/10.1002/anie.201504964
https://doi.org/10.1002/ange.201504964
https://doi.org/10.1002/chem.201200116
https://doi.org/10.1021/ol100729t
https://doi.org/10.1021/ja0782605
https://doi.org/10.1021/ja0671924
https://doi.org/10.1002/anie.200461559
https://doi.org/10.1002/ange.200461559
https://doi.org/10.1002/ange.200461559
https://doi.org/10.1021/ja055059q
https://doi.org/10.1002/anie.201102114
https://doi.org/10.1002/ange.201102114
https://doi.org/10.1002/ange.201102114
https://doi.org/10.1002/anie.201201060
https://doi.org/10.1002/ange.201201060
https://doi.org/10.1021/ja9004859
https://doi.org/10.1021/ja9004859
https://doi.org/10.1021/ja507853f
https://doi.org/10.1021/ja507853f
https://doi.org/10.1021/jacs.8b13757
https://doi.org/10.1021/jacs.8b13757
https://doi.org/10.1021/ja068723r
https://doi.org/10.1021/ja068723r
https://doi.org/10.1021/ja210388g
https://doi.org/10.1021/ja210388g
https://doi.org/10.1039/C7CC01807J
https://doi.org/10.1039/C7CC01807J
https://doi.org/10.1039/b802416b
https://doi.org/10.1021/ol800092p
https://doi.org/10.1021/ol800092p
https://doi.org/10.1002/anie.201612048
https://doi.org/10.1002/anie.201612048
https://doi.org/10.1002/ange.201612048
https://doi.org/10.1039/C6OB01774F
https://doi.org/10.1021/ar400193g
https://doi.org/10.1021/cr100003s
https://doi.org/10.1002/anie.200905817
https://doi.org/10.1002/ange.200905817
https://doi.org/10.1002/ange.200905817
https://doi.org/10.1039/C9SC00079H
https://doi.org/10.1002/anie.201700596
https://doi.org/10.1002/ange.201700596
https://doi.org/10.1002/ange.201700596
https://doi.org/10.1002/anie.201610042
https://doi.org/10.1002/anie.201610042
https://doi.org/10.1002/ange.201610042
https://doi.org/10.1021/jacs.5b06015
https://doi.org/10.1021/jacs.5b06015
https://doi.org/10.1002/anie.201502553
https://doi.org/10.1002/ange.201502553
https://doi.org/10.1002/ange.201502553
https://doi.org/10.1039/C4SC02596B
https://doi.org/10.1039/C4SC02596B
https://doi.org/10.1039/C8QO00552D
https://doi.org/10.1021/acscatal.7b01038
https://doi.org/10.1021/acscatal.7b01038
https://doi.org/10.1021/ol503623m
https://doi.org/10.1021/ja078163b
https://doi.org/10.1021/ja078163b
https://doi.org/10.1021/ol703077g
https://doi.org/10.1021/acscatal.9b01851
https://doi.org/10.1021/acscatal.9b01851
https://doi.org/10.1021/acscatal.9b00997
https://doi.org/10.1002/anie.201711845
https://doi.org/10.1002/ange.201711845
https://doi.org/10.1002/ange.201711845
https://doi.org/10.1021/jacs.7b10365
https://doi.org/10.1021/jacs.6b01214
https://doi.org/10.1021/jacs.6b01214
https://doi.org/10.1002/cjoc.201800420
https://doi.org/10.1002/anie.201411924
https://doi.org/10.1002/ange.201411924
https://doi.org/10.1002/anie.201501894
https://doi.org/10.1002/ange.201501894
https://doi.org/10.1002/ange.201501894
https://doi.org/10.1021/ol502821e
https://doi.org/10.1021/ol502821e
https://doi.org/10.1021/ja801344w
https://doi.org/10.1002/anie.200501900
https://doi.org/10.1002/anie.200501900
https://doi.org/10.1002/ange.200501900
https://doi.org/10.1002/anie.200461814
https://doi.org/10.1002/ange.200461814
https://www.ccdc.cam.ac.uk/services/structures?id=doi:10.1002/anie.201908495
http://www.ccdc.cam.ac.uk/
http://www.ccdc.cam.ac.uk/
https://doi.org/10.1002/anie.201800340
https://doi.org/10.1002/anie.201800340
https://doi.org/10.1002/ange.201800340
https://doi.org/10.1021/acs.orglett.8b02409
https://doi.org/10.1002/anie.201402767
https://doi.org/10.1002/ange.201402767
https://doi.org/10.1002/ange.201402767
https://doi.org/10.1002/anie.201814074
https://doi.org/10.1002/anie.201814074
https://doi.org/10.1002/ange.201814074
http://www.angewandte.org


Nat. Commun. 2016, 7, 10109; c) A. M. Cook, C. Wolf, Angew.
Chem. Int. Ed. 2016, 55, 2929; Angew. Chem. 2016, 128, 2982;
d) C. Schotes, A. Mezzetti, Angew. Chem. Int. Ed. 2011, 50, 3072;
Angew. Chem. 2011, 123, 3128; e) J. Oppenheimer, R. P. Hsung,
R. Figueroa, W. L. Johnson, Org. Lett. 2007, 9, 3969; f) K.

Tanaka, K. Takeishi, K. Noguchi, J. Am. Chem. Soc. 2006, 128,
4586.

Manuscript received: July 9, 2019
Revised manuscript received: August 7, 2019
Accepted manuscript online: August 24, 2019
Version of record online: September 18, 2019

Angewandte
ChemieResearch Articles

16259Angew. Chem. Int. Ed. 2019, 58, 16252 – 16259 T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

https://doi.org/10.1002/anie.201510910
https://doi.org/10.1002/anie.201510910
https://doi.org/10.1002/ange.201510910
https://doi.org/10.1002/anie.201007753
https://doi.org/10.1002/ange.201007753
https://doi.org/10.1021/ol701692m
https://doi.org/10.1021/ja060348f
https://doi.org/10.1021/ja060348f
http://www.angewandte.org

