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shaping microeukaryotic biogeography.
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Microeukaryotes are the key ecosystem drivers mediating marine productivity, the food web and biogeochemical
cycles. The northwestern Pacific Ocean (NWPO), as one of the world's largest oligotrophic regions, remains largely
unexplored regarding diversity and biogeography of microeukaryotes. Here, we investigated the community com-
position and geographical distribution of microeukaryotes collected from the euphotic zone of three different re-
gions in the NWPO using high-throughput sequencing of the 18S rRNA gene and quantified the contributions of
environmental factors on the distributions of microeukaryotes. The relative abundance of different group taxa, ex-
cept for Ciliophora, presented distinct patterns in each region, andMetazoa and Dinoflagellata dominated the com-
munity, contributing approximately half of reads abundance. Spatial and environmental factors explained 66.01% of
community variation in the NWPO. Temperature was the most important environmental factor significantly corre-
lated with community structure. Bacterial biomass was also significantly correlated with microeukaryotic distribu-
tion, especially for Dinoflagellata and Diatomea. Network analysis showed strong correlations between
microeukaryotic groups and free-living bacteria and different bacterial taxa were correlated with specific
microeukaryotic groups, indicating that their interactions enabledmicroeukaryotic groups to adapt to diverse envi-
ronments. This study provides a first glance at the diversity and geographical distribution ofmicroeukaryotes in the
NWPO and sheds light on the biotic and abiotic factors in shaping the microeukaryotic community in the ocean.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Microeukaryotes (protists, fungi and small zooplankton) are vital to
marine ecosystem, regulating marine productivity, the food web and
biogeochemical cycles of various biogenic elements (Worden et al.,
2015). Recently, more and more attention has been paid to protists for
their high diversity and diverse trophic modes (Caron et al., 2008;
Caron et al., 2012; Caron et al., 2016). In the epipelagic ocean, photosyn-
thetic protists, like diatoms, dinoflagellates and certain haptophytes
(coccolithophores), are the major contributors of primary production
and construct the basement of the ecosystem, while high trophic pro-
tists, such as ciliates and flagellates, consuming bacteria and small pro-
tists are prayed by zooplankton (Sherr et al., 2007). Moreover, diverse
mixotrophic protists also play important roles in balancing the ecosys-
tem in the oligotrophic ocean (Unrein et al., 2014). This food-web trans-
fer canfix CO2 into particle organic carbon (POC) and sinkdown into the
deep ocean to maintain the balance of the ocean system and carbon
cycle (Worden et al., 2015). However, each group of microeukaryotes
makes their own contribution to the balance of the ecosystem and dom-
inates in distinct habitats (Grossmann et al., 2016). Recent studies dem-
onstrate that microeukaryotic community structure is driven by biotic
(e.g., prey availability, top-down grazing and bacterial effects) and abi-
otic (e.g., spatial factors, light, temperature, salinity and nutrients) fac-
tors (Sherr et al., 2007; Caron et al., 2016). Moreover, individual
microeukaryotic taxa have distinct capabilities to adapt to different en-
vironmental factors, such as nutrients and temperature (Palenik, 2015;
Rao et al., 2018). Understanding microeukaryotic diversity and group-
specific interactions with environmental factors in different regions is
critical to unveiling the ecological processes and mechanisms involved
in maintaining the stability and function of the ecosystem (Naeem and
Li, 1997).

High-throughput sequencing methods have enhanced our ability to
assess the biodiversity of microeukaryotes and identify their ecological
significance in the ocean (Bik et al., 2012). Large-scale and multi-
sample datasets show that distribution patterns of protists are distinct
between global ocean areas and different habitats (de Vargas et al.,
2015; Grossmann et al., 2016). Growing evidence supports a long-
tailed species abundance curve with a large number of rare species pre-
senting in most ecosystems (Sogin et al., 2006; Fuhrman, 2009; Pedros-
Alio, 2012; Lynch and Neufeld, 2015), however, microbial geographic
patterns are shaped by different processes, like dispersal limitation
and environmental stresses (Foissner et al., 2006; Hanson et al., 2012;
Sul et al., 2013). Global-scale investigation proves that microbial com-
munity compositions are driven by spatial and environmental factors,
especially temperature (Sunagawa et al., 2015; Villar et al., 2015). Spa-
tial factors together with environmental factors also play important
roles in structuring the microeukaryotic community (Zhang et al.,
2018a; Zhang et al., 2018b). However, biotic factors are less frequently
mentioned in previous microeukaryotic studies. Bacterial activity, such
as material exchange, chemical communication and algicidal activity,
should also be considered as important factors shapingmicroeukaryotic
community structure in complex oceanic conditions (Caron et al.,
2016). Direct associations between bacteria and protists have been
proved by co-culture studies (Amin et al., 2015; Cruz-Lopez and
Maske, 2016). Co-occurrence patterns in different marine regions
can provide us a profound understanding of microbe-microbe interac-
tions in natural environments (Fuhrman, 2009), and specific bacterial
groups are tightly associated with phytoplankton bloom (Needham
and Fuhrman, 2016). However, the interactions between
microeukaryotes and bacteria in different natural habitats are still not
well understood.

In the northwestern Pacific Ocean (NWPO), the environment is
shaped by the Kuroshio and Oyashio currents which are driven by
wind and possess different physical-chemical features (Qiu, 2001).
The Kuroshio Current carries oligotrophic water at high temperature
from the equator, while the Oyashio Current originating from the
subarctic is characterized by high nutrient levels and low temperatures,
and the confluence of them shapes the Kuroshio-Oyashio Transition
Area which is also called the Mixed water region (Yasuda, 2003).
These currents contribute a gradient of physics, chemistry and biology
to the NWPO (Qiu, 2001) which provides an ideal area to study the in-
teraction betweenmicroorganisms and environmental factors. Previous
studies show that the different regions are dominated by different
groups of phytoplankton (Selph et al., 2005; Kok et al., 2014; Kataoka
et al., 2017). Recent studies focusing on either bacteria or
picoeukaryotes show that temperature shapes community structures
(Xia et al., 2017; Li et al., 2018; Wang et al., 2019). However, so far,
we know little about the diversity and geographic distribution of
microeukaryotes and their interactions with biotic and abiotic factors
in this area.

In this study, we conducted a comprehensive study of the diversity
of microeukaryotes in three different regions in the NWPO using high-
throughput sequencing of the 18S rRNA gene. We assessed the contri-
bution of spatial and environmental factors to shaping the geographic
patterns of microeukaryotes. Furthermore, we assessed the biotic
factors by constructing the co-occurrence network among
microeukaryotes and free-living bacteria. The purpose of this study
was to unveil eukaryotic microbial community structure in different
habitats and to explore biotic and abiotic factors shaping community
structure and distribution of microeukaryotes in the NWPO.
2. Materials and methods

2.1. Sampling and sample preparation

The survey was carried out in the northwestern Pacific Ocean
(NWPO) fromMar. 30th to May. 6th 2015. Seawater samples were col-
lectedwith Niskin bottles from the sea surface and the deep chlorophyll
maximum (DCM) layer at nine sites except for site P5 which was sam-
pled just one layer due to the strong mixing in the upper 30 m. Each
sample was pre-filtered by 200 μm Bolting Cloth and filtered through
the 1.6 μm GF/A membrane (142 mm diameter, Waterman) and then
a 0.2 μm PC membrane (142 mm diameter, Millipore) by peristaltic
pump (Flojet). 50 L to 500 L of seawater were filtered from each layer
depending on microeukaryotes biomass: in the oligotrophic Kuroshio
region, 500 L seawater was filtered due to the extremely low biomass,
while in the coastal region, 50 L seawater was filtered due to the high
biomass. Finally, 17 microeukaryotic samples (1.6–200 μm) were col-
lected and each sample contained two replicates. Meanwhile, 17 free-
living bacterial samples (0.2–1.6 μm)were collected for network analy-
sis of microeukaryotic groups and bacteria. All samples were immedi-
ately frozen with liquid nitrogen and stored at−80 °C until processed.
2.2. Environmental parameters measurement

Temperature, salinity and oxygen concentrationwere obtained from
CTD (conductivity-temperature-depth) profiler (SeaBird Electronics,
Inc., Bellevue, WA, United States). Seawater samples were collected
for nutrient analysis by filtering through GF/Fmembrane (47mmdiam-
eter, Waterman). The nutrient concentrations were analyzed photo-
metrically using an autoanalyzer (Model: SkalarSANplus). The
analytical precision of NO2

−, NO3
−, PO4

3−, and SiO3
− were 0.1, 0.1, 0.05,

and 0.2 μM. Bacterial abundance samples were collected by pre-
filtering through a 1.6 μm GF/A membrane. Triplicate 2 mL seawater
samples with 2% glutaraldehyde in 2 mL tubes were stored at −20 °C
until processed. Bacterial cells were stained with SYBR Green I in anhy-
drous dimethyl sulfoxide and incubated in the dark for 15min. Bacterial
abundance was measured by a BD FACSAria Flow Cytometer (Becton
Dickinson, USA) following the protocol described previously (Marie
et al., 2001).
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2.3. DNA extraction and sequencing

DNA of microeukaryotic samples (N1.6 μm) was extracted by im-
proved extracting protocols (Yuan et al., 2015), owing to the complex
cell covering of dinoflagellates and diatoms. Prokaryotic samples exe-
cuted DNA were extracted by FastDNA SPIN extraction kit for soil (MP
Biomedicals, Santa Ana, CA), according to the manufacturer's
instructions.

The V4–V5 hypervariable region of eukaryotic 18S rDNA was am-
plified with Ek-NSF573 and Ek-NSR951 (378 bp) (Mangot et al.,
2013). This primer couple was selected by an in silico approach
with a suitable overlap to conform to the sequencing accuracy of
Miseq platform (Bradley et al., 2016). All PCR reactions were carried
out in 30 μL reactions with 15 μL of Phusion® High-Fidelity PCR Mas-
ter Mix (New England Biolabs); 0.2 μM of forward and reverse
primers, and about 10 ng template DNA. Thermal cycling consisted
of initial denaturation at 98 °C for 1 min, followed by 30 cycles of de-
naturation at 98 °C for 10s, annealing at 50 °C for 30s, and elongation
at 72 °C for 60s, and finally, 72 °C for 5 min. A negative PCR control
with no template DNA was included for the reactions. All amplicons
were then sequenced on a single run using the Illumina MiSeq
2x300bp platform.

The V3–V4 hypervariable region of prokaryotic 16S rDNA was am-
plified with 341F (5′CCTACGGGRBGCASCAG-3′) and 806R (5′GGAC
TACNNGGGTATCTAAT-3′) using the same protocol as eukaryotes. The
primers can amplify both bacterial and archaea but with a bias for bac-
teria (Yu et al., 2005). All amplicons were sequenced on a single run
using the Illumina HiSeq 2 × 250 bp platform.

2.4. Sequence assembly, clustering and annotation

Raw data were first separated to each sample by barcodes and then
the barcodes and primer sequences were removed. Separated raw data
were merged into raw tags using FLASH (V1.2.7, http://ccb.jhu.edu/
software/FLASH/) (Magoc and Salzberg, 2011). Raw tags were filtered
by quality filters processed using QIIME (V1.7.0, http://qiime.org/
index.html) (Caporaso et al., 2010). Filtered tags were grouped into op-
erational taxonomic units (OTUs) at 0.97 similarities with removal of
chimera using USEARCH (version 7.1 http://drive5.com/uparse/)
(Edgar, 2013). OTUs from 16s and 18s rDNA data were annotated
using the RDP classifier (Cole et al., 2009) confronted against the Silva
(release 128) (Quast et al., 2013) respectively by a confidence threshold
of 0.7.

For analyses on higher levels of taxonomic group, the following taxa
were selected: Alveolata. others, Ciliophora, Chloroplastida,
Chrysophyceae, Cryptophyceae, Diatomea, Dictyochophyceae,
Dinoflagellata, Haptophyta, Rhizaria, Stramenopiles. others, Syndiniales,
Fungi, Metazoa. The group ‘Alveolata. others’ excluded Ciliophora,
Dinoflagellata and Syndiniales. The group ‘Stramenopiles. others’ ex-
cluded Chrysophyceae, Diatomea and Dictyochophyceae. The OTUs am-
biguously annotated or unclassified by one of the given taxonomic
groups were shown as ‘others’. Except for the multicellular groups of
Metazoa, Fungi and others, the remaining groups were clustered into
protists.

2.5. Statistical analysis

To ensure inter-sample comparability for our taxonomic diversity
estimates and following statistical analyses, we utilized the QIIME soft-
ware to subsample by randomly reducing the number of reads in each
sample to the lowest number (19,793 sequence reads) of reads in any
individual sample. Finally, the dataset retained 653,169 sequence
reads for the entire community.

For alpha-diversity analysis, community diversity parameters
(Shannon index) were calculated using the mothur software (http://
www.mothur.org/wiki/Schloss_SOP#Alpha_diversity) (Schloss et al.,
2011), and rarefaction curves were drawn by R (version 3.5.2). For
beta-diversity analysis, non-metric multidimensional scaling (NMDS)
analysis was operated in R based on Bray-Curtis similarity by ‘vegan’
package. The Bray-Curtis similarity was derived via the vegdist function
in ‘Vegan’ package. An analysis of similarity (ANOSIM) was used to sta-
tistically test for significant differences inmicroeukaryotic communities
in the three regions and two layers. Furthermore, the nonparametric
Mann-Whitney U test and Kruskal-Wallis H test were calculated by
‘stats’ package to test significant differences of microeukaryotic taxa
among regions and layers.

Mantel tests were run in R to determine correlations between en-
vironmental factors and the microeukaryotic community (based on
Bray-Cutis similarity). For environmental parameters (z-score-
transformed), Euclidean distance matrices were calculated via
the R base dist function. We quantified the relative effects of envi-
ronmental and spatial factors in shaping the microeukaryotic com-
munity with variation partitioning analysis (VPA) based on
redundancy analysis (RDA). A set of spatial variables was generated
using principal coordinates of neighbor matrices (PCNM) analysis
(Borcard and Legendre, 2002) based on the longitude and latitude
of the sampling sites. Then, RDA was used to partition the variation
of the community composition between the extracted PCNM spatial
variables and environmental variables by ‘vegan’ package. VPA was
performed using the “varpart” function of the vegan package which
allows the total variation to be decomposed into fractions that indi-
cate the importance of pure environmental variables, pure spatial
variables, shared fraction and unexplained variation.

In order to demonstrate the relationship between eukaryotic groups
and the environmental parameters, sparse partial least square (sPLS)
was used as implemented in the R package ‘mixOmics’ (Lê Cao et al.,
2008). The sPLS was applied in regression mode, which could model a
causal relationship between the lineages and the environmental traits,
that is, PLS could predict environmental traits from lineage abundances
by calculating correlation between two matrices constructed with eu-
karyotic relative abundance and environmental parameters. This ap-
proach enabled us to identify high correlations between certain
lineages and environmental traits but without taking into account the
global structure of the planktonic community.

Network analysis was conducted based on Spearman's correla-
tions calculated using the rcorr function in the ‘Hmisc’ package. Ro-
bust correlations were considered if Spearman's correlation
coefficient (ρ) was N0.6 for positive or b−0.6 for negative and statis-
tically significant (p b 0.05) (Barberán et al., 2011). Positive correla-
tion could be cooperation, symbiosis or parasitism, and negative
correlation means predation or competition. Networks were visual-
ized using Cytoscape (version 3.7.1).
3. Results

3.1. Overview of the survey area

The survey was conducted in the NWPO fromMar. 30th to May. 6th
2015. The environmental parameters of the investigation area are
shown in Table 1. Three regions: the coastal region (CR, including C5
and P5 sites), the Kuroshio region (KR, including K1, K2, K3 and B9
sites) and the mixed water region (MWR, including A4, A6 and A8
sites) were classified based on current flows (Fig. 1) and environmental
factors (Table 1). Concentrations of nitrogen and phosphorus in the sur-
face layer weremuch lower than that in the DCM layer, and the highest
was observed in the DCM layer of the coastal C5 site. Concentration of
chlorophyll a and bacterial abundancewere higher in theDCM layer, ex-
cept for bacterial abundance at A6 site. Temperature and salinity in the
CR were obviously lower than that in the other two regions, but bacte-
rial abundance and concentrations of chlorophyll a and oxygen were
higher.

http://ccb.jhu.edu/software/FLASH/
http://ccb.jhu.edu/software/FLASH/
http://qiime.org/index.html
http://qiime.org/index.html
http://drive5.com/uparse/
http://www.mothur.org/wiki/Schloss_SOP#Alpha_diversity
http://www.mothur.org/wiki/Schloss_SOP#Alpha_diversity


Fig. 1. Sampling sites and schematic illustration of the Kuroshio current and the Oyashio current.
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3.2. Diversity and distribution of microeukaryotes

2,188,792 high-quality sequences were obtained from 33 samples
and were clustered into 3036 operational taxonomic units (OTUs). The
rarefaction curves were roughly saturated for all samples (Fig. 2A). In
α diversity analysis, the Shannon index showed the diversity of each
sample in the NWPO varied from 3.62 to 5.23 in the KR, from 2.94 to
4.55 in the MWR and from 2.38 to 3.72 in the CR (Table S1). Based on
Mann-Whitney U test, the Shannon index of samples in the KRwas sig-
nificantly higher than that in the MWR (P b 0.001) and CR (P b 0.01)
(Fig. 2B). In β diversity analysis, nonmetric multidimensional scaling
analyses (NMDS) indicated that the community shifted across the
three regions by sorting of sites (Fig. 2C). Analysis of similarity
(ANOSIM) (Table 2) also showed that the communities of the three re-
gions were significantly (P b 0.01) separated (R = 0.596). However,
community dissimilarities between the two layers were 0.19 in the
NWPO. Of the 15 most abundant taxa at class level, more taxa groups
presented significant difference among different regions than two
Table 1
Sampling sites locations and environmental parameters.

Region Station Latitude
(oN)

Longitude
(°E)

Depth (m) Temperature
(°C)

Salinity
(PSU)

CR C5-S 34 124 5 13.43 32.91
C5-D 34 124 30 9.31 32.90
P5-S 28.29 124.78 5 17.51 33.73

KR K1-S 25 130 5 23.24 34.89
K1-D 25 130 60 21.97 34.87
K2-S 25 134 5 24.58 35.19
K2-D 25 134 85 20.19 34.90
K3-S 26.8 136.73 5 23.25 34.77
K3-D 26.8 136.73 80 19.97 34.87
B9-S 30 147 5 20.26 34.82
B9-D 30 147 60 18.00 34.83

MWR A4-S 34 147.83 5 17.66 34.67
A4-D 34 147.83 35 17.51 34.76
A6-S 34 150 5 17.73 34.86
A6-D 34 150 45 17.43 34.77
A8-S 34 152 5 18.00 34.92
A8-D 34 152 65 17.14 34.77

S, surface; D, DCM layer; BA, bacterial abundance; PSU, practical salinity unit; Chla, chlorophyl
layers (Fig. S1, S2), indicating that the community difference was
greater between regions than between water layers.

The relative abundances of microeukaryotic groups in the three re-
gions exhibited different patterns (Fig. 3A). Protists accounted for 64%
of total sequences, comprising 80%, 71% and 47% in the CR, KR and
MWR, respectively. Metazoa and Dionflagellata were the most abun-
dant groups in the investigation areas, and they accounted for more
than half of the proportion of the community (35% and 23% of total se-
quence reads), however, their relative abundance differed among the
three regions. Dinoflagellates were most abundant (44%) in the CR,
while Metazoa had the highest proportion (52%) in the MWR.
Dinoflagellata andMetazoa dominated in the KR and presented compa-
rable proportions (27% and 26% respectively). Protistan composition of
each site was relatively stable in the CR and KR but fluctuated in the
MWR (Fig.3B). Dinoflagellata was the most abundant protist group in
the CR and KR, but Haptophyta was more abundant in the KR and
MWR than that in the CR. Diatomea contributed a little to the protist
composition in the KR but its contribution was higher in the other two
Oxygen
(mg/l)

Chlorophyll
(μg/L)

BA
(/L)

NO2

(nM)
PO4

(μM)
SiO4

(μM)
NO3 (μM)

8.63 0.19 1,289,806 6 0.04 0.43 0.07
9.33 2.69 1,813,807 301 0.24 4.50 5.11
9.23 5.80 1,995,198 25 0.07 3.36 0.03
4.67 0.01 256,543 UD UD UD UD
6.29 0.93 768,711 24 0.01 1.18 0.07
4.79 0.02 302,876 15 0.11 9.92 0.22
6.56 0.29 608,536 59 0.13 14.10 0.55
5.12 0.01 576,059 12 0.01 0.32 0.08
6.67 0.52 804,833 34 0.15 1.31 1.70
4.77 0.06 176,553 14 0.14 22.38 0.13
7.31 0.66 552,371 17 0.13 20.90 0.12
6.77 0.72 197,351 23 0.07 4.25 0.03
7.43 3.96 387,288 67 0.09 2.88 0.26
7.01 1.24 345,482 14 0.07 2.95 0.17
7.33 2.30 278,962 119 0.12 2.52 0.73
6.04 0.11 310,029 39 0.07 2.89 0.13
7.23 1.05 1,013,229 295 0.10 1.91 1.44

l a. UD means the value is under the detection-limit.
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regions. Ciliophora contributed a similar proportion (4%) in the three
regions.
3.3. Correlations ofmicroeukaryotic communities with spatial and environ-
mental factors

Spearman correlation comparing Bray-Cutis community similarity
with geographic distance between samples presented significant nega-
tive correlations for the microeukaryotic community in the NWPO and
KR with the correlation coefficients of −0.4997 (P b 0.01) and
−0.3444 (P b 0.01), respectively (Fig. 4). However, in the CR and
MWR, the correlationwas not significant. Variation partitioning analysis
showed that spatial and environmental factors together explained
66.01% of the entire microeukaryotic community variation and 12.63%
of variation was jointly explained by both factors (Fig. 5A). The spatial
factors (transformed into five spatial variables principal coordinates of
neighbor matrices) explained 18.62% of pure variation (P b 0.01),
while environmental factors explained 34.76% (P b 0.01). Within envi-
ronmental factors, variation explained by abiotic factors (33.17% of
pure variation) was higher than that explained by biotic factors (2.40%
of pure variation) (Fig. 5B).
Table 2
Analysis of similarities (ANOSIM) of microeukaryotic communities among different layers
and regions.

Layers Regions

R P R P

Total 0.190⁎⁎ 0.002 Total 0.596⁎⁎ 0.001
CR 0.500 0.335 sur 0.686⁎⁎ 0.001
KR 0.314⁎ 0.019 DCM 0.726⁎⁎ 0.001
MWR 0.654⁎⁎ 0.004

The ANOSIM results are calculated using the Bray-Curtis similarity data estimated from
999 permutations.
⁎ P b 0.05.
⁎⁎ P b 0.01.
Mantel test indicated that microeukaryotic community structure in
the NWPO was significantly correlated with almost all environmental
factors (p b 0.01) except for NO2

− and SiO3
− (Table 3). Microeukaryotic

community was significantly correlated with temperature and salinity
in the CR, while it was significantly correlated with all environmental
factors except for nutrients in the KR. Microeukaryotic community in
theMWRwas significantly correlatedwith all the environmental factors
except for salinity and presented high correlation with nutrients.

sPLS method was used to calculate the correlation between each
microeukaryotic group distribution and each environmental factor in
the NWPO. Heatmap results showed that the highest positive correla-
tion was observed between Diatomea and NO3

− concentration (R =
0.73) (Fig.6). Metazoa and Rhizaria were positively correlated with lat-
itude and longitude, while Dinoflagellata, Dictyochophyceae and
Syndiniales presented negative correlations, suggesting that distribu-
tions of different microeukaryotic groups had different geographic pat-
terns. Temperature and salinity presented similar correlation patterns
with different microeukaryotic groups. Chrysophyceae, Syndiniales
and Dictyochophyceae preferred high temperature and salinity while
Diatomea favored low temperature and salinity. Others presented
high correlations with nutrients, such as nitrate, nitrite and phosphate.
Diatomea and Dinoflagellata displayed positive correlations with con-
centrations of chlorophyll and oxygen, indicating that they are the
main photosynthetic groups contributing to oxygen generation in the
ocean. Dinoflagellata (R = 0.65) and Diatomea (R = 0.45) presented
highly positive correlations with bacterial abundance, while Metazoa
exhibited a negative correlation.

3.4. Network analysis of microeukaryotic groups and free-living bacteria

16 s rRNA gene sequencing results of free-living bacteria (0.2–1.6
μm)collected from the surface andDCM layers at each site indicated dif-
ferent patterns of bacterial structure in the three regions (Fig. S3).
Spearman correlation analysis denoted strong correlations between
microeukaryotic groups and free-living bacteria (Fig. 7). 36 orders of
bacteria were strongly correlated with 14 microeukaryotic groups, and



Fig. 3. Community composition of eukaryotic groups and protist groups (A) relative abundance of eukaryotic groups in three regions, (B) relative abundance of protists. Protists groups are
all the groups except Fungi, Metazoa and others.
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16 of them belonged to Proteobacteria. Almost all microeukaryotic
groups were correlated with bacteria except for Cryptophyceae, and
each group was associated with specific bacterial assemblage. Bacterial
taxa were the most associated with Syndiniales (14 orders).
Thiotrichales and Xanthomonadales were positively correlated with
mostmicroeukaryotic groups (five groups). Interestingly, some bacteria
were specifically correlatedwith Diatomea, Chloroplastida, Rhizaria and
Ciliophora.

4. Discussion

4.1. Microeukaryotic distribution in the NWPO

Studies have shown thatmicroeukaryotes present different commu-
nity compositions in different habitats (Grossmann et al., 2016;
Massana et al., 2015; deVargas et al., 2015) andour results also revealed
the different diversity and structure of microeukaryotes among the
three regions (Fig. 2, Table 2). Metazoa and Dionflagellate were the
most abundant eukaryotic groups in our study, which was consistent
with a previous study on global ocean scale (de Vargas et al., 2015). Al-
though we used a 200 μm sieve to remove large zooplankton, Metazoa
still accounted for most sequence reads of all microeukaryotes and par-
ticularly dominated in theMWR. A previous study shows that elongated
species of small-size and eggs, spores or larvae of large-size zooplankton
can pass through the 200 μm pores and contribute to the assemblage
(Liu et al., 2017). The Oyashio current is a productive current carrying
a high biomass of phytoplankton from the subarctic and contributes to
a high biomass of zooplankton as latitude increases in the western Pa-
cific Ocean (Taniguchi, 1972; Sakurai, 2007; Sun and Wang, 2017).
Dinoflagellata was the second most abundant eukaryotic group in the



Fig. 4. Spearman's correlations between the Bray–Curtis similarity of microeukaryotic community and geographical distance between sampling sites in (A) NWPO, (B) CR, (C) KR and
(D) MWR. n is the number of comparison and P values are indicated.
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NWPO and dominated in the CR and KR. It is also reported that dinofla-
gellates dominate the phytoplankton community in these two regions
(Kok et al., 2014; Liu et al., 2016). Previous studies show that diatoms
prefer to live in coastal areas with high nutrient levels and low temper-
ature (Smetacek, 2012), while haptophytes dominate in open ocean and
oligotrophic ocean (Not et al., 2008; Unrein et al., 2014). Our study dem-
onstrated these preferences: Diatomea constituted a high proportion in
the CR andMWR, while Haptophyta was abundant in the KR andMWR.
In addition, other groups also showed different distributions across
three regions. Overall, these results indicated thatmicroeukaryotes pre-
sented habitat-specific distributions in the NWPO.

4.2. Factors regulating geographical distribution of microeukaryotes

Dispersal limitation and environmental heterogeneity are the main
factors shaping the distributions of microorganisms, and they generate
a negative correlation between community similarity and geographic
distance (distance-decay relationship) (Green and Bohannan, 2006;
Hanson et al., 2012). Previous studies show that dispersal limitation
caused by geographical distance is one of the important factors in shap-
ing the microeukaryotic community in the ocean (Zhang et al., 2018a;
Zhang et al., 2018b). We found that the microeukaryotic community
presented a distance-decay relationship in each region which was
strengthened as distance increased (Fig. 4). Limitation of microbial dis-
persal strengthened by increasing geographic distances has been re-
ported (Nekola and White, 1999; Martiny et al., 2006). However,
some studies show that environmental selection is also an important
factor that strengthens the distance-decay relationship and eukaryotes
are more likely to be affected by environmental factors than dispersal
limitation (Hanson et al., 2012; Wu et al., 2017). In our study, environ-
mental factors contributed more than spatial factors (34.76% compared
with 18% of pure variation) (Fig. 5), indicating that environmental selec-
tion plays a more important role in shaping the microeukaryotic com-
munity than dispersal limitation in the NWPO.

Studies demonstrate that both environmental factors and geograph-
ical distance play important roles in driving community structure on a
small scale (Horner-Devine et al., 2004; Martiny et al., 2006). However,
our study showed that the factors shaping themicroeukaryotic commu-
nity in the KR were significantly different from that in the MWR
(Table 3, Fig. 4). Community dissimilarity in the KR was significantly
correlated with geographical distance, however, the distance-decay re-
lationship in the KR was weaker than in the MWR (Fig. 4), suggesting
that the distance impact in the KR was decreased by other factors.
Meanwhile, all environmental factors showed a weak correlation with
the microeukaryotic community in the KR. Hanson et al. (2012) report
that dispersal may counteract microbial compositional differentiation
and weaken the distance–decay relationship. It was postulated that
the Kuroshio Current imposes strong dispersal activity on microorgan-
isms and contributes to shaping the community in the KR. In contrast,
the driving factors in the MWR presented another scenario where al-
most all environmental factors had significant correlations with the
community, except for salinity (Table 3). These results indicate the im-
portance of local environmental conditions in shaping the
microeukaryotic community structure on a small scale.



Fig. 5. Variation partitioning, showing the effects of spatial, environmental on the
community composition of microeukaryotes in the NWPO. The percentage of variation
were explained by each fraction, including pure, shared explained and unexplained
variability. ANOVA permutation tests were calculated on the pure variation. ** P b 0.01. *
P b 0.05.
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4.3. Environmental factors shaping the microeukaryotic community

WeusedMantel test to determine the impact of each environmental
factor on shaping the microeukaryotic community. Among the factors,
temperature had the highest impact on community (Table 3). Temper-
ature is known as an important factor that may alter community
Table 3
Mantel test for the correlation between community and environmental factors.

Total CR KR MWR

Env_distance 0.363⁎⁎ 0.622 0.201⁎ 0.659⁎⁎

Temperature 0.416⁎⁎ 0.636⁎ 0.232⁎ 0.717⁎⁎

Oxygen 0.321⁎⁎ 0.109 0.299⁎⁎ 0.564⁎⁎

Salinity 0.312⁎⁎ 0.156⁎ 0.168⁎ 0.267
BA 0.310⁎⁎ 0.045 0.223⁎ 0.319⁎

Chlorophyll a 0.193⁎⁎ 0.119 0.324⁎⁎ 0.260⁎

NO3
− 0.321⁎⁎ 0.679 0.036 0.572⁎⁎

NO2
− 0.103 0.668 −0.030 0.505⁎⁎

PO4
3− 0.192⁎⁎ 0.646 0.090 0.715⁎⁎

SiO4
4− −0.079 0.242 0.110 0.241⁎

Env_distance, Euclidean distance of all environmental variables between sampling sites;
BA, bacterial abundance. The significances are tested based on 999 permutations.
⁎ P b 0.05.
⁎⁎ P b 0.01.
composition and diversity and is also a stronger driver than other envi-
ronmental factors in shaping microbial community composition by
global investigation (Sunagawa et al., 2015). It is reported that temper-
ature is the main factor driving picoeukaryotes and bacteria in the
NWPO (Li et al., 2018; Wang et al., 2019). Studies indicate that more
species diversity is present in low latitude ocean because high temper-
ature leads to increasing productivity, metabolic rate and even specia-
tion (Evans and Gaston, 2005; Fuhrman et al., 2008). In our study, we
found that α diversities of the community were significantly higher in
thewarmKR than in the other two regions (Fig. 2B, table S1). For differ-
ent taxa groups, temperature also showed high correlation with more
groups than other factors. Among these correlations, temperature pre-
sented the highest negative correlation with Diatomea. A previous
study shows that diatoms contribute more to phytoplankton commu-
nity in the polar area than in the tropical and subtropical ocean
(Malviya et al., 2016). A long-term study also demonstrates that dia-
toms prefer low temperature (Xiao et al., 2018), indicating that diatoms
have a special strategy to adapt to low temperature. However,
Chloroplastida, Syndiniales and Dictyochophyceae presented an oppo-
site preference for temperature, while the remaining groups showed
weak correlations with temperature. These results indicated that the
adaptive capability of different groups to temperature is an important
factor to determine the community distribution.

Inorganic nutrients are essential for growth and development of
microorganisms and are thought to be important factors in shaping
the phytoplankton community, and different microorganisms adapt
to their optimal growth concentrations (Gregg and Casey, 2007;
Follows and Dutkiewicz, 2011). Our results showed that only NO3

−

and PO4
− were significantly correlated with the microeukaryotic

community in the NWPO (Table 3). Distributions of phytoplankton
groups exhibit distinct patterns under different nutrient limitations
on a global scale for their specific strategies to utilize nutrients
(Palenik, 2015). In our study, Diatomea was highly correlated with
all nutrients, especially with NO3

−. A previous study indicated that di-
atoms dominate in the early spring bloom, and they generally adapt
to turbulent environments characterized by high levels of nutrients
(Liess et al., 2009). Therefore, nutrients played an important role in
shaping the communities of diatoms in the NWPO. A large-scale
meta-analysis indicates that salinity is one of major determinants
across different habitats (Lozupone and Knight, 2007). Our result
showed that salinity presented a significant correlation with total
community. Dinoflagellata and Diatomea presented a negative cor-
relation with salinity, while Haptophyta presented a positive corre-
lation. The former two groups are predominant in coastal ocean
(Liu et al., 2016) which is easily affected by river input which con-
tributes to a lower salinity. Meanwhile, haptophytes prefer to live
in the open ocean, indicating that the salinity tolerance of
microeukaryotes also impacts their distribution.

All microeukaryotic groups were more or less regulated by environ-
mental factors, except for Ciliophora, Chloroplastida, Cryptophyceae
and Fungi. Ciliophora are a free-living group with cilium that distribute
in various habitats and are adaptive to environment (Foissner et al.,
2009), which explains its even distribution in the NWPO (Fig. 3).
Chloroplastida are an ancient eukaryotic group with smallest genome
and perform simple function to adapt different environments (Leliaert
et al., 2012). Cryptophyceae are mixotrophic, motile and low-light
adapted with low metabolic rate, and their growth is less influenced
by environmental changes (Morgan and Kalff, 1975; Klaveness, 1989;
Litchman and Klausmeier, 2008). Fungi are the main decomposers in
the ocean which are more likely to be correlated with other organisms
than environmental factors (Hyde et al., 1998; Richards et al., 2012).
Overall, the microeukaryotic community was more or less regulated
by environmental factors. However, the response of each group to envi-
ronmental factors was different due to their specific adaptation strate-
gies. The molecular mechanisms involved in adaptation to varying
environmental conditions needs further study.



Fig. 6. Clustered heatmap depicting correlations between eukaryotic groups and environmental parameters. Strong correlation is highlighted (R N 0.4 or b−0.4). BA: bacterial abundance.
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4.4. Interaction between microeukaryotic groups and free-living bacteria

Although spatial and environmental factors explained 66.01% of var-
iation in total, 33.99% of variation was still unexplained and might be
caused byunmeasured environmental and ecological factors. Studies in-
dicate that the interactions, for example, mutualism, cross-feeding,
competition, parasitism, predation and allelopathy among microbes
are also responsible for community structure (Lima-Mendez et al.,
2015; Caron et al., 2016). Recent studies demonstrate that phytoplank-
ton exhibits a stronger relationship with bacteria than with environ-
mental factors (Pearman et al., 2016; Needham and Fuhrman, 2016).
In our study, bacterial abundance was significantly correlated with the
microeukaryotic distribution in the NWPO (Table 3) and highly corre-
lated with specific groups (Fig. 6). Previous studies reveal that the
growth of diatoms and dinoflagellates relies on bacteria through impor-
tant materials exchange (Aziz et al., 2010; Tang et al., 2010; Amin et al.,
2015; Cruz-Lopez and Maske, 2016). We also observed that these two
groups were positively correlated with bacterial abundance, indicating
that bacteria played important roles in shaping distribution of specific
microeukaryotic groups in the natural environment across different
habitats. Previous studies show that phytoplankton exhibit high selec-
tion on bacterial species (Hendrik et al., 2002; Sapp et al., 2007),
which was also presented in our study, that each group of
microeukaryotes interacted with a specific group-assembly of bacteria.

Dinoflagellates are an important group of protists with awide distri-
bution and strong adaptive ability (Gómez, 2012). The relative abun-
dance of dinoflagellates reaches 40% of protists on average, ranging
from 18% to 67% on the global scale (Le Bescot et al., 2016). Our results
showed that Dinoflagellatawas themost abundant protist in theNWPO,
contributing the highest proportion of protists with a percentage rang-
ing from 22.4% to 55.9% across the three regions. It is reported thatmore
than half (58%) of dinoflagellates are heterotrophic species in the ocean
and pray on other small organisms like bacteria and even small protists
(Gómez, 2012), and they also need vitamin B1 and B12 produced by
bacteria to support high community abundance (Tang et al., 2010). In
our study, dinoflagellates exhibited the highest correlation with bacte-
rial abundance, indicating a strong reliance on biomass of bacteria. We
also found that Dinoflagellata were positively correlated with several
different bacterial groups (Fig. 7), suggesting that dinoflagellates pre-
ferred to pray on bacteria and/or utilize their metabolites with a wide
selection.

Diatoms contribute 20% of global primary productivity and produce
large quantities of dissolved organic matter (DOM) (Armbrust, 2009;
Myklestad, 2000). Interactions between diatoms and bacteria are well
studied, and heterotrophic bacteria can utilize the DOM secreted by di-
atoms, while diatoms also need the heteroauxin or vitamins frombacte-
ria to support growth (Amin et al., 2012). Our results showed that the
distributions of diatoms presented high correlations with bacterial
abundance, suggesting the interaction between diatoms and bacteria.
Furthermore, we observed specifically negative correlations of
Diatomea with Sphingomonadales, Order_II and Caldilineales (Fig. 7).
A previous study shows that bacteria can present algicidal activity spe-
cific for diatoms (Paul and Pohnert, 2011). These results suggested that
diatoms required high abundance of bacteria to support growth, how-
ever, and were easily affected by specific bacterial groups.

Co-occurring bacteria stimulating or inhibiting colony formation of
the choanoflagellate Salpingoeca rosetta has been reported (Woznica
et al., 2016), which may influence the development of multicellularity



Fig. 7. Network depicting correlations between eukaryotic groups and bacterial groups. Red edges denote a strong positive correlation (r N 0.6) while blue edges characterize a strong
negative correlation (r b −0.6).
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in the super-groups such asMetazoa and Fungi.We also found that sev-
eral orders of bacteria were significantly correlated with these two
groups. Overall, each microeukaryotic group showed a high correlation
with specific groups of free-living bacteria, suggesting a special associa-
tion among different groups of microbes. However, field-based studies
complemented with laboratory simulations are required to understand
the various influences of associated bacteria on microeukaryotic physi-
ology, such as those related to toxin production, organic matter produc-
tion and recycling, and algal bloom formation.

5. Conclusion

Our results indicated that both diversity and composition of the
microeukaryotic community differed among the three different regions
of the NWPO. A distance-decay relationship for microeukaryotes was
observed in the NWPO and was strengthened by environmental selec-
tion. Geographical distance had a significant impact on shaping commu-
nity structure on a large scale, while environmental factors played
important roles on a small scale, especially for dynamic environments.
Temperature was the main abiotic factor regulating diversity and com-
position of the microeukaryotic community in the NWPO, and in each
region. Bacterial abundance was significantly correlated with distribu-
tion of the microeukaryotic community, especially with Dinoflagellata
and Diatomea. However, they presented different interactions with
free-living bacteria revealed by co-occurrence network analysis. Dino-
flagellates preferred to pray on bacteria and utilize their metabolites
with a wide selection. Diatoms were sensitive to environmental factors
and were vulnerable to negative effects caused by specific bacterial
groups. Although interactions between themicroeukaryotic community
and biotic and abiotic factors across different habitats were unveiled in
our study, metabolic activity influenced by different factors and utiliza-
tionmechanisms of exchangingmaterials still need to be explored in fu-
ture study.
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