文章编号: 1007-4627(2019) 02-0230-05

$Lu_2Ti_2O_7$ 和 Lu_2TiO_5 陶瓷材料的Kr离子辐照损伤研究

付上朝,张建*,谢秋荣,叶成,郭奇勋

(厦门大学能源学院,福建厦门 361102)

摘要: 钛酸盐因其优异的物理化学性能,可作为高放射性核废物 (HLW) 和锕系元素 (钚) 的重要候选固化 材料之一。采用传统的陶瓷烧结工艺制备了多晶的 $Lu_2Ti_2O_7$ 和 Lu_2TiO_5 陶瓷材料。在室温下,用 800 keV Kr²⁺ 对两种材料进行辐照,辐照后的样品采用 GIXRD 进行表征,观察到两种样品都经历了先肿胀、然后 再发生非晶相变的过程。不同的是 $Lu_2Ti_2O_7$ 的晶格肿胀程度大于 Lu_2TiO_5 。另外, Lu_2TiO_5 样品的辐照 到 2×10^{14} ions/cm² 时非晶含量达 95.54%,而 $Lu_2Ti_2O_7$ 样品在此剂量下非晶含量只有 74.66%。通过第一 性原理计算了 $Lu_2Ti_2O_7$ 晶体的晶格肿胀随反位浓度的变化关系,结果表明, $Lu_2Ti_2O_7$ 出现非晶前的晶格 肿胀主要由阳离子反位导致,而 Lu_2TiO_5 是无序的萤石结构,其辐照所导致的晶格肿胀不含阳离子反位的贡 献,晶格肿胀程度较低。

关键词: 辐照; 晶格肿胀; 非晶相变; 第一性原理 中图分类号: O571 文献标志码: A DOI: 10.11804/NuclPhysRev.36.02.230

1 引言

核能的发展,导致越来越多的核废料产生,核废料的储存成为了核能持续发展所必须面对和解决的主要问题。其中,高放射性核废料因其半衰期长、放射性高^[1],需要另行处理,目前为止,高放射性核废料切实可行的处理方式是对其进行深地质处置——将其固化后,择址进行深地质掩埋^[2]。

Lu₂Ti₂O₇与Lu₂TiO₅同属于空间群Fd-3m (No.227)^[3],它们都是萤石结构 MO₂ 的衍生物。烧绿 石结构Lu2Ti2O7中,半径较大的Lu3+位于16d位置 处,配位数为8,处于8个氧离子组成的立方体内。较 小半径的Ti⁴⁺位于16c位置处,配位数为6,处在6个 氧离子构成的六面体内。氧离子缺失1/8,以氧空位的 形式表现出来,氧离子和氧空位构成简单立方结构。烧 绿石结构Lu2Ti2O7中,阳离子、氧离子、氧空位有序 存在^[4]。与Lu₂Ti₂O₇有所不同,Lu₂TiO₅的阳离子长 程上是无序的萤石结构^[5]。Lu₂Ti₂O₇作为钛酸盐的一 种,因其化学稳定性好、浸出率低等优点,可作为重要 的潜在的核废物固化材料^[6]。固化材料会长期被核废料 中高放射性核素 α 衰变产生的反冲核辐照,一旦固化材 料出现辐照损伤,尤其是非晶化,就会使得其化学稳定 性降低、浸出率提高^[7],因此,Lu₂Ti₂O₇的抗辐照性 能被广泛研究。Yang 等^[8]使用 400 keV Ne²⁺, 2.7 MeV Ar^{11+} 以及 6.5 MeV Xe²⁶⁺ 辐照 Lu₂Ti₂O₇,发现这几 种离子辐照下烧绿石结构 Lu₂Ti₂O₇ 都发生了非晶和晶 格肿胀,但是重离子使得 Lu₂Ti₂O₇ 的非晶与晶格肿胀 更容易发生。Zhang 等^[9]使用轻离子 He⁺ 辐照烧绿石 结构 Lu₂Ti₂O₇,发现了 Lu₂Ti₂O₇ 在 He⁺ 辐照下发生 了晶格肿胀,且肿胀程度与辐照剂量呈线性相关。但 是,迄今为止,很少有对 Lu₂TiO₅ 的辐照性能的研究。 因此,本研究利用 800 keV Kr²⁺ 在不同剂量下分别辐 照 Lu₂Ti₂O₇ 与 Lu₂TiO₅,比较二者之间辐照结果的异 同,并对它们的辐照结果之间的差异进行一定的解释。

2 实验

2.1 样品制备

多晶陶瓷 Lu₂Ti₂O₇和 Lu₂TiO₅通过传统的固态烧 结法制成。样品原料为99.99%的 Lu₂O₃和 TiO₂粉末 原料粉末在1000℃下去结晶水后,按1:2和1:1的两 种摩尔比混合,分别置于罐中球磨4h,之后将混合后 的样品压片,并置于1200℃的烧结炉中烧结24h。然 后将第一次烧结后的样品研磨成粉,压片成型,分别 置于1450℃和1400℃的烧结炉中烧结48h,实验中 的温度的选择主要依据 Lu₂O₃和 TiO₂的 T-C相图^[10]。 两次烧结后得到的样品分别用 X 射线衍射 (XRD)表征, 发现摩尔比为1:2和1:1的样品经两次烧结后分别得到

收稿日期: 2018-09-19; 修改日期: 2019-04-12

基金项目: 福建省自然科学基金项目 (2017J01007); 厦门大学能源学院发展基金项目 (2018NYFZ01)

作者简介:付上朝(1993-),男,贵州六盘水人,硕士,从事核工程与材料方面的研究; E-mail: 848807790@qq.com

[†]通信作者: 张建, E-mail: zhangjian@xmu.edu.cn。

立方的Lu2Ti2O7和Lu2TiO5结构,无杂相,两种样品 的密度分别为约理论密度的96%和95.3%。烧结样品切 割后用SiC砂纸和金刚石研磨膏抛光至镜面。

$\mathbf{2.2}$ 离子辐照和 SRIM 模拟

样品制备完成后,进行离子辐照实验。实验采用 的离子注入机是厦门大学粒子束材料实验室的400 kV 美国静电公司 (NEC) 的离子注入机。辐照温度是室温, 离子剂量率为1.6×10¹¹ ions/cm²·s, 辐照离子为800 keV Kr^{2+} .

本实验中,运用 Stopping Range of Ion in Matters (SRIM)^[11]模拟软件来评估入射离子进入材料后,材 料Lu2Ti2O7的损伤程度以及入射离子在Lu2Ti2O7中 的分布情况。SRIM 模拟采用的是基于 Kinchin-Pease 模型的快速计算,Lu,Ti,O的离位阈能值设置为默认 值,分别为25,25,28 eV。图1是800 keV Kr²⁺,辐 照剂量为 2.0×10^{14} ions/cm² 时辐照磷灰石的 SRIM 模 拟结果。由图可知在该辐照条件下,辐照的损伤峰值对 应的深度在16 nm 左右。随着辐照深度的不断增大,位 移损伤和离子浓度先是不断增大。在辐照深度约16 nm 时,位移损伤达到最大值0.54 dpa(displacement per atom),然后随着辐照深度的继续增大,位移损伤不 断减小,直至约580 nm时变为。在辐照深度约300 nm时,离子浓度最大,约为0.005%,然后随着辐照 深度的继续增大,离子浓度逐渐减小,在约580 nm时 变为。值得注意的是:入射离子在Lu2TiO5的分布、 Lu2TiO5的损伤程度与Lu2Ti2O7的情况相似,所以这 里只呈现了Lu2Ti2O7的SRIM模拟图。

2.3 GIXRD 测试

由图1的SRIM 模拟结果可知, 800 keV Kr²⁺的 辐照损伤峰值在160 nm 左右,因此为了更好地表 征表面辐照损伤薄膜层的结构信息,必须采用对 表面敏感的GIXRD 进行表征。X射线在材料中的 穿透深度可通过几何模型和临界角全反射模型来 估算^[12-13]。在几何模型中,X射线穿透深度可以 $\pm \text{ Depth} = \sin(\alpha)\sin(2\theta - \alpha)/\mu(\sin(\alpha) + \sin(2\theta - \alpha))$ 确定,其中: α 为X射线的入射角, θ 为X射线衍射角 的1/2; µ为X射线在材料中的线性质量吸收系数。在 临界角全反射模型中,X射线穿透深度可由下面两个 等式确定, 当 $\alpha < \alpha_c$ 时, Depth = $\lambda / \left[2\pi \sqrt{\alpha_c^2 - \alpha^2} \right]$; 当 $\alpha > \alpha_{c}$, Depth = $\frac{2\alpha}{\mu}$, 其中 $\alpha_{c} = \lambda \sqrt{\frac{r_{e}\bar{\rho}_{e}}{\pi}}$, 公式中 λ 为X射线波长, $r_{\rm e}$ 是经典电子半径,值为2.82×10⁻⁶ nm。 pe 是平均电子密度,可通过一个晶胞内总电子 数除以晶胞体积获得,计算得 Lu₂Ti₂O₇ 的临界角 α_c 为0.2582°。实验所采用的X射线衍射仪为日本理 学Rigaku Ultima IV, 靶材为Cu, X射线为CuK_a。 衍射仪工作过程中采用 α -2 θ 模式,其中入射X射线为 平行束,入射X射线与样品夹角固定且为0.5°,信号接 收端逆时针转动以接收不同衍射角下信息。整个过程 中,X射线扫描步长0.02°,每步停留时间2s,每个样 品用时约2h。值得说明的是,入射角为0.5°的X射线 在样品Lu2Ti2O7中穿透深度小于160 nm,所探测信 息均来自辐照层。

实验结果 3

图 2(a) 和 (b)分别为Lu2Ti2O7 和 Lu2TiO5 经 800 keV Kr²⁺ 辐照前与辐照后的GIXRD 谱图, 辐照剂量 范围为5×10¹²~6.0×10¹⁴ ions/cm²。对比两者的未辐 照的GIXRD图可以发现,在Lu2Ti2O7中存在两套峰, 一套为萤石峰,例如衍射峰(222),(400)和(440)等。 而另一套为阴阳离子有序产生的超结构峰;例如衍 射峰(111),(113)和(331)等,这两套峰构成烧绿石结 构Lu2Ti2O7的衍射谱图。而Lu2TiO5图谱只存在萤石 峰,并未出现超结构小峰,这表明Lu₂Ti₂O₇中阳离子 为有序的烧绿石结构,而Lu2TiO5的阳离子呈无序的 萤石结构。

在图2(a)中,辐照剂量为 5×10^{12} ion/cm²时, Lu2Ti2O7的结构变化不大,但其特征峰(222)p,(400)p, (440)_p等均向左移动,表明烧绿石结构正在发生晶格肿

图 2 (在线彩图) Lu₂Ti₂O₇(a)和Lu₂TiO₅(b) 经 800 keV Kr²⁺ 辐照前与辐照后的 GIXRD 谱图

胀。随着剂量增加到2×10¹³ ions/cm²时,特征峰 (222)_p分裂为(111)_F和(222)_p,(400)_p峰分裂为(200)_F 和(400)_p,此时部分有序烧绿石结构的Lu₂Ti₂O₇发生 相变转化为无序萤石相,样品由单一的烧绿石相变为烧 绿石相和萤石相的两相混合物。(111)_F和(200)_F峰分 别位于(222)_p和(400)_p峰的左边,则表明随着萤石相 的产生,样品发生了晶格肿胀现象。而分裂出的(222)_p 和(400)_p峰分别位于原始(222)_p和(400)_p峰的右边, 则表明在此剂量下烧绿石恢复至原始状态。此时晶格肿 胀由以下公式计算得到:

Lattice swelling =
$$\frac{2a_{\rm F} - a_{\rm P}}{a_{\rm P}} \times 100\%$$
 . (1)

当 辐 照 剂 量 达 到 1×10^{14} ions/cm² 时,特征 峰(222)周围形成了非晶漫射峰,表明在此剂 量下Lu₂Ti₂O₇已经出现非晶相变,我们通过拟 合GIXRD 谱图的方法计算得到此时Lu₂Ti₂O₇样品中 的非晶含量约为3554%。在此剂量之后,特征峰(222) 停止左移,Lu₂Ti₂O₇的晶格肿胀不再继续。当离 子辐照剂量达到 2.0×10^{14} ions/cm²时,特征峰(222) 周围形成的非晶漫射峰继续增大,表明在此剂量 下Lu₂Ti₂O₇非晶进一步加剧,此时Lu₂Ti₂O₇样品的 非晶含量约为74.66%。

在图 2(b) 中, 对于 Lu₂TiO₅,随着剂量增加,特 征峰(222),(400),(440)等随辐照剂量的增加均逐 渐左移,表明 Lu₂TiO₅和 Lu₂Ti₂O₇一样在辐照下发 生晶格肿胀。当辐照剂量达到 5×10^{13} ions/cm²时, (222)峰周围出现了非晶漫反射峰,此时 Lu₂TiO₅已 经出现非晶。高于此剂量之后,(222)峰的左移停止, 表明 Lu₂TiO₅的晶格肿胀不再继续。剂量达到 1×10^{14} ions/cm²时,(222)峰周围的非晶漫射峰继续增大, Lu₂TiO₅的非晶含量逐渐增多,非晶含量约为 78.88%。 剂量达到 2.0×10^{14} ions/cm²时,Lu₂TiO₅样品的非晶 含量已经为95.54%,远大于此剂量下Lu₂Ti₂O₇的非晶 含量。

4 讨论

在本实验设置的剂量下,800 keV Kr²⁺辐照Lu₂Ti₂O₇和Lu₂TiO₅,两种材料都发生了先晶格肿胀,然后出现非晶相变的过程。但是二者辐照结果也存在一定的差异,具体表现在:首先,两种样品随剂量增加晶格肿胀的趋势虽然相似,但是最大肿胀程度却存在着差异,具体见图3。由图3可以看出:位移损伤达到0.0125 dpa(对应辐照剂量为5.0×10¹² ions/cm²)之前,辐照引起的Lu₂Ti₂O₇和Lu₂TiO₅的晶格肿胀随损伤的增大而增大,且二者的晶格肿胀有着相同的增长率。当位移损伤大于0.0125 dpa时,Lu₂Ti₂O₇的晶格肿胀继续增加,而Lu₂TiO₅的晶格肿胀程度都达到最大,Lu₂Ti₂O₇与Lu₂TiO₅的最大肿胀率分别约为1.4%和0.65%。位移损伤大于0.05 dpa后,二者的

图 3 (在线彩图)两种材料在 800 keV Kr²⁺ 辐照下产生的晶格肿胀随位移损伤的变化

晶格肿胀程度都不再增加。其次,在辐照剂量达 到 2.0×10^{14} ions/cm² 时,Lu₂Ti₂O₇的非晶含量仅 为74.66%,而Lu₂TiO₅的非晶含量已达95.54%。值得 注意的是,在辐照剂量为 1×10^{14} ions/cm² 时,二者的 非晶现象已经较为明显,且Lu₂Ti₂O₇的非晶含量要明 显小于Lu₂TiO₅的非晶含量。

辐照导致的晶格肿胀既是一个科学问题也是一个 现实问题。Johanson和Linde^[14]在1936年第一次将晶 格的肿胀与无序联系在一起,Li等^[15]在利用Ne²⁺辐 照Lu₂Ti₂O₇实验的基础上,结合第一性原理与分子动 力学模拟,研究了辐照下Lu₂Ti₂O₇非晶前的晶格肿胀 现象,他们的研究结果表明:Lu₂Ti₂O₇辐照导致的晶 格肿胀主要归因于其辐照下阳离子反位的产生。在本实 验中,我们将Lu原子与Ti原子交换位置以模拟反位的 形成,通过第一性原理方法计算了Lu原子与Ti原子交 换晶格位置导致的Lu₂Ti₂O₇ 晶胞的肿胀程度。

我们的计算是基于密度泛函理论(DFT)^[16]的平面 波超软赝势法,计算中交换关联能选用的是广义梯度 近似的Perdew-Burke-Ernzerhof(PBE)^[17]泛函,计算 所采用的截断能为500 eV,选用Gamma方案2×2×2 的k点积分网格对布里渊区积分,计算中原子位置和晶 胞体积、形状都得到弛豫,计算的收敛条件为每个原子 所受最大的力为0.05 eV/Å,计算得出的Lu₂Ti₂O₇ 的 肿胀含量随阳离子交换位置的比例的变化如图4所示。

图 4 晶格肿胀程度随交换晶格位置的阳离子比例的变化图

计算结果表明,Lu₂Ti₂O₇的晶格肿胀含量随着 阳离子交换位置的比例的增加而呈一个先增加后减 小的趋势。当有50%的阳离子交换位置(25%Lu³⁺, 25%Ti⁴⁺,此时反位达到100%)时Lu₂Ti₂O₇中的阳 离子达到完全无序,晶格肿胀达到最大值。这与 图4中~0.05 dpa(对应的剂量为0~2×10¹³ ions/cm²) 时Lu₂Ti₂O₇的晶格肿胀变化相符;另一方面,通过 图3我们已经知道,在辐照剂量为2×10¹³ ions/cm² 时,Lu₂Ti₂O₇ 晶体内部分烧绿石结构转变为萤石结构, 阳离子无序增多,也即反位的数量在增加。这就表明, Lu₂Ti₂O₇ 的晶格肿胀主要是阳离子反位所导致的,随 着阳离子反位的增加,Lu₂Ti₂O₇ 的晶格肿胀不断增加。 当阳离子反位达到最大值时,Lu₂Ti₂O₇ 中的阳离子完 全无序,烧绿石结构转变为萤石结构,此时晶格肿胀达 到最大值。之后再加大辐照剂量,样品不再继续发生晶 格肿胀,而是开始出现非晶转变现象。对Lu₂TiO₅来 说,其阳离子为长程无序的萤石结构,所以其辐照产生 的晶格肿胀与Lu₂Ti₂O₇ 相比没有反位贡献,所以其晶 格肿胀程度没有Lu₂Ti₂O₇ 的大。

当辐照剂量达到 2.0×10^{14} ions/cm²时, Lu₂Ti₂O₇ 远小于Lu₂TiO₅的非晶程度。具体为, Lu₂Ti₂O₇在 剂量下非晶含量为74.66%,而Lu₂TiO₅的非晶含量高 达95.54%。Xie等^[18]通过实验发现了重离子辐照情况 下在烧绿石结构Lu₂Ti₂O₇中产生了纳米晶。纳米晶 的出现使得Lu₂Ti₂O₇体系的自由能始终无法突破相 变能垒,不能再继续非晶,也即纳米晶的形成增强了 烧绿石结构Lu₂Ti₂O₇的抗辐照非晶性能。这可能是导 致Lu₂Ti₂O₇不能完全非晶的原因。

5 总结

800 keV Kr²⁺ 辐照 Lu₂TiO₅ 和 Lu₂Ti₂O₇ 时,二 者都经历了一个先晶格肿胀然后发生非晶相变的 过程。在此过程中,二者的辐照效应存在着一些差 异。首先,在同种剂量下,Lu₂Ti₂O₇ 的肿胀程度要大 于 Lu₂TiO₅;其次,两种材料发生非晶转变后,在同种 剂量下,Lu₂Ti₂O₇ 的非晶含量要比 Lu₂TiO₅ 的非晶含 量大得多。两种陶瓷材料晶格肿胀程度不同,是因为反 位是造成 Lu₂Ti₂O₇ 肿胀的主要因素,而阳离子呈无序 结构的 Lu₂TiO₅ 与 Lu₂Ti₂O₇ 相比,其晶格肿胀少了阳 离子反位的贡献,所以其晶格肿胀程度要比 Lu₂Ti₂O₇ 的晶格肿胀程度低。

参考文献:

- HERBST A M, HOPLEY G W. Nuclear Energy Now[M]. New Jersey: John Wiley Trade, 2007.
- [2] DONG Xiaonan, ZHANG Jian, GUO Qixun, et al. Journal of Xiamen University: Natural Science, 2018, 57(01): 38. (in Chinese)
 (董晓囡, 张建, 郭奇勋, 等. 厦门大学学报: 自然科学版, 2018,

57(01): 38.)

 [3] LIAN J, WANG L, CHEN J, et al. Acta Materialia, 2003, 51(5): 1493.

- [4] LIAN J, CHEN J, WANG L M, et al. Physical Review B, 2003, 68(13): 134107.
- [5] Lau G. C, mcqueen T M, Huang Q, et al. Journal of Solid State Chemistry, 2008, 181(1): 45.
- [6] SICKAFUS K E, MINERVINI L, GRIMES R W, et al. Science, 2000, 289(5480): 748.
- [7] LUMPKIN GREGORY R, EWING RODNEY C. Phys Chem Minerals 1988, 16: 2.
- [8] YANG D, XIA Y, WEN J, et al. Journal of Alloys and Compounds, 2017, 693: 565.
- [9] ZHANG J, WANG Y Q, TANG M, et al. Nucl Instr and Meth B, 2015, 342: 179.
- [10] PETROVA M A, GREBENSHCHIKOV R G. Glass Physics and Chemistry, 2008, 34(5): 603.
- [11] ZIEGLER J F, ZIEGLER M D, BIERSACK J P. Nucl Instr

and Meth B, 2010, ${\bf 268}(11\text{-}12)\text{: }1818.$

- [12] TSUJI K, SATO S, HIROKAWA K. Review of Scientific Instruments, 1995, 66(10): 4847.
- [13] VALDEZ J A, CHI Z, SICKAFUS K E. Journal of Nuclear Materials, 2008, 381(3): 259.
- [14] JOHANSSON C H, LINDE J O. Ann Phys (Leipzig), 1936, 417: 1.
- [15] LI Y H, UBERUAGA B P, JIANG C, et al. Physical Review Letters, 2012, 108(19): 195504.
- [16] KOHN W, SHAM L J. Phys Rev A, 1965, 140: 1133.
- [17] PERDEW J P, BURKE K, ERNZERHOF M. Physical Review Letters, 1996, 77(18): 3865.
- [18] XIE Q R, ZHANG J, YIN D M, et al. Chinese Physics B, 2015, 24(12): 126103.

Radiation Damage of Lu₂Ti₂O₇ and Lu₂TiO₅ Ceramics Caused by Kr Ion Irradiation

FU Shangchao, ZHANG Jian[†], XIE Qiurong, YE Cheng, GUO Qixun

(College of Energy, Xiamen University, Xiamen 361102, Fujian, China)

Abstract: Titanate are one of the important candidates for solidifying high-level radioactive nuclear waste (HLW) and lanthanide (Plutonium) due to its excellent physical and chemical durability. Polycrystalline Lu₂Ti₂O₇ and Lu₂TiO₅ ceramic materials were prepared by a conventional ceramic sintering process, then the samples were irradiated with 800 keV Kr²⁺ at room temperature, and were subsequently characterized by GIXRD method. In the two kinds of samples, lattice swelling was observed firstly, and then amorphization phase transition took place. However, the lattice swelling of Lu₂Ti₂O₇ is greater than that of Lu₂TiO₅. In addition, when Lu₂Ti₂O₇ and Lu₂TiO₅ were irradiated to a fluence of 2×10^{14} ions/cm², the amorphous content of Lu₂TiO₅ sample reaches 95.54%, while the amorphous content of Lu₂Ti₂O₇ sample is only 74.66%. The first-principle was used to calculate the lattice swelling of Lu₂Ti₂O₇ with increasing of anti-sites concentration. The results show that the lattice swelling of Lu₂TiO₅ before amorphization is mainly caused by the cation anti-sites. While the pristine Lu₂TiO during the ion irradiation process. Therefore, the lattice swelling of Lu₂TiO₅ is lower compared to that of Lu₂Ti₂O₇. **Key words:** irradiation; lattice swelling; amorphous phase transition; first-principle

Received date: 19 Sep. 2018; Revised date: 12 Apr. 2019

Foundation item: Fujian Provincial Natural Science Foundation(2017J01007); Energy Development Foundation of Energy College, Xiamen University (2018NYFZ01)

[†] Corresponding author: ZHANG Jian, E-mail: zhangjian@xmu.xmu.edu.