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Effect of helium on tensile properties of tungsten >3{ 112} symmetrical

grain boundary studied by molecular dynamics
LI Fang-biao' =~ GAO Ning® LI Yi-peng' HONG Gang'  ZHAO Shang-quan'  RAN Guang'
( 1.College of Energy Xiamen University Xiamen 361102 China;
2.Institute of Modern Physics Chinese Academy of Science Lanzhou 730000 China)

Abstract: Tensile properties of tungsten 33 ( 112) symmetrical grain boundary containing He bubbles with different sizes and
concentrations were studied by molecular dynamics method. The microstructure evolution mechanism of tungsten crystals before yield was
analyzed by means of common neighbor analysis and dislocation analysis. The results show that for the tungsten without He bubbles or with
a little size of He bubbles at grain boundary there are two stages before tensile yield: elastic stage and elastic phase-transition stage. In the
elastic phase—transition stage the relative position of lattice atoms is changed. During the tensile process the lattice damage caused by
the small-scale He bubble will recover automatically and has no significant effect on the yield stress and yield strain of the crystal. The
energy of the He bubbles is affected by the distance between the tungsten atoms in the surrounding lattice. The lattice damage caused by
large—scale bubble cant be recovered during the tensile process. The larger the bubble is the smaller the yield strain yield strength and
elastic modulus are. The high concentration of He bubbles on the grain boundary is easy to cause the grain boundary embrittlement which
results in the fracture and separation of tungsten after tensile yield.
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Fig.1 Deformation characteristics of 23{ 112} symmetrical grain boundary without He bubbles viewed along 110 direction
(a) and (b) grain boundary without strain; ( ¢) and ( d) elastic phase-transition with 7. 5% strain; ( e) enlarge of structure phase
with 15% strain; (f) and (g) (110) slip along the <111> direction with 22% strain ( GB: grain boundary; E: elastic

modulus; E: the potential of W atom; o ! stresses along the tensile direction)
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Fig.3 Deformation characteristics of tungsten with little He bubbles containing 10 He atoms in the grain boundary the view is
along 110 direction ( a) grain boundary without strain; ( b) there are some Frenkel defects around He bubbles with 7. 5% strain;

the circular virtual coils in (‘a) and ( b) : interstitial atoms; ( c¢) Frenkel defects increasing with 12% strain; ( d) the displaced
atoms along 112 direction; (‘e) Frenkel defects decreasing with 18% strain; (f) ( 110) slip along the <112> direction with

22% strain the view is along 111 direction; (g) atomic trajectory( A: self-interstitial atom B: atom in perfect lattice

C: annihilation of self-nterstitial atom and vacancy; Dark atom: He &:strain E, : the average potential

of He atoms Vy, : the average volume of He atoms)
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Fig.4 Curves of stress-strain and potential-strain of tungsten

with little He bubble containing 10 He atoms in the

grain boundary
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Fig.5 The characteristic of grain boundary with ( a) £=20% and a helium bubble with 20 He atoms
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Fig.6  Vacancy-strain curves of tungsten with different 7 He (&
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Fig.7 Stress-strain curves of tungsten with different R 8( a)
size He bubbles in the grain boundary C,. = 5% (£>7.5%)
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Fig.8 The characteristic of grain boundary with different concentration of He bubbles in the grain boundary the view is
along 110 direction (a) C,.=5% &=15%; (b) C,.=20% &£=10%; (c) distribution of o in highly-deformed

region; (d) crack around He bubbles ( o : stresses along the tensile direction)
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Table 1 The yield stress and yield strain of tungsten with different size ( Ny,) or different concentration of He

bubbles ( Cy,) in the grain boundary and the number of vacancies in crystal at yield point

Yield point Ch
0 10 60 100 5% 10% 20% 30%
Strain 22% 22% 18. 5% 16. 5% 15% 12. 5% 10. 0% 9. 0%
Stress/GPa 30. 11 30. 08 28.35 28.02 27.9 26.97 24. 45 23.56
Vacancy - 75 149 220 1108 1437 - -
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