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A B S T R A C T

To analyze the impact of the increase of public transport on the urban air quality will contribute to the sus-
tainable development of urbanization. But many existing studies have not paid attention to the potential en-
dogeneity of estimation, which comes from the fact that the deterioration of air quality would in turn affect the
policies of public transport investment. This paper attempts to control this endogeneity by introducing an in-
strument variable of the urban built-up area into the empirical models. Using city-level data from China, our
study adopts 2SLS method and conducts a series of robustness tests to ensure the estimation results more con-
vincing and robust. The results show that the urban air quality could be improved if the city provides more buses
for public transport. Moreover, after controlling the endogeneity, the marginal improving effect of increasing the
public transport on urban air quality could be larger from 0.082 to 0.678. This finding indicates that the en-
dogeneity bias is likely to cause the underestimation of the improving effect, and may result in some errors of the
policy decisions of urban investment.

1. Introduction

Air pollution has become an urgent problem in many countries who
are undergoing a rapid development of industrialization and urbani-
zation (Ghose et al., 2004; Richardson, 2005; Lefèvre, 2009), and is
particularly severe in China (Xu and Masui, 2009). The air pollution
jeopardizes public health and aggravates living surroundings (Colvile
et al., 2001; Querol et al., 2001). As shown in Fig. 1, the national
average air quality index (AQI) showed a downward trend before 2013,
meaning the improvement of air quality. However, after changing the
evaluation criteria in 2013,1 AQI has gone from a spiral decline to a
continuous increase of not less than 5% for three consecutive years. In
particular, in the first year after the change of AQI index standard, its
growth rate even reached 45.14%. What's more, according to “Chinese
Environmental Situation Communique in 2016″, urban AQI in 254

cities exceeded the standard with a high rate of 75.1%. More seriously,
the average number of days with mild or even heavy pollution ac-
counted for 25.8% in the whole year.

A dramatic increase in the on-road traffic volume induces vehicular
pollution and tremendous air pollution costs (Zegas, 1998). As pointed
out by Ghose et al. (2004) and Mao et al. (2017), the transport sector is
the largest contributor to man-made pollutant emissions in the urban
environment. The proportion of emissions from motor vehicles to total
emissions is growing rapidly in urban areas (Frost et al., 1996; Colvile
et al., 2001; Pan et al., 2016). For example, in China's mega cities like
Beijing and Guangzhou, about 80% of CO emissions and 40% of NOx
emissions come from automobiles (Giovanis, 2018). Fig. 2 shows the
NOx emissions over the past five years nationwide, and the proportion
of NOx emissions from vehicle exhaust to total has increased year by
year. Therefore, it is very important to face traffic-related air pollution.
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Since the report of the 18th National Congress of Chinese govern-
ment proposed to build a “beautiful China”, improving air quality has
become the focus of Chinese government. The state VI emission stan-
dard2 for passenger car air pollution and the new Environmental Pro-
tection Law have been implemented successively in China.3 In addition,

the China's government attempt to control transport-related emissions
by establishing and expanding public transport infrastructure, which is
considered as a common strategy to ease road congestion and con-
tribute to the sustainable development of urbanization (Lozano et al.,
2014; Bel and Holst, 2018).

Regarding the impacts of public transport on air quality, the re-
searchers have done some empirical studies on introducing new transit
forms like metro or Bus Rapid Transit (BRT). Chen and Whalley (2012)
discover that the opening of the metro reduces CO emission by 5%–15%

Fig. 1. AQI in China from 2000 to 2015
Source: The data of AQI are from Environmental Protection Department (EPD) and Growth rate of AQI is calculated by the authors.

Fig. 2. NOx emissions in China from 2011 to 2015
Source: The data of NOx are from China Environment Production Database and Occupation ratio of NOx from vehicle exhaust to total is calculated by the authors.

2 The state VI emission standard is the fourth national emission standard for
motor vehicle pollutants. The main pollutants emitted by automobiles are HC
(hydrocarbons), NOx (nitrogen oxides), CO (carbon monoxide), PM (particulate
matter) and so on, which are applied by better catalytic converter active layer,
secondary air injection and exhaust recirculation system with cooling device.

3 The revised environmental protection law came into force on January 1,
(footnote continued)
2015.
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based on Taipei city daily data. An analogous case is provided by Messa,
who also points out that strengthening the construction of rail transit
has significant and robust pollution control effects. Zheng and Kahn
(2013) further verifies that rail transit is an alternative to the original
high energy consumption and high pollution travel mode, and produces
a certain scale effect to achieve the effect of emission reduction and
pollution control. Another research of Bel and Holst (2018) implies that
after using BRT, the concentration of all pollutants in Mexico City de-
creases significantly except for SO2. Kumar et al. (2011) also points out
that BRT is more efficient than cars and motorbikes. When travelers
choose to ride BRT, the emissions of CO and HC are reduced by 4% and
9% compared with those of cars and motors (Kumar et al., 2011).
Furthermore, Reddy et al. (2000) hold the view that bus's emission per
passenger-km is much lower than those of other vehicles.

For most cities in the developing countries which are suffering
serious air pollution, the impact of bus transportation on air quality
should be examined systematically and rigorously. However, in the
previous studies it seems that less attention has been paid to this issue
in China. Therefore, as a supplementary study of the existing literature,
which usually focus on the impact of traffic policy and the effect of the
new constructed public transportation on urban air quality, this paper
analyzes the impact of the increase of public bus transport on the urban
air quality. The differences from the previous research are as follows.
Firstly, the existing studies mostly aim to research the impacts on air
pollution in specific cities, which are unable to provide the enough
evidence on the national public traffic development during the whole
country's long run urbanization process. In this paper, we use the panel
data of 63 cities in China from 2004 to 2015 to explore the effect of
public transportation development. Secondly, many existing studies
seldom discuss the potential endogeneity of estimation, which comes
from the fact that the deterioration of air quality would in turn affect
the policies of public transport investment. This paper attempts to
control this endogeneity by introducing the urban built-up area as an
instrument variable into the empirical models. In addition, a number of
robustness checks are conducted to support the persuasive analyses.
Our empirical results could also provide some new policy implement on
other developing countries.

The rest of the paper is organized as follows. Section 2 presents the
methodology. Section 3 provides data followed by empirical results and
further discussion in section 4. Section 5 is conclusions and policy
suggestions.

2. The methodology

2.1. Fixed effect model

To analyze the impact of public transit on urban air pollution which
is based on panel data, we firstly establish the relationship between
urban air quality and public transportation which is represented by the
number of buses. The sample cities have individual heterogeneity in
terms of development level, scale level, and geospatial space (Luo et al.,
2018; Sun et al., 2018). Therefore, this paper will use the fixed effect
model.

Our dependent variable is in-consistent with the study of Sun et al.
(2018), who use AQI as an environmental variable to study the sub-
stitution and improvement effects of urban rail construction on atmo-
spheric pollutants. Except for the explanatory variable of the number of
buses, we further control other factors that affect air quality, such as
greening degree of urban built area, bus carrying capacity and climatic
factors. Considering the different conditions in each city, there may be
missing variables that do not change with time (Sahai, 2010). We
conduct the following individual fixed effect model for empirical re-
search:

= + + + +

= =

logAQI β logBN β X β D μ ε
i t1,2,3...63 ; 2004,2005,2006, ..., 2015

i t i t i t i t i i t, 1 , 2 , 3 , ,

(1)

where i indexes city and t indexes year. AQI , as the dependent variable,
denotes the air quality level. BN reflects the number of bus vehicle. And
we take the logarithm of AQI (logAQI) and BN (logBN ). X indicates a
vector of control variables, consisting of per capita green area, the
average annual passenger volume of each bus and climate factors such
as temperature, humidity and wind speed. D represents time dummy
variables.4 μi is the unobserved random variable which represents the
intercept term of the individual heterogeneity. εi t, is the i.d.d dis-
turbance term. β β,1 2 and β3 are coefficients.

2.2. The endogeneity of the model

Static panel data model often has endogeneity, which mainly comes
from interaction between explanatory variables and dependent vari-
ables (Anselin and Lozano-Gracia, 2009). If the evidence shows that the
positive impact of bus transportation on air pollution control is reliable,
it is reasonable to believe that the serious air pollution could reversely
affect the policy maker's decisions of the bus facility development. In
other words, government regulation of air pollution and the allocation
of public transport may have obvious correlations. Therefore, the bus
transportation is likely not an absolute exogenous variable, and the
reverse causality could generate the endogeneity between these both
variables of bus transportation and air pollution.

Specifically, the changes in urban public transport may affect the
atmospheric pollution, which is the main issue of our study. In addition,
the air pollution level could possibly affect the government decision of
investments in transport infrastructure to release the traffic congestion
and emission (Sun et al., 2018). This inverse causality may generate the
endogeneity and lead to the estimation bias (Zaman and Moemen,
2017). Thus, whether we can identify a variable which has bearings on
public transport but not relative to missing variables, is the key to
distinguishing the correlation between urban public transport and air
quality.

2.3. The selection of instrument variable

In order to solve the endogenous problem, this paper introduces a
suitable instrumental variable (IV) in the empirical model. Appropriate
instrumental variables must be highly correlated with endogenous
variables and ensure the condition of exogeneity (Lu et al., 2017;
Zugravusoilita et al., 2008). We consider that the urban built-up area
with heavy transport pressure, is an important indicator that affects the
public transport provided by government in general. The urban built-up
area largely determines the allocation and cost of urban public trans-
portation, so there is a high correlation between urban built-up area
and public transport.5 In this context, the area of urban built-up areas
will directly affect the amount of urban public transport, and thus the
correlation between the instrument variables and the endogenous
variable is guaranteed. Furthermore, taking the exogeneity of the in-
strumental variable into account, the size of urban built-up areas
(logUrbanarea) is linked with vehicle stock which induces changes in
urban air quality, indicating that the instrument variable may be not
simply connected with the endogenous variable. For the sake of the
exclusiveness of instrumental variables, we incorporate the indicator of
per capita green space area (logGRE) as a control variable in the mea-
surement model to better control and observe the impact of urban
greening degree on the dependent variable.

4 This time dummy variable takes 2013 as the time node. The dummy value is
0 before 2013 while the virtual value after 2013 (including 2013) is 1.

5 This paper is based on the results of F-test, identification test and weak
instrumental variable test to determine whether the instrumental variable sa-
tisfy the correlation with the endogenous variable.
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2.4. Fixed effect model with 2SLS method

Our model aims at conquering the endogeneity of the explanatory
variable. We establish the fixed effect model using the two stages least
square method (2SLS) to estimate the parameters (Giovanis, 2018). In
the first stage, we regress the endogenous explanatory variable the
number of buses (denoted as logBNi t, ) on the instruments (denoted as
Zi t, ) and other exogenous regressors and save the predicted value
logBNˆ i t, . That is, the sample projection or the predicted value of
logBNi t, on Zi t, and other control variables is

= +

= =

BNi t δZ θX
i t
log ˆ , ˆ ˆ

1,2,3...63 ;  2004,2005,2006, ..., 2015
i t i t, ,

(2)

where ˆ represents the fitting value of the variable or the estimated
value of the variable coefficient, the Xi t, vector is the same control
variable as in the ordinary individual fixed effect model, and Zi t, is the
vector formed by the instrumental variable. Di t, is the dummy variable
whose value is 0 before 2013 while the virtual value after 2013 (in-
cluding 2013) is 1. θ and δ are the coefficients of the control variables
and the instrumental variables. The description of all variables is de-
tailed in Table 1.

In the second stage, we regress the dependent variable (denoted as
logAQIi t, ) onto the predicted value logBNˆ i t, and all the regressors,
which can be represented as follows:

= + + + +

= =

∗logAQI β BNi t β X β D μi t ε
i t

log ˆ , ˆ ,
1,2,3...63 ;  2004,2005,2006, ..., 2015

i t i t i t i t, 2 , 3 , ,

(3)

By the regression of two stages, we can get the consistent estimate of
∗β . Parameter ∗β can mitigate the endogenous bias and reflect the

causality between the explanatory variable number of bus vehicles and
the dependent variable air quality index.

2.5. The dynamic panel data model

AQI is the index of the air quality for a particular period of time.
However, it is not only in relation to the current air pollution, but also
affected by air pollution of the past, which demonstrates air pollution
may have a time lag effect. This paper uses the dynamic panel model of
Arellano-Bond estimation proposed by Arellano and Bond (1991) to
identify the hysteresis effect of air quality and examine the robustness
of logBN . Therefore, it is appropriate to let AQI ( −AQIlog t 1) lagged by
one year separately to test the time-lagged effects. This dynamic model
is used for model setting error test in robustness test.

By establishing the dynamic panel data model, we use Generalized
Method of Moments (GMM) to make the difference, and eliminate the
individual effect and all the non time-varying interpretations. The or-
thogonality between the error term and the lagged value of the ex-
planatory variable is utilized in the moment condition (Sun et al.,
2018). Generally, dynamic panel data model with difference GMM has
the following advantages. (1) It includes lagged terms of explanatory
variables or dependent variables, which is suitable for analyzing in-
dividual dynamic behavior (Fattahi, 2015). (2) It can estimate the time-
lag effects and solve endogenous problems (Chen and Whalley, 2012;
Souza and Gomes, 2015). In order to eliminate the endogeneity of the
instrumental variable, the Sargan statistic is used as an observation of
the over-identification test. We set the lagged terms ( −logAQIt 1) of
logAQI as explanatory variables to estimate the time-lag effects and
establish the following model:

= + + + + +

= =

−logAQI α logAQI β logBN β X β D μ ε
i t1,2,3...63 ; 2004,2005,2006, ..., 2015

i t i t i t i t i t i i t, 1 , 1 1 , 2 , 3 , ,

(4)

3. Data

In this paper, the 63 sample cities6 are from 29 provinces/cities/
autonomous regions in China (excluding Hong Kong, Macao, Taiwan,
Tibet Autonomous Region and Qinghai Province). Considering the
availability of city-level data, annual data are used in our study.

3.1. Data of dependent variable

Different from some studies which used the Air Pollution Index
(API), we choose the annual mean of the air quality index as the de-
pendent variable.7 The newly revised Air Quality Standard (GB3095-
2012) in 2013 stipulates that API is replaced by AQI , and it was no
longer published after 2013. In addition, three items of PM2.5, O3 and
CO are added to the evaluation of pollutants on the basis of API. Fur-
thermore, the dynamic changes of the data will have a huge impact on
the statistical results. As previously argued, taking AQI as an ex-
planatory variable can effectively compensate for the deficiency of API.

3.2. Data of explanatory variable

The core explanatory variable in this paper is “urban public trans-
port”, and the number of urban buses is selected as the proxy variable.
The number of buses not only represents the development of urban
basic public transport, but also reflects the satisfaction of local gov-
ernments' public services (Gómez-Perales et al., 2007). Badami and
Haider (2007) indicate that increased buses can meet the rapid growth
of mass transit demand as well as reduce the individual motor vehicle
activity at low cost.

3.3. Data of control variables

Referring to the existing research, we find that other variables also

Table 1
The interpretation of variables.

Variable Variable name

logAQI Log of air quality index
logBN Log of the number of bus vehicle
lnCar Natural logarithm of vehicle ownership
lnGDP Natural logarithm of per capita Gross Domestic Product
(lnGDP)2 The square of lnGDP
lnSecond Natural logarithm of industrial structure index (%)
lnPD Natural logarithm of population density
logPassenger Log of the average annual capacity of each bus
logGRE Log of Per capita green area
Temp Temperature (°C)
Wind Wind speed (m/s)
Humi Humidity (%)
logUrbanarea Log of urban built-up area
logInduswater Log of industrial waste water emissions
logBP Log of the number of buses per ten thousand people
logIndusgas Log of industrial emissions
logRoad Log of per capita road area

Note: The reciprocal first to fourth variables (logInduswater, logBP, logIndusgas
and logRoad) will be applied to the robustness test, which will be described in
the analysis of robustness test results.

6 The newly revised Ambient Air Quality Standard (GB3095-2012) stipulates
that the API Index will be replaced by the AQI index in 2013.Since January 1,
2013, a total of 74 key environmental protection cities nationwide have begun
to announce AQI. Among the 74 cities that issued air quality index, 11 cities
such as Lasa and Xining had a large number of missing data on explanatory
variables, so only 63 samples were retained in the final sample cities. According
to the National Economic and Social Survey Bureau's 2015 National Economic
and Social Development Statistical Communique, the population of sample ci-
ties accounted for 26.56% of the total population in the country, which has a
strong representation.

7 The AQI published by the environmental protection department is daily
data, but the empirical analysis uses annual data as the research object, so AQI
will be treated annually.
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affecting urban air quality such as urban greening rate, traffic sharing
rate and natural climate factors (Wehner and Wiedensohler, 2003; Luo
et al., 2018). In order to control the impact of these factors, we use “per
capita green area” (GRE), “annual passenger volume per bus”
(Passenger), “temperature” and “wind speed” respectively. GRE re-
presents the level of urban greening, reflecting the overall environ-
mental status of the region (Saito et al., 1991). If only the number of
buses increase, various of problems such as high empty rate or less
passenger volume may occur, which will lead to the decline in the ca-
pacity of traffic pressure sharing and cause air pollution. Thus,
Passenger is selected as the control variable in this paper. Passenger is
equal to the total passenger volume divided by the number of buses. In
addition, meteorological factors, such as wind direction, wind speed,
temperature and relative humidity, are the main reasons for the for-
mation, accumulation and diffusion of gaseous pollutants. Accordingly,
the annual average temperature (Temp), humidity (Humi) and mean
wind velocity (Wind) are adopted to control the effects of different
natural climatic factors on air quality (Leightnerab, 2008).

3.4. Data source

This paper uses the unbalanced panel data of 63 cities from 2004 to
2015, with a total sample size of 756. The AQI comes from the mon-
itoring data of Environmental Protection Department (EPD). The
number of buses, the number of buses per thousand people, the per
capita green area and the area of the urban built-up area and total
passenger volume8 are all derived from the China Economy Information
NET (CEINET). Natural climate data such as daily temperature, wind
speed and humidity come from China Meteorological Science Data
Sharing Service Network. Tables 1 and 2 present the interpretation and
summary statistics for variables respectively.

4. Empirical results

In this section, we first present results based on individual-specific
effects model, then explore the impact of increases in the number of
buses on urban air quality examined by the 2SLS method and finally
conduct placebo tests and robustness checks to strengthen the relia-
bility of our findings.

4.1. Regression analysis of individual fixed effect model

Table 3 presents the empirical results based on the individual fixed
effect model which is used to estimate individual heterogeneity (Sahai,
2010). First, as expected, logBN is found to be negatively correlated
with logAQI after controlling the urban effect. The empirical analysis
shows that the increases in the number of bus will lead to beneficial
environmental effects. According to the results of column (4) with
complete control variables, for every 1% increase in bus amount, the
level of air quality index will drop by 0.082%. In other words, in-
creasing the urban public transport will improve urban air quality. As
suggested by Zheng and Kahn (2013), the more residents travel by
public transport, the less traffic congestion and the better air quality
would be. A recent study in Barcelona also indicates that NOx and BC
shows higher levels during the period of bus drivers’ strikes (an increase
of 4.1% and 7.7%), which highlights the essentiality of buses in miti-
gating the concentration of urban air pollution (Basagaña et al., 2018).
But the increasing number of bus delivery may have negative effects
inversely. For example, traffic congestion is common in rush hour and
the lack of bus lanes in some cities can cause inconvenience to buses
(Gómez-Perales et al., 2007). In terms of time and efficiency, residents
generally do not choose to take bus but other means of vehicles, which

reduces the load rate and traffic sharing rate of certain bus route. While
the final result proves that the positive influence is greater than the
negative one. Furthermore, as shown in column (1)–(4), the coefficients
of logBN gradually increase with the addition of control variables,
meaning that there is a high correlation between the number of buses
and the control variables, and the independence of buses to air pollu-
tion.

The results of the other control variables in Table 3 also conform to
the expectation. The per capita green area has a significant negative
impact on the air quality index. The increase in the annual passenger
transport volume of each bus may reflect the increased traffic sharing
rate and frequency of the public use of the bus, which improves the
urban air quality.

4.2. Regression analysis of the instrumental variable

Considering that the regression results of the fixed effect model may
have endogenous bias (Sun et al., 2018), the number of buses and urban
air quality may be mutually causal. We adopt the urban built-up area
(logUrbanarea) as the instrumental variable of urban public transpor-
tation, and use two-stage least squares (2SLS) method based on the
fixed effect model. In order to visually perceive the correlation between
the instrumental variable selected in this paper and the core

Table 2
Summary statistics for variables.

Variable Observation Mean Standard Minimum Maximum

number error value value

AQI 756 68.55 14.58 30.24 128.96
BN 756 3674.76 4698.72 90 31716
Passenger 756 17.82 14.35 0.97 244.28
GRE 756 39.87 20.38 9.39 164.58
Temp 756 15.83 4.62 2.18 25.58
Wind 756 2.34 1.28 1.05 33.89
Humi 756 67.72 9.51 34.07 86.09
Urbanarea 756 272.66 256.17 34 1563
Induswater 756 13172.86 14529.58 4.08 86496
BP 756 11.83 11.56 0.94 115
Indusgas 756 2558.74 2414.48 9 15161
Road 756 13.19 6.92 0.31 64

Table 3
Regression results of individual fixed effect model.

Dependent
variable:logAQI

(1) (2) (3) (4)

logBN −0.103*** −0.0752*** −0.0851*** −0.0822***
(-6.96) (-4.84) (-5.13) (-4.88)

logGRE – −0.0785*** −0.0720*** −0.0690***
(-4.96) (-4.43) (-4.17)

logPassenger – – −0.0228 −0.0224
(-1.70) (-1.66)

Temp – – – 0.0041
(0.92)

Wind – – – −0.0027
(-0.87)

Humi – – – −0.000197
(-0.22)

Constant 4.945*** 5.025*** 5.140*** 5.059***
(42.46) (43.45) (38.38) (27.02)

Time dummy variable YES YES YES YES
Individual fixed effect YES YES YES YES
N 756 756 756 756
R2 0.2062 0.2335 0.2367 0.2385
F-test 47.00 46.30 46.22 25.32

[0.00] [0.00] [0.00] [0.00]
Hausman Test 37.73 27.63 31.15 80.97

[0.00] [0.00] [0.00] [0.00]

Note: t statistics in parentheses * p < 0.1; **p < 0.05; ***p < 0.01.

8 The annual passenger volume of each bus is equal to the total passenger
volume divided by the number of buses.

C. Sun, et al. Energy Policy 135 (2019) 110998

5



explanatory variable (logBN ), we perform scatter fitting on the sample
data. The scatter plot is shown in Fig. 3 below.

Fig. 3 illustrates that there is a significant positive correlation be-
tween the urban built-up area and the number of bus vehicle. This
confirms the previous conjecture that urban built-up area where
transportation activity is more intensive is an important indicator that
affects the public transport provided by government. For the sample
cities with different conditions, the urban construction area largely
determines the allocation and cost of urban public transportation. The
larger the urban built-up area is, the more the amount of buses in urban
cities are. It is initially considered that this instrumental variable is
reasonable.

But whether the instrumental variable is valid or not requires a
series of tests. The last 1–3 rows in Table 4 report the measurements of
instrumental variable validity, and the fourth line of countdown shows

the regression results of the endogenous explanatory variable (logBN )
and the instrumental variable (logUrbanarea) in the first stage. Firstly,
F-test indicates that the hypothesis, the regression coefficients of exo-
genous instrumental variable and endogenous core explanatory vari-
ables are both zero, should be rejected. Moreover, the instrumental
variable is all significant at the 1% level in the result of each column, as
shown in the last fourth row. Therefore, it is reasonable that the in-
strumental variable and the endogenous explanatory variable are
highly linearly correlated. Secondly, the P value of Anderson Canon.
corr. LM statistic obtained from the test for non-identification is far less
than 1%. It rejects the null hypothesis that the instrumental variable is
not identifiable, and holds that the instrumental variable is related to
the endogenous explanatory variable. Thirdly, for weak instrumental
variable test, the critical value of Cragg-Donald Wald F statistic should
be compared with that of different confidence level intervals. At this
point, the values are significantly greater than the critical value at the
10% significance level, so the null hypothesis of the weak instrumental
variable is rejected.

In terms of the second stage empirical results of 2SLS method in
Table 4, it is clear that the coefficient of logUrbanarea is negative and
significant under each model, and the result is still stable with the
addition of control variables. Besides, it is consistent with the regression
results of the fixed effect model which verifies that the increase in the
number of buses can significantly reduce the air quality index. How-
ever, the absolute values of the coefficient estimates of logUrbanarea are
significantly greater than the regression results in Table 3. It implies
that fixed effect model does not adequately estimate the improvement
of urban public traffic on air quality. Without correcting the en-
dogenous bias, the results are possibly underestimated. Furthermore, as
previously argued, the coefficients of logUrbanarea also gradually in-
crease with the addition of control variables. Moreover, the increase of
absolute value of coefficient is much greater than that of fixed effect
model without considering the instrumental variable, which further
confirms the strong correlation between the number of bus vehicle and

Fig. 3. Scatter plot of urban built-up area.

Table 4
Regression results of 2SLS model.

Dependent variable:logAQI (1) (2) (3) (4)

logBN −0.417*** −0.565** −0.566*** −0.678*
(-5.73) (-3.26) (-3.42) (-2.87)

logGRE – −0.062 −0.0864 −0.0879
(-1.53) (-1.93) (-1.94)

logPassenger – – −0.128*** −0.131***
(-4.34) (-4.33)

Temp – – – −0.0079***
(-1.38)

Wind – – – −0.0003**
(-0.07)

Humi – – – −0.0004
(-0.38)

Constant 6.736*** 7.024*** 7.567*** 7.796***
(28.38) (17.95) (15.22) (14.23)

Time dummy variable YES YES YES YES
Individual fixed effect YES YES YES YES
N 756 756 756 756
R2 0.0637 0.1244 0.1268 0.4222

Regression results in the first stage of 2SLS model

Endogenous Instrumental 0.0010*** (7.11) 0.0005*** (3.71) 0.0005*** (3.96) 0.0004** (3.16)
variable variable
logBN logUrbanarea

F-test 79.34 87.32 96.73 95.46
[0.00] [0.00] [0.00] [0.00]

Anderson canon. corr. LM statistic 494.965 489.655 483.709 487.994
[0.00] [0.00] [0.00] [0.00]

Cragg-Donald Wald F statistic (10% maximal IV size) 1427.808 (16.38) 1382.491 (16.38) 1334.107 (16.38) 1361.984 (16.38)

Note: t statistics in parentheses; *p < 0.1; **p < 0.05; ***p < 0.01.
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control variables. Secondly, introducing the instrumental variable
(logUrbanarea) into the model, our findings are reasonable to different
city size measures containing urban built-up area. Thirdly, further
comparing with the regression results in column (4) in Table 4 and
column (4) in Table 3, it is found that the bus annual passenger
transport volume, temperature and wind speed are significantly en-
hanced and consistent with the results of the fixed effect model, which
verifies that the instrumental variables better control the omitted
variable bias and then increase the robustness of the results.

4.3. Further discussion

4.3.1. Placebo test
The above empirical analysis shows that the increases in the number

of bus will improve urban air quality. We further take a placebo test to
confirm our findings. By choosing a variable that has no direct corre-
lation with the explanatory variable, we use industrial waste water to
replace the AQI as the dependent variable. If the coefficient is sig-
nificant, there is a placebo effect (Luo et al., 2018). Table 5 presents the
results of industrial waste water (logInduswater) as a dependent variable
based on the fixed effect model with 2SLS method. In none of the re-
gressions, the number of bus vehicles is a significant determinant of the
pollution. Therefore, our main findings are free from placebo effects.

4.3.2. Robustness test
4.3.2.1. Omitted variable bias. Instrumental variables can reduce
omitted variable errors while ensuring exclusiveness. Besides,
increasing control variables which restricts sample heterogeneity is
also a good way to alleviate endogenous bias. Cities with more urban
transportation investment could lead to more frequent traffic related to
industrial activities, and thus indirectly brought some negative effects
on emissions reduction (Duran-Fernandez and Santos, 2014). As
previously argued, leaving out industrial pollution in the models may
result in omitted variable bias. To address this issue, we introduce
industrial waste gas emissions (logIndusgas) as an additional control
variable. Table 6 tabulates the results. The result in column (2)
indicates a positive correlation between industrial emissions and air
quality. Further, compared with the result in column (1), the coefficient
estimates for logBN remain unchanged. Therefore, the effect of bus
vehicle on air quality is robust to the inclusion or exclusion of industrial
emissions.

4.3.2.2. Measurement errors. Measurement errors may occur to the

explanatory variable or control variables. So far, we have used logBN
as the core explanatory variable, following Badami and Haider (2007).
However, taking the demographic factor into account, we replace logBN
by logBP, which is defined as the number of buses per ten thousand
people, and re-estimate model (3). The result in column (3) of Table 6
shows that logBP is negatively correlated with logAQI . However, the
absolute value of logBP is much less than that of logBN . This testifies
that using logBP as core explanatory variable is not as effective as logBN
on air quality, because excessive number of buses with no
corresponding number of passengers would increase exhaust
emissions, and then deteriorate air quality.

Regarding the urban traffic construction, the gradual improvement
of road infrastructure leads to more alternative channels between the
origin and destination (Ahmad et al., 2017). To some extent, increasing
road area could ease traffic congestion and have an emission-alleviating
effect (Sun et al., 2019). According to the negative correlation between
green area and the number of buses in the empirical results, the effect of
increasing road area and green area on air quality is considered to be
the same. Therefore, we use road area instead of green area to do ro-
bustness test. Compared with column (1) in Table 6, the results in
column (4) of both variables are negative whereas the correlation of
logRoad with logAQI is insignificant. More importantly, the estimated
effects of logBN remain the same.

4.3.2.3. Estimation method bias. Turning to problem of model setting
error, except for setting instrumental variables (IV), we decide to
establish dynamic panel data model. The data samples in this paper
are typical large N small T panel data, therefore, the differential GMM
can be used to overcome the endogeneity in the model.

As shown in Table 7, the coefficient estimates for all variables are
basically consistent with the results of fixed effect model, indicating
that the results are still robust after using the dynamic panel data model
with differential GMM. There is no model setting error in benchmark
model. In addition, the coefficients of lagged dependent variables
( −logAQIt 1) are positive and statistically significant at least at 1% level.
This suggests that the urban air pollution in the current period will be
significantly affected by the past pollution and this effect is continuous
and sustainable. Thus, the treatment of urban pollution is a long-term
process.

Table 5
Placebo test results of 2SLS model.

Dependent
variable:logInduswater

(1) (2) (3) (4)

logBN −0.135 −0.179 −0.179 −0.305
(-0.52) (-0.35) (-0.35) (-0.46)

logGRE – 0.0293 0.0373 0.0581
(0.15) (0.17) (0.24)

logPassenger – – −0.0627 −0.106
(-0.40) (-0.54)

Temp – – – −0.0266
(-0.75)

Wind – – – 0.0373*
(2.49)

Humi – – – −0.00405
(-0.91)

Constant 10.08***
(4.97)

10.31** 10.45** 12.10*
(3.06) (2.82) (2.26)

Time dummy variable YES YES YES YES
Individual fixed effect YES YES YES YES
N 756 756 756 756
R2 0.8277 0.8303 0.8323 0.8213

Note: t statistics in parentheses; *p < 0.1; **p < 0.05; ***p < 0.01.

Table 6
Robustness test results of 2SLS model.

Dependent variable:logAQI (1) (2) (3) (4)

logBN −0.678* −0.877* – −0.465***
(-2.87) (-2.28) (-4.40)

logGRE −0.0879 0.0736 −0.134*** –
(-1.94) (1.53) (-8.34)

logPassenger −0.131*** −0.165 0.0018 −0.0983
(-4.33) (-3.72) (0.13) (-4.71)

Temp −0.0079*** −0.0053 −0.0002 −0.0081
(-1.38) (-0.83) (-0.05) (-1.58)

Wind −0.0003** 0.0007 −0.0029 −0.0009
(-0.07) (-0.15) (-0.91) (-0.25)

Humi −0.0004 −0.0004 −0.0009 −0.0004
(-0.38) (-0.26) (-0.96) (-0.38)

logIndusgas – 0.0895** – –
(2.59)

logBP – – −0.0293* –
(-1.76)

logRoad – – – 0.0073
(0.29)

Constant 7.796*** 8.251*** 7.542*** 8.451***
(14.23) (10.74) (11.43) (8.66)

Time dummy variable YES YES YES YES
Individual fixed effect YES YES YES YES
N 756 756 756 756
R2 0.4346 0.4546 0.4589 0.4006

Note: t statistics in parentheses; *p < 0.1; **p < 0.05; ***p < 0.01.
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5. Conclusions and policy implications

Air quality deterioration has become a severe issue which has al-
ready jeopardized public health, and the government has rose en-
vironmental governance to an unprecedented level. However, with the
income increase, the consumption of motor vehicles, which is the lar-
gest contributor to anthropogenic pollutant emissions in urban en-
vironments, is still growing at a relatively high speed (Yang et al., 2018;
Querol et al., 2001). Unfortunately, it's not affordable for most devel-
oping counties using alternative fuels or adopting new technologies to
alleviate air contamination related to traffic exhaust (Luo et al., 2018).
In this context, more public transportation is crucial. Meanwhile, de-
cision makers face trade-offs between the constructions of various
public transit that can be manipulated to improve travel condition.
Unfortunately, no previous research efforts have been made to explore
the roles played by bus vehicle in affecting air quality although few
studies examined the impacts of other public transport such as urban
metro and BRT.

Based on the panel data of 63 cities in China from 2004 to 2015, this
paper uses the instrumental variable (IV) to overcome the endogeneity
of logBN on the basis of fixed effect model. Four findings are important.
First, increasing the urban public transport will lead to beneficial en-
vironmental effects. More specifically, for every 1% increase in the
amount of bus vehicle, the level of AQI drops by 0.082%. And the
coefficients of logUrbanarea gradually increase with the addition of
control variables in all models, which further confirms the strong cor-
relation between the number of bus vehicle and control variables.
Second, after introducing the instrumental variable into the fixed effect
model, the absolute values of −logAQIt 1 estimates are significantly
greater than that of fixed effect model which implies that fixed effect
model with 2SLS method would adequately estimate the improvement
of urban public traffic on air quality. What's more, our findings are
reasonable to different city size measures containing urban built-up
area. Third, the coefficients of lagged dependent variable ( −logAQIt 1) in
the dynamic panel data model are significantly greater than 0.2, sug-
gesting that the air pollution has a lag effect. Fourth and lastly, our
results robust to placebo test, omitted variable bias, measurement er-
rors and estimation method bias. All of these results are conducive to
the following policy recommendations.

For rapidly urbanized cities confronted with formidable challenge of
air pollution owing to vehicle emissions, it is essential to strengthen

public bus system construction. The government should make long-
term plans to deliver more buses and improve the auxiliary facilities of
public transport system such as increasing bus lanes and so on. Our
findings appeal to obtain a win-win situation for urban transport de-
velopment and environmental pollution control when planning Bus
Transit system. What's more, using different city size measures con-
taining urban built-up area in China as a case studying, our findings are
also robust to different developing countries under consideration be-
tween serous air contamination and urbanization. Furthermore, gov-
ernment should be aware of the persistence of air pollution. The in-
troduction of high-pollution projects will have a lasting impact on
urban environment. At the time of project approval, attention should be
paid to the research on environmental protection.
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