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The development of highly active and low-cost catalysts for electrochemical reactions is one of the most
attractive topics in the renewable energy technology. Herein, the site-specific nitrogen doping of graph-
diyne (GDY) including grap-N, sp-N(I) and sp-N(II) GDY is systematically investigated as metal-free oxy-
gen reduction electrocatalysts via density functional theory (DFT). Our results indicate that the doped
nitrogen atom can significantly improve the oxygen (0O,) adsorption activity of GDY through activating
its neighboring carbon atoms. The free-energy landscape is employed to describe the electrochemical
oxygen reduction reaction (ORR) in both O, dissociation and association mechanisms. It is revealed that
the association mechanism can provide higher ORR onset potential than dissociation mechanism on most
of the substrates. Especially, sp-N(II) GDY exhibits the highest ORR electrocatalytic activity through
increasing the theoretical onset potential to 0.76 V. This work provides an atomic-level insight for the
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electrochemical ORR mechanism on metal-free N-doped GDY.
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1. Introduction

The oxygen reduction reaction (ORR), which can reduce oxygen
(03) to hydroxyl ion (OH™), water (H,0) or hydrogen peroxide
(H,0,), plays a vital role in fuel cell devices and other green energy
technologies [1]. From the working principle of the fuel cell model,
the kinetic of oxygen reduction on the cathode side is naturally
more sluggish than that of the anodic hydrogen oxidation reaction
(HOR) due to the multi-step proton-coupled electron transfer
(PCET) process in ORR [2,3]. To boost the reaction rate of the cath-
ode in fuel cells, noble metal platinum (Pt) is used as the ORR cat-
alysts for a long time owing to its remarkable electrocatalytic
performance [4]. However, Pt electrode encounters its bottleneck
in large-scale commercialization on account of its cost and
resource scarcity [5-7].

Researchers have made numerous efforts by far to tackle the
aforementioned problem [8-11]. Herein, we have divided these
strategies into two directions. One is to reduce the amount of Pt
required in the catalysts on the premise of ensuring its catalytic
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activity, such as designing Pt-based alloys [12-15], building
core-shell structures or dispersing Pt nanoparticles/single atom
on other substrates [16-19]. Another approach is to develop inex-
pensive and earth-abundant electrocatalysts as a substitution of Pt
catalyst, including non-precious metal (NPM) catalysts [20-23],
carbon-based non-noble metal composites [24-28] and metal-
free catalysts [29-32]. Hereinto, metal-free carbon nanomaterials
are considered as promising alternatives of noble metal catalysts
owing to their high specific surface areas, low costs, excellent elec-
trical conductivities and robust chemical stabilities at room tem-
perature [33-36].

Nowadays, compared with the well-studied carbon skeletons
formed by sp?- and sp>- hybridized chemical bonds (e.g., graphene,
carbon nanotubes and fullerenes) [37], novel carbon allotropes
with topological ordered sp- and sp?-hybridized carbon network
structure have gained increasing attention for their unique struc-
tures and tunable electronic properties [38-40]. As a first synthe-
sized member in graphynes (GYs) family [41], graphdiyne (GDY)
is constructed by inserting two ethynyl units (-C=C-) between
two neighboring aromatic rings, which can be thought of a two-
dimensional (2D) plane with periodically distributed pores [42].
Similar to graphene, high m-conjunction and Dirac cone also exist
in GDY, which provide it with excellent surface electrical conduc-
tivity. Moreover, compared with the sp?-hybridized carbon of
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graphene, the high-energy sp-hybridized states endow GDY with
more versatility and flexibility [43]. Taking the merits of inherent
characteristics, the GDY nanostructures hold huge promises in var-
ious fields such as catalysis [44-47], solar cells [48-50], superca-
pacitors and batteries [51-53].

Due to the chemical inertness of defect-free carbon skeleton,
pristine carbon materials including graphene and GDY are not ideal
catalysts for ORR electrocatalysis. Heteroatom doping, which can
induce partial charge change on the neighboring carbon, is
regarded as a research frontier in boosting the ORR electrochemical
efficiency of carbon materials [54,55]. Up to now, nitrogen-
containing carbon-based nanostructures, such as N-doped gra-
phene and N-containing carbon nanotube or nanofiber, have been
widely demonstrated to display superb catalytic activity in fuel
cells [56-59]. Additionally, in 2018, N-doped GDY was also
reported to have outstanding ORR catalytic activity with rapid
kinetics and remarkable half-wave potential of E;; = 0.87 V under
alkaline condition, which is comparable to that of commercial Pt/C
catalysts (E;,=0.86V) [60]. Furthermore, its catalytic perfor-
mance in acidic solution is slightly inferior to that of Pt/C but sur-
pass that of other metal-free materials. Zhao et al. [60] also
emphasized that by comparing with other N-doping forms, doping
of N atom in the diacetylenic linkage (-C=C-C=C-) is the most
facile approach for ameliorating the ORR activity of GDY.

Even though N-doped GDY has been experimentally proven to
render robust ORR electrocatalytic activity, the atomic-level mech-
anism on how nitrogen influences the oxygen adsorption and
reduction, to the best of our knowledge, is still ambiguous. Does
the N dopant play a direct role on activating O, in GDY? With
the question in mind, we investigated the ORR performance of
GDY in three N-doping forms by means of density functional the-
ory (DFT) calculations. Our computational results demonstrated
that the N atom does not promote the ORR activity of GDY via
direct bond with molecular O,, but through modulating the charge
distribution of adjacent carbon atom. Furthermore, the calculated
onset potential of 0.81 V for ORR over N-doped GDY is also compa-
rable to the previously reported theoretical potential of Pt (11 1)
catalyst (0.78 V) [61], which is consistent with the experimental
reports. As a whole, this study elucidates a clear picture for unrav-
eling the electrochemical ORR application of metal-free N-doped
GDY in a well-defined atomic level, which can also be extended
to describe other metal-free carbon materials systems.

2. Computational details
2.1. Computational methods

All of the calculations were performed based on the plane-wave
density functional theory (DFT) using the projected augmented
wave (PAW) pseudopotentials implemented in the Vienna ab initio
simulation package (VASP) code [62,63]. The exchange-correlation
functional was described using the generalized gradient approxi-
mation in the form of Perdew-Burke-Ernzerhof (GGA-PBE) [64].
The conjugate gradient algorithm was carried out to treat the ion
relaxation, and the DFT-D3 method of Grimme et al. was employed
to describe the van der Waals interactions [65]. Spin-polarized cal-
culations were performed for the radical intermediates in the reac-
tion path. For the electronic and ionic self-consistent calculations,
the convergence criteria for energy and force were set to 107> eV
and 0.02 eV/A, respectively. In this configuration, the GDY was
built in a 2 x 2 supercell with vacuum of 20 A in the z-direction,
then a C atom in GDY was substituted by a N atom to form N-
doped GDY. A 3 x3 x1 Monkhorst-Pack k-point mesh was
employed for sampling the Brillouin zone [66]. To investigate the
transition states and energy barriers along the O, dissociation

pathway, the CI-NEB method in VTST tools was carried out with
a force convergence criterion of 0.08 eV/A [67]. The free energies
for the electrochemical oxygen reduction reaction were calculated
using the method reported by Nerskov and co-workers [61].

2.2. Thermodynamic calculations

Four PCET steps were involved in the oxygen reduction process
(0, +4H"* + 4e~ — 2H,0, E°=1.23 V vs. RHE). In the alkaline fuel
cells, the ORR can be denoted as O, + 2H,0 +4e~ — 40H". It is
reported that the reaction free energies for the transfer of a sol-
vated proton can be regarded as approximations of the activation
energies when the proton transfer step is downhill in energy
[68]. This approach may cause a slight overestimation of activity,
but it is still accurate in the qualitative analysis. Thus, we investi-
gated the electrochemical reaction pathway via the thermody-
namic reaction with the neglect of the activation barriers for
each PCET step. The chemical potential (u) of the proton-electron
pair (H" + e™) is equal to that of half a hydrogen molecule by setting
the standard hydrogen electrode (SHE) as the reference electrode,
W(H"+e7)=1/2 u(H,), at U=0V and Py, = 101.325 kPa. The Gibbs
free energy change of each PCET step can be calculated as AG = AE
+ AZPE — TAS, where AE denotes the total energy difference
obtained from DFT computations; AZPE and AS denote the change
in zero-point energies and entropy; the temperature T is set to
298.15 K. For the simulation of H,0 in the liquid phase, the entropy
of H,0 is calculated at 3.5 kPa, due to it is the equilibrium pressure
of H,0 (g =1) at 298.15 K. The zero-point energies and entropy of
adsorbates were calculated from the vibrational frequencies
obtained from computations, while the entropy of molecules in
gas phase was experimental values from the standard thermody-
namics database. The applied electrode potential (U) is involved
by shifting the energy of each PCET state by -neU, where n is the
number of unreached proton-electron pairs. We assumed the value
of pH to be zero (pH 0) for all of our calculations, and for the pH
different from zero, we can use Gpy as the correction of the
concentration-dependent H* free energy: Gpy = 0.059 x pH.

3. Results and discussion
3.1. Structures, properties and stabilities of GDY and N-Doped GDY

Due to the existence of both sp- and sp?-hybridized carbons
( C®, C*"), there are as much as four types of carbon bonds in
GDY. The bond lengths are 1.44 A for the C**~ C*’bonds in benzene

rings, 1.40 A for the "~ C*** bonds close to benzene rings, 1.24 A for
the C"—C* triple bonds and 1.35 A for the C**—C* single bonds
linked two ethynyl units, the average bond length is attributed to
the m-conjunction effect in GDY. Owing to the existence of high-
energy C=C triple bonds, the calculated chemical potential of C
atom in GDY (u = —8.48 eV) is higher than that in graphene (u =
—9.25 eV). The thermodynamics stability of GDY is not as good as
graphene, however, the former is proved to play a positive role in
the activation of O, molecule. As shown in Fig. 1, there are three
types of C atom in the periodic structure of GDY, including sp?-
hybridized C atoms in the benzene rings and two types of sp-
hybridized C atoms in the diacetylenic linkages. Accordingly, three
types of N atom forms were taken into consideration: (1) N atoms
doped in the benzene rings, named grap-N; (2) N atoms doped in
diacetylenic linkages, named sp-N(I) and sp-N(II), respectively,
based on the distance from the benzene rings.

The charge distributions of the catalysts are the decisive factors
on their O, adsorption and activation properties. Table 1 shows the
Bader effective charges of the atoms labeled from X0 to X5 (Fig. 1).



X. Chen et al./Science Bulletin 65 (2020) 45-54

O C atom
o grap-N
© sp-N(l)
© sp-N(ll)

Fig. 1. (Color online) Optimized structure of graphydiyne with 2 x 2 x 1 supercell,
three types of N atom forms are marked in green (grap-N), pink (sp-N(I)) and purple
(sp-N(II)).

According to the Bader charge analysis, the doped N atom can
induce the rearrangement of the charge distribution in the whole
diacetylenic linkage. Due to the electronegativity difference
between N atom and neighboring C atoms, more than 1 |e| is trans-
ferred from C to N atom. Thus neighboring C atoms show obvious
positive charge, and the sp-N GDYs possess relatively higher
degree of charge transfer compared with grap-N GDY. The doping
of N atom can also decrease the band gap of GDY from 0.5 to
0.25 eV (Fig. S1 online). Furthermore, we examined the defect for-
mation energy, Er= En_doped cpy — (Ecpy — lic + un), to evaluate the
stability of each doped system, where En_doped cpy, Ecpy, tc and
U denote the energies of N-doped GDY, GDY, one C atom in GDY
as well as one N atom in nitrogen molecule (N;), respectively.
Our computation result shows that the defect formation energy
of grap-N doped GDY (1.51 eV) is slightly higher than that of sp-
N(I) and sp-N(II) doped GDY (0.45 and 0.78 eV), which indicates
the formation of grap-N doping is more difficult than that of sp-
N doping. Nevertheless, no notable geometry distortion was
observed in the doped systems after 4-ps molecular dynamics sim-
ulations at 300 K (Fig. S2 online).

3.2. 0, adsorption

The O, adsorption ability is the foremost prerequisite for ORR
electrocatalysis, especially for metal-free materials of which
adsorption activities are normally weaker than that of metals [2].
The chemical adsorption process can be written as O,(g)+* —
0,* or O,(g) +2* —» *00* corresponding to O, end-on and side-on
configuration (Fig. S3 online), where the * denotes an active site
on surface.

In order to unravel the favorable adsorption sites, several initial
0, adsorption configurations were examined on pristine GDY. We
screened the adsorption sites according to the adsorption energies
(Eags = E(02*) — (E(*) + E(O3)), where E(0,*), E(*) and E(O,) denote
the energies of the adsorbed structure, substrate and adsorbate,
respectively). On account of the steric effects, high-energy distor-
tion caused by repulsion can be observed when O, locates in the
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pores of GDY (Fig. S4 online). We then moved to discuss the O,
adsorption properties on the carbon chains. The calculated physical
0, adsorption energy on carbon chains ranges from -0.01 to
-0.07 eV. Besides, we also observed the existence of chemical
adsorption with E,gs of -0.32 eV in the side-on O, adsorption con-
figurations. The results demonstrate that the O, molecules prefer
to be adsorbed on the chains of GDY rather than in the pores.

After knowing the preferential adsorption sites of O, on GDY,
we canvassed the O, adsorption abilities of N-doped GDY. Here,
we investigated three O, adsorption sites on each substrate, most
of the O, chemical adsorption configurations are side-on (Fig. 2).
As demonstrated in Fig. 2a and b, the O, adsorption energies corre-
sponding to Site 1 and Site 3 of pure GDY and grap-N GDY are pos-
itive. Therefore, for GDY and grap-N GDY, O, only can be
chemically adsorbed on the ethynyl units (Site 2). This phe-
nomenon can be attributed to the C=C bond of the substrate
underneath, which can loosen one bond to adopt the O, molecule.
For sp-N GDY (Fig. 2c and d), the adsorption energies for three O,
adsorption configurations are negative (from -0.36 to -1.60 eV). In
addition, N doping can not only enhance the adsorption properties,
but also provide more active adsorption sites. It is interesting to
note the O, molecule does not directly bond with the sp-N atoms
but dangle on the neighboring sp-hybridized C atoms, presenting
an end-on adsorption configuration. According to the previous
Bader charge analysis, we inferred that the sp-N atom can induce
unsaturated bonds for adjacent sp-C atom to activate the C atom
into active center for O, adsorption. In short, the O, chemical
adsorption energies of N-doped GDY are overall lower than those
of pure GDY, which demonstrates remarkable improvement of N-
doped GDY in the O, adsorption properties.

3.3. Simple model for ORR

To assess the potential of each atom as the active sites for elec-
trochemical ORR, we use a simple model with two PCET steps,
which can be written as
1

—02(g) + % — O*

5 M

0" +H0(l) + e~ — OH" + OH" 2)

3)

where * represents an active site on surface. In the alkaline solu-
tion, H,0, rather than H*, serves as the proton donor [68]. In the
ideal situation, the reaction free energies of all the PCET steps
should be identical, corresponding to the maximum potential of
1.23 V (equilibrium potential, Uy = 4.92 eV/4e = 1.23 V) allowed in
a fuel cell (Fig. S5 online).

Fig. 3 shows the free-energy diagram of the two-electron trans-
fer reaction on different sites of the surface at the equilibrium
potential. As shown in Fig. 3a, the value of free energy of the inter-
mediates (O*, OH*) on C1 atom is close to zero at 1.23 V, indicating
its oxygen reduction activity. However, the free energy of O* on C2
atom (0.46 eV) is higher than that of 1/20,, which indicates the
oxygen bonding on this atom is less stable than in the O, molecule.

OH" +e — OH 4+«

Table 1

Bader effective charges (|e|) of various atoms in GDY and N-doped GDY.
GDY X0 X1 X2 X3 X4 X5
pure +0.12 +0.06 —-0.08 -0.24 +0.06 +0.12
grap-N -1.14* +0.14 +0.34 —-0.03 -0.14 +0.27
sp-N(I) +0.44 -1.29° +0.68 +0.14 —0.08 +0.26
sp-N(II) +0.12 +0.72 -1.33° +0.47 —-0.05 +0.26

2 The doping site of N atom.
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Fig. 2. (Color online) Geometric structures and the corresponding chemical adsorption energies of O, on GDY (a), grap-N GDY (b), sp-N(I) GDY (c) and sp-N(II) GDY(d). The

brown, red and blue balls represent C, O, and N atoms, respectively.

In Fig. 3b, the free-energy values of O* are all negative, indicating
that the introduce of grap-N atom will effectively enhance the O*
adsorption activities of the diacetylenic chain, especially for the C
atoms close to N atom. In Fig. 3c and d, similar to that on C2 atom
of pure GDY, the potential of O* on sp-N atom is much higher than
zero (1.10 and 1.49 eV, respectively). This matches up with the pre-
vious investigation that O, cannot directly bond with the N atom in
N-doped GDY. In contrast, the free-energy values of O* on neigh-
boring C atoms are greatly reduced, suggesting strong bonding
between C and O atoms. In fact, the atoms that have over strong
binding of O and OH, such as C1 atom with O* adsorption free
energy less than —1.9 eV in sp-N-doped GDY, may also have some
adversity in oxygen reduction. On the one hand, the strong binding
may slow the proton-transfer steps in the hydrogenation process
as well as it will prevent the desorption of OH.

Through the simple ORR model, we can make a preliminary
evaluation on the oxygen reduction performance of each site. More
specifically, it is an efficient way to identify the inactive sites for
ORR such as C1 atom in GDY and N atom in N-doped GDY. Never-
theless, it may not denote the general trend of the overall reaction.
For example, the C1 site of pure GDY shows an advantage of rela-
tively favorable oxygen reduction properties in the simple ORR
model, while it does not directly imply that GDY can serve as a
good catalyst. More related details of the thermodynamics and
kinetics in electrocatalytic oxygen reduction will be discussed in
Section 3.4.

3.4. Electrochemical O, reduction mechanism

In Section 3.3, we have discussed a simple model of O, reduc-
tion. Herein, we will discuss the whole reaction pathways in detail
starting from different O, adsorption sites. Apart from the adsorp-
tion sites, the O coverage rate is another important effect for the

ORR performance. However, as shown in Section 3.2, the active
sites of O, adsorption for GDY are far apart and relatively indepen-
dent from each other. Thus, we only consider the situation of one
adsorbed O, molecule around the active site. We refine the reac-
tion pathway based on two kinds of mechanisms, including the
0, dissociation and association mechanisms.

3.4.1. O, dissociation mechanism

The O, dissociation mechanism corresponds to the situation
that O, dissociates into two O* after chemical adsorption on the
surface (Fig. 4a). This process may occur in the O, molecules of
which both ends bond with the surface (*00*), so the end-on O,
configurations with O, dangling on the surface (*OO) were not
taken into consideration in this mechanism. The electronic oxygen
reduction pathway in alkaline electrolyte is given as follow:

02(g) + 2+ — *00% — 20 4)
20" +H,0(l) +e- — 0"+ OH" + OH™ (5)
O"+OH +e - 0" +O0H +=x (6)
0" +H,0(l) + e — OH" + OH™ (2)
OH" +e — OH™ + 3)

The energy pathway of O, dissociation (Fig. 4b) was calculated
to estimate the energy barriers on different surface (Fig. 4c). It was
found that the barriers for N-doped GDY were no more than 0.2 eV,
which is significantly lower than that for pure GDY (0.41 eV). Espe-
cially for sp-N GDY, the energy barrier was negligible, showing the
large possibility for adsorbed O, to be activated into two O at the
surface.
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Fig. 3. (Color online) Free-energy diagram of simple ORR model (0, — 0* - OH* — OH") for different sites of GDY (a), grap-N GDY (b), sp-N(I) GDY (c) and sp-N(II) GDY (d)

at the equilibrium potential Up=1.23 V.

According to the computed energy diagram for oxygen reduc-
tion over GDY, grap-N doped GDY and sp-N doped GDY (Fig. 4c-
g), the thermodynamics elementary steps of oxygen reduction
are spontaneously proceeding (all electron transfer steps are
exothermic at zero potential). For pure GDY (Fig. 4d), when we give
an onset potential of 0.12 V, the free energy of the first hydrogena-
tion step (20*— O*+0OH*) will become zero, which suggests oxygen
reduction cannot react spontaneously at more than 0.12V. For
grap-N GDY (Fig. 4e), sp-N(I) GDY2 (Fig. 4f), and sp-N(I) GDY3
(Fig. 4g), the thermodynamic limiting steps are the desorption of
water (OH* —» H,0), and the onset potentials are 0.55, 0.51 and
0.41V, respectively, which are higher than that of pure GDY. As
shown in Fig. 4h and i, sp-N(II) GDY has some energy steps uphill
in the oxygen reduction process, which manifests that O, cannot
be spontaneously reduced to water after dissociation on sp-N(II)
GDY. sp-N(II) GDY2 encounters obstacle to water desorption on
account of the strong binding between C1 and O atom, which
was mentioned in Section 3.3. By taking both the O, dissociation
barriers and the ORR energy diagram into account, grap-N GDY
and sp-N(I) GDY have promising performance in O, dissociation
mechanism.

In previous theoretical study, the adsorbed state free energies of
the oxygenated species (OOH*, O* or OH*) were usually used as a
metric to evaluate the ORR activity [69]. However, the state of O,
on GDY is more complicated in dissociation mechanism. To be
specific, the molecular O, favors to locate on the top of an ethynyl
unit in GDY. After dissociation, both the C atoms in the ethynyl unit
will bond with one O atom, reaching an equilibrium to a certain
extent. Thus, the O*+0* configuration is considerably stable (AGo~+.
o*=3.03 eV). The small energy difference between the state of O*
+0* and O* leads to the limitation in the hydrogenation step of
the first O atom. By and large, for the catalysts with various orbital
hybridization, it is inadequate to merely use the adsorbed state
free energies of the oxygenated species to estimate their ORR
activity.

3.4.2. 0, association mechanism

Before O, dissociation reaction is activated on the catalytic sur-
face, hydrogenation reaction may have taken place. As displayed in
Fig. 5a, O, is directly reduced to a peroxy intermediate (OOH) at
the surface in the first electron-transfer step instead of dissociation
and then hydrogenation. To investigate the O, association
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Fig. 4. (Color online) Illustration and corresponding energy diagrams of dissociation mechanism. (a) Illustration of dissociation ORR mechanism; (b) optimized geometric of
0, dissociation on sp-N(I) GDY; (c) the energy barriers diagram of O, dissociation on each surface. The free-energy diagram for electrochemical ORR at zero (black line) and
onset (red line) potentials over GDY (d), grap-N GDY (e), sp-N(I) GDY2 (f, g) and sp-N(II) GDY (h, i). The reaction started from different O, adsorption sites were labeled by
GDY2 and GDY3, corresponding to O, adsorption site 2 and 3, respectively, as presented in Section 3.2.

mechanism, we have simulated the oxygen reduction process with
reaction equations expressed as below:

0,(g) + * + H,0(1) + e~ — OOH" + OH~ (7)
OOH" +e — 0"+ OH™ (8)
0" +H,0(l) + e — OH" + OH~ (2)
OH +e~ — OH += (3)

Both the end-on and side-on O, adsorption structures with neg-
ative chemical adsorption energies were investigated in the O,
association mechanism. We calculated the energy diagram for
the ORR association mechanism on each catalyst. As shown in
Fig. 5b, the thermodynamics limiting step on pure GDY is the first
hydrogenation of O, (O, +*+ H"/e” - OOH*), which hindered the
further reaction of O, seriously. For grap-N GDY (Fig. 5c), the
potential-limiting step of the oxygen reduction process is the pro-
tonation of O* to OH*, corresponding to the onset potential of
0.58 V. From the left-most diagram in Fig. 5d and e, both the reac-
tions, which started from dangling O, on sp-N GDY, have uphill
steps for the desorption of OH* to water. This phenomenon has

been predicted in Section 3.3 from the strong binding energy
between C1 and O atom. The second and third diagrams in
Fig. 5d and e demonstrate that the ORR mechanism initiated from
different side-on O, configurations on the C2 and C3 atom of sp-N
(I) GDY and sp-N(II) GDY. The onset potentials of sp-N(I) GDY2 and
sp-N(I) GDY3 are 0.18 and 0.41 V, respectively. Moreover, unprece-
dented ORR activities of sp-N(II) GDY were obtained, recording
onset potentials of 0.76 and 0.62 V, which were comparable to
the theoretical prediction of Pt (11 1) surface (0.78 V) [61]. This
is in line with the previous experimental reports [60].

For the association mechanism, we can describe the correlation
of the adsorption free energies of OOH*, O* and OH* via linear func-
tions (Fig. 6a). According to the adjusted R square (R?) of the fitted
equations, the linear relationship between AG(OOH*) and AG
(OH*) is better than that between AG(O*) and AG(OH*) [70,71].
Based on the scaling relations between AG(OOH*), AG(0*) and AG
(OH*) fitted in Fig. 6a, we depicted the limiting potential (U; (i=1,
2, 3, 4)) of each PCET step (as deduced in Supporting Information
online). As shown in Fig. 6b, it is obvious that the value of U, is much
more than that of others, which demonstrates that the second
hydrogenation reaction (OOH* + H" /e~ — O* + H,0) is a thermody-
namically facile step. At the bottom of the Fig. Gb, the first
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Fig. 5. (Color online) Illustration and corresponding energy diagrams of association mechanism. (a) Illustration of ORR association mechanism. The free-energy diagram for
0, association mechanism at zero (black line) and onset (red line) potentials over GDY (b), grap-N GDY (c), sp-N(I) GDY (d) and sp-N(II) GDY (e). The reaction started from

different O, adsorption configurations were labeled by GDYX (X = 1-3).

(0x* + H/e~ — OOH*, U;) and the forth (OH* + H'/e™ — H,0 + *, Uy)
steps determine the limiting potentials of the whole oxygen reduc-
tion reaction. U; goes down with the weakening of OH* adsorption
(corresponding to the increase of AG(OH*)), while U, rises with that,
thus U; and Uy intersect with each other to form a volcano. The high-
est ORR thermodynamic activity with onset potential of around
0.76 V occurs at the top of volcano plot. Different from the dissoci-
ation mechanism, the adsorption free energy of OH* (optimal value
ranging from 0.5 to 1.15 eV) has a direct relation with the ORR activ-
ity of N-doped GDY.

The maximum onset potentials of each catalyst for both O, dis-
sociation and association mechanism are listed in Table 2 for fur-
ther analysis. Compared with N-doped GDY, the pure GDY
possesses a relatively higher energy barrier for O, dissociation
and lower onset potentials of 0.12 and 0 for O, dissociation and
association mechanism, respectively. The doping of N atom has

significant contributions to the amelioration of onset electrode
potential of electrocatalytic ORR on GDY. For sp-N(I) GDY, O, dis-
sociation mechanism plays a dominant role for its negligible disso-
ciation barrier (0.04 eV) and relatively higher onset potential
(0.51 V) compared with that of O, association mechanism. Except
for sp-N(I) GDY, it is evident that the ORR onset potential of asso-
ciation mechanism is higher than that of dissociation mechanism,
especially for sp-N(II) GDY of which the onset potential can reach
up to 0.76 V in O, association mechanism.

4. Conclusion

In summary, by means of DFT calculations, we have investi-
gated the thermochemistry of N-doped GDY (including grap-N,
sp-N(I) and sp-N(II) GDY) as effective oxygen reduction electrocat-
alysts. Our computation results demonstrated that O, molecules
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Fig. 6. (Color online) Relationship between the adsorption free energies of *OOH, *O
and *OH as well as between the adsorption free energies of *OH and the ORR
limiting potentials. (a) Linear relations between the adsorption free energy values
of *OOH, *O and that of *OH at the active sites on GDY and N-doped GDY. (b) The
volcano plot of limiting potentials for ORR activity. The ORR onset potentials for
various active sites are labeled by black points.

Table 2
A comparison of dissociation barriers and onset potentials of GDY and N-doped GDY
for ORR dissociation and association mechanisms.

Catalysts  Dissociation Association
Energy barrier (eV)  Onset potential (V)  Onset potential (V)
Pure 0.41 0.12 0
grap-N 0.19 0.55 0.58
sp-N(I) 0.04 0.51 0.41
sp-N(II) 0.12 -0.37 0.76

would rather be adsorbed on the carbon linkages than in the pores
of GDY. Moreover, the doped N atom can neither bond with the
molecular O, nor directly participate in the oxygen reduction reac-
tion. However, doping of N atom can induce the charge redistribu-
tion, thus activating the adjacent sp-C atoms into active centers for
electrocatalytic oxygen reduction. We employed the simple ORR
model to screen the active sites on catalysts, followed by examin-
ing the free-energy landscape of the whole reaction in the O, dis-
sociation and association mechanisms. The ORR activity for the
association mechanism can be predicted by the adsorption free
energy of OH* unlike for the dissociation mechanism. Our compu-

tations indicated that the onset potential of ORR in association
mechanism is higher than that in dissociation mechanism, except
for sp-N(I) GDY. Among the three types of N doping, sp-N(II) dop-
ing provides the most significant ORR performance improvement
by increasing the onset potential to 0.76 V, which is even compara-
ble to that of noble metal Pt (11 1) surface (0.78 V). As such, this
work conforms to the previous experimental reports very well.
To this end, we have provided a blueprint for in-depth insights into
the mechanism of N-doped GDY as oxygen reduction catalysts,
which can be extended to other metal-free carbon materials. At
the same time, this work leaves much to be desired. For instance,
the solvation effect, surface charge effect and the energetic change
of electrochemical reactions caused thereby are not investigated in
this work. Future work will be considered by performing the
constant-potential calculations to improve the rigor of the theoret-
ical electrochemical computations. In general, this work paves a
potential avenue in demystifying the doping mechanism, which
will lay a strong foundation for site-specific doping of catalysts
toward a cornucopia of energy applications.
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